N

MICROCHIP

Low Pin Count USB
Development Kit

User’s Guide

SSSSSSSS

Note the following details of the code protection feature on Microchip devices:
. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—150/TS 16949:2002 =

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, Powerlnfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

f‘} Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEeL0OQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS41356B-page ii

© 2009 Microchip Technology Inc.

LOW PIN COUNT USB

DEVELOPMENT KIT
MICROCHIP USER’S GUIDE

Table of Contents
=] = T = PSSO 1
INEFOTUCTION ... e 1
DOCUMENT LAY OUL....cetiieiiieeii e e e e e e e e e e e e e e e an s e eeans 1
Conventions Used in thiS GUIAEcccevvviiiiiiiiiiiii e 2
Recommended REAAINGciiuiiiiiiiiiiiiiie ettt ee e 3
The MiIcroChip WED SItE........uuiuiiiiiiiiiiiiiiiiiiiiiiiiiiv e ae e e e esaeeeeeeeeeeaeees 3
OLT L] (0] 1 1T TN o] 0[] 4 F PP SPRPPPPPPRPPIN 4
Document ReVISION HISIOMYccooviiiiiiiiii e 4
Chapter 1: Overview
INEFOTUCTION .o, 5
HIGhIIGLS oo 5
Low Pin Count USB Development Kit CONteNtScccovvviviiiiiiiiiieecccevice e, 5
Low Pin Count USB Development Board Construction and Layout 6
PIC18F14K50 ICD Debug HEAUENuuciiiiieiiieeiic et 7
“Getting Started with Microchip’s Low Pin Count USB Solutions” Self-Directed
L0111 £ TP PPPPPPPPPPPPTN 7
INEFOUCTION .o 9
PrereqUISItES ..ooovvviiiiiiieeeeee e 9
Resources Required to Complete Project Labsccooooeeiiiviiiiiiiiiiecccevceeee 9
Chapter 2: Getting Started Project Labs
Project Lab 1 (Enumeration) ..., 10
F o I e 0T 0] < PRSPPI 10
2.4.2 PrOCEAUIE ...ceiiiiiiiiiieie ittt ettt e e e e e e e e e et 10
Testing The APPIICAtiONcuvviii i e 17
Project Lab 2 (HID MOUSE) ...coooeeiieiieiiee ettt e et e e e e e e aea s 18
2.5. 0 PUIMPOSE ettt ettt e e e e e e et et e aaeeaes 18
2.5.2 Overview of the HID Mouse Firmwareccooooiiiiiiiiiniicicnnees 19
2.5.3 PrOCEAUIE ...ccoiiiiiiiieii ettt et 20
Testing the AppPlICAtioNoovviiiiii e 21
Project Lab 3 (HID Keyboard)cccooiiiiiiiiiice s 22
2.6.1 Overview of the HID Keyboard Firmwareccccccoeeeiiiiieeeennnnnne, 22
2.6.2 ProCeAUIE ..o 24
Testing the APPHCALIONueiiiiiiiiiiiiiieeeeeee e 27

© 2009 Microchip Technology Inc. DS41356B-page iii

Low Pin Count USB Development Kit User’s Guide

Project Lab 4 (CDC — Serial EMUIAtor)ccccooeviiiiiiiiiii i 28

2.7.1 Overview of the CDC — Serial Emulator Firmware 29

2.7.2 PrOCEAUIE .uvvuiiiii ettt et e e 31

Installing Application DIIVEIScovvvviiiiiiiiiiiiee e, 37

Establish CommuNiCationocooeviiiiiiiie e 40

Testing the Applicationccccoviii . 42

Worldwide Sales and SEIVICEiiieiiiiiiiii et e e e e eeees 50

DS41356B-page iv © 2009 Microchip Technology Inc.

LOW PIN COUNT USB
DEVELOPMENT KIT
MICROCHIP USER'’S GUIDE

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the
Low Pin Count USB Development Kit. Items discussed in this chapter include:

* Document Layout

» Conventions Used in this Guide

 Recommended Reading

e The Microchip Web Site

¢ Customer Support

« Document Revision History

DOCUMENT LAYOUT

This document describes how to use the Low Pin Count USB Development Kit as a
development tool to emulate and debug firmware on a target board. The manual layout
is as follows:

e Chapter 1. “Overview”

« Chapter 2. “Getting Started Project Labs”

« Appendix A. “Schematics”

© 2009 Microchip Technology Inc. DS41356B-page 1

Low Pin Count USB Development Kit User’s Guide

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description

| Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User'’s Guide

Emphasized text

...Is the only compiler...

Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”
dialog
Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

A tab

Click the Power tab

N‘Rnnnn

A number in verilog format,
where N is the total number of
digits, Ris the radix and nis a
digit.

4'b0010, 2'hF1

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier New font:

Plain Courier New

Sample source code

#define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ‘A’

Italic Courier New

A variable argument

file.o,where file can be
any valid filename

Square brackets []

Optional arguments

mccl8 [options] file
[options]

Curly brackets and pipe
character: {| }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]|1}

Ellipses...

Replaces repeated text

var name [,
var_name...]

Represents code supplied by
user

void main (void)
{
}

DS41356B-page 2

© 2009 Microchip Technology Inc.

Preface

RECOMMENDED READING

This user’s guide describes how to use the Low Pin Count USB Development Kit. Other
useful documents are listed below. The following Microchip documents are available
and recommended as supplemental reference resources.

Readme Files

For the latest information on using other tools, read the tool-specific Readme files in
the Readmes subdirectory of the MPLAB® IDE installation directory. The Readme files
contain update information and known issues that may not be included in this user’s
guide.

Design Center
Microchip has a USB design center which can be found on www.microchip.com/usb.

The following Microchip Application Notes are available and recommended as
supplemental reference resources.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

« Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

« General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

© 2009 Microchip Technology Inc. DS41356B-page 3

Low Pin Count USB Development Kit User’s Guide

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

 Field Application Engineer (FAE)
» Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY
Revision A (September 2008)

« |nitial Release of this Document.

Revision B (February 2009)

» Corrected document errors

DS41356B-page 4 © 2009 Microchip Technology Inc.

LOW PIN COUNT USB
DEVELOPMENT KIT

MICROCHIP USER’S GUIDE

Chapter 1. Overview

INTRODUCTION

The Low Pin Count USB Development Kit provides an easy, low cost way to evaluate
the functionality of Microchip’s PIC18F14K50 and PIC18F13K50 20-pin USB micro-
controllers. The all-inclusive kit contains the hardware, software, and code examples
necessary to bring your next USB design from concept to first prototype. Created with
the USB novice in mind, the kit includes “ Getting Started with Microchip’s Low Pin
Count USB Solutions”, a self-directed course and lab material designed to ease the
learning curve associated with adding USB connectivity to embedded systems.

HIGHLIGHTS

This chapter discusses:
e Low Pin Count USB Development kit contents
e Low Pin Count USB Development Board construction and layout

LOW PIN COUNT USB DEVELOPMENT KIT CONTENTS

The Low Pin Count USB Development Kit contains the following:

e (1) fully populated Low Pin Count USB Development Board

* (1) unpopulated spare development board

* (1) PIC18F14K50 ICD populated expansion header

* (1) CD containing the user guide, course materials and product documentation.
* (1) PICKit™ 2 Debugger/Programmer with cable.

FIGURE 1-1: LOW PIN COUNT USB DEVELOPMENT KIT

Wi Pl 4 Uaﬂuggaﬂf-’m_uf
(ESTIRIVIBE126)

© 2009 Microchip Technology Inc. DS41356B-page 5

Low Pin Count USB Development Kit User’s Guide

1.4

LOW PIN COUNT USB DEVELOPMENT BOARD CONSTRUCTION AND

LAYOUT

The Low Pin Count USB Development Board and populated components are shown in

Figure 1-2.

FIGURE 1-2: LOW PIN COUNT USB DEVELOPMENT BOARD

1. USB mini-B connector

2. J9 regulated 5V connection header

3. J14connects either Vg5 (Provided by USB) or J9 regulated 5V to PIC18F14K50
VDD supply

4. PICkit™ 2 Debugger/Programmer connection header

5. LEDs connected to PORTC (RCO, RC1, RC2, RC3)

6. PICkit™ Serial Analyzer connection header

7. MAX3232 RS-232 line driver/receiver

8. RS-232 connector

9. Area provided for user PID/VID information

10. Potentiometer

11. J12 connects/disconnects V| ;gg on PIC18F14K50

12. Push button

13. 12 MHz crystal

14. PIC18F14K50 MCU

15. Prototyping area

16. PICtail™ daughter board expansion header

17. SSOP Expansion

Note: J2-J5, J7, J8 are shunted on the bottom side of the board and thus the
functions default connected even though no jumper is installed. Cut the
jumper to disable the circuitry attached to each pin.

DS41356B-page 6

© 2009 Microchip Technology Inc.

1.5 PIC18F14K50 ICD DEBUG HEADER

The Low Pin Count USB Development Kit includes a debug header populated with a
PIC18F14K50 ICD MCU to enable for use with the PICkit™ 2 debugger/programmer.

FIGURE 1-3: PIC18F14K50 POPULATED MPLAB ICD 2 DEBUG HEADER

lih?'
——
r——
e
-i.?
——
—
e
P
——
1
—~—
———

ETEERRRLL

2000 0COOON

F

To use the debug header, simply remove the PIC18F14K50 mounted in the MCU
socket (U2) on the Low Pin Count USB Development Board. Using a pin header (not
included), connect the debug header into the MCU socket and connect the PICkit™ 2
programmer/debugger to the provided connection header.

1.6 “GETTING STARTED WITH MICROCHIP’S LOW PIN COUNT USB
SOLUTIONS” SELF-DIRECTED COURSE

The Low Pin Count USB Development Kit includes the self-directed course “ Getting
Started with Microchip’s Low Pin Count USB Solutions”. This course provides an
introductory overview to the USB 2.0 protocol and implementation on the
PIC18F14K50 MCU. Microchip’s USB Device Firmware Framework is introduced as a
resource providing a library of firmware code for USB operation that handles “low-level”
tasks and a number of reference projects. The user is guided through a number of
“hands-on” labs to reinforce covered concepts.

© 2009 Microchip Technology Inc. DS41356B-page 7

Low Pin Count USB Development Kit User’s Guide

NOTES:

DS41356B-page 8 © 2009 Microchip Technology Inc.

LOW PIN COUNT USB
DEVELOPMENT KIT

MICROCHIP USER’S GUIDE

Chapter 2. Getting Started Project Labs

2.1 INTRODUCTION

This section of the user’s guide will walk the user through a number of project labs that
will ease the development of original USB design applications. Labs are formatted so
that the user is guided through each project’s source code to uncomment or copy and
paste sections of code. This format was chosen to force the developer to explore sig-
nificant sections of the Framework and familiarize themselves with the overall structure
of the source files presented.

Lab files can be located in the folder C: \LPCUSBDK Labs\Labx_ files. Each lab
folder will contain both the source files for the labs and a folder containing the solutions
with working code.

Four labs are presented:

1.

Project Lab 1 (Enumeration): This lab introduces the user to developing unique
descriptors in their own applications that will be used by the Host (PC) to
enumerate and ultimately configure the PIC18F14K50.

Project Lab 2 (HID Mouse): This lab expands on concepts learned in Project Lab
1 using the descriptors defined. The user will walk through the development of
application specific functions within the mouse.c firmware file. The end applica-
tion will behave like a Human Interface Device Class (HID) mouse by moving the
pointer on the PC screen.

Project Lab 3 (HID Keyboard): In this lab the user is required to alter the descrip-
tors to implement a HID keyboard-based application. The potentiometer on the
Low Pin Count USB Development Board is rotated to change the HID specifica-
tion unicode value transmitted through the USB to the PC that will print charac-
ters based on an ADC conversion.

Project Lab 4 (CDC Serial Emulator): Finally, the user will implement a
communication protocol converter using the Communication Device Class
(CDC) driver.

2.2 PREREQUISITES

These labs assume that the user:

1.

2.
3.
4.

Has completed the self-directed course “ Getting Started with Microchip’s Low
Pin Count USB Solutions” provided on the accompanying CD.

Is familiar with the MPLAB IDE and C18 compiler.
Has some programming experience using the C language.
Is familiar with Microchip’s PIC18F family of microcontrollers.

2.3 RESOURCES REQUIRED TO COMPLETE PROJECT LABS

In order to complete the Project Labs, the user should have:

1.

The most current version of the MPLAB IDE and C18 compiler installed on their
PC. The MPLAB IDE can be found at: http://www.microchip.com/stellent/idc-
plg?ldcService=SS_GET_PAGE&nodeld=1406&dDoc-
Name=en019469&part=SW007002

© 2009 Microchip Technology Inc. DS41356B-page 9

http://www.usb.org/developers/hidpage/
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002

Low Pin Count USB Development Kit User’s Guide

2. The C18 compiler can be found at:http://www.microchip.com/stellent/idcplg?Idc-
Service=SS_GET_PAGE&nodeld=1406&dDocName=en010014

3. The most current version of the PICkit 2 programmer software.

4. Downloaded and installed the Microchip Full-Speed USB Firmware Framework.
Available free at: http://www.microchip.com/stellent/idcplg?ldcSer-
vice=SS_GET_PAGE&nodeld=2651¶m=en534494

5. A copy of the “Microchip USB Device Firmware Framework User’s Guide”
(DS51679)

6. A copy of the PIC18F13K50/14K50 data sheet (DS41350)

7. A copy of the USB Revision 2.0 Specification available for download from:
http://www.usb.org/developers/docs/

This will prove useful as reference throughout the labs.

8. A copy of the Universal Serial Bus (USB) HID Usage Tables available for
download at:
http://www.usb.org/developers/devclass_docs/Hutl 12.pdf

9. Downloaded the USB HID Descriptor Tool available free at:
http://www.usb.org/developers/hidpage/dt2_4.zip

10. A copy of the Universal Serial Bus Class Definitions for Communications Devices
document available for download at:

http://www.usb.org/developers/devclass_docs
11. Unzipped the LPCUSBDK _Labs.zip file to the C: directory.

2.4 PROJECT LAB 1 (ENUMERATION)

Note: In this and all subsequent project labs, the USB cable must be discon-
nected from the USB mini-B connector on the Low Pin Count USB Devel-
opment Board when programming with the PICkit 2 programmer.

24.1 Purpose

The purpose of this lab is intended to introduce the user to creating a project in the
MPLAB IDE using Microchip’s Full-Speed USB Firmware Framework. Though many
application examples in the Framework can be used to create original code, building
the Framework from scratch is a great way to get familiar to the overall functionality of
this multitasking tool.

The user will create a project, ensure that the IDE is configured accordingly, and alter
the usb_descriptor.c file to enable the enumeration of the PIC18F14K50 as a HID
mouse device.

2.4.2 Procedure

2.4.21 BUILDING THE FRAMEWORK

1. Open the MPLAB IDE by selecting Start>Programs>Microchip>MPLAB IDE
vx.xx>MPLAB IDE

2. Once in the MPLAB IDE, start the Project Wizard by selecting Project>Project
Wizard

3. Select the PIC18F14K50 as the device, select the MPLAB C18 C Compiler as
the language toolsuite, and create a new project folder in the following directory:
C:\Microchip Solutions\Project Lab 1\Project Lab 1

DS41356B-page 10

© 2009 Microchip Technology Inc.

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2651¶m=en534494
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2651¶m=en534494
http://www.usb.org/developers/devclass_docs/Hut1_12.pdf
http://www.usb.org/developers/devclass_docs/Hut1_12.pdf
http://www.usb.org/developers/hidpage/dt2_4.zip
http://www.usb.org/developers/docs/
http://www.usb.org/developers/devclass_docs/Hut1_12.pdf

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2651¶m=en534494
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2651¶m=en534494
http://www.usb.org/developers/devclass_docs
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en010014
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en010014

4. Inthe Add Existing Files to Your Project window, navigate to
C:\LPCUSBDK Labs\Labl files and copy the following files:

a) enumeration.c
b) usb descriptors.c
C) HardwareProfile.h
d) usb config.h

Note: These files are the user files that will need to be changed to implement any
application.

To copy a file, click on the large letter A in front of the file path in the right pane of the
window until a large letter C appears. This mode makes a copy of this file into the new
project directory leaving the original file intact. (see Figure 2-1)

FIGURE 2-1:

Project Wizard [— x|

Step Four: r'n
Add esasting files to your project

1 hitech_pmjects | 1 [C enumeration = | CALPCUSBDK_L:
+ 1 HTSOFT _Add» | C HardwareProfie h | CALPCLISBDE
1 Install (] C ush_corfigh | CALPCUSBDK, Lat
] otz s - 2
. —_—IJ ‘[PEUSBM_LEE Rermove | | C ush_desciiptors. ¢ | C:ALPCUSBDK
=-(7] Lab1_files
+-{] Lab_Soldions
enumeration.c
l}j HardwareProfle
usb_canfig h

[} & o

B usbh_descriptors.
+- Lab2 files ¥
| ’ K 2
¢ Back [Next » |

This next section will add the files that will build the Framework that takes care of the
low level USB functions. This does not need to be done for every application. The
included example projects could be easily converted to suit the needs of a custom
application. However, in the interest of providing an intuitive introduction to the
Framework, this lab builds this application from scratch.

Note: These files are used by all the applications in the Framework. Therefore,
changing these files will affect all applications. If any of these files are
inadvertently altered, it is recommended that the Framework be reinstalled.

5. Next, navigate to
C:\Microchip Solutions\Microchip\Include and copy over the
following files:

a) Compiler.h
b) GenericTypeDefs.h

© 2009 Microchip Technology Inc. DS41356B-page 11

http://www.usb.org/developers/hidpage/
http://www.usb.org/developers/hidpage/

Low Pin Count USB Development Kit User’s Guide

6.

10.

Navigate to C:\Microchip Solutions\Microchip\Include\Usb and

copy the following files:

a) usb.h

b) usb ch9.h

C) usb_common.h

d) usb device.h

e) usb function hid.h (file defines components specific to the HID class)

f) usb hal.h

g) usb_hal pic18.h (file defines components specific to the PIC18
architecture)

Next, navigate to C: \Microchip Solutions\Microchip\Usb and copy the

following file:

a) usb device.c

Next, navigate to

C:\Microchip Solutions\Microchip\Usb\HID Device Driver to

copy the HID specific source file:

a) usb function hid.c

Finally, navigate to c:\MCcC18\1kr and copy the 18£14k50. 1kr linker file.

Click Next>Finish to exit the project wizard. The Project window should now

resemble Figure 2-2.

FIGURE 2-2: PROJECT WINDOW FOR LAB 1

= ' Project Lab Lmcp®
=[] Source Fies
3 ersmes sbion. ¢
L\! ush_descriphors.c
ﬂ ush_device.c
._'_3 wb function_Fed.c
= [Header Fies
£ compder b
[} GenericTyperefs.h
(2] HardwareProfie.h
(1] usb b
{2 wsby_chi b
(B] wsb_common b
18] wsh_config,h
B] usb_device.h
(K] wsb_furction_Hed.h
[E} wst_haih
(L] wesbs_hal_pic 1B
L] Ot Flies
L ibrary Files
=] Linker Saript
e 1EF 1450, by
[Onher Fles

._|FiH- 7% Symboks

If the project window isn’t open in the MPLAB IDE workspace, select View> Project.

Next the MPLAB IDE will need to be configured for the Framework by directing the C18
compiler to the associated file locations.

11.

In the MPLAB IDE, select Project>Build Options...>Project. The Build Options
dialog will appear (Figure 2-3).

DS41356B-page 12

© 2009 Microchip Technology Inc.

12. Click on the Directories tab and select Output Directory and click New to add
a new path. Click on the | ... | button, navigate to
C:\LPCUSBDK Labs\Labl files and create a new folder called output.
Highlight the folder and click OK. This will now be the folder where the output files
are placed.

13. Within the “ Show directories for” drop-down menu, select the “Include Search
Path” directory. Ensure that the C:\Mcc18\h directory path is listed. Select
New and navigate to C: \Microchip Solutions\Microchip\Include and
click OK to add to the directory. Repeat these steps to add the application folder
C:\LPCUSBDK Labs\Labl files.

14. In the “show directories for:” drop-down menu, select Library Search Path.
Ensure that the c:\MCC18\1ib is listed. Next, select the Linker-Script Path
and ensure that the path points to C: \MCcC18\1kr directory.

FIGURE 2-3: CONFIGURING FOR MICROCHIP USB FIRMWARE
FRAMEWORK
Build Dptions For Project “"Project Lab 1.mcp e |
MPASM Assembler | MPLINK Linker | MPLAB C18
Directaries CustomBuid | Trace | MPASM/CI7/C18 Suite

i~ Directories and Search Paths

Show directaries for: Include Search Path j
Output Directory
Mew Intermediary Directon

Include Search Path

=TT LCrary Search Path

DS MEIRNEIIO) RS, | |\ or-S cript Siearch Path
C:hazb_repositornysMicrocripmcae

C:AMCC18R

Suite Defaults |

r— Build Directary Policy
= Aszemble/Compile in source-ile directary, link in output directary

% Aszemble/Compile/Link in the project directary

Ok, I Cancel | Apply | Help |

15. Click Apply, followed by OK to apply these settings and close the Build Options
window.

At this point, Framework has been built.

DEFINING PROJECT DESCRIPTORS

Double click the enumeration.c source file in the project window to open. Scroll

down to the ProcessIO () . Note it is empty. Therefore, this application will do noth-
ing. The intention of this lab is to introduce the user to properly configure the firmware
so that the PIC18F14K50 will enumerate as a HID mouse once connected to the Host
PC. Therefore, the usb_descriptors. c file will need to be altered accordingly. As a

© 2009 Microchip Technology Inc. DS41356B-page 13

Low Pin Count USB Development Kit User’s Guide

reference, the USB Revision 2.0 specification should be opened to Section 9-5

“Descriptors”. This section details the various components required in each type of
descriptor (device, configuration, interface etc.). This usb_descriptor. ¢ file should
be an exact replica of the source file of the same name found in the Framework folder

C:\Microchip Solutions\USB Device - HID - Mouse\HID - Mouse -
Firmware\usb descriptor.c

This file can be used as a reference during debugging.

16. In the MPLAB IDE Project window, select and open the usb_descriptors.c
source file.

Note #include "./USB/usb function hid.h" at the top of the file. If a
different class of device is being defined for a given application, the appropriate
class header file will need to be included here.

17. Scroll down to the device descriptor section and copy and paste the code in
Example 2-1 between the curly brackets in the section labeled:

/IADD DEVICE DESCRIPTOR CODE HERE

Note: The user may wish to clean up the look of the code by spacing comment
sections accordingly. Tabs were ignored to ensure completeness for this
document.

EXAMPLE 2-1: DEVICE DESCRIPTOR FOR LAB 1
0x12, // Size of this descriptor in bytes
USB_DESCRIPTOR DEVICE, // DEVICE descriptor type
0x0110, // USB Spec Release Number in BCD format
0x00, // Class Code
0x00, // Subclass code
0x00, // Protocol code
USB_EPO_BUFF_SIZE, // Max packet size for EPO, see
// usbcfg.h
MY VID, // Vendor ID
MY PID, // Product ID
0x0003, // Device release number in BCD format
0x01, // Manufacturer string index
0x02, // Product string index
0x00, // Device serial number string index
0x01 // Number of possible configurations

18. Scroll down to the configuration, class specific and interface descriptor section.
Copy and paste the code in Example 2-2 between the brackets between the curly
brackets in the section labeled:

//ADD CONFIGURATION, CLASS SPECIFIC AND
/INTERFACE DESCRIPTOR CODE HERE

DS41356B-page 14 © 2009 Microchip Technology Inc.

CONFIGURATION, CLASS SPECIFIC AND INTERFACE

EXAMPLE 2-2:
0x09,//sizeof (USB_CFG_DSC), //
USB_DESCRIPTOR_CONFIGURATION, //
DESC_CONFIG_WORD (0x0022), //

1, //
1, //
0, //
_DEFAULT| SELF, //

50,

/* Interface Descriptor */

//
DSC_RPT, //
DESC_CONFIG_WORD (50), //
//

/* Endpoint Descriptor */
0x07, /*sizeof (USB_EP_DSC) */

USB_DESCRIPTOR ENDPOINT, //
HID EP | _EP IN, //
_INT, //
DESC_CONFIG WORD (3), //
0x01 //

Size of this descriptor in bytes
CONFIGURATION descriptor type
Total length of data for this cfg
Number of interfaces in this cfg
Index value of this configuration
Configuration string index
Attributes, see usbd.h

Max power consumption (2X mA)

Size of this descriptor

in bytes

INTERFACE descriptor type
Interface Number

Alternate Setting Number

Number of endpoints in this intf
Class code

Subclass code

Protocol code

Interface string index

Size of this descriptor in bytes
HID descriptor type

HID Spec Release Number in BCD
format (1.11)
Country Code
supported)
Number of class descriptors,
usbcfg.h

Report descriptor type

(0x00 for Not

OXO9,//SizeOf(USB_INTF_DSC), //
//
USB_DESCRIPTOR_INTERFACE, //
0, //
0, //
1, //
HID INTF, //
BOOT_INTF_SUBCLASS, //
HID PROTOCOL_ MOUSE, //
0, //
/* HID Class-Specific Descriptor */
0x09,//sizeof (USB_HID DSC)+3, //
DSC_HID, //
DESC_CONFIG WORD (0x0111), //
//
0x00, //
//
HID NUM OF DSC, //

see

sizeof (hid rpto01),

Size of the report descriptor
Endpoint Descriptor
EndpointAddress

Attributes

size

Interval

The user is encouraged to take some time and compare the code in the preceding
code examples against the descriptor definitions in the USB Revision 2.0 specification
Section 9-5“Descriptors”. Comments have been included to make the code intuitive
and easier to reference with the USB specification. Definition sources can be located
by highlighting the definition name and selecting Edit>Find in Files in the MPLAB IDE.
This will locate all instances of the definition within the project and list them in the
Output window.

© 2009 Microchip Technology Inc. DS41356B-page 15

Low Pin Count USB Development Kit User’s Guide

19. Scroll down to the string descriptor section. String descriptors can be used to
describe a device for the user. At enumeration, the string descriptor will appear
at the lower right hand section of the screen notifying the user of the intended
purpose of the device. Copy and paste the code between the curly brackets for
both the manufacturer string descriptor and product string descriptor in
Example 2-3 and Example 2-4 in the sections labeled:

/IADD MANUFACTURER STRING DESCRIPTOR CODE HERE
and

//ADD PRODUCT STRING DESCRIPTOR CODE HERE

EXAMPLE 2-3: MANUFACTURER STRING DESCRIPTOR FOR LAB 1

M! lil To! Ty! To! ro! Th! lil lpl

’ 1 1 1 ’ ’ ’ ’ 1

' llITIIlelllclllhl’lnl’lol’lll’lolllglllyll
vor, T, 'nt et

EXAMPLE 2-4: PRODUCT STRING DESCRIPTOR FOR LAB 1
|Mlllolllulllsllle|’
1 llIEIIlnlllulllml,lel,lrl,lal,ltlllilllollln |’
1 lllDlllelllmlllol

Finally, the last descriptor to be added is the report descriptor.

Early in the development of the HID class specification, subclasses were
intended to be used to identify different HID device categories. However, it
became clear that due to the diverse variety of devices that could be imple-
mented in this class, a more robust definition method was required. Therefore,
this class does not use subclasses to define most protocols. Instead, a mecha-
nism called the report descriptor identifies data protocol and the types of data
provided for a device. It is here that such things as the number of buttons on a
mouse, the unicode key value ranges for a keyboard, and other such
characteristics are defined.

The USB organization has provided a number of documents and tools
specifically designed to implement the report descriptor that can be accessed at:

http://www.usb.org/developers/hidpage/

The user is encouraged to download the HID Usage Tables that define a report
descriptor for a given device. Also, the USB organization has further developed
a HID Descriptor Tool that will assist the developer in designing their own report
descriptors. The tool also includes predefined descriptors for commonly used
HID devices such as a mouse and keyboard. This document and tool can be
found at the links listed in Section 2.3 “Resources Required to Complete
Project Labs”.

20. Scroll down to the report descriptor section and copy and paste the code in
Example 2-5 between the curly brackets in the section labeled:

/IADD REPORT DESCRIPTOR CODE HERE

DS41356B-page 16 © 2009 Microchip Technology Inc.

EXAMPLE 2-5: REPORT DESCRIPTOR FOR LAB 1

0x05, 0x01, /* Usage Page (Generic Desktop) */
0x09, 0x02, /* TUsage (Mouse)*/

0xAl, 0x01, /* Collection (Application)*/

0x09, 0x01, /* TUsage (Pointer)*/

0xAl, 0x00, /* Collection (Physical)=*/

0x05, 0x09, /* Usage Page (Buttons) */

0x19, 0x01, /* Usage Minimum (01)*/

0x29, 0x03, /* TUsage Maximum (03)*/

0x15, 0x00, /* Logical Minimum (0)*/

0x25, 0x01, /* Logical Maximum (0)*/

0x95, 0x03, /* Report Count (3)*/

0x75, 0x01, /* Report Size (1)%*/

0x81, 0x02, /* Input (Data, Variable, Absolute)*/
0x95, 0x01, /* Report Count (1)*/

0x75, 0x05, /* Report Size (5)%*/

0x81, 0x01, /* 1Input (Constant) ;5 bit padding */
0x05, 0x01, /* Usage Page (Generic Desktop) */
0x09, 0x30, /* Usage (X)*/

0x09, 0x31, /* Usage (Y)*/

0x15, 0x81, /* Logical Minimum (-127)%*/

0x25, 0x7F, /* Logical Maximum (127)*/

0x75, 0x08, /* Report Size (8)*/

0x95, 0x02, /* Report Count (2)*/

0x81, 0x06, /* Input (Data, Variable, Relative)*/
0xC0, 0xCO

The descriptor definitions are now complete.
21. Compile the project. There should be no errors.

Testing The Application

22. Configure the Low Pin Count USB Development Board so that the J14 jumper is
on the two right-most pins. This application will use power supplied by Vg5 off
of the USB cable.

23. Disconnect the J12 jumper.

24. Connect the PICkit 2 programmer to the PC USB port and then to the J6
connector on the Low Pin Count USB Development Board.

25. Open the PICkit 2 programmer environment by selecting Start>Programs>Micro-
chip PICKit 2 vX.XX.

26. The PICkit 2 programmer software should recognize that the PICKit 2 is
connected and identify the PIC18F14K50 device.

27. Within the PICkit 2 programmer software, navigate to the
C:\LPCUSBDK Labs\Labl files\output folder and download the
Project Lab 1.hex file to the PIC18F14K50.

28. Disconnect the PICkit 2 programmer from J6 and plug the USB cable into the
mini B connector, J1.

Once connected, the enumeration process should begin. The Host PC should
recognize the connection of a new device and display a notification at the right
corner of the screen indicating the “Mouse Enumeration Demo” text placed in the
product string earlier in this lab.

© 2009 Microchip Technology Inc. DS41356B-page 17

Low Pin Count USB Development Kit User’s Guide

29. Next, the device driver will be checked on the Host PC.
Navigate to Device Manager on the Host PC by selecting Start>Settings>Control
Panel>System to open the System Properties window. Select the Hardware tab
and click the Device Manager button.

30. Inthe Device Manager window, expand the Human Interface Devices. Right click
on each driver and select Properties until the “Mouse Enumeration Demo” driver
is located. See Figure 2-4.

EXAMPLE 2-6: DEVICE MANAGER WINDOW AND HID DRIVERS INSTALLED
il

..Hu Ackion Wiew Help
** B 66 37 8 =na

E:&(H‘J-IT-(I:‘IIR? -

) psttenies

T _‘! Coangi b er

#-<ae Dink drives

+ _ﬁ‘ Lusplay adaphers

00 Lk DA RO drivrs

+-=Y Floppy disk controllers

) (i Human Tnterface Devices
{34 HID-complard consumer control devioe
] LS puran Dnkerface Devce
B LISH v e s Devce

)
() 3 I0F ATAJATART rontrole Updabe Driver...
] Il raed denvies Disble
e Kevbosrds Uniretal
m Ty Mace and other - :
| 2;” - poneng Soan fior hardware changas =
1§ Morkoms rroportios |
=-HE helvaoxk, adaphers

B 1&g wirsless LAN M P adapher 1L

B Intel([) FRO] 1000 MT Mohds Connerctinn
+- W pCMCIn, sdanters =l
[Dpans proparty sheet For the cument selacton,

The user is encouraged to familiarize themselves with the HID Usage Tables and HID
Descriptor Tool. Changing various aspects of the descriptors and then repeating the
enumeration lab steps will help build on these concepts.

2.5 PROJECT LAB 2 (HID MOUSE)
25.1 Purpose

This lab implements the Low Pin Count USB Demo Board in a HID mouse application
that moves the mouse pointer on the Host PC in a circle.

Note: The source code developed here is an exact replica of the USB Device -
HID — Mouse application found in the Framework.

C:\Microchip Solutions\USB Device - HID - Mouse\HID - Mouse -
Firmware

The user is encouraged to use these files as a reference when needed.

DS41356B-page 18 © 2009 Microchip Technology Inc.

252 Overview of the HID Mouse Firmware

As with most of the Framework applications, the user defined source code is called
from the ProcessI0O () functioninthe <applications.c file. The user defined firm-
ware will manipulate the Host PC mouse pointer to move in a single direction for 14
times through the main loop. After 14 times, the mouse pointer changes direction ulti-
mately moving in a complete circle. A bit flag is initialized named emulate mode that
will toggle HIGH/LOW whenever the push button on the Low Pin Count USB Develop-
ment Board is pressed. The status of this flag will start or stop pointer movement on the
screen by not calling the user defined function, emulate mouse (), which handles the
mouse movement routines.

The flowchart for the user defined function is shown in Figure 2-4.

FIGURE 2-4: FLOWCHART FOR THE EMULATE_MOUSE()

TRUE=1
Emulate_Mouse () FALSE = 0

emulate_mode
=TRUE

Change directional
movement_length data to next vector

> 14?

Nol

Clear directional data ‘ Keep directional
data as before

YES

PIC18F14K50
own the SIE

return

Transmit directional "
data along USB —»(rewm

In the flowchart of Figure 2-4, it can be seen that if the emulate mode flag is ‘0’, the
directional data transmitted along the USB is cleared. Note that data is transmitted from
the PIC18F14K50 whether or not the flag is set. Data is transmitted only when the SIE
is capable of transmitting it. This check is implemented in code by using the

if (HIDTxHandleBusy (lastTransmission) == 0) conditional statement. The
lastTransmission is loaded at the time of transmission and processed by the
HIDTxHandleBusy macro in the conditional ‘if’ statement.

If the emulate mode flag is set, the function enters into the mouse pointer movement
algorithm. This is accomplished by keeping track of a counter variable,

movement length. When this variable exceeds 14, a buffer array is loaded with new
directional data as supplied by the dir table array defined at the top of the mouse. ¢
file. Each element of the array is accessed by incrementing the vector variable counter.
The buffer array is then loaded into a hid report in[] buffer array that is used by
the HIDTxPacket macro to transmit the data along the USB to the Host PC.

© 2009 Microchip Technology Inc. DS41356B-page 19

Low Pin Count USB Development Kit User’s Guide

2.5.3 Procedure

This lab expands on the descriptor code developed in Lab 1.

1. Create a new project “Project Lab 2", and build the framework as per procedure
steps 1-15 in the previous lab, only this time use the source files found in
C:\LPCUSBDK Labs\Lab2 files

2. Ensure that the Project Build Options are configured as was done in Lab 1 steps
11 through 15.

3. Inthe Project window open the mouse. ¢ source file.

4. Scroll down to find the variable definitions and uncomment the variables and
arrays that will be used by the user defined function under the section of the
source file:

/**VARIABLES*****************************/

a) BYTE old sw2,0ld sw3;

b) BOOL emulate mode;

C) BYTE movement length;

d) BYTE vector = 0;

e) char buffer([3];

f) USB HANDLE lastTransmission;

g) ROM signed char dir table[]={-4,-4,-4, 0, 4, 4, 4, 0};

5. Scroll down to the private prototype section and uncomment the user function
prototype
void Emulate Mouse (void) ;

6. Scroll down to the UserInit (). Itis here that all components pertinent to the
application at hand are initialized. Note the variables and function calls that are
initialized. Locate the // emulate mode = TRUE; and uncomment the flag
initialization.

7. Scroll down to the ProcessIO () function. Note the push button check that
toggles the emulate mode flag. Uncomment the code:

//emulate mode = !emulate mode;

8. Finally, scroll down to the Emulate Mouse function and insert the code in

Example 2-7 between the curly brackets in the section marked:

//ADD EMULATE MOUSE CODE HERE

DS41356B-page 20

© 2009 Microchip Technology Inc.

EXAMPLE 2-7: USER DEFINED FUNCTIONAL CODE FOR
EMULATE_MOUSE()

if (emulate_mode == TRUE)
{

//go 14 times in the same direction before changing

if (movement length > 14)

{
buffer[0] = 0;
buffer[1l] = dir_ table[vector & 0x07];
//X-Vector
buffer[2] = dir table [(vector+2) & 0x07];
//Y-Vector
// go to the next direction in the table
vector++;
//reset the counter for when to change again
movement length = 0;

}//end if (movement length > 14)

}

else

{

//don't move the mouse
buffer[0] = buffer[l] = buffer([2]

0;
}

if (HIDTxHandleBusy (lastTransmission) == 0)

{

//copy over the data to the HID buffer

hid _report_in[0] = buffer([0];
hid report in[1l] = buffer[l];
hid report in[2] = buffer([2];

//Send the 3 byte packet over USB to the host.
lastTransmission = HIDTxPacket (HID_EP, (BYTE*)hid report in,
0x03) ;

//increment the counter to change the data sent
movement length++;

Note that the HID mouse transmits in 3-byte packets. The format of this packet is as
follows:

 This byte is typically used to identify mouse buttons. Since this application does
not require any mouse clicks, this byte is always zero.

» The second and third bytes represent horizontal (X) and Vertical (Y)
displacements.

Compile the project. There should be no errors.

Testing the Application

Note: The device created in the Device Manager from the previous lab will need
to be removed so that the new device, created in this lab, can enumerate
properly. In the Device Manager window, right-click on the device and
select Uninstall.

9. Ensure that the Low Pin Count USB Development Board is configured as in Lab 1.
10. Connect the PICkit 2 Programmer and open the PICkit 2 programming software.

11. Navigate to the .hex file located in the C: \LPCUSBDK_Labs\Lab2 files for
this lab and download to the PIC18F14K50.

© 2009 Microchip Technology Inc. DS41356B-page 21

Low Pin Count USB Development Kit User’s Guide

2.6

12. Disconnect the PICkit 2 and connect the Low Pin Count USB Demo Board to the
Host PC port.

13. The device should enumerate and the LEDs on the board flash in accordance
with the B1inkUSBStatus () discussed in the self-directed course.

14. Pressing the push button should start and subsequently stop the mouse pointer
moving in a circle on the Host PC screen.

The user is encouraged to experiment with this application by altering the length of time

that the mouse pointer moves until a directional change or altering the values in the

ROM signed char dir table[l={-4,-4,-4, 0, 4, 4, 4, 0};

PROJECT LAB 3 (HID KEYBOARD)

CAUTION

A word of caution, this HID device has the potential to be harmful if a key combination
is used that initiates a Windows® shortcut. Great care should be taken to ensure that
the transmitting buffer contains only keycodes that the user is confident will not
produce any harmful key combinations.

In this lab, the PIC18F14K50 is implemented as a HID keyboard device. The ADC
peripheral is configured to perform conversions on the voltage level present on the port
pin connected to the potentiometer on the Low Pin Count USB Development Board.
The value in the ADC result register is then used to create a numeric value between 4
and 29 that will display an alphabetic character between ‘a’ and ‘z’ on the Host PC
screen (refer to HID Usage Tables document Section 10 “Keyboard/Keypad Page”
(0x07)). As the potentiometer is rotated, the character outputted to the screen will
change accordingly. The user should note that this application could be applied to a
data logger application with the potentiometer on the Low Pin Count USB Development
Board simulating a mixed signal interface to monitor an off-chip application. The data
generated and transmitted via the USB could be connected and interpreted by a
Graphical User Interface on the Host PC to monitor real-time application behavior or
used to store essential data for later analysis.

2.6.1 Overview of the HID Keyboard Firmware

The keyboard () is the user-defined function that is called from ProcessIO () to
parse the data received from the ADC module, transmit the numeric value along the
USB and display the appropriate character on the screen. This function is implemented
as a state machine. The state diagram for this function is shown in Figure 2-5.

DS41356B-page 22

© 2009 Microchip Technology Inc.

FIGURE 2-5: STATE DIAGRAM FOR KEYBOARD()

delaycounter < 9000

delaycounter > 9000

Start ADC Conversion
(Set the GO_DONE bit

While GO_DONE =1
(ADC Conversion in Progress)

GO_DONE = 0 (Cleared in Hardware)

« Read ADC result register
« Load HID buffer
¢ Transmit HID buffer contents along USB

Referring to the state diagram, the individual states perform these general tasks:

1. STATE 0: this is a delay state used to ensure that the hold capacitor on the ADC
peripheral has sufficient time to charge before a conversion is initiated.

2. STATE 1: this state begins the conversion process by setting the GO_DONE bit
in the ADCONO control register.

3. STATE 2: checks for a completed conversion (GO_DONE = 0) before allowing
the state machine to move to the next state.

4. STATE 3: this final state reads the ADC result register, converts the result to a
value between 4 (‘a’) and 29 (‘z’), loads a HID buffer and transmits the resulting
data along the USB to the Host PC for output to an opened .txt document.

The main point the user should take away from this lab is this: since the USB Frame-
work is a multitasking environment, no blocking code should be used. Therefore, as
shown in this lab, state machines will become the norm in many applications. The
keyboard () state machine is called each time through the main loop. If the condition
that changes the current state to the next state is not met, the state machine simply
returns from the function without changing states. The next time through the main
loop, the condition is once again checked. If the state condition has been met, the
state is changed to the next sequential state. The state variable is declared as a type
static asthis will allow the current value in the state variable to remain after a return
from the keyboard ().

© 2009 Microchip Technology Inc. DS41356B-page 23

Low Pin Count USB Development Kit User’s Guide

2.6.2 Procedure

This application will require a few changes to the usb_descriptor.c file to configure the
PIC18F14K50 as a HID keyboard. Note: the changes made to the report descriptor
were done using the HID Descriptor Tool downloaded from http://www.usb.org/devel-
opers/hidpage/. The user is encouraged to spend some time reviewing the contents of
this page and the resources available for developing HID applications.

1. Create a new project “Project Lab 3” as was done in the previous labs. The
source files for Lab 3 can be found in:
C:\LPCUSBDK Labs\Lab3 files

2. Ensure that the Project Build Options are configured as was done in Lab 1 steps
11 through 15.

3. Openthe usb descriptor.c file and scroll down to the interface descriptor.
Uncomment the Protocol Code definition //HID PROTOCOL KEYBOARD,

4. Scroll down to the HID class specific descriptor and uncomment the size of the
HID report macro //DESC_CONFIG WORD (63),
The report descriptor has changed from the previous lab and will contain 63
components that the Host PC will need to identify this device’s keyboard
attributes.

5. Scroll down to the report descriptor and add the code in Example 2-8 in the
section labeled:

//ADD REPORT DESCRIPTOR HERE

DS41356B-page 24 © 2009 Microchip Technology Inc.

EXAMPLE 2-8: REPORT DESCRIPTOR FOR KEYBOARD()

0x05, 0x01, // USAGE_PAGE (Generic Desktop)

0x09, 0x06, // USAGE (Keyboard)

0Oxal, 0x01, // COLLECTION (Application)

0x05, 0x07, // USAGE_PAGE (Keyboard)

0x19, O0xeO, // USAGE_MINIMUM (Keyboard LeftControl)
0x29, O0xe7, // USAGE_MAXIMUM (Keyboard Right GUI)
0x15, 0x00, // LOGICAL MINIMUM (O0)

0x25, 0x01, // LOGICAL MAXIMUM (1)

0x75, 0x01, // REPORT SIZE (1)

0x95, 0x08, // REPORT_ COUNT (8)

0x81, 0x02, // INPUT (Data,Var, Abs)

0x95, 0x01, // REPORT COUNT (1)

0x75, 0x08, // REPORT _SIZE (8)

0x81, 0x03, // INPUT (Cnst,Var,Abs)

0x95, 0x05, // REPORT_ COUNT (5)

0x75, 0x01, // REPORT SIZE (1)

0x05, 0x08, // USAGE_PAGE (LEDs)

0x19, 0x01, // USAGE_MINIMUM (Num Lock)

0x29, 0x05, // USAGE_MAXIMUM (Kana)

0x91, 0x02, // OUTPUT (Data,Var, Abs)

0x95, 0x01, // REPORT COUNT (1)

0x75, 0x03, // REPORT SIZE (3)

0x91, 0x03, // OUTPUT (Cnst,Var,Abs)

0x95, 0x06, // REPORT COUNT (6)

0x75, 0x08, // REPORT _SIZE (8)

0x15, 0x00, // LOGICAL MINIMUM (0)

0x25, 0x65, // LOGICAL MAXIMUM (101)

0x05, 0x07, // USAGE_PAGE (Keyboard)

0x19, 0x00, // USAGE _MINIMUM (Reserved (no event indicated))
0x29, 0x65, // USAGE_MAXIMUM (Keyboard Application)
0x81, 0xO00, // INPUT (Data,Ary,Abs)

0xcO0

Next, the keyboard.c source file will be configured.

6.

In the Project window, open the keyboard.c source file and scroll down to the
UserInit () . Uncomment the port and ADC initialization code. The user is
urged to review the PIC18F14K50 data sheet as to the significance of these
initializations for the appropriate peripheral.

// ADCON0=0x29;

// ADCON1 = 0X00;

// ADCON2=0x3F;

Scroll down to the keyboard () and copy and paste the code in Example 2-9
between the curly braces in the switch at:

//ADD STATE MACHINE CODE HERE

© 2009 Microchip Technology Inc.

DS41356B-page 25

Low Pin Count USB Development Kit User’s Guide

EXAMPLE 2-9: KEYBOARD() STATE MACHINE CODE

//delay to allow the hold capacitor on the ADC to charge

case 0: if (++delaycounter>9000)
delaycounter = 0;
state = 1;
break;
case 1: ADCONObits.GO _DONE = 1; //Start an ADC conversion
state = 2;
break;
case 2: if (ADCONObits.GO _DONE == 0) //Check if conversion is
//completed
state = 3;
!
break;
case 3: HIDoutput = ADRESH>>3;//shift the result in ADRESH

//left by three

if (HIDoutput<=4) HIDoutput = 4;
if (HIDoutput>=29) HIDoutput = 29;

//Can the SIE transmit?
if ((HIDTxHandleBusy (lastTransmission) == 0))

//Load the HID buffer
0;
hid report in[1l] = 0;

hid report in[0]

hid report in[2] = HIDoutput;
hid report in[3] = 0;

hid report in[4] =
hid report in[5] =
hid report in[e] =
hid report in[7] =

//Send the 8 byte packet over USB to the host.
lastTransmission = HIDTxPacket (HID EP,
(BYTE*)hid report in, 0x08);

state = 0;

}

break;

DS41356B-page 26 © 2009 Microchip Technology Inc.

Note that the HID keyboard transmits in 8-byte packets along the USB. The format of
this packet is as follows:

« The first byte is used for a modifier such as a shift or ctrl character. (i.e., a
simultaneous shift and character press on the typical keyboard.)
» The second byte is reserved.

« The remaining bytes are used to carry numeric values that contain the desired
keyboard characters pressed.

Compile the project. There should be no errors.

Testing the Application

7. Connect the PICkit 2 Programmer and open the PICkit 2 programming software
8. Navigate to the .hex file for this lab and download to the PIC18F14K50.

9. Disconnectthe PICkit 2. Open a new notepad, word document or other text editor
program and click inside the document to place the cursor.

10. Connect the Low Pin Count USB Demo Board to the Host PC port. The device
should enumerate as “Keyboard Demao”.

11. Within the selected text editor, a series of character entries should appear.

12. Turn the potentiometer on the Low Pin Count USB Demo Board to change the
character on the screen.

The user is encouraged to experiment with this application by referring to the Keyboard
Usage Page and changing the keyboard packet transmitted in the state machine.

© 2009 Microchip Technology Inc. DS41356B-page 27

Low Pin Count USB Development Kit User’s Guide

2.7 PROJECT LAB 4 (CDC — SERIAL EMULATOR)

In this lab, the PIC18F14K50 is used as a serial emulator taking an RS-232 data trans-
mission using the Enhanced Universal Asynchronous Synchronous Receiver Transmit-
ter (EUSART) peripheral and converting it to the USB protocol within firmware. Many
embedded applications continue to use the RS-232 interface to communicate with
external systems. However, as USB becomes more prevalent, RS-232 ports are disap-
pearing from newer PC’s. A simple solution is to emulate RS-232 over the USB. In this
example, a virtual COM port is created that will allow the USB connection to appear as
an RS-232 COM connection. Furthermore, this example makes use of Windows drivers
that already exist eliminating the need to alter existing software such as the Hyper
Terminal application.

The RS-232 connector on the Low Pin Count USB Development Board is configured
so that the PIC18F14K50 can be used as a Data Terminal Equipment (DTE) device to
interface with Data Communications Equipment (DCE) devices such as alarm systems,
modems etc. To accommodate this lab and eliminate the need for the user to create
their own DCE interface circuitry, a Null-Modem Gender Changer has been provided in
the kit to crosslink the transmit and receive lines so that the Low Pin Count USB Devel-
opment Board can be converted from a DTE device to a DCE device. In this way, the
main concepts of serial emulation can be delivered using only two Hyperlink Terminals
on a single PC with one RS-232 serial COM port and one USB connection.

NOTICE

Kits shipped with the RS-232 pin corrector (p/n 04-02087R1) do not require the Null Modem
Gender Changer but will instead require a female/female gender changer that does not cross-
link the transmit and receive lines. The pin corrector is not used in this lab as the RS-232 con-
nector on this version of the Low Pin Count USB Development Board is configured as a DCE
device. Applications using the Low Pin Count USB Development Board as a DTE device will
require the use of the pin corrector.

Microchip’s Full-Speed USB Firmware Framework provides information files (.inf) for all
of its CDC application examples that automate Windows driver alterations freeing the
user from doing this manually. Once the PIC18F14K50 has been programmed and
then connected to the PC USB port, Windows “New Hardware Found Wizard” will
prompt the user for additional driver information. At this point, the user need only direct
Windows to the directory containing the appropriate .inf file.

Note: The only information that is required by the user in the .inf is the Vendor
Identification (VID) and Product Identification (PID) numbers specific to
their original design.

Microchip’s Full-Speed USB Firmware Framework provides all the source code
necessary to perform low-level RS-232 functions, thereby abstracting this from the
user.

DS41356B-page 28 © 2009 Microchip Technology Inc.

2.7.1 Overview of the CDC — Serial Emulator Firmware

The CDC Serial Emulator firmware flow is shown in Figure 2-6.

FIGURE 2-6: FLOWCHART FOR CDC SERIAL EMULATOR CODE

< ProcessIO())

RS232 OUT Buffer available YES
and
SB OUT Buffer NOT EMPTY

Copy USB OUT Bulffer
to RS232 OUT Buffer

h 4

RS232 OUT Buffer NOT EMPTY YES .| Copy next byte to
and EUSART
EUSART is EMPTY

NO
EUSART has YES .| Add byte to RS232
a byte IN Buffer

RS232 IN Buffer

has data and YES . | Copy USB IN Buffer to
USB IN Buffer available d USB Buffer

< CDCTxService() >

© 2009 Microchip Technology Inc. DS41356B-page 29

Low Pin Count USB Development Kit User’s Guide

Referring to the flowchart in Figure 2-6, the firmware located in the ProcessIO () first
checks if the previous RS-232 transmission has been sent via the USB using the
RS232 Out Data Rdy flag. If this flag is cleared (indicating previous transmission
has been sent), firmware then checks if any new data has been sent from the RS-232
connection and is ready to be transmitted via the USB using the get sUSBUSART () .
This function copies data into a buffer and returns the number of bytes the buffer con-
tains. The function ensures that only the expected numbers of bytes, in this case 64,
are actually copied into this buffer. Also, if there is no data available, the function
returns a zero value indicating no data is available. In this way the function does not
wait for data and is therefore, non-blocking, keeping in mind that all firmware must
conform to this multitasking environment.

Following the RS-232 data check, the firmware then checks if the EUSART transmit
register, TXREG, is empty. This is accomplished using the mTxRAyUSART () macro,
which checks the TRMT bit in the TXSTA (Transmit Status Control) register in the
EUSART peripheral. If the TRMT bit is cleared, the TXREG is Full, and Empty if the
TRMT bit is set. Note that this bit is automatically set following a successful transmis-
sion from the TXREG. If set, the data collected into the buffer by the get sUSBUSART ()
is then transferred into the TXREG one byte at a time each time through the main loop.
Again, such macros take care of the low-level RS-232 communication in a non-blocking
fashion so the user doesn’t have to. If the TXREG isn’t empty, then the previous data
has not been transmitted via the USB and should not be overwritten.

The firmware next checks to see if the CDC class device is ready to transmit data. This
is accomplished by using the mUSBUSARTIsTxrfReady () flag. The user must ensure
that this flag is set to ‘1’ before calling the putUSBUSART () function. As a safety pre-
caution, this function checks the state one more time to make sure it does not override
any pending transactions. This function writes data to the USB.

The CDCTxSevice () services the transfer of data to the host. This function keeps
track of a state machine and breaks up long strings of data into multiple USB data pack-
ets. It is called once each time through the main program loop. The state machine for
the CDCTxService () is shown in Figure 2-7 and the source code can be found in the
usb_function cdc.c source file. The reader is encouraged to reference this
firmware and compare it against the state diagram at their leisure.

DS41356B-page 30

© 2009 Microchip Technology Inc.

FIGURE 2-7: CDCTXSERVICE() STATE DIAGRAM

CDCTXBUS

cdc_tx |len==
CDC_BULK BD_IN|.Cnt <Max EP Size

lenl=0

(CDC_TX_READY)

mCDCUsartTx1lsBusy () ==0

CDC_BULK BD/IN.Cnt <Max EP Size

(CDC_TX_COMPLETING) (CDC_TX_BUSY_ZLP)

CDC_BULK BD_IN.Cnt==0

2.7.2 Procedure

This application requires significant changes to the usb_descriptor.c file to configure
the PIC18F14K50 as a CDC device. Note the absence of the report descriptor. The
user is encouraged to spend some time reviewing the usb_descriptor.c file and com-
pare it against the information found in the Universal Serial Bus Class Definitions for
Communications Devices document referenced at the beginning of this chapter. Note
that this lab applies the same firmware found in the CDC — Serial Emulator application
example in Microchip’s Full-Speed USB Firmware Framework application examples
and can be used as a reference for this lab.

1. Create a new project for lab 4, using the Project Wizard, called “Project Lab 4”
as was done in the previous labs. The only files added, at this point, will be the
usb_descriptor.c andmain.c source files, as well as a new unique descrip-
tor for Lab 4 rm18£14k50.1kr can be found in:

C:\LPCUSBDK Labs\Lab4 files

Step through to close the Project Wizard. This time, the project will be set up to
resemble the application examples in the Framework using sub-folders to distin-
guish and organize the different source files in the Project window. All remaining
source/header files will be added from the Project window.

2. Right click on the Source Files folder in the Project window and select Create
Subfolder...

© 2009 Microchip Technology Inc. DS41356B-page 31

Low Pin Count USB Development Kit User’s Guide

FIGURE 2-8: CREATING A SUB-FOLDER IN THE PROJECT WINDOW

=

=] Project Lab 4.mcp*
&8 :

----- D Library Files

&1 Linker Script
L[S 1eF1as0 e
L (22 cther Files

Name the new folder “USB Stack” and click OK.

3. Right click on this new USB Stack folder and select Add Files. In the Add Files
to Project window, navigate to C: \Microchip Solutions\Microchip\Usb
and select the usb_device. c source file. Ensure that “System: File(s) are
External to Project, Use Absolute Path” is selected then click Open.

FIGURE 2-9: ADDING THE USB_DEVICE.C FILE TO THE USB STACK
FOLDER
Add Files to Project 11 x|
Look in: | &5 USB 0T O
SV W HID Host Driver 4] ush_host.c
b) COC Device Driver .1 MSD Device Driver
1) Documentation . MSD Host Driver

) Generic Device Driver () Objects
jo,) Generic Host Driver) Printer Host Driver
Je I HID Device Driver %) usb_device.c

Flle name: Jusb_device.c Open |

Files of lype: Eﬁ.ﬂ Sowrce Files [".asm;".c)

Cancel

Jump to: | Project Diractory =]
I~ Remember this setting -
* Auto: Let MPLAB IDE guess

" User File[s) were created especially for this project, use relative path
(" Systern: File(z] are extemal to project, use absolute path

&

This should add the usb_device.c to the “USB Stack” folder in the Project window.

DS41356B-page 32 © 2009 Microchip Technology Inc.

Repeat this step to add the usb _function cdc.c file from the C:\Microchip
Solutions\Microchip\USB\CDC Device Driver directory to the same “USB
Stack” folder.

4. In the Project window create two new sub-folders under the Header Files folder
called “Common” and “USB Stack” as per step 2 of this lab.

5. Right click on the “USB Stack” folder and add the following files from the
C:\Microchip Solutions\Microchip\Include\Usb directory as was
done in step 3 of this lab:

e usb.h

e usb ch9.h

e usb common.h

e usb device.h

e usb function cdc.h
e wusb hal.h

e usb hal picl8.h

6. Right click on the “Common” folder and add the following files from the
C:\Microchip Solutions\Microchip\Include directory aswas donein
step 3 of this lab:

e Compiler.h
e GenericTypeDefs.h

7. Ensure that the Project Build Options are configured as was done in Lab 1 steps
11 through 15.

8. Compile the project. There should be no errors.
The Project window should now resemble Figure 2-10.

© 2009 Microchip Technology Inc. DS41356B-page 33

Low Pin Count USB Development Kit User’s Guide

FIGURE 2-10:

PROJECT WINDOW FOR LAB 4

=

= 1 Project Lab 4.mcp*
=l 2] Source Fies
[E] main.c
£)- 0 uss Stack
[E] ush_device.c

j ush_function_cdc.c

:] ush_descriptors.c
-] Header Files
&) HarchwaraProfie b
-1 uss Stack
] wsb.h
2] ush_cha.h
H ush_common.h
2] ush_device.h

[wsb_function_cdc.h

(] usb_hal.h
(2] wsh_hal_psc18.h
= (2] Comman

&) compiter.h

(2] GenericTypebefs.h

(] ush_config.h
[0 Object Files
[Libwary Fles
=) Linker Script
[16F 14K50. by
(] Other Files

3 s || %2 Symbols |

9. Next, the EUSART peripheral will need to be initialized to enable asynchronous
communication with a baud rate of 19200. To do this, open the main.c file and
scroll down to the InitializeUSART () . This function is called by the
UserInit (). Note thatin this function, code has been formatted to allow
configuration dependant on the specific device and compiler used. Copy and
paste the contents of Example 2-10 into the section of the Initialize-
USART () function labeled:

//ADD C18 PIC18F14K50 EUSART INITIALIZATION CODE HERE

DS41356B-page 34

© 2009 Microchip Technology Inc.

EXAMPLE 2-10: INITIALIZEUSART() CODE

#if defined(_ 18CXX)
unsigned char c;
#if defined(__18F14K50)
ANSELHbits.ANS11 = 0; // Make RB5 digital so USART can
//use pin for Rx

#endif
UART_TRISRx=1; // RX
UART_TRISTx=0; // TX
TXSTA = 0x24; // TX enable BRGH=1
RCSTA = 0x90; // Single Character RX
SPBRG = 0x70;
SPBRGH = 0x02; // 0x0271 for 48MHz -> 19200 baud
BAUDCON = 0x08; // BRG16 = 1
c = RCREG; // read
#endif

The reader is encouraged to review the data sheet for the PIC18F14K50 EUSART
section for more information on the specifics of the configuration code.

Next, the application specific code will be added that will implement the flowchart
shown in Figure 2-6.

10. Scroll down to the ProcessIO ()and copy and paste the contents of
Example 2-11 into the section labeled:

ADD CODE TO CHECK IF RS232 HAS
BEEN SENT ALONG USB

AND THE CODE TO CHECK IF

ANY NEW RS232 TRANSMISSION
HAS BEEN RECEIVED AND STORED

*hkkhkkkkkkkkkkhhkkhhhkkkhkkkk /

As per the flowchart in Figure 2-6, this code will ensure that the buffer containing the
data transmitted from the RS-232 has been sent to the USB firmware. If so, the code
then checks for any new RS-232 data that has been stored in the buffer.

© 2009 Microchip Technology Inc. DS41356B-page 35

Low Pin Count USB Development Kit User’s Guide

EXAMPLE 2-11: RS-232 BUFFER CHECK

// only check for new USB buffer if the old RS232 buffer is
// empty.

// Additional USB packets will be NAK'd

// until the buffer is free.

if (RS232 Out Data Rdy == 0)
LastRS2320ut = getsUSBUSART (RS232_Out Data, 64) ;
if (LastRS2320ut > 0)

{
RS232 Out Data Rdy = 1; // signal
//buffer full
RS232cp = 0;// Reset the current position

11. Next, the code that will check and then load the EUSART Transmit shift register
(TXREG) with the contents of the RS-232 buffer will be entered. Copy and paste
the contents of Example 2-12 into the section labeled:
/***

ADD THE CODE THAT WILL CHECK
IF THE EUSART TXREG IS EMPTY.
IF SO, BEGIN SENDING DATA
FROM RS232 TRANSMISSION INTO

THE TXREG ONE BYTE AT A TIME

***/

EXAMPLE 2-12: TXREG CHECK AND LOAD CODE

if (RS232_Out Data Rdy && mTxRAyUSART())
{
PutcUSART (RS232 Out Data [RS232cpl) ;
++RS232cp;
if (RS232cp == LastRS2320ut)
RS232 Out Data Rdy = 0;

12. Finally, the code to check if the CDC class device is ready to send data into the
USB transmit buffer will be entered. Copy and paste the contents of code in
Example 2-13 into the section labeled:

JFFFFAddckkkdddekkk ko dok

ADD THE CODE THAT WILL CHECK
IF THE CDC CLASS DEVICE IS
READY TO LOAD THE USB BUFFER

***/

DS41356B-page 36 © 2009 Microchip Technology Inc.

EXAMPLE 2-13: CHECK CDC CLASS DEVICE CODE

if ((MUSBUSARTIsTxTrfReady()) && (NextUSBOut > 0))
PutUSBUSART (&USB_Out Buffer[0], NextUSBOut) ;
NextUSBOut = 0;

13. At this point, all the necessary code to run the CDC — Serial Emulator application
is complete. Compile the project. There should be no errors.

Installing Application Drivers

14. Connect the PICkit 2 Programmer and open the PICkit 2 programming software.
15. Navigate to the .hex file for this lab and download to the PIC18F14K50.
16. Disconnect the PICKkit 2.

17. Connect the Low Pin Count USB Demo Board to the Host PC port. Windows
should recognize the PIC18F14K50 as “CDC RS-232 Emulation Demo”.

Windows will now prompt the user for driver information.

18. In the “Welcome to the Found New Hardware Wizard” window, select “No, not
this time” and then Next (see Figure 2-11).

FIGURE 2-11: FOUND NEW HARDWARE WIZARD WINDOW

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard
Windows vl tearch lor curend and updated solbware by

kocking on pour compader, on the hatdware metallabon CD, o on
the Wirdows Update 'web e [with wour penmes sion)

Resd oun pivacy po

Can 'Windows connect to Windows Update to search for
soliweara

" ‘e, thiz fime only
€ ‘s, now and eveny time | connect a device
= Mo, not this hre

Chck Mext o contrme

| Next » | Cancel

© 2009 Microchip Technology Inc. DS41356B-page 37

Low Pin Count USB Development Kit User’s Guide

19. The wizard will then prompt the user for a location from which to load the
software for the communication port. Select "Install from a list or specific location
(Advanced)” and click Next (see Figure 2-12).

FIGURE 2-12: SELECTING SOFTWARE LOCATION FOR
COMMUNICATIONS PORT

Thiz wizard helps pou nztall software for

Commmuracabong Post

, _} It pour hardware came with an nztallation CD
e o loppy dizk, inzert it now.

What do pou wanl the wazard to da?

" Iratal the voffware sulomaticaly |Recommendad)

% Install fiom a kst o specific locabon [Advanced)

Chek Hest to contrus

¢ Back Nt > Cancel

The wizard now prompts the user for the location of the .inf file that Windows will use
to automatically configure the binary driver files (.sys files) to create the virtual COM
port connection for the USB. Ensure that both “Search for the best driver in these loca-
tions” and “Include this location in the search” are both selected. Select Browse and
navigate to the lab 4 source files in the

C:\LPCUSBDK Labs\Lab4 files\inf\win2k winxp directory (see

Figure 2-13).

Highlight the win2k winxp file and click OK.

DS41356B-page 38 © 2009 Microchip Technology Inc.

FIGURE 2-13: DIRECTING WINDOWS TO THE .INF FILE FOR THE CDC —
SERIAL EMULATOR APPLICATION

Found Mew Hardware Wizard

Pleaze chooze yowr search and inztallation options. .5

' Search lot the best deiver in these locations.

Liz= the check bokes below to kmat of expand the defaull teacch, which includes bocal
pathiz and removable media. The best diver found will be inztaled

[Search remavable media [foppy. CO-A0M...)
¥ Inchude thiz location in the search:

|C-ALPCUSBDK_Labs\Labd_fleshinfiwinZk_wirop = |

" Don't search | wil choose the driver to install

Choage this option to select the device dver from a kst Windows does not guaraniee that
the dirver you choose wall be the best match for your hardwaie

< Back Mext » Cancet

Click Next.

The window should now begin loading the software. If any warnings are issued, select
Continue Anyway.

20. The wizard should indicate that the software for the Communications port was
successfully installed. Select Finish. (See Figure 2-14.)

FIGURE 2-14: SUCCESSFUL SOFTWARE INSTALLATION WINDOW

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

The wizard has frushed instaling the soltware for

j Communications Pot

Chck Firezh to close the wizard

I Firnzh I

© 2009 Microchip Technology Inc. DS41356B-page 39

Low Pin Count USB Development Kit User’s Guide

Next, the virtual COM port will be checked in the Device Manager to identify the COM
port number.

Establish Communication

21. Using step 29 in Project Lab 1 to navigate to the Device Manager, expand the
ports (COM and LPT). The new virtual COM port (usually COM 5 and above on
most PCs) created by the .inf file should be found in the Ports (COM & LPT)
drop-down list in the Device Manager window. If there is difficulty locating the vir-
tual COM port, right click on each driver and select Properties until the CDC
RS-232 Emulation Demo is located. Note the COM port number for both the vir-
tual COM port and the COM port used for an RS-232 connection (Serial Port
Connection on the Host PC). Figure 2-15 shows a list of COM ports available.
The reader’s list may differ.

FIGURE 2-15: EXAMPLE LIST OF AVAILABLE COM PORTS IN THE DEVICE
MANAGER
il

File Action View Help

«o BFS 2 A=

| v

Floppy disk controllers
Human Interface Devices
IDE ATA/ATAPI contralliers
Infrared devices

+ Network adapters

B PCMCIA adapters

B Ports (COM & LPT)

r;yi Communications Pork {COMZ)
"8 - ormunications Port (COM7)

: 5 Printer Port (LPTL)

[-5%8 Processors

-8, Sound, video and name controllers LI

This COM port number will be used in the Hyper Terminal program to establish connec-
tivity to both the USB and RS-232 connections between the Low Pin Count USB
Development Board and Host PC.

22. Open a Hyper Terminal window by selecting within Windows,
Start>Programs>Accessories>Communications>HyperTerminal.

The Hyper Terminal Program should now prompt the user for a “Connection
Description”.

23. Name this first connection “USB Connection” and click OK. (See Figure 2-16.)

DS41356B-page 40 © 2009 Microchip Technology Inc.

FIGURE 2-16: HYPER TERMINAL CONNECTION DESCRIPTION

Connection Description _?ill

% New Conrection

Enter a name and choose an icon for the connechion:

M arme:
IL.I 5B Connection|

lcon:

ok | Concel |

24. In the “Connect To" window, select the virtual COM port that was noted in step
21 in the “Connect Using” drop-down menu and select OK. In Figure 2-17, the
virtual COM port is on COM7. Note that this may differ on the user’s PC.

FIGURE 2-17: HYPER TERMINAL CONNECT TO WINDOW

2]

% USE Connection

Enter details for the phone number that you want to dial

Country/region: |United States (1) ~|
Area code:]M—

Phone number. |

Connect using: |COM7 ~]

oK | Cancel |

25. In the COM Properties window, configure the connection as shown in
Figure 2-18 with a baud rate of 19200 and click Apply then OK.

© 2009 Microchip Technology Inc. DS41356B-page 41

Low Pin Count USB Development Kit User’s Guide

FIGURE 2-18: HYPER TERMINAL COM PROPERTIES WINDOW
21X
Port Seltings |
Bits per second: | 19200 =]
Databits: |8 d |
Parity: |None |
Stop bits: |1 |
Flow contrat: |None =]
Restore Defauts |
DK Cancel | Apphy |

This now establishes a connection between the Low Pin Count USB Development
Board USB connector and the Host PC COM port.

26. Next, connect the RS-232 serial cable to the connector on the Low Pin Count
USB Development Board and to a serial port connector on the Host PC using a
“Gender Changer” adapter.

27. Repeat steps 22 to 25 to establish an RS-232 connection using the related port
noted in step 21 for the Serial Port Connector on the Host PC. Name this con-
nection “RS232 Connection” and ensure that the COM properties resemble
Figure 2-18.

Testing the Application

28. Once connected, click inside the RS232 Connection COM window and type a
message. Note that unless configured to echo locally, the originating message
COM window will not print the message. The message should be printed in the
“USB Connection” COM window as shown in Figure 2-19.

DS41356B-page 42 © 2009 Microchip Technology Inc.

FIGURE 2-19: CONFIRMING RS-232 TO USB COMMUNICATION

=lof|
& N523F Connection - WyperTerminal _-Jﬂlﬁf
Hella Horld! B i M CR T <P
D] =53] oo @
[y
MCancected 0.0 145 o detect 19
s
. : o
et e 0 D20 R0 et ek fraba detect I A P A

This will confirm communication from the Host PC via an RS-232 connection into the
PIC18F14K50, which in turn transmits data received back to the Host PC. In other
words, an RS-232 to USB conversion.

© 2009 Microchip Technology Inc. DS41356B-page 43

Low Pin Count USB Development Kit User’s Guide

NOTES:

DS41356B-page 44 © 2009 Microchip Technology Inc.

LOW PIN COUNT USB
DEVELOPMENT KIT
MICROCHIP USER'’S GUIDE

Appendix A. Schematics

A.1 INTRODUCTION

This appendix contains the Low Pin Count USB Development Kit hardware diagrams.

FIGURE A-1: LOW PIN COUNT USB DEVELOPMENT BOARD BILL OF
MATERALS

QTY DESCRIPTION

IC, PIC18F14K50, 20P DIP

IC SMT, MAX3232CPWR ,DRVR/RCVR MLTCH RS232 16TSSO (U3)
CAP SMT, 0.1uF 0603 CER 16V 10% X7R (C6 - C10)

CAP SMT, 0.1uF 0805 CER 50V 10% X7R (C1, C3)

CAP SMT, 0.47uF 0805 CER 16V 10% X7R (C2)

CAP SMT, 22pF 0805 CER 100V 5% CO0G (C4, C5)

RES SMT, 330-OHM 1/16W 1% 0603 (R8 - R11)

RES SMT, 1.0K-OHM 1/10W 1% 0805 (R1, R3)

RES SMT, 10K-OHM 1/10W 1% 0805 (R2)

RES SMT, 150K-OHM 1/10W 1% 0805 (R12)

RES SMT, 470-OHM 1/10W 1% 0805 (R4 - R7)

RES POT, 10K-OHM 1/2W THUMBWH CERM ST (POT 1)

LED, 565NM GREEN CLEAR 0805 T/R (D1 - D4)

OSC SMT, 12.000MHz CRYSTAL 18PF FUND SMD (HC49) (Y1)
SWITCH SMT, PUSH BUTTON SPST MOM 6MM 160GF/230GF (S1)
CONN SMT, RECPT, USB MINI-B 5POS RA (J1)

CONN, D-SUB, 9P PLUG RT ANGLE W/ JACK SCREWS (J15)
CONN, RECPT, 1x14 PIN 0.100" STR (J11)

CONN, HDR, 1x6 BREAKAWAY, 0.100" PITCH, 0.025 SQ, RA,
(0.230/0.090) (J6, J13)

1 CONN, HDR, 1x2, 0.100" PITCH, 0.025 SQ POST, TIN (0.135"/0.380"),
POL (J9)

1 CONN, HDR, 1x3 BREAKAWAY, 0.100" PITCH, 0.025 SQ POST, GD
(0.100"/0.230") (J14)

SOCKET, 20P DIP 0.300W COLLET OPEN FRAME (@XU1)
-SPARE- LOCATION (U2, J2 - J5, J7, J8)

N P P PR RPAMRNMNERNDNDANDNENDCRR

© 2009 Microchip Technology Inc. DS41356B-page 45

Low Pin Count USB Development Kit User’s Guide

SCHEMATICS

A.2

PICkit™ 2 USB DEVELOPMENT SCHEMATIC

FIGURE A-2:

N |2 o

(30)°]

00y
A10dSII-q
dvadsol/+d|
£y

¥od

© o |~ [|0

pajeindod

JoN Jadwnp
3AIs ¥3a10s 7

NO 30vd1 80d
- —

SOy
vy
Svd

B
)

N S (S S

ol g 9
M10dSOl OB —p
1vddsol iv (vadsoi+q)
aNOY T T
aan 7 1M
ddA T v
or
Fg——<RIOaSEET> LdSOI
g — dMJOETEXVIN n_s_‘.o%\ ww__\,_.m_ww_h_
v 5r{aND A f
i ELoni0s/108/988> O0gEE o 51LNozY NIz
L EE}SOE NILY
X1/s0/.88 A+ [ELanasvasvag> 00eE 6d NIZL 1Nnocl 2 7 B
! voge,, 84 O g B g
eir EIJZ? 1Nn0oLL
[eUBS W IBIOId anvorl e 28 &u %
% e+ b 4 np = 7
an1g fgor 112 £, |+

=

0000000060000 |ur

0O\ F§T)
en M®|07 4nL°0

PIX1HaH

X¥/0as/say
cl

[SLanas/vasrvay
€l

SLyNas/savivas|

o " peeindog
o= 7 JoN Jodwnp 7
| wg 3aIs ¥3a108
MOD| ™ i NO 30OV¥L 80d i
MOL €d [~ =l
110d 3% T IRY 7
ar
w| MO

3

5
_ A0
— 48}

1_\|I|ﬂ|.#

J

2001S€9-MS

|
L
[0dsoray—
A+ M12dS21-a 8l

[LvVadsorg—

108/X08/98d
1a/Xd/LINV/Sad
Vvas/Ias/0LNV/yad

MO/X1/.8Y
00S01}1/0As/6NV/L0d
10SOLL/IMOEL L/ISS/8NV/90Y

CLNI/A38AD/-ENIZLO/ALd/ONY/COY WDd/-ENIZLO/OLd/LNV/EDY

-438A/LLNI/-LNIZLO/SNV/LOY
+338A/0LNI/+NIZLO/PNV/00d
ESIN

09d/-a/ivd

aod/+a/nvy

SSA

0Ys/LN0Co/gld/yod
IMO0L/V1d/LddO/SOd
dINEITON/EVY
OM10/20SO/ENV/YVY
IMO/1080/5vd

aap

(Xuso/zey]

‘o
5]
4

f

L wIN0Id

O

| © | o @

™ <t

g
B adez
=
N

LA

=<l

~

SS/I-05MX148101d

Z¢N_ dN-0SXXL48L01d LN

o

cir

T i
[0 A0 uaHde

© 2009 Microchip Technology Inc.

DS41356B-page 46

FIGURE A-3:

PICkit™ 2 DEBUG HEADER

0.1 UF :[VDD ut
ﬂ1 Voo Vss |28 =
RA5/0SC1/CLKI PGD/D+RAO|-2~
RA4/AN3/0SC2/CLKO PGC/D-/RA1
ICDDATA vusB|-22 <wuss]
5 licoeLk NC |24
R >—0 | RA3/MCLR/Vep VRer+INTO/C12IN+/AN4/RCO |22 (a5
[Ree>—L| RC5/ICCP1/P1AITOCKI Vier-/INT1/C12IN1-/ANS/RC |22 (e
RC4/P1B/C120UT/SRQ ne 2L
iNC INT2/CVRer/C12IN2-/P1D/AN6/RC2 20 RC2
10 Ine NCH19
re>—1 | RC3/AN7/P1C/C12IN3-/PGM (CDMCLRN\Vepl18
[me>—12 | RC6/ANS/SS/T13CKI SDA/SDI/AN10/RB4 < ez
RC7/AN9/SDO/T10SCO14 DT/RX/AN11/RB5 |8 Res]
R4 | RB7/TX/CK SCL/SCK/RB6 |2« R8s
PIC18F1XK50-ICD_S028
u2
Vob
—l_—1VDD VSSLJ__
RA5/0OSC1/CLKI RAO/D+/PGD 2
RA4/AN3/0SC2/CLKO RA1/D-IPGC
RA3/MCLR/Vep vuss-Z
[Re>—2 | RC5/CPP1/P1AITOCKI RCO/AN4/C12IN+INTONVRer+|-18 (Fes
RC4/P1B/C120UT/SRQ RC1/AN5/C12IN1-/INT1/VReF- i@
R6®>— | RC3/AN7/P1C/C12IN3-PGM RC2/ANG/P1D/C12IN2-/CVRer/INT2 -4 < ez
Ree>—C | RC6/ANS/SS/T13CKIT10SCI RB4/AN10/SDI/SDA 13 < 7ea
ReT>—2 | RC7/AN9/SDO/T10SCO RB5/AN11/RX/DT 12 <55]
re>—10 | RB7/TX/CK RB6/SCK/SCL|— T

PIC18F1XK50-1/P

J1

-
<
3
3

ICDMCLR/Vpe.

DI

<

!

S
<
S
]

GND

S

ICSPDAT

[

ICSPCLK

|o

T1G

© 2009 Microchip Technology Inc.

DS41356B-page 47

Low Pin Count USB Development Kit User’s Guide

NOTES:

DS41356B-page 48 © 2009 Microchip Technology Inc.

Low Pin Count USB Development Kit User’s Guide

NOTES:

© 2009 Microchip Technology Inc. DS41356B-page 49

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:

http://support.microchip.com

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

01/16/09

DS41356B-page 50 © 2009 Microchip Technology Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:
DV164139

http://www.mouser.com/microchip
http://www.mouser.com/access/?pn=DV164139

	Introduction
	Document Layout
	Conventions Used in this Guide
	Recommended Reading
	The Microchip Web Site
	Customer Support
	Document Revision History
	Chapter 1. Overview
	1.1 Introduction
	1.2 Highlights
	1.3 Low Pin Count USB Development Kit Contents
	Figure 1-1: Low Pin Count USB Development Kit

	1.4 Low Pin Count USB Development Board Construction and Layout
	Figure 1-2: Low Pin Count USB Development Board

	1.5 PIC18F14K50 ICD Debug Header
	Figure 1-3: PIC18F14K50 Populated MPLAB ICD 2 Debug Header

	1.6 “Getting Started with Microchip’s Low Pin Count USB Solutions” Self-Directed Course
	2.1 Introduction
	2.2 Prerequisites
	2.3 Resources Required to Complete Project Labs
	2.4 Project Lab 1 (Enumeration)
	2.4.1 Purpose
	2.4.2 Procedure
	2.4.2.1 BUILDING THE FRAMEWORK
	Figure 2-1:
	Figure 2-2: Project Window for Lab 1
	Figure 2-3: Configuring for Microchip USB Firmware Framework
	Testing The Application

	2.5 Project Lab 2 (HID Mouse)
	2.5.1 Purpose
	2.5.2 Overview of the HID Mouse Firmware
	Figure 2-4: Flowchart for the emulate_mouse()

	2.5.3 Procedure
	Testing the Application

	2.6 Project Lab 3 (HID Keyboard)
	2.6.1 Overview of the HID Keyboard Firmware
	Figure 2-5: State Diagram for Keyboard()

	2.6.2 Procedure
	Testing the Application

	2.7 Project Lab 4 (CDC – Serial Emulator)
	2.7.1 Overview of the CDC – Serial Emulator Firmware
	Figure 2-6: FlowChart for CDC Serial Emulator Code
	Figure 2-7: CDCTxService() State Diagram

	2.7.2 Procedure
	Figure 2-8: Creating a Sub-Folder in the Project Window
	Figure 2-9: Adding the usb_device.c File to the USB Stack Folder
	Figure 2-10: Project Window for Lab 4
	Installing Application Drivers
	Figure 2-11: Found New Hardware Wizard Window
	Figure 2-12: Selecting Software Location for Communications Port
	Figure 2-13: Directing Windows to the .inf File for the CDC – Serial Emulator Application
	Figure 2-14: Successful Software Installation Window
	Establish Communication
	Figure 2-15: Example List of Available COM Ports in the Device Manager
	Figure 2-16: Hyper Terminal Connection Description
	Figure 2-17: Hyper Terminal Connect to Window
	Figure 2-18: Hyper Terminal COM Properties Window
	Testing the Application
	Figure 2-19: Confirming RS-232 to USB Communication

	Chapter 2. Getting Started Project Labs
	A.1 Introduction
	Figure A-1: Low Pin Count USB Development Board Bill of Materals

	A.2 Schematics
	Figure A-2: Pickit™ 2 USB Development Schematic
	Figure A-3: Pickit™ 2 Debug header

	Worldwide Sales and Service

