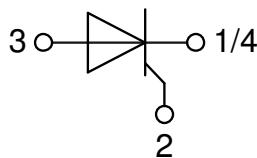

Thyristor

V_{RRM} = 1600 V
 I_{TAV} = 57 A
 V_T = 1,2 V

Single Thyristor


Part number

MCO50-16io1

Backside: isolated

E72873

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

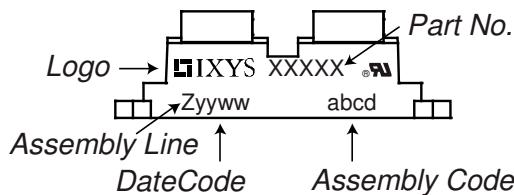
Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper internally DCB isolated
- Advanced power cycling

Terms / Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

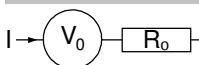

- to perform joint risk and quality assessments;
- the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

Thyristor			Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
$V_{RSM/DSM}$	max. non-repetitive reverse/forward blocking voltage	$T_{VJ} = 25^\circ C$			1700	V
$V_{RRM/DRM}$	max. repetitive reverse/forward blocking voltage	$T_{VJ} = 25^\circ C$			1600	V
$I_{R/D}$	reverse current, drain current	$V_{R/D} = 1600 \text{ V}$ $V_{R/D} = 1600 \text{ V}$	$T_{VJ} = 25^\circ C$ $T_{VJ} = 125^\circ C$		50 3	μA mA
V_T	forward voltage drop	$I_T = 50 \text{ A}$ $I_T = 100 \text{ A}$ $I_T = 50 \text{ A}$ $I_T = 100 \text{ A}$	$T_{VJ} = 25^\circ C$ $T_{VJ} = 125^\circ C$		1,27 1,53 1,20 1,50	V V V V
I_{TAV}	average forward current	$T_C = 80^\circ C$	$T_{VJ} = 150^\circ C$		57	A
$I_{T(RMS)}$	RMS forward current	180° sine			90	A
V_{T0}	threshold voltage	$\left. \begin{array}{l} \text{slope resistance} \\ \} \end{array} \right\} \text{ for power loss calculation only}$	$T_{VJ} = 150^\circ C$		0,88	V
r_T	slope resistance				6	$\text{m}\Omega$
R_{thJC}	thermal resistance junction to case				0,72	K/W
R_{thCH}	thermal resistance case to heatsink			0,20		K/W
P_{tot}	total power dissipation		$T_C = 25^\circ C$		170	W
I_{TSM}	max. forward surge current	$t = 10 \text{ ms}; (50 \text{ Hz}), \text{sine}$ $t = 8,3 \text{ ms}; (60 \text{ Hz}), \text{sine}$ $t = 10 \text{ ms}; (50 \text{ Hz}), \text{sine}$ $t = 8,3 \text{ ms}; (60 \text{ Hz}), \text{sine}$	$T_{VJ} = 45^\circ C$ $V_R = 0 \text{ V}$ $T_{VJ} = 150^\circ C$ $V_R = 0 \text{ V}$		740 800 630 680	A A A A
I^2t	value for fusing	$t = 10 \text{ ms}; (50 \text{ Hz}), \text{sine}$ $t = 8,3 \text{ ms}; (60 \text{ Hz}), \text{sine}$ $t = 10 \text{ ms}; (50 \text{ Hz}), \text{sine}$ $t = 8,3 \text{ ms}; (60 \text{ Hz}), \text{sine}$	$T_{VJ} = 45^\circ C$ $V_R = 0 \text{ V}$ $T_{VJ} = 150^\circ C$ $V_R = 0 \text{ V}$		2,74 2,66 1,99 1,93	kA^2s kA^2s kA^2s kA^2s
C_J	junction capacitance	$V_R = 400 \text{ V}$ $f = 1 \text{ MHz}$	$T_{VJ} = 25^\circ C$	32		pF
P_{GM}	max. gate power dissipation	$t_p = 30 \mu\text{s}$ $t_p = 300 \mu\text{s}$	$T_C = 150^\circ C$		10 1 0,5	W W W
P_{GAV}	average gate power dissipation					
$(di/dt)_{cr}$	critical rate of rise of current	$T_{VJ} = 150^\circ C; f = 50 \text{ Hz}$ repetitive, $I_T = 150 \text{ A}$ $t_p = 200 \mu\text{s}; di_G/dt = 0,3 \text{ A}/\mu\text{s};$ $I_G = 0,3 \text{ A}; V = \frac{2}{3} V_{DRM}$ non-repet., $I_T = 50 \text{ A}$			100	$\text{A}/\mu\text{s}$
$(dv/dt)_{cr}$	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$ $R_{GK} = \infty$; method 1 (linear voltage rise)	$T_{VJ} = 150^\circ C$		1000	$\text{V}/\mu\text{s}$
V_{GT}	gate trigger voltage	$V_D = 6 \text{ V}$	$T_{VJ} = 25^\circ C$ $T_{VJ} = -40^\circ C$		1,4 1,6	V V
I_{GT}	gate trigger current	$V_D = 6 \text{ V}$	$T_{VJ} = 25^\circ C$ $T_{VJ} = -40^\circ C$		80 200	mA mA
V_{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = 150^\circ C$		0,2	V
I_{GD}	gate non-trigger current				5	mA
I_L	latching current	$t_p = 10 \mu\text{s}$ $I_G = 0,3 \text{ A}; di_G/dt = 0,3 \text{ A}/\mu\text{s}$	$T_{VJ} = 25^\circ C$		450	mA
I_H	holding current	$V_D = 6 \text{ V}$ $R_{GK} = \infty$	$T_{VJ} = 25^\circ C$		100	mA
t_{gd}	gate controlled delay time	$V_D = \frac{1}{2} V_{DRM}$ $I_G = 0,3 \text{ A}; di_G/dt = 0,3 \text{ A}/\mu\text{s}$	$T_{VJ} = 25^\circ C$		2	μs
t_q	turn-off time	$V_R = 100 \text{ V}; I_T = 50 \text{ A}; V = \frac{2}{3} V_{DRM}$ $T_{VJ} = 125^\circ C$ $di/dt = 10 \text{ A}/\mu\text{s}$ $dv/dt = 15 \text{ V}/\mu\text{s}$ $t_p = 200 \mu\text{s}$		150		μs

Package SOT-227B (minibloc)			Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I_{RMS}	<i>RMS current</i>	per terminal ¹⁾			150	A
T_{VJ}	<i>virtual junction temperature</i>		-40		150	°C
T_{op}	<i>operation temperature</i>		-40		125	°C
T_{stg}	<i>storage temperature</i>		-40		150	°C
Weight				30		g
M_D	<i>mounting torque</i>		1,1		1,5	Nm
M_T	<i>terminal torque</i>		1,1		1,5	Nm
$d_{Spp/App}$	<i>creepage distance on surface / striking distance through air</i>		<i>terminal to terminal</i>	10,5	3,2	mm
$d_{Spb/Apb}$			<i>terminal to backside</i>	8,6	6,8	mm
V_{ISOL}	<i>isolation voltage</i>	$t = 1$ second $t = 1$ minute	50/60 Hz, RMS; $I_{ISOL} \leq 1$ mA		3000 2500	V V

¹⁾ I_{RMS} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.

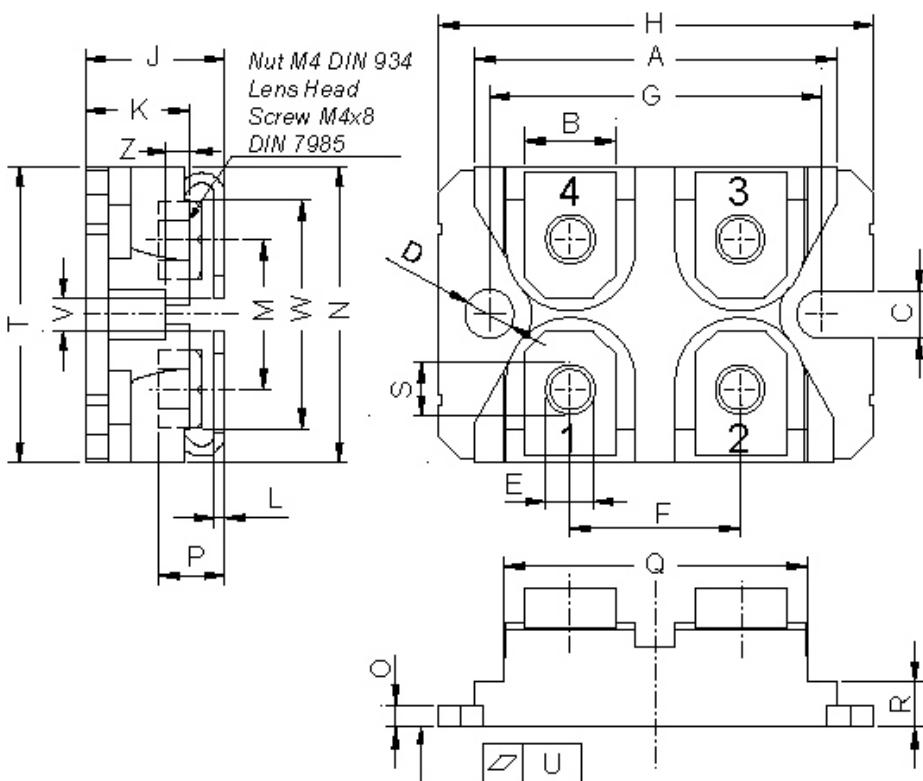
Product Marking

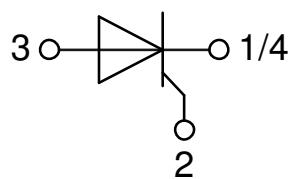


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCO50-16io1	MCO50-16io1	Tube	10	500598

Equivalent Circuits for Simulation

* on die level


$T_{VJ} = 150$ °C


Thyristor

$V_{0\max}$ threshold voltage 0,88 V
 $R_{0\max}$ slope resistance * 4,1 mΩ

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches	
	min	max	min	max
A	31.50	31.88	1.240	1.255
B	7.80	8.20	0.307	0.323
C	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
E	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
H	37.80	38.23	1.488	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.74	0.84	0.029	0.033
M	12.50	13.10	0.492	0.516
N	25.15	25.42	0.990	1.001
O	1.95	2.13	0.077	0.084
P	4.95	6.20	0.195	0.244
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.167
S	4.55	4.85	0.179	0.191
T	24.59	25.25	0.968	0.994
U	-0.05	0.10	-0.002	0.004
V	3.20	5.50	0.126	0.217
W	19.81	21.08	0.780	0.830
Z	2.50	2.70	0.098	0.106

Thyristor

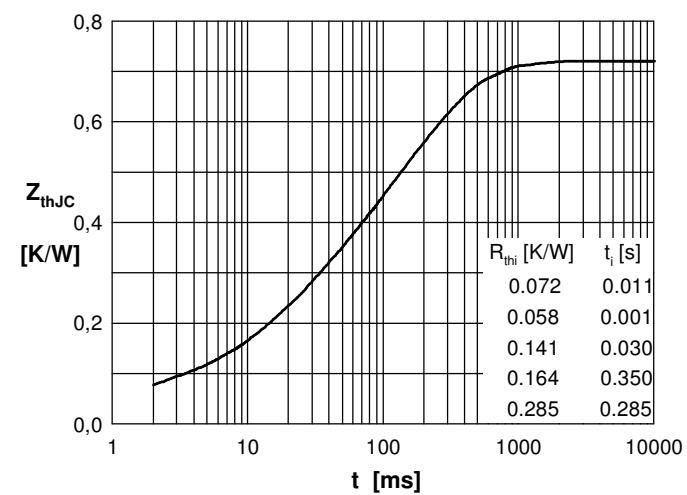
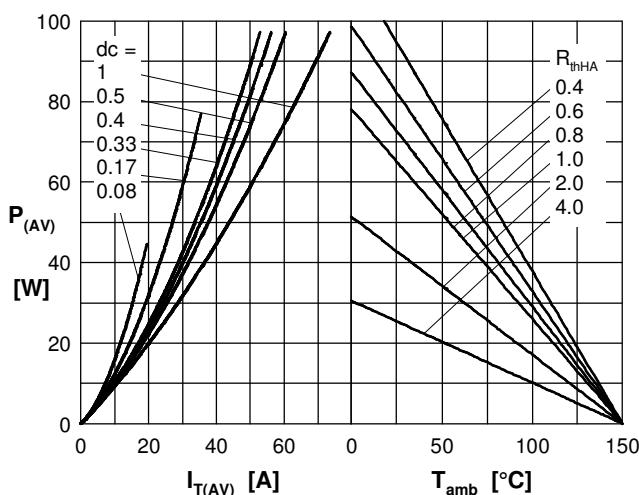
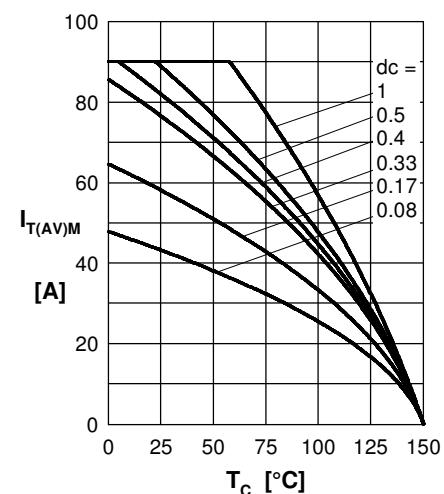
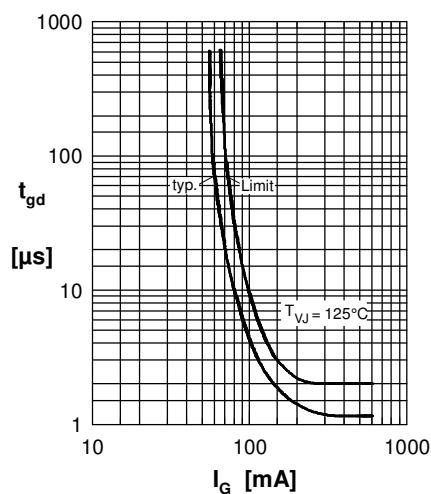
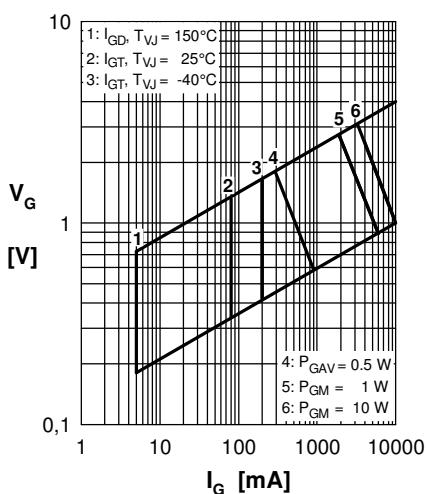
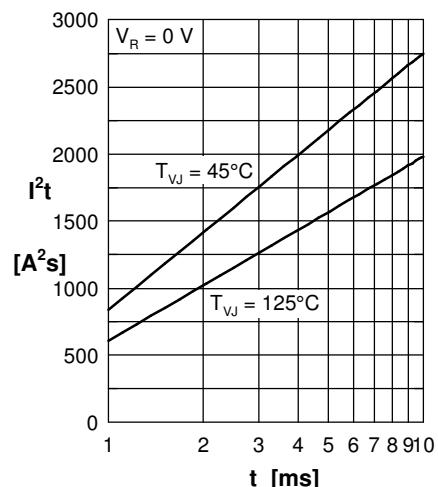
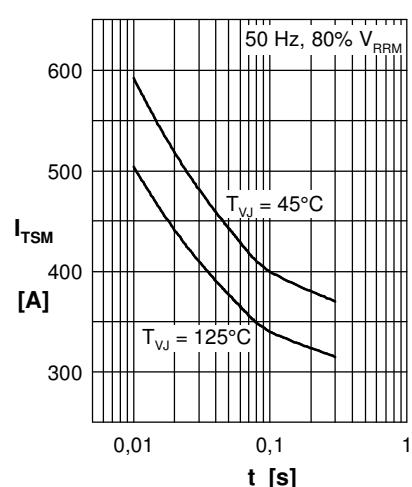
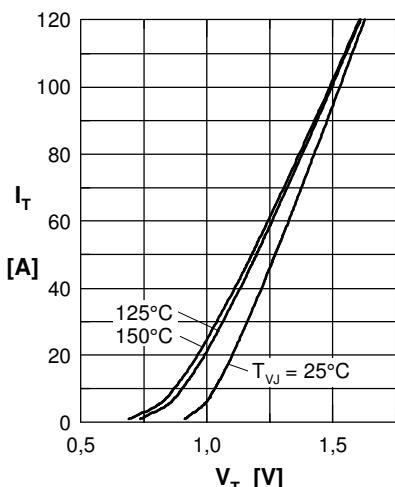









Fig. 7a Power dissipation versus direct output current
Fig. 7b Power dissipation versus ambient temperature

Fig. 8 Transient thermal impedance junction to case