

FEATURES:

- Typical $t_{sk(0)}$ (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model ($C = 200\text{pF}$, $R = 0$)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to $+85^{\circ}\text{C}$
- $V_{CC} = 3.3\text{V} \pm 0.3\text{V}$, Normal Range
- $V_{CC} = 2.7\text{V}$ to 3.6V , Extended Range
- CMOS power levels ($0.4\mu\text{W}$ typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVCH16260A:

- High Output Drivers: $\pm 24\text{mA}$
- Reduced system switching noise

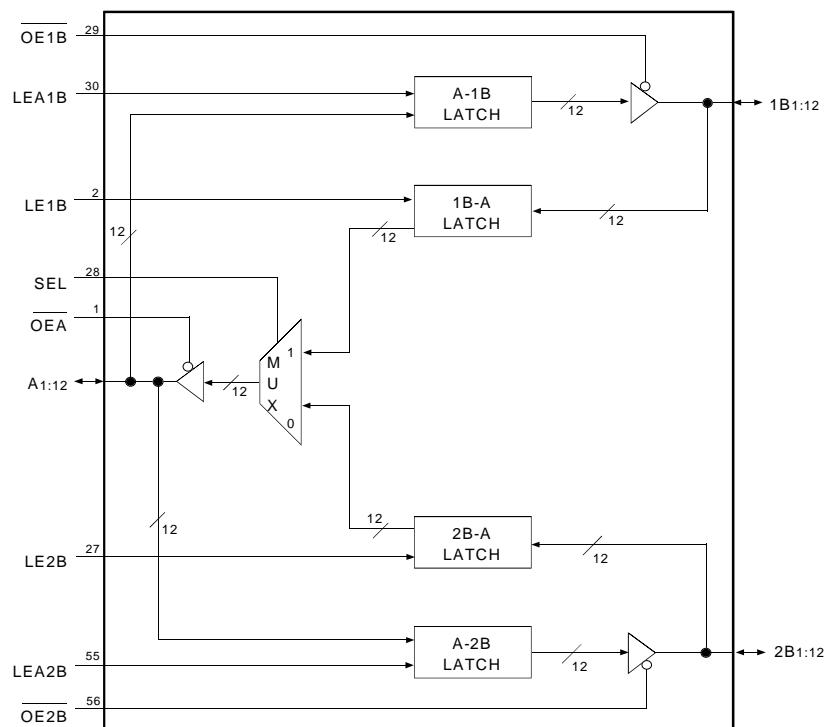
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION:

The LVCH16260A tri-port bus exchanger is built using advanced dual metal CMOS technology. The LVCH16260A is a high-speed 12-bit latched

bus multiplexer/transceiver for use in high-speed microprocessor applications. This bus exchanger supports memory interleaving with latched outputs on the B ports and address multiplexing with latched inputs on the B ports.


The LVCH16260A tri-port bus exchanger has three 12-bit ports. Data may be transferred between the A port and either/both of the B ports. The latch enable (LE1B, LE2B, LEA1B and LEA2B) inputs control data storage. When a latch-enable input is high, the latch is transparent. When a latch-enable input is low, the data at the input is latched and remains latched until the latch enable input is returned high. Independent output enables (OE1B and $\overline{OE2B}$) allow reading from one port while writing to the other port.

All pins of the 12-bit Bus Exchanger can be driven from either 3.3V or 5V devices. This feature allows the use of the device as a translator in a mixed 3.3V/5V supply system.

The LVCH16260A has been designed with a $\pm 24\text{mA}$ output driver. The driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16260A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

Functional Block Diagram

PIN CONFIGURATION

OEA	1	56	OE2B
LE1B	2	55	LEA2B
2B ₃	3	54	2B ₄
GND	4	53	GND
2B ₂	5	52	2B ₅
2B ₁	6	51	2B ₆
Vcc	7	50	VCC
A ₁	8	49	2B ₇
A ₂	9	48	2B ₈
A ₃	10	47	2B ₉
GND	11	46	GND
A ₄	12	45	2B ₁₀
A ₅	13	44	2B ₁₁
A ₆	14	43	2B ₁₂
A ₇	15	42	1B ₁₂
A ₈	16	41	1B ₁₁
A ₉	17	40	1B ₁₀
GND	18	39	GND
A ₁₀	19	38	1B ₉
A ₁₁	20	37	1B ₈
A ₁₂	21	36	1B ₇
Vcc	22	35	VCC
1B ₁	23	34	1B ₆
1B ₂	24	33	1B ₅
GND	25	32	GND
1B ₃	26	31	1B ₄
LE2B	27	30	LEA1B
SEL	28	29	OE1B

SSOP/TSSOP/TVSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
TSTG	Storage Temperature	- 65 to +150	°C
I _{OUT}	DC Output Current	- 50 to +50	mA
I _{IK}	Continuous Clamp Current, V _I < 0 or V _O < 0	- 50	mA
I _{CC}	Continuous Current through each V _{CC} or GND	±100	mA
I _{SS}			

LVC Link

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. V_{CC} terminals.
3. All terminals except V_{CC}.

CAPACITANCE (T_A = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	4.5	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	6.5	8	pF
C _{I/O}	I/O Port Capacitance	V _{IN} = 0V	6.5	8	pF

LVC Link

NOTE:

1. As applicable to the device type.

FUNCTION TABLES (1)

Inputs						Outputs
1Bx	2Bx	SEL	LE1B	LE2B	$\overline{OE_A}$	Ax
H	X	H	H	X	L	H
L	X	H	H	X	L	L
X	X	H	L	X	L	$A_0^{(2)}$
X	H	L	X	H	L	H
X	L	L	X	H	L	L
X	X	L	X	L	L	$A_0^{(2)}$
X	X	X	X	X	H	Z

NOTES:

1. H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Z = High-Impedance
2. A_0 , B_0 = Output level before the indicated steady-state input conditions were established.

Inputs					Outputs	
Ax	LEA1B	LEA2B	$\overline{OE1B}$	$\overline{OE2B}$	1Bx	2Bx
H	H	H	L	L	H	H
L	H	H	L	L	L	L
H	H	L	L	L	H	$B_0^{(2)}$
L	H	L	L	L	L	$B_0^{(2)}$
H	L	H	L	L	$B_0^{(2)}$	H
L	L	H	L	L	$B_0^{(2)}$	L
X	L	L	L	L	$B_0^{(2)}$	$B_0^{(2)}$
X	X	X	H	H	Z	Z
X	X	X	L	H	Active	Z
X	X	X	H	L	Z	Active
X	X	X	L	L	Active	Active

PIN DESCRIPTION

Signal	I/O	Description
A(1:12)	I/O	Bidirectional Data Port A. Usually connected to the CPU's Address/Data bus. ⁽¹⁾
1B(1:12)	I/O	Bidirectional Data Port 1B. Connected to the even path or even bank of memory. ⁽¹⁾
2B(1:12)	I/O	Bidirectional Data Port 2B. Connected to the odd path or odd bank of memory. ⁽¹⁾
LEA1B	I	Latch Enable Input for A-1B Latch. The Latch is open when LEA1B is HIGH. Data from the A-port is latched on the HIGH to LOW transition of LEA1B.
LEA2B	I	Latch Enable Input for A-2B Latch. The Latch is open when LEA2B is HIGH. Data from the A-port is latched on the HIGH to LOW transition of LEA2B.
LE1B	I	Latch Enable Input for 1B-A Latch. The Latch is open when LE1B is HIGH. Data from the 1B port is latched on the HIGH to LOW transition of LE1B.
LE2B	I	Latch Enable Input for 2B-A Latch. The Latch is open when LE2B is HIGH. Data from the 2B port is latched on the HIGH to LOW transition of LE2B.
SEL	I	1B or 2B Path Selection. When HIGH, SEL enables data transfer from 1B Port to A Port. When LOW, SEL enables data transfer from 2B Port to A Port.
$\overline{OE_A}$	I	Output Enable for A Port (Active LOW).
$\overline{OE1B}$	I	Output Enable for 1B Port (Active LOW).
$\overline{OE2B}$	I	Output Enable for 2B Port (Active LOW).

NOTE:

1. These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
V_{IH}	Input HIGH Voltage Level	$V_{CC} = 2.3\text{V}$ to 2.7V		1.7	—	—	V
		$V_{CC} = 2.7\text{V}$ to 3.6V		2	—	—	
V_{IL}	Input LOW Voltage Level	$V_{CC} = 2.3\text{V}$ to 2.7V		—	—	0.7	V
		$V_{CC} = 2.7\text{V}$ to 3.6V		—	—	0.8	
I_{IH} I_{IL}	Input Leakage Current	$V_{CC} = 3.6\text{V}$	$V_I = 0$ to 5.5V	—	—	± 5	μA
I_{OZH} I_{OZL}	High Impedance Output Current (3-State Output pins)	$V_{CC} = 3.6\text{V}$	$V_O = 0$ to 5.5V	—	—	± 10	μA
I_{OFF}	Input/Output Power Off Leakage	$V_{CC} = 0\text{V}$, V_{IN} or $V_O \leq 5.5\text{V}$		—	—	± 50	μA
V_{IK}	Clamp Diode Voltage	$V_{CC} = 2.3\text{V}$, $I_{IN} = -18\text{mA}$		—	-0.7	-1.2	V
V_H	Input Hysteresis	$V_{CC} = 3.3\text{V}$		—	100	—	mV
I_{CCL} I_{CCH} I_{CCZ}	Quiescent Power Supply Current	$V_{CC} = 3.6\text{V}$	$V_{IN} = \text{GND}$ or V_{CC}	—	—	10	μA
			$3.6 \leq V_{IN} \leq 5.5\text{V}$ ⁽²⁾	—	—	10	
ΔI_{CC}	Quiescent Power Supply Current Variation	One input at $V_{CC} - 0.6\text{V}$ other inputs at V_{CC} or GND		—	—	500	μA

LVC Link

NOTES:

1. Typical values are at $V_{CC} = 3.3\text{V}$, $+25^{\circ}\text{C}$ ambient.
2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
I_{BHH} I_{BHL}	Bus-Hold Input Sustain Current	$V_{CC} = 3.0\text{V}$	$V_I = 2.0\text{V}$	-75	—	—	μA
			$V_I = 0.8\text{V}$	75	—	—	
I_{BHH} I_{BHL}	Bus-Hold Input Sustain Current	$V_{CC} = 2.3\text{V}$	$V_I = 1.7\text{V}$	—	—	—	μA
			$V_I = 0.7\text{V}$	—	—	—	
I_{BHHO} I_{BHLO}	Bus-Hold Input Overdrive Current	$V_{CC} = 3.6\text{V}$	$V_I = 0$ to 3.6V	—	—	± 500	μA

LVC Link

NOTES:

1. Pins with Bus-hold are identified in the pin description.
2. Typical values are at $V_{CC} = 3.3\text{V}$, $+25^{\circ}\text{C}$ ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = 2.3V to 3.6V	I _{OH} = - 0.1mA	V _{CC} - 0.2	—	V
		V _{CC} = 2.3V	I _{OH} = - 6mA	2	—	
		V _{CC} = 2.3V	I _{OH} = - 12mA	1.7	—	
		V _{CC} = 2.7V		2.2	—	
		V _{CC} = 3.0V		2.4	—	
		V _{CC} = 3.0V	I _{OH} = - 24mA	2.2	—	
V _{OL}	Output LOW Voltage	V _{CC} = 2.3V to 3.6V	I _{OL} = 0.1mA	—	0.2	V
		V _{CC} = 2.3V	I _{OL} = 6mA	—	0.4	
			I _{OL} = 12mA	—	0.7	
		V _{CC} = 2.7V	I _{OL} = 12mA	—	0.4	
		V _{CC} = 3.0V	I _{OL} = 24mA	—	0.55	

LVC Link

NOTE:

1. V_{IH} and V_{IL} must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate V_{CC} range. T_A = - 40°C to +85°C.

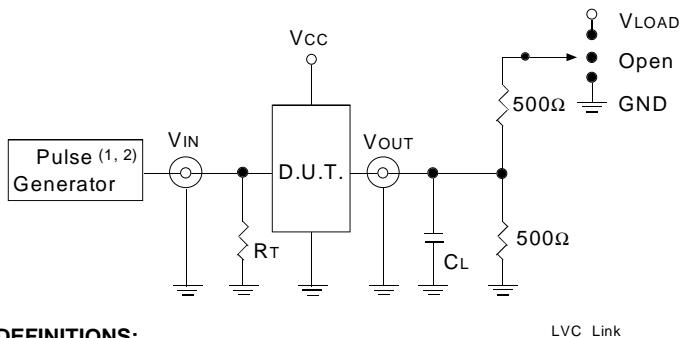
OPERATING CHARACTERISTICS, V_{CC} = 3.3V ± 0.3V, T_A = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per bus exchanger Outputs enabled	C _L = 0pF, f = 10MHz	—	pF
CPD	Power Dissipation Capacitance per bus exchanger Outputs disabled		—	pF

SWITCHING CHARACTERISTICS⁽¹⁾

Symbol	Parameter	V _{CC} = 2.7V ± 0.2V		V _{CC} = 3.3V ± 0.3V		Unit
		Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay Ax to 1Bx or Ax to 2Bx	1.5	5.7	1.5	5	ns
t _{PLH}	Propagation Delay 1Bx to Ax or 2Bx to Ax	1.5	6.1	1.5	5.2	ns
t _{PLH}	Propagation Delay LExB to Ax	1.5	6.1	1.5	5.2	ns
t _{PLH}	Propagation Delay LEA1B to 1Bx or LEA2B to 2Bx	1.5	6.1	1.5	5	ns
t _{PLH}	Propagation Delay SEL to Ax	1.5	6.3	1.5	5.2	ns
t _{PZH}	Output Enable Time OE _A to Ax, OE _{1B} to 1Bx, or OE _{2B} to 2Bx	1.5	6.7	1.5	5.5	ns
t _{PZL}	Output Disable Time OE _A to Ax, OE _{1B} to 1Bx, or OE _{2B} to 2Bx	1.5	5.9	1.5	5.2	ns
t _{SU}	Set-Up Time, HIGH or LOW Data to Latch	1	—	1	—	ns
t _H	Hold Time, Latch to Data	1.2	—	1	—	ns
t _W	Pulse Width, Latch HIGH	3	—	3	—	ns
t _{SK(0)}	Output Skew ⁽²⁾	—	—	—	500	ps

NOTES:


1. See test circuits and waveforms. T_A = - 40°C to +85°C.
2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

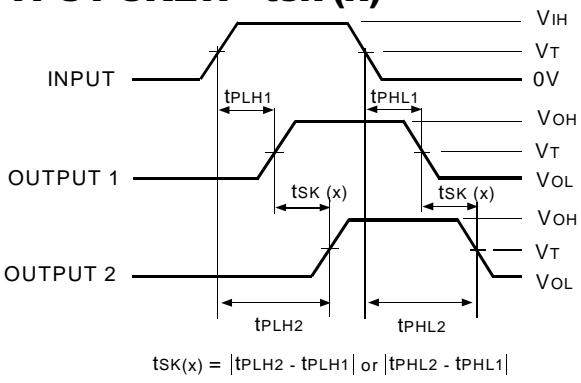
Symbol	$V_{CC(1)} = 3.3V \pm 0.3V$	$V_{CC(1)} = 2.7V$	$V_{CC(2)} = 2.5V \pm 0.2V$	Unit
V_{LOAD}	6	6	$2 \times V_{CC}$	V
V_{IH}	2.7	2.7	V_{CC}	V
V_T	1.5	1.5	$V_{CC} / 2$	V
V_{LZ}	300	300	150	mV
V_{HZ}	300	300	150	mV
C_L	50	50	30	pF

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

C_L = Load capacitance: includes jig and probe capacitance.
 R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

NOTE:

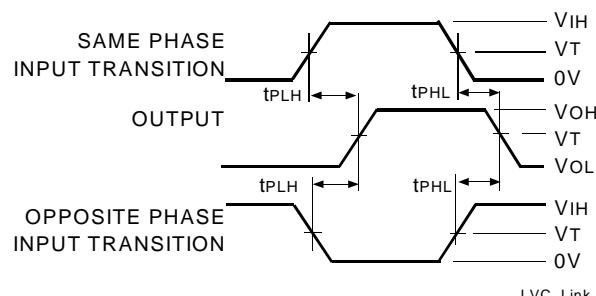

1. Pulse Generator for All Pulses: Rate ≤ 10 MHz; $t_f \leq 2.5$ ns; $t_r \leq 2.5$ ns.
2. Pulse Generator for All Pulses: Rate ≤ 10 MHz; $t_f \leq 2$ ns; $t_r \leq 2$ ns.

SWITCH POSITION

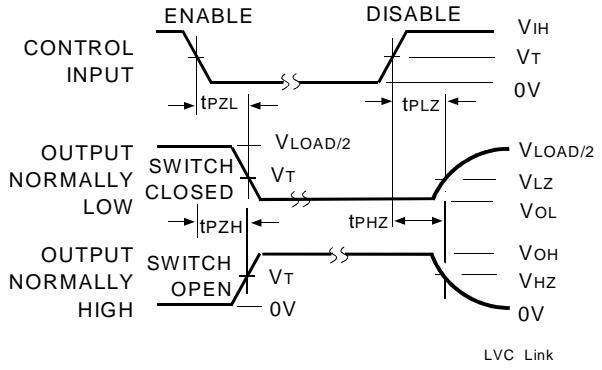
Test	Switch
Open Drain	V_{LOAD}
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

LVC Link

OUTPUT SKEW - $t_{SK}(x)$

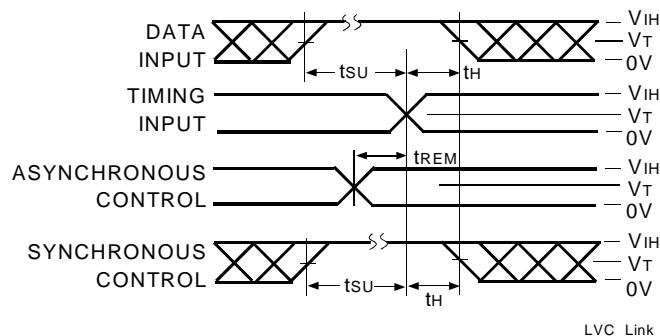

$$tsk(x) = |tPLH2 - tPLH1| \text{ or } |tPHL2 - tPHL1|$$

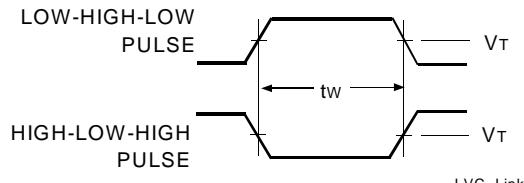
LVC Link


NOTES:

1. For $tsk(x)$ OUTPUT1 and OUTPUT2 are any two outputs.
2. For $tsk(x)$ OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

IDT	XX	LVC	X	XX	XXXX	XX
Temp. Range	Bus-Hold	Family		Device Type		Package
						PV Shrink Small Outline Package (SO56-1)
						PA Thin Shrink Small Outline Package (SO56-2)
						PF Thin Very Small Outline Package (SO56-3)
					260A	12-Bit Tri-Port Bus Exchanger
					16	Double-Density with Resistors, $\pm 24\text{mA}$
					H	Bus-hold
					74	-40°C to +85°C

CORPORATE HEADQUARTERS

2975 Stender Way
Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.
The IDT logo is a registered trademark of Integrated Device Technology, Inc.