
© 2009 Microchip Technology Inc. DS41356B

Low Pin Count USB
Development Kit

User’s Guide

DS41356B-page ii © 2009 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

LOW PIN COUNT USB
DEVELOPMENT KIT

USER’S GUIDE

© 2009 Microchip Technology Inc. DS41356B-page iii

Table of Contents

Preface ... 1
Introduction... 1
Document Layout.. 1
Conventions Used in this Guide ... 2
Recommended Reading ... 3
The Microchip Web Site.. 3
Customer Support... 4
Document Revision History .. 4

Chapter 1: Overview
 Introduction .. 5
 Highlights ... 5
 Low Pin Count USB Development Kit Contents .. 5
 Low Pin Count USB Development Board Construction and Layout 6
 PIC18F14K50 ICD Debug Header .. 7
 “Getting Started with Microchip’s Low Pin Count USB Solutions” Self-Directed

Course .. 7
 Introduction .. 9
 Prerequisites ... 9
 Resources Required to Complete Project Labs .. 9

Chapter 2: Getting Started Project Labs
 Project Lab 1 (Enumeration) ... 10

2.4.1 Purpose ... 10
2.4.2 Procedure .. 10
Testing The Application .. 17

 Project Lab 2 (HID Mouse) .. 18
2.5.1 Purpose ... 18
2.5.2 Overview of the HID Mouse Firmware ... 19
2.5.3 Procedure .. 20
Testing the Application ... 21

 Project Lab 3 (HID Keyboard) ... 22
2.6.1 Overview of the HID Keyboard Firmware 22
2.6.2 Procedure .. 24
Testing the Application ... 27

Low Pin Count USB Development Kit User’s Guide

DS41356B-page iv © 2009 Microchip Technology Inc.

 Project Lab 4 (CDC – Serial Emulator) ... 28
2.7.1 Overview of the CDC – Serial Emulator Firmware 29
2.7.2 Procedure .. 31
Installing Application Drivers .. 37
Establish Communication ... 40
Testing the Application ... 42

Worldwide Sales and Service ...50

LOW PIN COUNT USB
DEVELOPMENT KIT

USER’S GUIDE

© 2009 Microchip Technology Inc. DS41356B-page 1

Preface

INTRODUCTION
This chapter contains general information that will be useful to know before using the
Low Pin Count USB Development Kit. Items discussed in this chapter include:
• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Web Site
• Customer Support
• Document Revision History

DOCUMENT LAYOUT
This document describes how to use the Low Pin Count USB Development Kit as a
development tool to emulate and debug firmware on a target board. The manual layout
is as follows:
• Chapter 1. “Overview”
• Chapter 2. “Getting Started Project Labs”
• Appendix A. “Schematics”

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 2 © 2009 Microchip Technology Inc.

CONVENTIONS USED IN THIS GUIDE
This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS
Description Represents Examples

Arial font:
Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...
Initial caps A window the Output window

A dialog the Settings dialog
A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK
A tab Click the Power tab

N‘Rnnnn A number in verilog format,
where N is the total number of
digits, R is the radix and n is a
digit.

4‘b0010, 2‘hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>
Courier New font:
Plain Courier New Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ‘A’

Italic Courier New A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mcc18 [options] file
[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

Preface

© 2009 Microchip Technology Inc. DS41356B-page 3

RECOMMENDED READING
This user’s guide describes how to use the Low Pin Count USB Development Kit. Other
useful documents are listed below. The following Microchip documents are available
and recommended as supplemental reference resources.
Readme Files
For the latest information on using other tools, read the tool-specific Readme files in
the Readmes subdirectory of the MPLAB® IDE installation directory. The Readme files
contain update information and known issues that may not be included in this user’s
guide.
Design Center
Microchip has a USB design center which can be found on www.microchip.com/usb.
The following Microchip Application Notes are available and recommended as
supplemental reference resources.

THE MICROCHIP WEB SITE
Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:
• Product Support – Data sheets and errata, application notes and sample

programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 4 © 2009 Microchip Technology Inc.

CUSTOMER SUPPORT
Users of Microchip products can receive assistance through several channels:
• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.
Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision A (September 2008)
• Initial Release of this Document.

Revision B (February 2009)
• Corrected document errors

LOW PIN COUNT USB
DEVELOPMENT KIT

USER’S GUIDE

© 2009 Microchip Technology Inc. DS41356B-page 5

Chapter 1. Overview

1.1 INTRODUCTION
The Low Pin Count USB Development Kit provides an easy, low cost way to evaluate
the functionality of Microchip’s PIC18F14K50 and PIC18F13K50 20-pin USB micro-
controllers. The all-inclusive kit contains the hardware, software, and code examples
necessary to bring your next USB design from concept to first prototype. Created with
the USB novice in mind, the kit includes “Getting Started with Microchip’s Low Pin
Count USB Solutions”, a self-directed course and lab material designed to ease the
learning curve associated with adding USB connectivity to embedded systems.

1.2 HIGHLIGHTS
This chapter discusses:
• Low Pin Count USB Development kit contents
• Low Pin Count USB Development Board construction and layout

1.3 LOW PIN COUNT USB DEVELOPMENT KIT CONTENTS
The Low Pin Count USB Development Kit contains the following:
• (1) fully populated Low Pin Count USB Development Board
• (1) unpopulated spare development board
• (1) PIC18F14K50 ICD populated expansion header
• (1) CD containing the user guide, course materials and product documentation.
• (1) PICkit™ 2 Debugger/Programmer with cable.

FIGURE 1-1: LOW PIN COUNT USB DEVELOPMENT KIT

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 6 © 2009 Microchip Technology Inc.

1.4 LOW PIN COUNT USB DEVELOPMENT BOARD CONSTRUCTION AND
LAYOUT

The Low Pin Count USB Development Board and populated components are shown in
Figure 1-2.

FIGURE 1-2: LOW PIN COUNT USB DEVELOPMENT BOARD

1. USB mini-B connector
2. J9 regulated 5V connection header
3. J14 connects either VBUS (Provided by USB) or J9 regulated 5V to PIC18F14K50

VDD supply
4. PICkit™ 2 Debugger/Programmer connection header
5. LEDs connected to PORTC (RC0, RC1, RC2, RC3)
6. PICkit™ Serial Analyzer connection header
7. MAX3232 RS-232 line driver/receiver
8. RS-232 connector
9. Area provided for user PID/VID information
10. Potentiometer
11. J12 connects/disconnects VUSB on PIC18F14K50
12. Push button
13. 12 MHz crystal
14. PIC18F14K50 MCU
15. Prototyping area
16. PICtail™ daughter board expansion header
17. SSOP Expansion

1

4
3

10

2
5 6

7 8

9

11 12 13 14 15

16

17

Note: J2-J5, J7, J8 are shunted on the bottom side of the board and thus the
functions default connected even though no jumper is installed. Cut the
jumper to disable the circuitry attached to each pin.

© 2009 Microchip Technology Inc. DS41356B-page 7

1.5 PIC18F14K50 ICD DEBUG HEADER
The Low Pin Count USB Development Kit includes a debug header populated with a
PIC18F14K50 ICD MCU to enable for use with the PICkit™ 2 debugger/programmer.

FIGURE 1-3: PIC18F14K50 POPULATED MPLAB ICD 2 DEBUG HEADER

To use the debug header, simply remove the PIC18F14K50 mounted in the MCU
socket (U2) on the Low Pin Count USB Development Board. Using a pin header (not
included), connect the debug header into the MCU socket and connect the PICkit™ 2
programmer/debugger to the provided connection header.

1.6 “GETTING STARTED WITH MICROCHIP’S LOW PIN COUNT USB
SOLUTIONS” SELF-DIRECTED COURSE

The Low Pin Count USB Development Kit includes the self-directed course “Getting
Started with Microchip’s Low Pin Count USB Solutions”. This course provides an
introductory overview to the USB 2.0 protocol and implementation on the
PIC18F14K50 MCU. Microchip’s USB Device Firmware Framework is introduced as a
resource providing a library of firmware code for USB operation that handles “low-level”
tasks and a number of reference projects. The user is guided through a number of
“hands-on” labs to reinforce covered concepts.

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 8 © 2009 Microchip Technology Inc.

NOTES:

LOW PIN COUNT USB
DEVELOPMENT KIT

USER’S GUIDE

© 2009 Microchip Technology Inc. DS41356B-page 9

2.1 INTRODUCTION
This section of the user’s guide will walk the user through a number of project labs that
will ease the development of original USB design applications. Labs are formatted so
that the user is guided through each project’s source code to uncomment or copy and
paste sections of code. This format was chosen to force the developer to explore sig-
nificant sections of the Framework and familiarize themselves with the overall structure
of the source files presented.
Lab files can be located in the folder C:\LPCUSBDK_Labs\Labx_files. Each lab
folder will contain both the source files for the labs and a folder containing the solutions
with working code.
Four labs are presented:
1. Project Lab 1 (Enumeration): This lab introduces the user to developing unique

descriptors in their own applications that will be used by the Host (PC) to
enumerate and ultimately configure the PIC18F14K50.

2. Project Lab 2 (HID Mouse): This lab expands on concepts learned in Project Lab
1 using the descriptors defined. The user will walk through the development of
application specific functions within the mouse.c firmware file. The end applica-
tion will behave like a Human Interface Device Class (HID) mouse by moving the
pointer on the PC screen.

3. Project Lab 3 (HID Keyboard): In this lab the user is required to alter the descrip-
tors to implement a HID keyboard-based application. The potentiometer on the
Low Pin Count USB Development Board is rotated to change the HID specifica-
tion unicode value transmitted through the USB to the PC that will print charac-
ters based on an ADC conversion.

4. Project Lab 4 (CDC Serial Emulator): Finally, the user will implement a
communication protocol converter using the Communication Device Class
(CDC) driver.

2.2 PREREQUISITES
These labs assume that the user:
1. Has completed the self-directed course “Getting Started with Microchip’s Low

Pin Count USB Solutions” provided on the accompanying CD.
2. Is familiar with the MPLAB IDE and C18 compiler.
3. Has some programming experience using the C language.
4. Is familiar with Microchip’s PIC18F family of microcontrollers.

2.3 RESOURCES REQUIRED TO COMPLETE PROJECT LABS
In order to complete the Project Labs, the user should have:
1. The most current version of the MPLAB IDE and C18 compiler installed on their

PC. The MPLAB IDE can be found at: http://www.microchip.com/stellent/idc-
plg?IdcService=SS_GET_PAGE&nodeId=1406&dDoc-
Name=en019469&part=SW007002

Chapter 2. Getting Started Project Labs

http://www.usb.org/developers/hidpage/
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 10 © 2009 Microchip Technology Inc.

2. The C18 compiler can be found at:http://www.microchip.com/stellent/idcplg?Idc-
Service=SS_GET_PAGE&nodeId=1406&dDocName=en010014

3. The most current version of the PICkit 2 programmer software.
4. Downloaded and installed the Microchip Full-Speed USB Firmware Framework.

Available free at: http://www.microchip.com/stellent/idcplg?IdcSer-
vice=SS_GET_PAGE&nodeId=2651¶m=en534494

5. A copy of the “Microchip USB Device Firmware Framework User’s Guide”
(DS51679)

6. A copy of the PIC18F13K50/14K50 data sheet (DS41350)
7. A copy of the USB Revision 2.0 Specification available for download from:

http://www.usb.org/developers/docs/
This will prove useful as reference throughout the labs.

8. A copy of the Universal Serial Bus (USB) HID Usage Tables available for
download at:
http://www.usb.org/developers/devclass_docs/Hut1_12.pdf

9. Downloaded the USB HID Descriptor Tool available free at:
http://www.usb.org/developers/hidpage/dt2_4.zip

10. A copy of the Universal Serial Bus Class Definitions for Communications Devices
document available for download at:
http://www.usb.org/developers/devclass_docs

11. Unzipped the LPCUSBDK_Labs.zip file to the C: directory.

2.4 PROJECT LAB 1 (ENUMERATION)

2.4.1 Purpose
The purpose of this lab is intended to introduce the user to creating a project in the
MPLAB IDE using Microchip’s Full-Speed USB Firmware Framework. Though many
application examples in the Framework can be used to create original code, building
the Framework from scratch is a great way to get familiar to the overall functionality of
this multitasking tool.
The user will create a project, ensure that the IDE is configured accordingly, and alter
the usb_descriptor.c file to enable the enumeration of the PIC18F14K50 as a HID
mouse device.

2.4.2 Procedure

2.4.2.1 BUILDING THE FRAMEWORK

1. Open the MPLAB IDE by selecting Start>Programs>Microchip>MPLAB IDE
vx.xx>MPLAB IDE

2. Once in the MPLAB IDE, start the Project Wizard by selecting Project>Project
Wizard

3. Select the PIC18F14K50 as the device, select the MPLAB C18 C Compiler as
the language toolsuite, and create a new project folder in the following directory:
C:\Microchip Solutions\Project Lab 1\Project Lab 1

Note: In this and all subsequent project labs, the USB cable must be discon-
nected from the USB mini-B connector on the Low Pin Count USB Devel-
opment Board when programming with the PICkit 2 programmer.

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2651¶m=en534494
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2651¶m=en534494
http://www.usb.org/developers/devclass_docs/Hut1_12.pdf
http://www.usb.org/developers/devclass_docs/Hut1_12.pdf
http://www.usb.org/developers/hidpage/dt2_4.zip
http://www.usb.org/developers/docs/
http://www.usb.org/developers/devclass_docs/Hut1_12.pdf

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2651¶m=en534494
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2651¶m=en534494
http://www.usb.org/developers/devclass_docs
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en010014
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en010014

© 2009 Microchip Technology Inc. DS41356B-page 11

4. In the Add Existing Files to Your Project window, navigate to
C:\LPCUSBDK_Labs\Lab1_files and copy the following files:
a) enumeration.c

b) usb_descriptors.c

c) HardwareProfile.h

d) usb_config.h

To copy a file, click on the large letter A in front of the file path in the right pane of the
window until a large letter C appears. This mode makes a copy of this file into the new
project directory leaving the original file intact. (see Figure 2-1)

FIGURE 2-1:

This next section will add the files that will build the Framework that takes care of the
low level USB functions. This does not need to be done for every application. The
included example projects could be easily converted to suit the needs of a custom
application. However, in the interest of providing an intuitive introduction to the
Framework, this lab builds this application from scratch.

5. Next, navigate to
C:\Microchip Solutions\Microchip\Include and copy over the
following files:
a) Compiler.h

b) GenericTypeDefs.h

Note: These files are the user files that will need to be changed to implement any
application.

Note: These files are used by all the applications in the Framework. Therefore,
changing these files will affect all applications. If any of these files are
inadvertently altered, it is recommended that the Framework be reinstalled.

http://www.usb.org/developers/hidpage/
http://www.usb.org/developers/hidpage/

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 12 © 2009 Microchip Technology Inc.

6. Navigate to C:\Microchip Solutions\Microchip\Include\Usb and
copy the following files:
a) usb.h

b) usb_ch9.h

c) usb_common.h

d) usb_device.h

e) usb_function_hid.h (file defines components specific to the HID class)
f) usb_hal.h

g) usb_hal_pic18.h (file defines components specific to the PIC18
architecture)

7. Next, navigate to C:\Microchip Solutions\Microchip\Usb and copy the
following file:
a) usb_device.c

8. Next, navigate to
C:\Microchip Solutions\Microchip\Usb\HID Device Driver to
copy the HID specific source file:
a) usb_function_hid.c

9. Finally, navigate to C:\MCC18\lkr and copy the 18f14k50.lkr linker file.
10. Click Next>Finish to exit the project wizard. The Project window should now

resemble Figure 2-2.

FIGURE 2-2: PROJECT WINDOW FOR LAB 1

If the project window isn’t open in the MPLAB IDE workspace, select View> Project.
Next the MPLAB IDE will need to be configured for the Framework by directing the C18
compiler to the associated file locations.
11. In the MPLAB IDE, select Project>Build Options…>Project. The Build Options

dialog will appear (Figure 2-3).

© 2009 Microchip Technology Inc. DS41356B-page 13

12. Click on the Directories tab and select Output Directory and click New to add
a new path. Click on the button, navigate to
C:\LPCUSBDK_Labs\Lab1_files and create a new folder called output.
Highlight the folder and click OK. This will now be the folder where the output files
are placed.

13. Within the “Show directories for” drop-down menu, select the “Include Search
Path” directory. Ensure that the C:\MCC18\h directory path is listed. Select
New and navigate to C:\Microchip Solutions\Microchip\Include and
click OK to add to the directory. Repeat these steps to add the application folder
C:\LPCUSBDK_Labs\Lab1_files.

14. In the “show directories for:” drop-down menu, select Library Search Path.
Ensure that the C:\MCC18\lib is listed. Next, select the Linker-Script Path
and ensure that the path points to C:\MCC18\lkr directory.

FIGURE 2-3: CONFIGURING FOR MICROCHIP USB FIRMWARE
FRAMEWORK

15. Click Apply, followed by OK to apply these settings and close the Build Options
window.

At this point, Framework has been built.

DEFINING PROJECT DESCRIPTORS

Double click the enumeration.c source file in the project window to open. Scroll
down to the ProcessIO(). Note it is empty. Therefore, this application will do noth-
ing. The intention of this lab is to introduce the user to properly configure the firmware
so that the PIC18F14K50 will enumerate as a HID mouse once connected to the Host
PC. Therefore, the usb_descriptors.c file will need to be altered accordingly. As a

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 14 © 2009 Microchip Technology Inc.

reference, the USB Revision 2.0 specification should be opened to Section 9-5
“Descriptors”. This section details the various components required in each type of
descriptor (device, configuration, interface etc.). This usb_descriptor.c file should
be an exact replica of the source file of the same name found in the Framework folder
C:\Microchip Solutions\USB Device - HID - Mouse\HID - Mouse –
Firmware\usb_descriptor.c

This file can be used as a reference during debugging.
16. In the MPLAB IDE Project window, select and open the usb_descriptors.c

source file.
Note #include "./USB/usb_function_hid.h" at the top of the file. If a
different class of device is being defined for a given application, the appropriate
class header file will need to be included here.

17. Scroll down to the device descriptor section and copy and paste the code in
Example 2-1 between the curly brackets in the section labeled:

//ADD DEVICE DESCRIPTOR CODE HERE

EXAMPLE 2-1: DEVICE DESCRIPTOR FOR LAB 1

18. Scroll down to the configuration, class specific and interface descriptor section.
Copy and paste the code in Example 2-2 between the brackets between the curly
brackets in the section labeled:

//ADD CONFIGURATION, CLASS SPECIFIC AND
//INTERFACE DESCRIPTOR CODE HERE

Note: The user may wish to clean up the look of the code by spacing comment
sections accordingly. Tabs were ignored to ensure completeness for this
document.

0x12, // Size of this descriptor in bytes
USB_DESCRIPTOR_DEVICE, // DEVICE descriptor type
0x0110, // USB Spec Release Number in BCD format
0x00, // Class Code
0x00, // Subclass code
0x00, // Protocol code
USB_EP0_BUFF_SIZE, // Max packet size for EP0, see

// usbcfg.h
MY_VID, // Vendor ID
MY_PID, // Product ID
0x0003, // Device release number in BCD format
0x01, // Manufacturer string index
0x02, // Product string index
0x00, // Device serial number string index
0x01 // Number of possible configurations

© 2009 Microchip Technology Inc. DS41356B-page 15

EXAMPLE 2-2: CONFIGURATION, CLASS SPECIFIC AND INTERFACE

The user is encouraged to take some time and compare the code in the preceding
code examples against the descriptor definitions in the USB Revision 2.0 specification
Section 9-5 “Descriptors”. Comments have been included to make the code intuitive
and easier to reference with the USB specification. Definition sources can be located
by highlighting the definition name and selecting Edit>Find in Files in the MPLAB IDE.
This will locate all instances of the definition within the project and list them in the
Output window.

0x09,//sizeof(USB_CFG_DSC), // Size of this descriptor in bytes
USB_DESCRIPTOR_CONFIGURATION, // CONFIGURATION descriptor type
DESC_CONFIG_WORD(0x0022), // Total length of data for this cfg
1, // Number of interfaces in this cfg
1, // Index value of this configuration
0, // Configuration string index
_DEFAULT|_SELF, // Attributes, see usbd.h
50, // Max power consumption (2X mA)

/* Interface Descriptor */
0x09,//sizeof(USB_INTF_DSC), // Size of this descriptor

// in bytes
USB_DESCRIPTOR_INTERFACE, // INTERFACE descriptor type
0, // Interface Number
0, // Alternate Setting Number
1, // Number of endpoints in this intf
HID_INTF, // Class code
BOOT_INTF_SUBCLASS, // Subclass code
HID_PROTOCOL_MOUSE, // Protocol code
0, // Interface string index

/* HID Class-Specific Descriptor */
0x09,//sizeof(USB_HID_DSC)+3, // Size of this descriptor in bytes
DSC_HID, // HID descriptor type
DESC_CONFIG_WORD(0x0111), // HID Spec Release Number in BCD

// format(1.11)
0x00, // Country Code (0x00 for Not

// supported)
HID_NUM_OF_DSC, // Number of class descriptors, see

// usbcfg.h
DSC_RPT, // Report descriptor type
DESC_CONFIG_WORD(50), // sizeof(hid_rpt01),

// Size of the report descriptor
/* Endpoint Descriptor */
0x07,/*sizeof(USB_EP_DSC)*/
USB_DESCRIPTOR_ENDPOINT, // Endpoint Descriptor
HID_EP | _EP_IN, // EndpointAddress
_INT, // Attributes
DESC_CONFIG_WORD(3), // size
0x01 // Interval

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 16 © 2009 Microchip Technology Inc.

19. Scroll down to the string descriptor section. String descriptors can be used to
describe a device for the user. At enumeration, the string descriptor will appear
at the lower right hand section of the screen notifying the user of the intended
purpose of the device. Copy and paste the code between the curly brackets for
both the manufacturer string descriptor and product string descriptor in
Example 2-3 and Example 2-4 in the sections labeled:

//ADD MANUFACTURER STRING DESCRIPTOR CODE HERE

and

//ADD PRODUCT STRING DESCRIPTOR CODE HERE

EXAMPLE 2-3: MANUFACTURER STRING DESCRIPTOR FOR LAB 1

EXAMPLE 2-4: PRODUCT STRING DESCRIPTOR FOR LAB 1

Finally, the last descriptor to be added is the report descriptor.
Early in the development of the HID class specification, subclasses were
intended to be used to identify different HID device categories. However, it
became clear that due to the diverse variety of devices that could be imple-
mented in this class, a more robust definition method was required. Therefore,
this class does not use subclasses to define most protocols. Instead, a mecha-
nism called the report descriptor identifies data protocol and the types of data
provided for a device. It is here that such things as the number of buttons on a
mouse, the unicode key value ranges for a keyboard, and other such
characteristics are defined.
The USB organization has provided a number of documents and tools
specifically designed to implement the report descriptor that can be accessed at:
http://www.usb.org/developers/hidpage/
The user is encouraged to download the HID Usage Tables that define a report
descriptor for a given device. Also, the USB organization has further developed
a HID Descriptor Tool that will assist the developer in designing their own report
descriptors. The tool also includes predefined descriptors for commonly used
HID devices such as a mouse and keyboard. This document and tool can be
found at the links listed in Section 2.3 “Resources Required to Complete
Project Labs”.

20. Scroll down to the report descriptor section and copy and paste the code in
Example 2-5 between the curly brackets in the section labeled:

//ADD REPORT DESCRIPTOR CODE HERE

'M','i','c','r','o','c','h','i','p',
' ','T','e','c','h','n','o','l','o','g','y',
' ','I','n','c','.'

'M','o','u','s','e',
' ','E','n','u','m','e','r','a','t','i','o','n ',
' ','D','e','m','o'

© 2009 Microchip Technology Inc. DS41356B-page 17

EXAMPLE 2-5: REPORT DESCRIPTOR FOR LAB 1

The descriptor definitions are now complete.
21. Compile the project. There should be no errors.

Testing The Application
22. Configure the Low Pin Count USB Development Board so that the J14 jumper is

on the two right-most pins. This application will use power supplied by VBUS off
of the USB cable.

23. Disconnect the J12 jumper.
24. Connect the PICkit 2 programmer to the PC USB port and then to the J6

connector on the Low Pin Count USB Development Board.
25. Open the PICkit 2 programmer environment by selecting Start>Programs>Micro-

chip PICkit 2 vx.xx.
26. The PICkit 2 programmer software should recognize that the PICkit 2 is

connected and identify the PIC18F14K50 device.
27. Within the PICkit 2 programmer software, navigate to the

C:\LPCUSBDK_Labs\Lab1_files\output folder and download the
Project Lab 1.hex file to the PIC18F14K50.

28. Disconnect the PICkit 2 programmer from J6 and plug the USB cable into the
mini B connector, J1.
Once connected, the enumeration process should begin. The Host PC should
recognize the connection of a new device and display a notification at the right
corner of the screen indicating the “Mouse Enumeration Demo” text placed in the
product string earlier in this lab.

0x05, 0x01, /* Usage Page (Generic Desktop)*/

0x09, 0x02, /* Usage (Mouse)*/

0xA1, 0x01, /* Collection (Application)*/

0x09, 0x01, /* Usage (Pointer)*/

0xA1, 0x00, /* Collection (Physical)*/

0x05, 0x09, /* Usage Page (Buttons) */

0x19, 0x01, /* Usage Minimum (01)*/

0x29, 0x03, /* Usage Maximum (03)*/

0x15, 0x00, /* Logical Minimum (0)*/

0x25, 0x01, /* Logical Maximum (0)*/

0x95, 0x03, /* Report Count (3)*/

0x75, 0x01, /* Report Size (1)*/

0x81, 0x02, /* Input (Data, Variable, Absolute)*/

0x95, 0x01, /* Report Count (1)*/

0x75, 0x05, /* Report Size (5)*/

0x81, 0x01, /* Input (Constant) ;5 bit padding */

0x05, 0x01, /* Usage Page (Generic Desktop)*/

0x09, 0x30, /* Usage (X)*/

0x09, 0x31, /* Usage (Y)*/

0x15, 0x81, /* Logical Minimum (-127)*/

0x25, 0x7F, /* Logical Maximum (127)*/

0x75, 0x08, /* Report Size (8)*/

0x95, 0x02, /* Report Count (2)*/

0x81, 0x06, /* Input (Data, Variable, Relative)*/

0xC0, 0xC0

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 18 © 2009 Microchip Technology Inc.

29. Next, the device driver will be checked on the Host PC.
Navigate to Device Manager on the Host PC by selecting Start>Settings>Control
Panel>System to open the System Properties window. Select the Hardware tab
and click the Device Manager button.

30. In the Device Manager window, expand the Human Interface Devices. Right click
on each driver and select Properties until the “Mouse Enumeration Demo” driver
is located. See Figure 2-4.

EXAMPLE 2-6: DEVICE MANAGER WINDOW AND HID DRIVERS INSTALLED

The user is encouraged to familiarize themselves with the HID Usage Tables and HID
Descriptor Tool. Changing various aspects of the descriptors and then repeating the
enumeration lab steps will help build on these concepts.

2.5 PROJECT LAB 2 (HID MOUSE)

2.5.1 Purpose
This lab implements the Low Pin Count USB Demo Board in a HID mouse application
that moves the mouse pointer on the Host PC in a circle.

C:\Microchip Solutions\USB Device - HID - Mouse\HID - Mouse –
Firmware

The user is encouraged to use these files as a reference when needed.

Note: The source code developed here is an exact replica of the USB Device -
HID – Mouse application found in the Framework.

© 2009 Microchip Technology Inc. DS41356B-page 19

2.5.2 Overview of the HID Mouse Firmware
As with most of the Framework applications, the user defined source code is called
from the ProcessIO() function in the <application>.c file. The user defined firm-
ware will manipulate the Host PC mouse pointer to move in a single direction for 14
times through the main loop. After 14 times, the mouse pointer changes direction ulti-
mately moving in a complete circle. A bit flag is initialized named emulate_mode that
will toggle HIGH/LOW whenever the push button on the Low Pin Count USB Develop-
ment Board is pressed. The status of this flag will start or stop pointer movement on the
screen by not calling the user defined function, emulate_mouse(), which handles the
mouse movement routines.
The flowchart for the user defined function is shown in Figure 2-4.

FIGURE 2-4: FLOWCHART FOR THE EMULATE_MOUSE()

In the flowchart of Figure 2-4, it can be seen that if the emulate_mode flag is ‘0’, the
directional data transmitted along the USB is cleared. Note that data is transmitted from
the PIC18F14K50 whether or not the flag is set. Data is transmitted only when the SIE
is capable of transmitting it. This check is implemented in code by using the
if(HIDTxHandleBusy(lastTransmission) == 0) conditional statement. The
lastTransmission is loaded at the time of transmission and processed by the
HIDTxHandleBusy macro in the conditional ‘if’ statement.
If the emulate_mode flag is set, the function enters into the mouse pointer movement
algorithm. This is accomplished by keeping track of a counter variable,
movement_length. When this variable exceeds 14, a buffer array is loaded with new
directional data as supplied by the dir_table array defined at the top of the mouse.c
file. Each element of the array is accessed by incrementing the vector variable counter.
The buffer array is then loaded into a hid_report_in[] buffer array that is used by
the HIDTxPacket macro to transmit the data along the USB to the Host PC.

Emulate_Mouse ()

emulate_mode
= TRUE

YES YES

movement_length
> 14?

Change directional
data to next vector

Clear directional data Keep directional
data as before

NO
NO

NO
PIC18F14K50
own the SIE

YES
Transmit directional

data along USBreturn return

TRUE = 1
FALSE = 0

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 20 © 2009 Microchip Technology Inc.

2.5.3 Procedure
This lab expands on the descriptor code developed in Lab 1.
1. Create a new project “Project Lab 2”, and build the framework as per procedure

steps 1-15 in the previous lab, only this time use the source files found in
C:\LPCUSBDK_Labs\Lab2_files

2. Ensure that the Project Build Options are configured as was done in Lab 1 steps
11 through 15.

3. In the Project window open the mouse.c source file.
4. Scroll down to find the variable definitions and uncomment the variables and

arrays that will be used by the user defined function under the section of the
source file:
/**VARIABLES*****************************/

a) BYTE old_sw2,old_sw3;

b) BOOL emulate_mode;

c) BYTE movement_length;

d) BYTE vector = 0;

e) char buffer[3];

f) USB_HANDLE lastTransmission;

g) ROM signed char dir_table[]={-4,-4,-4, 0, 4, 4, 4, 0};

5. Scroll down to the private prototype section and uncomment the user function
prototype
 void Emulate_Mouse(void);

6. Scroll down to the UserInit(). It is here that all components pertinent to the
application at hand are initialized. Note the variables and function calls that are
initialized. Locate the // emulate_mode = TRUE; and uncomment the flag
initialization.

7. Scroll down to the ProcessIO() function. Note the push button check that
toggles the emulate_mode flag. Uncomment the code:
//emulate_mode = !emulate_mode;

8. Finally, scroll down to the Emulate_Mouse function and insert the code in
Example 2-7 between the curly brackets in the section marked:

//ADD EMULATE MOUSE CODE HERE

© 2009 Microchip Technology Inc. DS41356B-page 21

EXAMPLE 2-7: USER DEFINED FUNCTIONAL CODE FOR
EMULATE_MOUSE()

Note that the HID mouse transmits in 3-byte packets. The format of this packet is as
follows:
• This byte is typically used to identify mouse buttons. Since this application does

not require any mouse clicks, this byte is always zero.
• The second and third bytes represent horizontal (X) and Vertical (Y)

displacements.
Compile the project. There should be no errors.

Testing the Application

9. Ensure that the Low Pin Count USB Development Board is configured as in Lab 1.
10. Connect the PICkit 2 Programmer and open the PICkit 2 programming software.
11. Navigate to the .hex file located in the C:\LPCUSBDK_Labs\Lab2_files for

this lab and download to the PIC18F14K50.

if (emulate_mode == TRUE)
 {
 //go 14 times in the same direction before changing
 if (movement_length > 14)
 {
 buffer[0] = 0;
 buffer[1] = dir_table[vector & 0x07];
 //X-Vector
 buffer[2] = dir_table [(vector+2) & 0x07];
 //Y-Vector
 // go to the next direction in the table

vector++;
 //reset the counter for when to change again

movement_length = 0;
 }//end if (movement_length > 14)
 }
else
 {
 //don't move the mouse
 buffer[0] = buffer[1] = buffer[2] = 0;
 }
 if(HIDTxHandleBusy(lastTransmission) == 0)
 {
 //copy over the data to the HID buffer
 hid_report_in[0] = buffer[0];
 hid_report_in[1] = buffer[1];
 hid_report_in[2] = buffer[2];
 //Send the 3 byte packet over USB to the host.
 lastTransmission = HIDTxPacket(HID_EP, (BYTE*)hid_report_in,

0x03);

 //increment the counter to change the data sent
 movement_length++;
 }

Note: The device created in the Device Manager from the previous lab will need
to be removed so that the new device, created in this lab, can enumerate
properly. In the Device Manager window, right-click on the device and
select Uninstall.

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 22 © 2009 Microchip Technology Inc.

12. Disconnect the PICkit 2 and connect the Low Pin Count USB Demo Board to the
Host PC port.

13. The device should enumerate and the LEDs on the board flash in accordance
with the BlinkUSBStatus() discussed in the self-directed course.

14. Pressing the push button should start and subsequently stop the mouse pointer
moving in a circle on the Host PC screen.

The user is encouraged to experiment with this application by altering the length of time
that the mouse pointer moves until a directional change or altering the values in the
ROM signed char dir_table[]={-4,-4,-4, 0, 4, 4, 4, 0};

2.6 PROJECT LAB 3 (HID KEYBOARD)
CAUTION

In this lab, the PIC18F14K50 is implemented as a HID keyboard device. The ADC
peripheral is configured to perform conversions on the voltage level present on the port
pin connected to the potentiometer on the Low Pin Count USB Development Board.
The value in the ADC result register is then used to create a numeric value between 4
and 29 that will display an alphabetic character between ‘a’ and ‘z’ on the Host PC
screen (refer to HID Usage Tables document Section 10 “Keyboard/Keypad Page”
(0x07)). As the potentiometer is rotated, the character outputted to the screen will
change accordingly. The user should note that this application could be applied to a
data logger application with the potentiometer on the Low Pin Count USB Development
Board simulating a mixed signal interface to monitor an off-chip application. The data
generated and transmitted via the USB could be connected and interpreted by a
Graphical User Interface on the Host PC to monitor real-time application behavior or
used to store essential data for later analysis.

2.6.1 Overview of the HID Keyboard Firmware
The keyboard()is the user-defined function that is called from ProcessIO() to
parse the data received from the ADC module, transmit the numeric value along the
USB and display the appropriate character on the screen. This function is implemented
as a state machine. The state diagram for this function is shown in Figure 2-5.

CAUTION

A word of caution, this HID device has the potential to be harmful if a key combination
is used that initiates a Windows® shortcut. Great care should be taken to ensure that
the transmitting buffer contains only keycodes that the user is confident will not
produce any harmful key combinations.

© 2009 Microchip Technology Inc. DS41356B-page 23

FIGURE 2-5: STATE DIAGRAM FOR KEYBOARD()

Referring to the state diagram, the individual states perform these general tasks:
1. STATE 0: this is a delay state used to ensure that the hold capacitor on the ADC

peripheral has sufficient time to charge before a conversion is initiated.

2. STATE 1: this state begins the conversion process by setting the GO_DONE bit
in the ADCON0 control register.

3. STATE 2: checks for a completed conversion (GO_DONE = 0) before allowing
the state machine to move to the next state.

4. STATE 3: this final state reads the ADC result register, converts the result to a
value between 4 (‘a’) and 29 (‘z’), loads a HID buffer and transmits the resulting
data along the USB to the Host PC for output to an opened .txt document.

The main point the user should take away from this lab is this: since the USB Frame-
work is a multitasking environment, no blocking code should be used. Therefore, as
shown in this lab, state machines will become the norm in many applications. The
keyboard() state machine is called each time through the main loop. If the condition
that changes the current state to the next state is not met, the state machine simply
returns from the function without changing states. The next time through the main
loop, the condition is once again checked. If the state condition has been met, the
state is changed to the next sequential state. The state variable is declared as a type
static as this will allow the current value in the state variable to remain after a return
from the keyboard().

STATE
0

STATE
1

STATE
2

STATE
3

delaycounter < 9000

delaycounter > 9000

Start ADC Conversion
(Set the GO_DONE bit

While GO_DONE = 1
(ADC Conversion in Progress)

GO_DONE = 0 (Cleared in Hardware)

• Read ADC result register
• Load HID buffer
• Transmit HID buffer contents along USB

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 24 © 2009 Microchip Technology Inc.

2.6.2 Procedure
This application will require a few changes to the usb_descriptor.c file to configure the
PIC18F14K50 as a HID keyboard. Note: the changes made to the report descriptor
were done using the HID Descriptor Tool downloaded from http://www.usb.org/devel-
opers/hidpage/. The user is encouraged to spend some time reviewing the contents of
this page and the resources available for developing HID applications.
1. Create a new project “Project Lab 3” as was done in the previous labs. The

source files for Lab 3 can be found in:
C:\LPCUSBDK_Labs\Lab3_files

2. Ensure that the Project Build Options are configured as was done in Lab 1 steps
11 through 15.

3. Open the usb_descriptor.c file and scroll down to the interface descriptor.
Uncomment the Protocol Code definition //HID_PROTOCOL_KEYBOARD,

4. Scroll down to the HID class specific descriptor and uncomment the size of the
HID report macro //DESC_CONFIG_WORD(63),
The report descriptor has changed from the previous lab and will contain 63
components that the Host PC will need to identify this device’s keyboard
attributes.

5. Scroll down to the report descriptor and add the code in Example 2-8 in the
section labeled:

 //ADD REPORT DESCRIPTOR HERE

© 2009 Microchip Technology Inc. DS41356B-page 25

EXAMPLE 2-8: REPORT DESCRIPTOR FOR KEYBOARD()

Next, the keyboard.c source file will be configured.
6. In the Project window, open the keyboard.c source file and scroll down to the

UserInit(). Uncomment the port and ADC initialization code. The user is
urged to review the PIC18F14K50 data sheet as to the significance of these
initializations for the appropriate peripheral.
// ADCON0=0x29;
// ADCON1 = 0X00;
// ADCON2=0x3F;
Scroll down to the keyboard() and copy and paste the code in Example 2-9
between the curly braces in the switch at:

//ADD STATE MACHINE CODE HERE

0x05, 0x01, // USAGE_PAGE (Generic Desktop)

0x09, 0x06, // USAGE (Keyboard)

0xa1, 0x01, // COLLECTION (Application)

0x05, 0x07, // USAGE_PAGE (Keyboard)

0x19, 0xe0, // USAGE_MINIMUM (Keyboard LeftControl)

0x29, 0xe7, // USAGE_MAXIMUM (Keyboard Right GUI)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x25, 0x01, // LOGICAL_MAXIMUM (1)

0x75, 0x01, // REPORT_SIZE (1)

0x95, 0x08, // REPORT_COUNT (8)

0x81, 0x02, // INPUT (Data,Var,Abs)

0x95, 0x01, // REPORT_COUNT (1)

0x75, 0x08, // REPORT_SIZE (8)

0x81, 0x03, // INPUT (Cnst,Var,Abs)

0x95, 0x05, // REPORT_COUNT (5)

0x75, 0x01, // REPORT_SIZE (1)

0x05, 0x08, // USAGE_PAGE (LEDs)

0x19, 0x01, // USAGE_MINIMUM (Num Lock)

0x29, 0x05, // USAGE_MAXIMUM (Kana)

0x91, 0x02, // OUTPUT (Data,Var,Abs)

0x95, 0x01, // REPORT_COUNT (1)

0x75, 0x03, // REPORT_SIZE (3)

0x91, 0x03, // OUTPUT (Cnst,Var,Abs)

0x95, 0x06, // REPORT_COUNT (6)

0x75, 0x08, // REPORT_SIZE (8)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x25, 0x65, // LOGICAL_MAXIMUM (101)

0x05, 0x07, // USAGE_PAGE (Keyboard)

0x19, 0x00, // USAGE_MINIMUM (Reserved (no event indicated))

0x29, 0x65, // USAGE_MAXIMUM (Keyboard Application)

0x81, 0x00, // INPUT (Data,Ary,Abs)

0xc0

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 26 © 2009 Microchip Technology Inc.

EXAMPLE 2-9: KEYBOARD() STATE MACHINE CODE

//delay to allow the hold capacitor on the ADC to charge

case 0: if(++delaycounter>9000)

{

delaycounter = 0;

state = 1;

}

break;

case 1: ADCON0bits.GO_DONE = 1; //Start an ADC conversion

state = 2;

break;

case 2: if(ADCON0bits.GO_DONE == 0) //Check if conversion is

 //completed

{

state = 3;

}

break;

case 3: HIDoutput = ADRESH>>3;//shift the result in ADRESH

//left by three

if(HIDoutput<=4) HIDoutput = 4;

if(HIDoutput>=29) HIDoutput = 29;

//Can the SIE transmit?

if((HIDTxHandleBusy(lastTransmission) == 0))

 {

//Load the HID buffer

hid_report_in[0] = 0;

hid_report_in[1] = 0;

hid_report_in[2] = HIDoutput;

hid_report_in[3] = 0;

hid_report_in[4] = 0;

hid_report_in[5] = 0;

hid_report_in[6] = 0;

hid_report_in[7] = 0;

//Send the 8 byte packet over USB to the host.

 lastTransmission = HIDTxPacket(HID_EP,

(BYTE*)hid_report_in, 0x08);

 state = 0;

}

break;

© 2009 Microchip Technology Inc. DS41356B-page 27

Note that the HID keyboard transmits in 8-byte packets along the USB. The format of
this packet is as follows:
• The first byte is used for a modifier such as a shift or ctrl character. (i.e., a

simultaneous shift and character press on the typical keyboard.)
• The second byte is reserved.
• The remaining bytes are used to carry numeric values that contain the desired

keyboard characters pressed.
Compile the project. There should be no errors.

Testing the Application
7. Connect the PICkit 2 Programmer and open the PICkit 2 programming software
8. Navigate to the .hex file for this lab and download to the PIC18F14K50.
9. Disconnect the PICkit 2. Open a new notepad, word document or other text editor

program and click inside the document to place the cursor.
10. Connect the Low Pin Count USB Demo Board to the Host PC port. The device

should enumerate as “Keyboard Demo”.
11. Within the selected text editor, a series of character entries should appear.
12. Turn the potentiometer on the Low Pin Count USB Demo Board to change the

character on the screen.
The user is encouraged to experiment with this application by referring to the Keyboard
Usage Page and changing the keyboard packet transmitted in the state machine.

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 28 © 2009 Microchip Technology Inc.

2.7 PROJECT LAB 4 (CDC – SERIAL EMULATOR)
In this lab, the PIC18F14K50 is used as a serial emulator taking an RS-232 data trans-
mission using the Enhanced Universal Asynchronous Synchronous Receiver Transmit-
ter (EUSART) peripheral and converting it to the USB protocol within firmware. Many
embedded applications continue to use the RS-232 interface to communicate with
external systems. However, as USB becomes more prevalent, RS-232 ports are disap-
pearing from newer PC’s. A simple solution is to emulate RS-232 over the USB. In this
example, a virtual COM port is created that will allow the USB connection to appear as
an RS-232 COM connection. Furthermore, this example makes use of Windows drivers
that already exist eliminating the need to alter existing software such as the Hyper
Terminal application.
The RS-232 connector on the Low Pin Count USB Development Board is configured
so that the PIC18F14K50 can be used as a Data Terminal Equipment (DTE) device to
interface with Data Communications Equipment (DCE) devices such as alarm systems,
modems etc. To accommodate this lab and eliminate the need for the user to create
their own DCE interface circuitry, a Null-Modem Gender Changer has been provided in
the kit to crosslink the transmit and receive lines so that the Low Pin Count USB Devel-
opment Board can be converted from a DTE device to a DCE device. In this way, the
main concepts of serial emulation can be delivered using only two Hyperlink Terminals
on a single PC with one RS-232 serial COM port and one USB connection.

Microchip’s Full-Speed USB Firmware Framework provides information files (.inf) for all
of its CDC application examples that automate Windows driver alterations freeing the
user from doing this manually. Once the PIC18F14K50 has been programmed and
then connected to the PC USB port, Windows “New Hardware Found Wizard” will
prompt the user for additional driver information. At this point, the user need only direct
Windows to the directory containing the appropriate .inf file.

Microchip’s Full-Speed USB Firmware Framework provides all the source code
necessary to perform low-level RS-232 functions, thereby abstracting this from the
user.

NOTICE

Kits shipped with the RS-232 pin corrector (p/n 04-02087R1) do not require the Null Modem
Gender Changer but will instead require a female/female gender changer that does not cross-
link the transmit and receive lines. The pin corrector is not used in this lab as the RS-232 con-
nector on this version of the Low Pin Count USB Development Board is configured as a DCE
device. Applications using the Low Pin Count USB Development Board as a DTE device will
require the use of the pin corrector.

Note: The only information that is required by the user in the .inf is the Vendor
Identification (VID) and Product Identification (PID) numbers specific to
their original design.

© 2009 Microchip Technology Inc. DS41356B-page 29

2.7.1 Overview of the CDC – Serial Emulator Firmware
The CDC Serial Emulator firmware flow is shown in Figure 2-6.

FIGURE 2-6: FLOWCHART FOR CDC SERIAL EMULATOR CODE

RS232 OUT Buffer available

and
USB OUT Buffer NOT EMPTY

YES

YES
Copy USB OUT Buffer
to RS232 OUT Buffer

Copy next byte to
EUSART

Copy USB IN Buffer to
USB Buffer

Add byte to RS232
 IN Buffer

RS232 OUT Buffer NOT EMPTY
and

EUSART is EMPTY

EUSART has
a byte

YES

YES
RS232 IN Buffer

has data and
USB IN Buffer available

CDCTxService()

ProcessIO()

NO

NO

NO

NO

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 30 © 2009 Microchip Technology Inc.

Referring to the flowchart in Figure 2-6, the firmware located in the ProcessIO() first
checks if the previous RS-232 transmission has been sent via the USB using the
RS232_Out_Data_Rdy flag. If this flag is cleared (indicating previous transmission
has been sent), firmware then checks if any new data has been sent from the RS-232
connection and is ready to be transmitted via the USB using the getsUSBUSART().
This function copies data into a buffer and returns the number of bytes the buffer con-
tains. The function ensures that only the expected numbers of bytes, in this case 64,
are actually copied into this buffer. Also, if there is no data available, the function
returns a zero value indicating no data is available. In this way the function does not
wait for data and is therefore, non-blocking, keeping in mind that all firmware must
conform to this multitasking environment.
Following the RS-232 data check, the firmware then checks if the EUSART transmit
register, TXREG, is empty. This is accomplished using the mTxRdyUSART() macro,
which checks the TRMT bit in the TXSTA (Transmit Status Control) register in the
EUSART peripheral. If the TRMT bit is cleared, the TXREG is Full, and Empty if the
TRMT bit is set. Note that this bit is automatically set following a successful transmis-
sion from the TXREG. If set, the data collected into the buffer by the getsUSBUSART()
is then transferred into the TXREG one byte at a time each time through the main loop.
Again, such macros take care of the low-level RS-232 communication in a non-blocking
fashion so the user doesn’t have to. If the TXREG isn’t empty, then the previous data
has not been transmitted via the USB and should not be overwritten.
The firmware next checks to see if the CDC class device is ready to transmit data. This
is accomplished by using the mUSBUSARTIsTxrfReady() flag. The user must ensure
that this flag is set to ‘1’ before calling the putUSBUSART() function. As a safety pre-
caution, this function checks the state one more time to make sure it does not override
any pending transactions. This function writes data to the USB.
The CDCTxSevice() services the transfer of data to the host. This function keeps
track of a state machine and breaks up long strings of data into multiple USB data pack-
ets. It is called once each time through the main program loop. The state machine for
the CDCTxService() is shown in Figure 2-7 and the source code can be found in the
usb_function_cdc.c source file. The reader is encouraged to reference this
firmware and compare it against the state diagram at their leisure.

© 2009 Microchip Technology Inc. DS41356B-page 31

FIGURE 2-7: CDCTXSERVICE() STATE DIAGRAM

2.7.2 Procedure
This application requires significant changes to the usb_descriptor.c file to configure
the PIC18F14K50 as a CDC device. Note the absence of the report descriptor. The
user is encouraged to spend some time reviewing the usb_descriptor.c file and com-
pare it against the information found in the Universal Serial Bus Class Definitions for
Communications Devices document referenced at the beginning of this chapter. Note
that this lab applies the same firmware found in the CDC – Serial Emulator application
example in Microchip’s Full-Speed USB Firmware Framework application examples
and can be used as a reference for this lab.
1. Create a new project for lab 4, using the Project Wizard, called “Project Lab 4”

as was done in the previous labs. The only files added, at this point, will be the
usb_descriptor.c and main.c source files, as well as a new unique descrip-
tor for Lab 4 rm18f14k50.lkr can be found in:
C:\LPCUSBDK_Labs\Lab4_files

Step through to close the Project Wizard. This time, the project will be set up to
resemble the application examples in the Framework using sub-folders to distin-
guish and organize the different source files in the Project window. All remaining
source/header files will be added from the Project window.

2. Right click on the Source Files folder in the Project window and select Create
Subfolder...

CDC_TX_READY CDC_TX_BUSY

CDC_TX_COMPLETING CDC_TX_BUSY_ZLP

cdc_tx_lenl=0

cdc_tx_len==0
CDC_BULK_BD_IN.Cnt <Max EP Size

cdc_tx_len==0
CDC_BULK_BD_IN.Cnt <Max EP Size

mCDCUsartTxlsBusy()==0

CDC_BULK_BD_IN.Cnt==0

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 32 © 2009 Microchip Technology Inc.

FIGURE 2-8: CREATING A SUB-FOLDER IN THE PROJECT WINDOW

Name the new folder “USB Stack” and click OK.
3. Right click on this new USB Stack folder and select Add Files. In the Add Files

to Project window, navigate to C:\Microchip Solutions\Microchip\Usb
and select the usb_device.c source file. Ensure that “System: File(s) are
External to Project, Use Absolute Path” is selected then click Open.

FIGURE 2-9: ADDING THE USB_DEVICE.C FILE TO THE USB STACK
FOLDER

This should add the usb_device.c to the “USB Stack” folder in the Project window.

© 2009 Microchip Technology Inc. DS41356B-page 33

Repeat this step to add the usb_function_cdc.c file from the C:\Microchip
Solutions\Microchip\USB\CDC Device Driver directory to the same “USB
Stack” folder.
4. In the Project window create two new sub-folders under the Header Files folder

called “Common” and “USB Stack” as per step 2 of this lab.
5. Right click on the “USB Stack” folder and add the following files from the

C:\Microchip Solutions\Microchip\Include\Usb directory as was
done in step 3 of this lab:
• usb.h

• usb_ch9.h

• usb_common.h

• usb_device.h

• usb_function_cdc.h

• usb_hal.h

• usb_hal_pic18.h

6. Right click on the “Common” folder and add the following files from the
C:\Microchip Solutions\Microchip\Include directory as was done in
step 3 of this lab:
• Compiler.h

• GenericTypeDefs.h

7. Ensure that the Project Build Options are configured as was done in Lab 1 steps
11 through 15.

8. Compile the project. There should be no errors.
The Project window should now resemble Figure 2-10.

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 34 © 2009 Microchip Technology Inc.

FIGURE 2-10: PROJECT WINDOW FOR LAB 4

9. Next, the EUSART peripheral will need to be initialized to enable asynchronous
communication with a baud rate of 19200. To do this, open the main.c file and
scroll down to the InitializeUSART(). This function is called by the
UserInit(). Note that in this function, code has been formatted to allow
configuration dependant on the specific device and compiler used. Copy and
paste the contents of Example 2-10 into the section of the Initialize-
USART() function labeled:

//ADD C18 PIC18F14K50 EUSART INITIALIZATION CODE HERE

© 2009 Microchip Technology Inc. DS41356B-page 35

EXAMPLE 2-10: INITIALIZEUSART() CODE

The reader is encouraged to review the data sheet for the PIC18F14K50 EUSART
section for more information on the specifics of the configuration code.
Next, the application specific code will be added that will implement the flowchart
shown in Figure 2-6.
10. Scroll down to the ProcessIO()and copy and paste the contents of

Example 2-11 into the section labeled:
/***
ADD CODE TO CHECK IF RS232 HAS
BEEN SENT ALONG USB
AND THE CODE TO CHECK IF
ANY NEW RS232 TRANSMISSION
HAS BEEN RECEIVED AND STORED
**/

As per the flowchart in Figure 2-6, this code will ensure that the buffer containing the
data transmitted from the RS-232 has been sent to the USB firmware. If so, the code
then checks for any new RS-232 data that has been stored in the buffer.

 #if defined(__18CXX)
unsigned char c;

 #if defined(__18F14K50)

ANSELHbits.ANS11 = 0; // Make RB5 digital so USART can

//use pin for Rx

 #endif

 UART_TRISRx=1; // RX

 UART_TRISTx=0; // TX

 TXSTA = 0x24; // TX enable BRGH=1

 RCSTA = 0x90; // Single Character RX

 SPBRG = 0x70;

 SPBRGH = 0x02; // 0x0271 for 48MHz -> 19200 baud

 BAUDCON = 0x08; // BRG16 = 1

 c = RCREG; // read

 #endif

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 36 © 2009 Microchip Technology Inc.

EXAMPLE 2-11: RS-232 BUFFER CHECK

11. Next, the code that will check and then load the EUSART Transmit shift register
(TXREG) with the contents of the RS-232 buffer will be entered. Copy and paste
the contents of Example 2-12 into the section labeled:
/***
ADD THE CODE THAT WILL CHECK
IF THE EUSART TXREG IS EMPTY.
IF SO, BEGIN SENDING DATA
FROM RS232 TRANSMISSION INTO
THE TXREG ONE BYTE AT A TIME
***/

EXAMPLE 2-12: TXREG CHECK AND LOAD CODE

12. Finally, the code to check if the CDC class device is ready to send data into the
USB transmit buffer will be entered. Copy and paste the contents of code in
Example 2-13 into the section labeled:
/**
ADD THE CODE THAT WILL CHECK
IF THE CDC CLASS DEVICE IS
READY TO LOAD THE USB BUFFER
***/

// only check for new USB buffer if the old RS232 buffer is

// empty.

// Additional USB packets will be NAK'd

// until the buffer is free.

if (RS232_Out_Data_Rdy == 0)

{

LastRS232Out = getsUSBUSART(RS232_Out_Data,64);

if(LastRS232Out > 0)

{

RS232_Out_Data_Rdy = 1; // signal

//buffer full

RS232cp = 0;// Reset the current position

}

}

if(RS232_Out_Data_Rdy && mTxRdyUSART())

{

putcUSART(RS232_Out_Data[RS232cp]);

++RS232cp;

if (RS232cp == LastRS232Out)

RS232_Out_Data_Rdy = 0;

}

© 2009 Microchip Technology Inc. DS41356B-page 37

EXAMPLE 2-13: CHECK CDC CLASS DEVICE CODE

13. At this point, all the necessary code to run the CDC – Serial Emulator application
is complete. Compile the project. There should be no errors.

Installing Application Drivers
14. Connect the PICkit 2 Programmer and open the PICkit 2 programming software.
15. Navigate to the .hex file for this lab and download to the PIC18F14K50.
16. Disconnect the PICkit 2.
17. Connect the Low Pin Count USB Demo Board to the Host PC port. Windows

should recognize the PIC18F14K50 as “CDC RS-232 Emulation Demo”.

Windows will now prompt the user for driver information.

18. In the “Welcome to the Found New Hardware Wizard” window, select “No, not
this time” and then Next (see Figure 2-11).

FIGURE 2-11: FOUND NEW HARDWARE WIZARD WINDOW

if((mUSBUSARTIsTxTrfReady()) && (NextUSBOut > 0))

{

putUSBUSART(&USB_Out_Buffer[0], NextUSBOut);

NextUSBOut = 0;

}

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 38 © 2009 Microchip Technology Inc.

19. The wizard will then prompt the user for a location from which to load the
software for the communication port. Select ”Install from a list or specific location
(Advanced)” and click Next (see Figure 2-12).

FIGURE 2-12: SELECTING SOFTWARE LOCATION FOR
COMMUNICATIONS PORT

The wizard now prompts the user for the location of the .inf file that Windows will use
to automatically configure the binary driver files (.sys files) to create the virtual COM
port connection for the USB. Ensure that both “Search for the best driver in these loca-
tions” and “Include this location in the search” are both selected. Select Browse and
navigate to the lab 4 source files in the
C:\LPCUSBDK_Labs\Lab4_files\inf\win2k_winxp directory (see
Figure 2-13).
Highlight the win2k_winxp file and click OK.

© 2009 Microchip Technology Inc. DS41356B-page 39

FIGURE 2-13: DIRECTING WINDOWS TO THE .INF FILE FOR THE CDC –
SERIAL EMULATOR APPLICATION

Click Next.
The window should now begin loading the software. If any warnings are issued, select
Continue Anyway.
20. The wizard should indicate that the software for the Communications port was

successfully installed. Select Finish. (See Figure 2-14.)

FIGURE 2-14: SUCCESSFUL SOFTWARE INSTALLATION WINDOW

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 40 © 2009 Microchip Technology Inc.

Next, the virtual COM port will be checked in the Device Manager to identify the COM
port number.

Establish Communication
21. Using step 29 in Project Lab 1 to navigate to the Device Manager, expand the

ports (COM and LPT). The new virtual COM port (usually COM 5 and above on
most PCs) created by the .inf file should be found in the Ports (COM & LPT)
drop-down list in the Device Manager window. If there is difficulty locating the vir-
tual COM port, right click on each driver and select Properties until the CDC
RS-232 Emulation Demo is located. Note the COM port number for both the vir-
tual COM port and the COM port used for an RS-232 connection (Serial Port
Connection on the Host PC). Figure 2-15 shows a list of COM ports available.
The reader’s list may differ.

FIGURE 2-15: EXAMPLE LIST OF AVAILABLE COM PORTS IN THE DEVICE
MANAGER

This COM port number will be used in the Hyper Terminal program to establish connec-
tivity to both the USB and RS-232 connections between the Low Pin Count USB
Development Board and Host PC.
22. Open a Hyper Terminal window by selecting within Windows,

Start>Programs>Accessories>Communications>HyperTerminal.
The Hyper Terminal Program should now prompt the user for a “Connection
Description”.
23. Name this first connection “USB Connection” and click OK. (See Figure 2-16.)

© 2009 Microchip Technology Inc. DS41356B-page 41

FIGURE 2-16: HYPER TERMINAL CONNECTION DESCRIPTION

24. In the “Connect To“ window, select the virtual COM port that was noted in step
21 in the “Connect Using” drop-down menu and select OK. In Figure 2-17, the
virtual COM port is on COM7. Note that this may differ on the user’s PC.

FIGURE 2-17: HYPER TERMINAL CONNECT TO WINDOW

25. In the COM Properties window, configure the connection as shown in
Figure 2-18 with a baud rate of 19200 and click Apply then OK.

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 42 © 2009 Microchip Technology Inc.

FIGURE 2-18: HYPER TERMINAL COM PROPERTIES WINDOW

This now establishes a connection between the Low Pin Count USB Development
Board USB connector and the Host PC COM port.
26. Next, connect the RS-232 serial cable to the connector on the Low Pin Count

USB Development Board and to a serial port connector on the Host PC using a
“Gender Changer” adapter.

27. Repeat steps 22 to 25 to establish an RS-232 connection using the related port
noted in step 21 for the Serial Port Connector on the Host PC. Name this con-
nection “RS232 Connection” and ensure that the COM properties resemble
Figure 2-18.

Testing the Application
28. Once connected, click inside the RS232 Connection COM window and type a

message. Note that unless configured to echo locally, the originating message
COM window will not print the message. The message should be printed in the
“USB Connection” COM window as shown in Figure 2-19.

© 2009 Microchip Technology Inc. DS41356B-page 43

FIGURE 2-19: CONFIRMING RS-232 TO USB COMMUNICATION

This will confirm communication from the Host PC via an RS-232 connection into the
PIC18F14K50, which in turn transmits data received back to the Host PC. In other
words, an RS-232 to USB conversion.

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 44 © 2009 Microchip Technology Inc.

NOTES:

LOW PIN COUNT USB
DEVELOPMENT KIT

USER’S GUIDE

© 2009 Microchip Technology Inc. DS41356B-page 45

Appendix A. Schematics

A.1 INTRODUCTION
This appendix contains the Low Pin Count USB Development Kit hardware diagrams.

FIGURE A-1: LOW PIN COUNT USB DEVELOPMENT BOARD BILL OF
MATERALS

QTY DESCRIPTION

1 IC, PIC18F14K50, 20P DIP
1 IC SMT, MAX3232CPWR ,DRVR/RCVR MLTCH RS232 16TSSO (U3)
5 CAP SMT, 0.1uF 0603 CER 16V 10% X7R (C6 - C10)
2 CAP SMT, 0.1uF 0805 CER 50V 10% X7R (C1, C3)
1 CAP SMT, 0.47uF 0805 CER 16V 10% X7R (C2)
2 CAP SMT, 22pF 0805 CER 100V 5% C0G (C4, C5)
4 RES SMT, 330-OHM 1/16W 1% 0603 (R8 - R11)
2 RES SMT, 1.0K-OHM 1/10W 1% 0805 (R1, R3)
1 RES SMT, 10K-OHM 1/10W 1% 0805 (R2)
1 RES SMT, 150K-OHM 1/10W 1% 0805 (R12)
4 RES SMT, 470-OHM 1/10W 1% 0805 (R4 - R7)
1 RES POT, 10K-OHM 1/2W THUMBWH CERM ST (POT 1)
4 LED, 565NM GREEN CLEAR 0805 T/R (D1 - D4)
1 OSC SMT, 12.000MHz CRYSTAL 18PF FUND SMD (HC49) (Y1)
1 SWITCH SMT, PUSH BUTTON SPST MOM 6MM 160GF/230GF (S1)
1 CONN SMT, RECPT, USB MINI-B 5POS RA (J1)
1 CONN, D-SUB, 9P PLUG RT ANGLE W/ JACK SCREWS (J15)
1 CONN, RECPT, 1x14 PIN 0.100" STR (J11)
2 CONN, HDR, 1x6 BREAKAWAY, 0.100" PITCH, 0.025 SQ, RA,

(0.230/0.090) (J6, J13)
1 CONN, HDR, 1x2, 0.100" PITCH, 0.025 SQ POST, TIN (0.135"/0.380"),

POL (J9)
1 CONN, HDR, 1x3 BREAKAWAY, 0.100" PITCH, 0.025 SQ POST, GD

(0.100"/0.230") (J14)
1 SOCKET, 20P DIP 0.300W COLLET OPEN FRAME (@XU1)
1 -SPARE- LOCATION (U2, J2 - J5, J7, J8)

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 46 © 2009 Microchip Technology Inc.

A.2 SCHEMATICS

FIGURE A-2: PICkit™ 2 USB DEVELOPMENT SCHEMATIC

M
A

X
32

3C
P

W
R

V
P

P

V
D

D

G
N

D
IC

S
P

D
AT

IC
S

P
C

LK
T1

G

J6

P
IC

ki
t™

 S
er

ia
l

J1
3

33
0Ω

33
0Ω

33
0Ω

33
0Ω

S
W

–B
3S

10
02

S
1

R
1

1K

10K

R2

J3
+V

J2
1K

C
W

P
O

T1
10

K
C

C
W

R
3

C3

0.1uF

P
C

B
 T

R
A

C
E

 O
N

S
O

LD
E

R
 S

ID
E

Ju
m

pe
r N

ot
P

op
ul

at
ed

C
2

0.
47

uF

J1
2

PI
C
18
F1
XK
50
-I/
SS

PI
C
18
F1
XX
50
-I/
P

U
2

U
1

+V

C
8

C
9

0.
1u

F

0.
1u

F

R
8

R
9

R
11

R
10

U
3

+V
C

6 C
7

0.
1u

F
0.

1u
F

C
10 0.

1u
F

J1
5

D
E

9P
-M

R
S

IC
S

P
1

J1
4

+V

J9 V
IN

3P
H

D
R

0.
1u

F
C

1

Y
1

12
 M

H
z

22pF

C5

C4

22pF
P

IC
ki

t™
 1

H
D

R
1X

14

J1
1

P
C

B
 T

R
A

C
E

 O
N

S
O

LD
E

R
 S

ID
E

Ju
m

pe
r N

ot
P

op
ul

at
ed J4 J5 J7 J8

D
1

D
2

D
3 D
4

+V

R
12 15

0K

47
0Ω

47
0Ω

47
0Ω

47
0ΩR
4

R
5

R
6

R
7

J1
1 2 3 4 5

6

1 2 3 4 5 6

1 2 3 4 5

6 7 8 9

16 2 14 7 13 8 6

1 3 4 5 11 10 12 9 15

P
IN

1

P
IN

2

P
IN

3

P
IN

4

1

3

4

6

7

2

5

8

9

10

11

12

13

14

1 2 3 4 5 6

2

3

20 19 18 17 16 15 14 13 12 11

1 2 3 4 5 6 7 8 9 10

21

31

2

V
B

U
S

D
-

D
+ S
hi

el
d

V
D

D

R
A

5/
O

S
C

1/
C

K
LI

R
A

4/
A

N
3/

O
S

C
2/

C
LK

O

R
A

3/
M

C
LR

/V
P

P

R
C

5/
C

P
P

1/
P

1A
/T

0C
K

I

R
C

4/
P

1B
/C

12
O

U
T/

S
R

Q

R
C

3/
A

N
7/

P
1C

/C
12

IN
3-

/P
G

M

R
C

6/
A

N
8/

S
S

/T
13

C
K

I/T
1O

S
C

I

R
C

7/
A

N
9/

S
D

O
/T

1O
S

C
O

R
B

7/
TX

/C
K

V
S

S

R
A

0/
D

+/
P

G
D

R
A

1/
D

-/P
G

C

V
U

S
B

R
C

0/
A

N
4/

C
12

IN
+/

IN
T0

/V
R

E
F+

R
C

1/
A

N
5/

C
12

IN
1-

/IN
T1

/V
R

E
F-

R
C

2/
A

N
6/

P
1D

/C
12

IN
2-

/C
V

R
E

F/
IN

T2

R
B

4/
A

N
10

/S
D

I/S
D

A

R
B

5/
A

N
11

/R
X

/D
T

R
B

6/
S

C
K

/S
C

L

V
C

C
V

+

T1
O

U
T

T2
O

U
T

R
1I

N

R
2I

N

V
-

C
1+

C
1-

C
2+

C
2-

T1
IN

T2
IN

R
1O

U
T

R
2O

U
T

G
N

D

V
IN

V
B

U
S

V
IN

R
A

5

R
A

4

R
A

3

R
C

5

R
C

4

R
C

3

R
C

6

R
C

7

R
B

7/
C

S
/T

X

D
+/

IC
S

P
D

A
T

D
-/I

C
S

P
C

LK

R
C

0

R
C

1

R
C

2

R
B

4/
S

D
A

/S
D

I/R
TS

R
B

5/
S

D
O

/R
X

R
B

6/
S

C
L/

S
C

K
/C

TS

R
B

4/
A

D
S

/S
D

I/R
TS

1

R
A

3

R
B

7/
C

S
/T

X

R
B

4/
S

D
A

/S
D

I/R
TS

R
B

6/
S

C
L/

S
C

K
/C

TS

R
B

5/
S

D
O

/R
X

R
B

4/
S

D
A

/S
D

I/R
TS

R
B

7/
C

S
/T

X

R
B

5/
S

D
O

/R
X

R
B

6/
S

C
L/

S
C

K
/C

TS
P

IN
5

P
IN

6

P
IN

7

P
IN

8

P
IN

9

R
A

3 +V

D
+/

IC
S

P
D

A
T

D
-/I

C
S

P
C

LK

V
B

U
S

D
+/

IC
S

P
D

A
T

D
-/I

C
S

P
C

LK

R
C

3

R
C

2

R
C

1

R
C

0

RA5

RA4

RA3

RC5

RC4

RC3

RC0

RC1

RC2

+V

GND

D+/ICSPDAT

D-/ICSPCLK

© 2009 Microchip Technology Inc. DS41356B-page 47

FIGURE A-3: PICkit™ 2 DEBUG HEADER

U1

VDD

RA5/OSC1/CLKI

RA4/AN3/OSC2/CLKO

ICDDATA

ICDCLK

RC5/CCP1/P1A/T0CKI

RC4/P1B/C12OUT/SRQ

NC

NC

RC3/AN7/P1C/C12IN3-/PGM

RC7/AN9/SDO/T1OSCO14

RB7/TX/CK

VSS

PGD/D+/RA0

PGC/D-/RA1

VUSB

NC

VREF+/INT0/C12IN+/AN4/RC0

VREF-/INT1/C12IN1-/AN5/RC1

NC

INT2/CVREF/C12IN2-/P1D/AN6/RC2

NC

SDA/SDI/AN10/RB4

DT/RX/AN11/RB5

SCL/SCK/RB6

PIC18F1XK50-ICD_S028

VDD0.1 UF

C1 1

2

3

4

5

6

7

8

9

10

11

12

13

14

OSC1

OSC2

ICDDATA

ICDCLK

RA3

RC5

RC4

RC3

RC6

RC7

RB7

28

27

26

25

24

23

22

21

20

19

18

17

16

15

D+

VUSB

D-

RC0

RC1

RC2

RB4

RB5

RB6

RA3/MCLR/VPP

RC6/AN8/SS/T13CKI

ICDMCLR/VPP ICDMCLR/VPP

U2

PIC18F1XK50-I/P

VDD

VDD

RA5/OSC1/CLKI

RA4/AN3/OSC2/CLKO

RC5/CPP1/P1A/T0CKI

RC4/P1B/C12OUT/SRQ

RC3/AN7/P1C/C12IN3-/PGM

RC7/AN9/SDO/T1OSCO

RB7/TX/CK

VSS

RA0/D+/PGD

RA1/D-/PGC

VUSB

RC0/AN4/C12IN+/INT0/VREF+

RC1/AN5/C12IN1-/INT1/VREF-

RC2/AN6/P1D/C12IN2-/CVREF/INT2

RB4/AN10/SDI/SDA

RB5/AN11/RX/DT

RB6/SCK/SCL

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

OSC1

OSC2

RA3

RC5

RC4

RC3

RC6

RC7

RB7

D+

D-

VUSB

RC0

RC1

RC2

RB4

RB5

RB6

RA3/MCLR/VPP

RC6/AN8/SS/T13CKI/T1OSCI

VDD

ICDDATA

ICDCLK

VPP

VDD

GND

ICSPDAT

ICSPCLK

T1G

J1

1

2

3

4

5

6

ICDMCLR/VPP

Low Pin Count USB Development Kit User’s Guide

DS41356B-page 48 © 2009 Microchip Technology Inc.

NOTES:

© 2009 Microchip Technology Inc. DS41356B-page 49

Low Pin Count USB Development Kit User’s Guide

NOTES:

DS41356B-page 50 © 2009 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/16/09

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Microchip:

 DV164139

http://www.mouser.com/microchip
http://www.mouser.com/access/?pn=DV164139

	Introduction
	Document Layout
	Conventions Used in this Guide
	Recommended Reading
	The Microchip Web Site
	Customer Support
	Document Revision History
	Chapter 1. Overview
	1.1 Introduction
	1.2 Highlights
	1.3 Low Pin Count USB Development Kit Contents
	Figure 1-1: Low Pin Count USB Development Kit

	1.4 Low Pin Count USB Development Board Construction and Layout
	Figure 1-2: Low Pin Count USB Development Board

	1.5 PIC18F14K50 ICD Debug Header
	Figure 1-3: PIC18F14K50 Populated MPLAB ICD 2 Debug Header

	1.6 “Getting Started with Microchip’s Low Pin Count USB Solutions” Self-Directed Course
	2.1 Introduction
	2.2 Prerequisites
	2.3 Resources Required to Complete Project Labs
	2.4 Project Lab 1 (Enumeration)
	2.4.1 Purpose
	2.4.2 Procedure
	2.4.2.1 BUILDING THE FRAMEWORK
	Figure 2-1:
	Figure 2-2: Project Window for Lab 1
	Figure 2-3: Configuring for Microchip USB Firmware Framework
	Testing The Application

	2.5 Project Lab 2 (HID Mouse)
	2.5.1 Purpose
	2.5.2 Overview of the HID Mouse Firmware
	Figure 2-4: Flowchart for the emulate_mouse()

	2.5.3 Procedure
	Testing the Application

	2.6 Project Lab 3 (HID Keyboard)
	2.6.1 Overview of the HID Keyboard Firmware
	Figure 2-5: State Diagram for Keyboard()

	2.6.2 Procedure
	Testing the Application

	2.7 Project Lab 4 (CDC – Serial Emulator)
	2.7.1 Overview of the CDC – Serial Emulator Firmware
	Figure 2-6: FlowChart for CDC Serial Emulator Code
	Figure 2-7: CDCTxService() State Diagram

	2.7.2 Procedure
	Figure 2-8: Creating a Sub-Folder in the Project Window
	Figure 2-9: Adding the usb_device.c File to the USB Stack Folder
	Figure 2-10: Project Window for Lab 4
	Installing Application Drivers
	Figure 2-11: Found New Hardware Wizard Window
	Figure 2-12: Selecting Software Location for Communications Port
	Figure 2-13: Directing Windows to the .inf File for the CDC – Serial Emulator Application
	Figure 2-14: Successful Software Installation Window
	Establish Communication
	Figure 2-15: Example List of Available COM Ports in the Device Manager
	Figure 2-16: Hyper Terminal Connection Description
	Figure 2-17: Hyper Terminal Connect to Window
	Figure 2-18: Hyper Terminal COM Properties Window
	Testing the Application
	Figure 2-19: Confirming RS-232 to USB Communication

	Chapter 2. Getting Started Project Labs
	A.1 Introduction
	Figure A-1: Low Pin Count USB Development Board Bill of Materals

	A.2 Schematics
	Figure A-2: Pickit™ 2 USB Development Schematic
	Figure A-3: Pickit™ 2 Debug header

	Worldwide Sales and Service

