

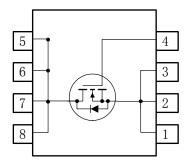
FDMC2674

N-Channel UltraFET Trench[®] MOSFET 220V, 1A, $366m\Omega$

Features

- Max $r_{DS(on)}$ = 366m Ω at V_{GS} = 10V, I_D = 1A
- Typ $Q_q = 12.7$ nC at $V_{GS} = 10$ V
- Low Miller charge
- Low Q_{rr} Body Diode
- Optimized efficiency at high frequencies
- UIS Capability (Single Pulse and Repetitive Pulse)
- RoHS Compliant

General Description


UltraFET® device combines characteristics that enable benchmark efficiency in power conversion applications. Optimized for $r_{\text{DS(on)}}$, low ESR, low total and Miller gate charge, these devices are ideal for high frequency DC to DC converters.

Applications

- DC/DC converters and Off-Line UPS
- Distributed Power Architectures

MLP 3.3x3.3

MOSFET Maximum Ratings TA = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DS}	Drain to Source Voltage	220	V
V_{GS}	Gate to Source Voltage	±20	V
	Drain Current -Continuous	1	^
ID	-Pulsed	13.8	Α
E _{AS}	Single Pulse Avalanche Energy (No	te 3) 13	mJ
P_{D}	Power Dissipation for Single Operation	2.4	W
T _J , T _{STG}	Operating and Storage Temperature	-55 to 150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance , Junction to Ambient	(Note 1a)	52	°C/W
$R_{\theta JA}$	Thermal Resistance , Junction to Ambient	(Note 1b)	108	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC2674	FDMC2674	MLP 3.3 x 3.3	7"	12mm	3000 units

Electrical Characteristics T_J = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A$, $V_{GS} = 0 V$	220			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		248		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 176V, V _{GS} = 0V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$,			±100	nA

On Characteristics (Note 2)

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	3.4	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		-10.2		mV/°C
		$V_{GS} = 10V, I_D = 1A$		305	366	
r _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 10V, I_D = 1A,$ $T_J = 150^{\circ}C$		678	814	mΩ

Dynamic Characteristics

C _{iss}	Input Capacitance	\\ -400\\ \\ -0\\	880	1180	pF
C _{oss}	Output Capacitance	V _{DS} =100V, V _{GS} = 0V, f = 1MHz	70	95	pF
C _{rss}	Reverse Transfer Capacitance	1 - 11VII 12	11	20	pF

Switching Characteristics (Note 2)

t _{d(on)}	Turn-On Delay Time	.,		9	18	ns
t _r	Rise Time	$V_{DD} = 100V, I_{D} = 1A$ $V_{GS} = 10V, R_{GS} = 2.4\Omega$		13	23	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10V, K _{GS} = 2.452		15	27	ns
t _f	Fall Time			21	34	ns
Q_{g}	Total Gate Charge at 10V	15/// 10//		12.7	18	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 15V, V _{GS} = 10V, I _D = 1A, I _G = 1.0mA		3.8		nC
Q _{gd}	Gate to Drain Charge	1D = 174, 1G = 1.0111A		2.9		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V$, $I_S = 1A$	8.0	1.5	٧
t _{rr}	Reverse Recovery Time	$I_F = 1A$, di/dt = 100A/ μ s		60	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 1A$, di/dt = $100A/\mu s$		109	nC

Notes:

1: R_{0,IA} is determined with the device mounted on a 1in² oz.copper pad on a 1.5x1.5 in board of FR-4 material .R_{0,IC} are guaranteed by design while R_{0,IA} is determined by the user's board design.

a. 52°C/W when mounted on a 1 in² pad of 2 oz copper

b. 108°C/W when mounted on a minimum pad of 2 oz copper

- 2: Pulse Test:Pulse Width < 300 μ s, Duty Cycle < 2.0%. 3: Starting T $_J$ = 25°C, L = 3mH, I $_{AS}$ = 3A, V $_{DD}$ = 50V, V $_{GS}$ = 10V.

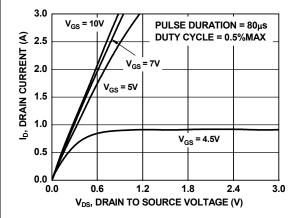


Figure 1. On Region Characteristics

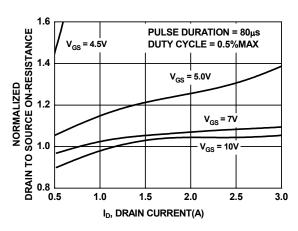


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

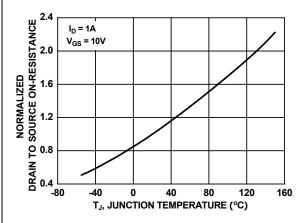


Figure 3. Normalized On Resistance vs Junction Temperature

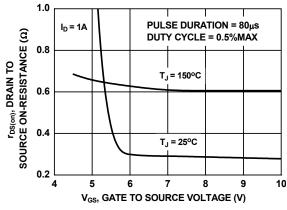


Figure 4. On-Resistance vs Gate to Source Voltage

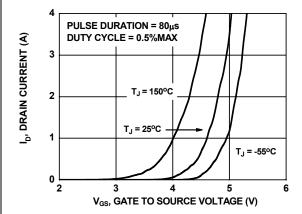


Figure 5. Transfer Characteristics

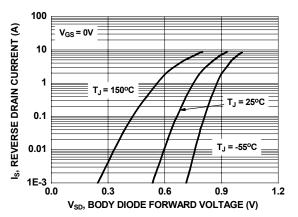
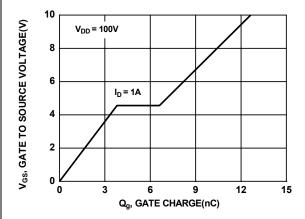



Figure 6. Source to Drain Diode Forward Voltage vs Source Current

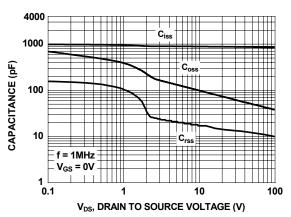
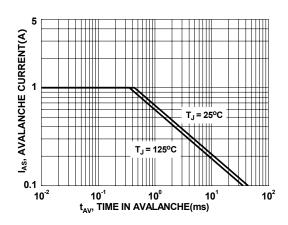



Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs Drain to Source Voltage

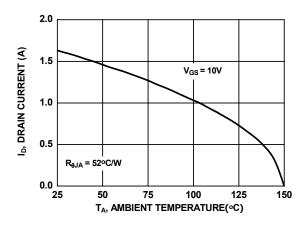
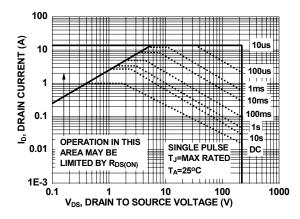



Figure 9. Unclamped Inductive Switching Capability

Figure 10. Maximum Continuous Drain Current vs Ambient Temperature

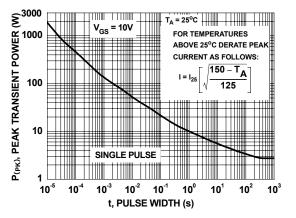


Figure 11. Forward Bias Safe Operating Area

Figure 12. Single Pulse Maximum Power Dissipation

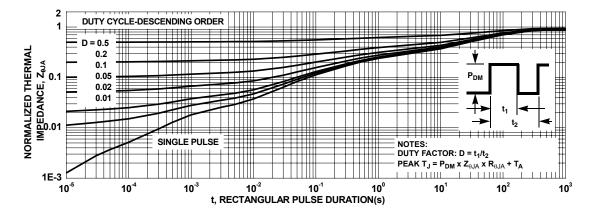


Figure 13. Transient Thermal Response Curve

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TinyLogic [®]
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TINYOPTO™
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™	TruTranslation™
DOME™	HiSeC™	MSX™	RapidConfigure™	UHC™
EcoSPARK™	I ² C™	MSXPro™	RapidConnect™	UltraFET [®]
E ² CMOS™	i-Lo™	OCX™	µSerDes™	UniFET™
EnSigna™	ImpliedDisconnect™	OCXPro™	ScalarPump™	VCX™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SILENT SWITCHER®	Wire™
FACT Quiet Series™		OPTOPLANAR™	SMART START™	
		PACMAN™	SPM™	
Across the board. Arou		POP™	Stealth™	
The Power Franchise®)	Power247™	SuperFET™	
Programmable Active I	Droop™	PowerEdge™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I17