

MPS2907A

Preferred Device

General Purpose Transistors

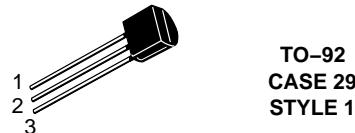
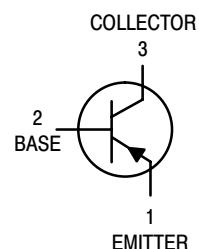
PNP Silicon

ON Semiconductor®

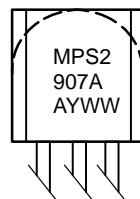
<http://onsemi.com>

Features

- Pb-Free Packages are Available*



MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	-60	Vdc
Collector-Base Voltage	V_{CBO}	-60	Vdc
Emitter-Base Voltage	V_{EBO}	-5.0	Vdc
Collector Current - Continuous	I_C	-600	mAdc
Total Device Dissipation @ $T_A = 25^\circ\text{C}$ Derate above 25°C	P_D	625 5.0	mW mW/ $^\circ\text{C}$
Total Device Dissipation @ $T_C = 25^\circ\text{C}$ Derate above 25°C	P_D	1.5 12	W mW/ $^\circ\text{C}$
Operating and Storage Junction Temperature Range	T_J, T_{stg}	-55 to +150	$^\circ\text{C}$


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	$^\circ\text{C/W}$
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	$^\circ\text{C/W}$

MARKING DIAGRAM

MPS2 = Device Code
907A = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MPS2907A

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (Note 1) ($I_C = -10 \text{ mA}_\text{dc}$, $I_B = 0$)	$V_{(\text{BR})\text{CEO}}$	-60	-	Vdc
Collector-Base Breakdown Voltage ($I_C = -10 \mu\text{A}_\text{dc}$, $I_E = 0$)	$V_{(\text{BR})\text{CBO}}$	-60	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = -10 \mu\text{A}_\text{dc}$, $I_C = 0$)	$V_{(\text{BR})\text{EBO}}$	-5.0	-	Vdc
Collector Cutoff Current ($V_{\text{CE}} = -30 \text{ Vdc}$, $V_{\text{EB}(\text{off})} = -0.5 \text{ Vdc}$)	I_{CEX}	-	-50	nA dc
Collector Cutoff Current ($V_{\text{CB}} = -50 \text{ Vdc}$, $I_E = 0$) ($V_{\text{CB}} = -50 \text{ Vdc}$, $I_E = 0$, $T_A = 150^\circ\text{C}$)	I_{CBO}	-	-0.01 -10	μA_dc
Base Current ($V_{\text{CE}} = -30 \text{ Vdc}$, $V_{\text{EB}(\text{off})} = -0.5 \text{ Vdc}$)	I_B	-	-50	nA dc

ON CHARACTERISTICS

DC Current Gain ($I_C = -0.1 \text{ mA}_\text{dc}$, $V_{\text{CE}} = -10 \text{ Vdc}$) ($I_C = -1.0 \text{ mA}_\text{dc}$, $V_{\text{CE}} = -10 \text{ Vdc}$) ($I_C = -10 \text{ mA}_\text{dc}$, $V_{\text{CE}} = -10 \text{ Vdc}$) ($I_C = -150 \text{ mA}_\text{dc}$, $V_{\text{CE}} = -10 \text{ Vdc}$) (Note 1) ($I_C = -500 \text{ mA}_\text{dc}$, $V_{\text{CE}} = -10 \text{ Vdc}$) (Note 1)	h_{FE}	75 100 100 100 50	-	-
Collector-Emitter Saturation Voltage (Note 1) ($I_C = -150 \text{ mA}_\text{dc}$, $I_B = -15 \text{ mA}_\text{dc}$) ($I_C = -500 \text{ mA}_\text{dc}$, $I_B = -50 \text{ mA}_\text{dc}$)	$V_{\text{CE}(\text{sat})}$	- -	-0.4 -1.6	Vdc
Base-Emitter Saturation Voltage (Note 1) ($I_C = -150 \text{ mA}_\text{dc}$, $I_B = -15 \text{ mA}_\text{dc}$) ($I_C = -500 \text{ mA}_\text{dc}$, $I_B = -50 \text{ mA}_\text{dc}$)	$V_{\text{BE}(\text{sat})}$	- -	-1.3 -2.6	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product (Notes 1 and 2), ($I_C = -50 \text{ mA}_\text{dc}$, $V_{\text{CE}} = -20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	f_T	200	-	MHz
Output Capacitance ($V_{\text{CB}} = -10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C_{obo}	-	8.0	pF
Input Capacitance ($V_{\text{EB}} = -2.0 \text{ Vdc}$, $I_C = 0$, $f = 1.0 \text{ MHz}$)	C_{ibo}	-	30	pF

SWITCHING CHARACTERISTICS

Turn-On Time	($V_{\text{CC}} = -30 \text{ Vdc}$, $I_C = -150 \text{ mA}_\text{dc}$, $I_{B1} = -15 \text{ mA}_\text{dc}$) (Figures 1 and 5)	t_{on}	-	45	ns
Delay Time		t_d	-	10	ns
Rise Time		t_r	-	40	ns
Turn-Off Time	($V_{\text{CC}} = -6.0 \text{ Vdc}$, $I_C = -150 \text{ mA}_\text{dc}$, $I_{B1} = I_{B2} = 15 \text{ mA}_\text{dc}$) (Figure 2)	t_{off}	-	100	ns
Storage Time		t_s	-	80	ns
Fall Time		t_f	-	30	ns

1. Pulse Test: Pulse Width $\leq 300 \mu\text{s}$, Duty Cycle $\leq 2\%$.

2. f_T is defined as the frequency at which $|h_{\text{fe}}|$ extrapolates to unity.

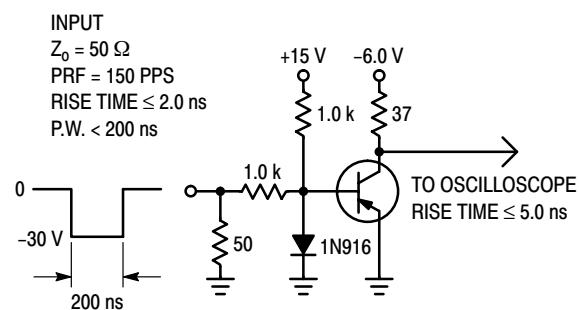
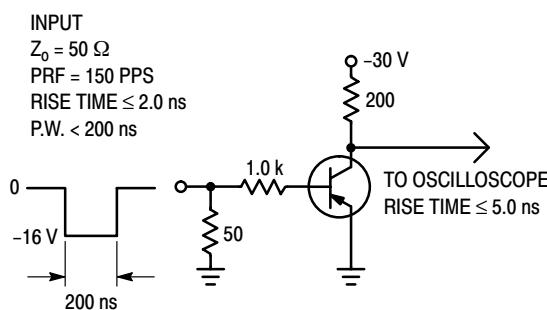



Figure 1. Delay and Rise Time Test Circuit

Figure 2. Storage and Fall Time Test Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]
MPS2907A	TO-92	5000 Units / Box
MPS2907AG	TO-92 (Pb-Free)	5000 Units / Box
MPS2907ARL	TO-92	2000 / Tape & Reel
MPS2907ARLG	TO-92 (Pb-Free)	2000 / Tape & Reel
MPS2907ARL1G	TO-92	2000 / Tape & Reel
MPS2907ARL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
MPS2907ARLRA	TO-92	2000 / Tape & Reel
MPS2907ARLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
MPS2907ARLRE	TO-92	2000 / Ammo Pack
MPS2907ARLREG	TO-92 (Pb-Free)	2000 / Ammo Pack
MPS2907ARLRM	TO-92	2000 / Ammo Pack
MPS2907ARLRP	TO-92	2000 / Ammo Pack
MPS2907ARLRPG	TO-92 (Pb-Free)	2000 / Ammo Pack

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

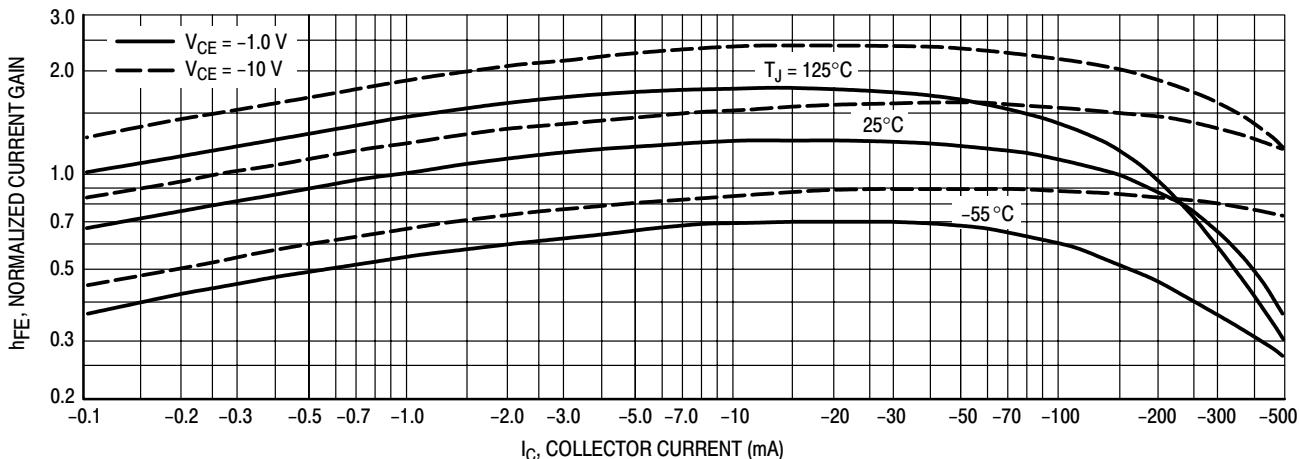


Figure 3. DC Current Gain

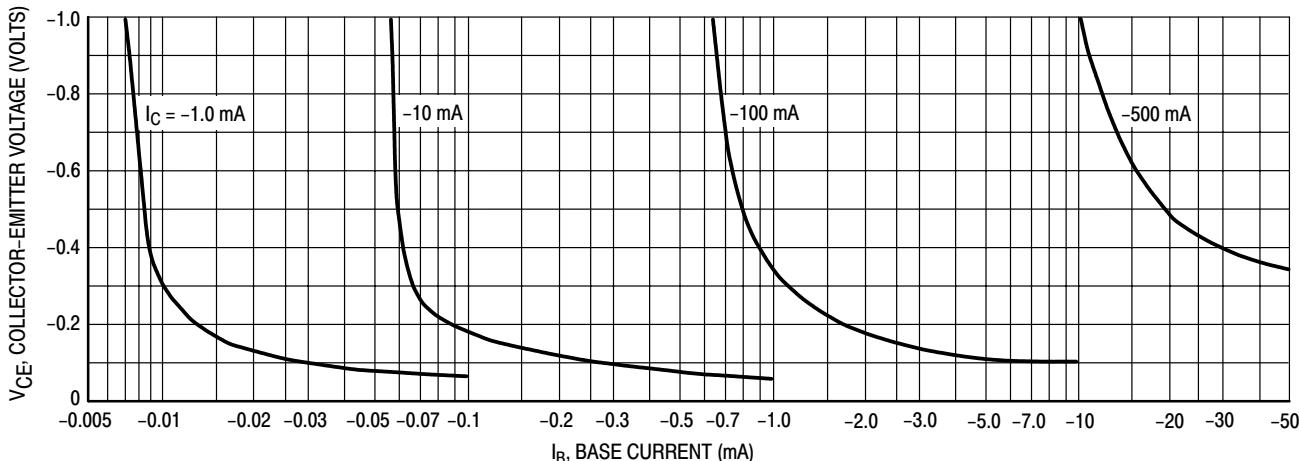
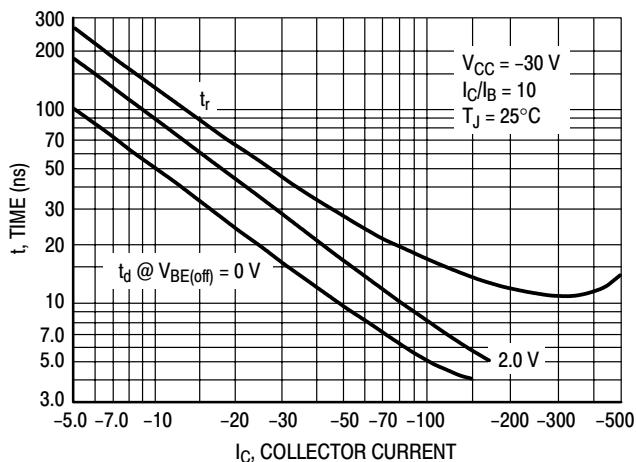
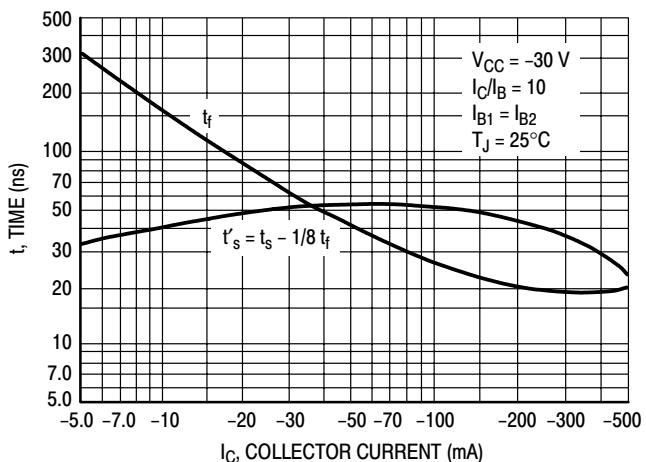




Figure 4. Collector Saturation Region

TYPICAL CHARACTERISTICS

Figure 5. Turn-On Time

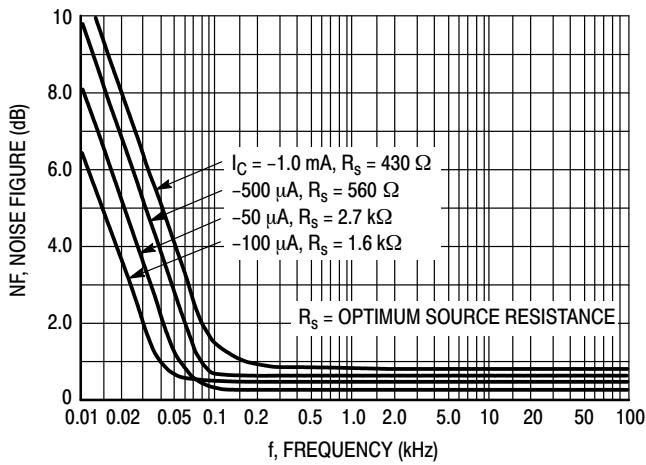
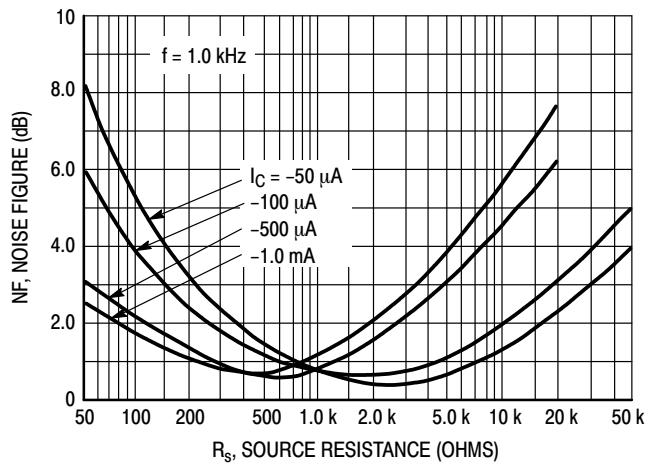


Figure 6. Turn-Off Time


TYPICAL SMALL-SIGNAL CHARACTERISTICS

NOISE FIGURE

$V_{CE} = 10$ Vdc, $T_A = 25^\circ\text{C}$

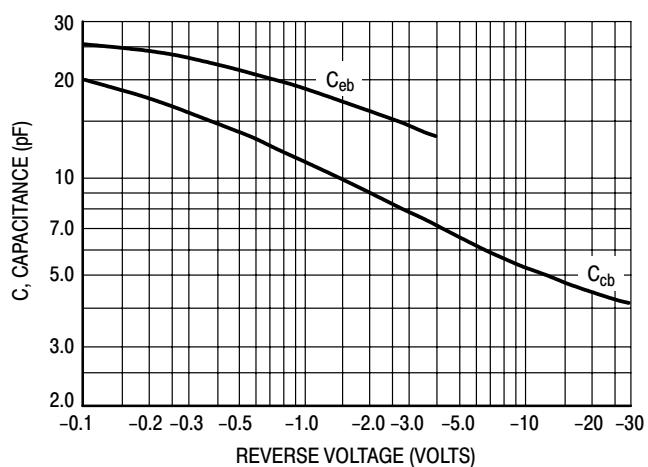


Figure 7. Frequency Effects

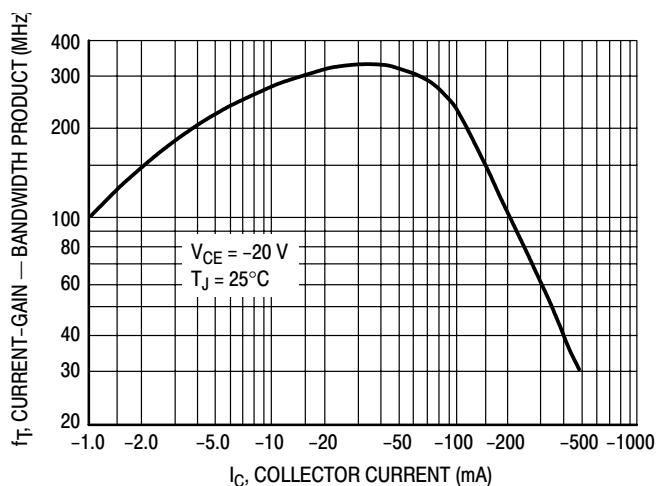
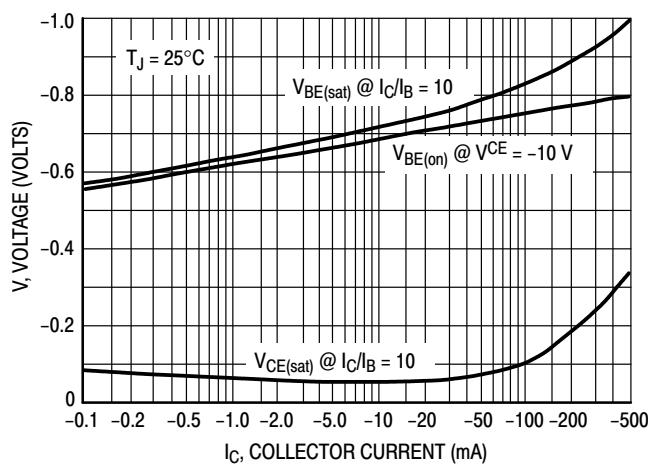


Figure 8. Source Resistance Effects


TYPICAL SMALL-SIGNAL CHARACTERISTICS
NOISE FIGURE
 $V_{CE} = 10$ Vdc, $T_A = 25^\circ\text{C}$

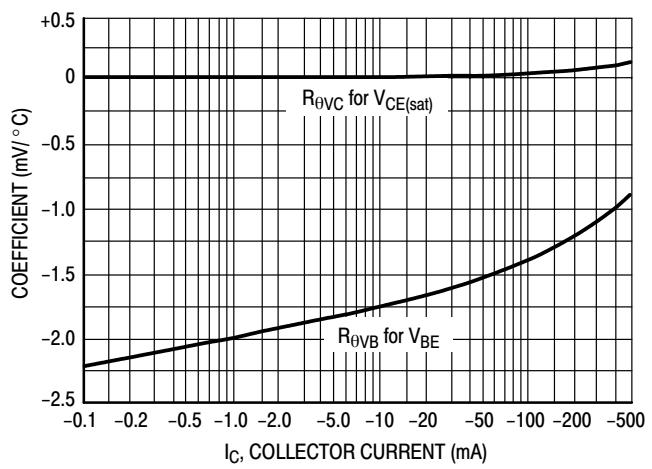

Figure 9. Capacitances

Figure 10. Current-Gain — Bandwidth Product

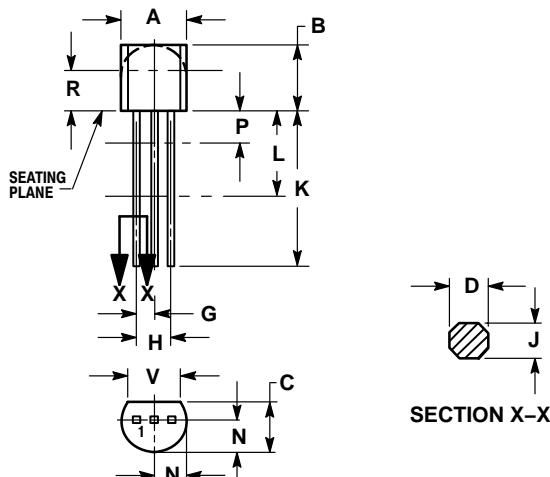

Figure 11. "On" Voltage

Figure 12. Temperature Coefficients

PACKAGE DIMENSIONS

TO-92
TO-226AA
CASE 29-11
ISSUE AL

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.175	0.205	4.45	5.20
B	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500	---	12.70	---
L	0.250	---	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	---	2.54
R	0.115	---	2.93	---
V	0.135	---	3.43	---

STYLE 1:
PIN 1. Emitter
2. Base
3. Collector

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor

P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada

Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051
Phone: 81-3-5773-3850

ON Semiconductor Website: <http://onsemi.com>

Order Literature: <http://www.onsemi.com/litorder>

For additional information, please contact your local Sales Representative.