

Standard Recovery Diodes, (Stud Version), 85 A

DO-5 (DO-203AB)

PRIMARY CHARACTERISTICS				
I _{F(AV)} 85 A				
Package	DO-5 (DO-203AB)			
Circuit configuration	Single			

FEATURES

- High surge current capability
- Stud cathode and stud anode version

- Leaded version available
- Types up to 1600 V V_{RRM}
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

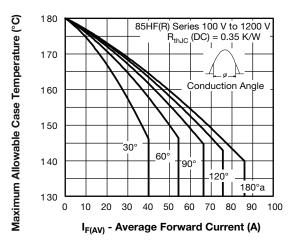
TYPICAL APPLICATIONS

- Battery chargers
- Converters
- Power supplies
- Machine tool controls
- Welding

MAJOR RATINGS AND CHARACTERISTICS				
PARAMETER	TEST COMPITIONS	85HF(R)	LINUTO	
	TEST CONDITIONS	400	UNITS	
I _{F(AV)}		85	A	
	T _C	140	°C	
I _{F(RMS)}		133	A	
1	50 Hz	1700	^	
IFSM	60 Hz	1800	A	
l ² t	50 Hz	14 500	A ² s	
	60 Hz	13 500	A-S	
V _{RRM}		400	V	
TJ		-65 to +180	°C	

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS						
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I_{RRM} MAXIMUM AT $T_J = T_J$ MAXIMUM mA		
VS-85HF(R)	40	400	500	9		


FORWARD CONDUCTION							
PARAMETER	SYMBOL	TEST CONDITIONS		85HF(R)	UNITS		
Maximum average forward current	I _{F(AV)}	180° conduction, half sine wave		190° conduction, half sine ways		85	Α
at case temperature	'F(AV)			Ction, nan sine wave	140	°C	
Maximum RMS forward current	I _{F(RMS)}				133	Α	
		t = 10 ms	No voltage		1700		
Maximum peak, one-cycle forward,		t = 8.3 ms	reapplied		1800	Α	
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}	Sinusoidal half wave, initial $T_J = T_J$ maximum	1450		
		t = 8.3 ms	reapplied		1500		
Mariana 124 fau faoin		t = 10 ms	No voltage		14 500	- A ² s	
	l ² t	t = 8.3 ms	reapplied		13 500		
Maximum I ² t for fusing	1-1	t = 10 ms	100 % V _{RRM}		10 500		
		t = 8.3 ms	reapplied		9400		
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to 10 ms, no voltage reapplied			16 000	A²√s	
Value of threshold voltage (up to 1200 V)	V	$T_J = T_J$ maximum		V T T movimum	0.68	V	
Value of threshold voltage (for 1400 V, 1600 V)	V _{F(TO)}			0.69			
Value of forward slope resistance (up to 1200 V)	_	T. T. a. in a		1.62			
Value of forward slope resistance (for 1400 V, 1600 V)	r _f	$T_J = T_J$ maximum			1.75	- mW	
Maximum forward voltage drop	V_{FM}	I _{pk} = 267 A, T _J = 25 °C, t _p = 400 μs rectangular wave			1.2	V	


THERMAL AND MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	85HF(R)	UNITS
Maximum junction operating and storage temperature range	T _J , T _{Stg}		-65 to +180	°C
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.35	K/W
Maximum thermal resistance, case to heatsink F		Mounting surface, smooth, flat and greased	0.25	IV VV
Maximum shock			1500	
Maximum constant vibration		50 Hz	20	g
Maximum constant acceleration		Stud outwards	5000	
		Not lubricated thread, tighting on nut	3.4 (30)	
Maximum allowable mounting torque +0 %, -10 %		Lubricated thread, tighting on nut	2.3 (20)	N·m
		Not lubricated thread, tighting on hexagon	4.2 (37)	(lbf · in)
		Lubricated thread, tighting on hexagon	3.2 (28)	
Approximate weight		Unleaded device		g
Approximate weight		Officaded device	0.6	OZ.
Case style		See dimensions - link at the end of datasheet DO-5 (DO-203		203AB)

△R _{thJC} CONDUCTION					
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS	
180°	0.10	0.08			
120°	0.11	0.11			
90°	0.13	0.13	$T_J = T_J$ maximum	K/W	
60°	0.17	0.17			
30°	0.26	0.26]		

Note

[•] The table above shows the increment of thermal resistance RthJC when devices operate at different conduction angles than DC

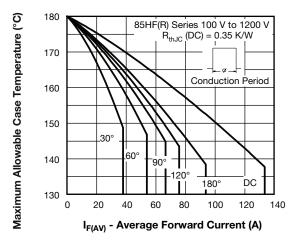


Fig. 2 - Current Ratings Characteristics

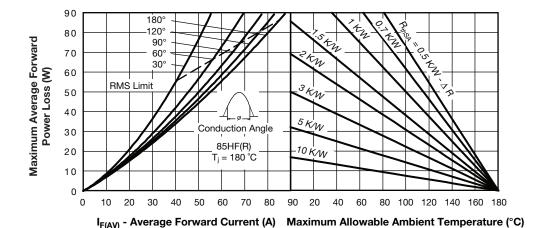


Fig. 3 - Forward Power Loss Characteristics

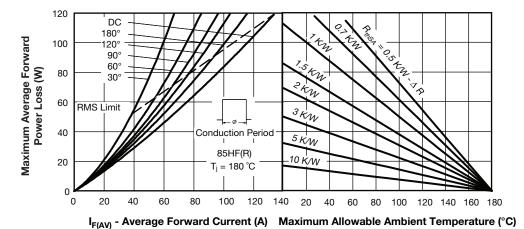


Fig. 4 - Forward Power Loss Characteristics

www.vishay.com

Vishay Semiconductors

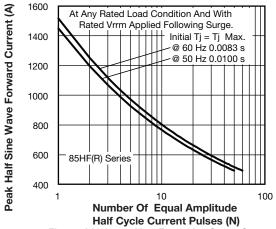


Fig. 5 - Maximum Non-Repetitive Surge Current

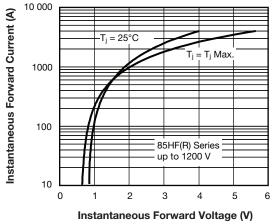


Fig. 7 - Forward Voltage Drop Characteristics

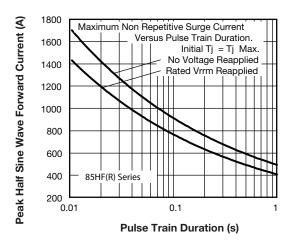


Fig. 6 - Maximum Non-Repetitive Surge Current

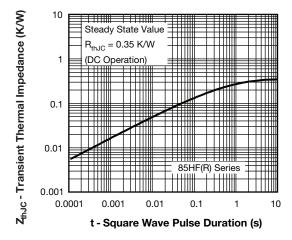
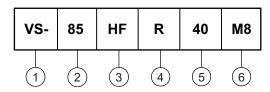
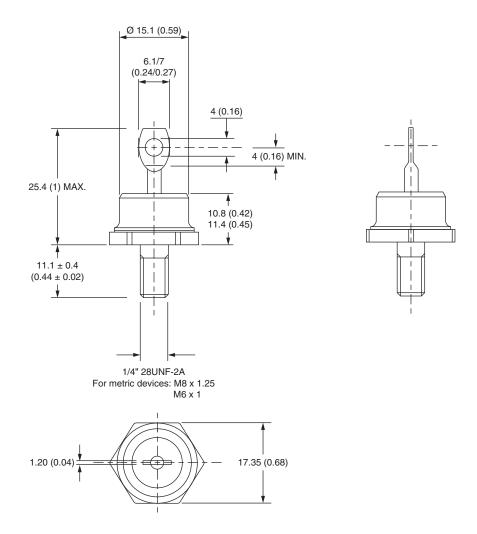



Fig. 8 - Thermal Impedance Z_{thJC} Characteristics

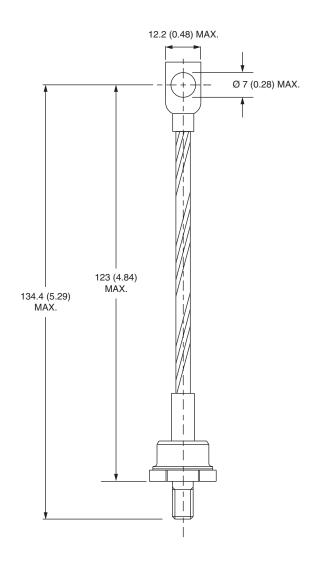
ORDERING INFORMATION TABLE

Device code

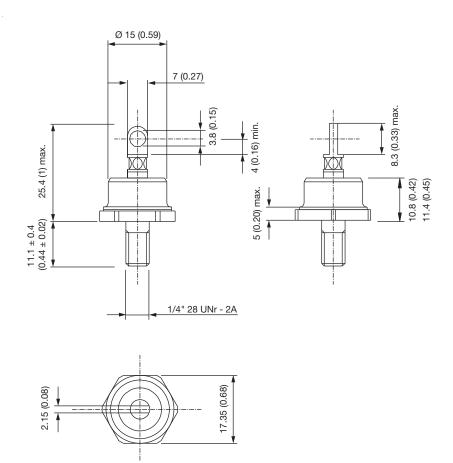


- Vishay Semiconductors product
- 85 = standard device
- HF = standard diode
 - None = stud normal polarity (cathode to stud) R = stud reverse polarity (anode to stud)
- 5 Voltage code x $10 = V_{RRM}$ (see Voltage Ratings table)
- 6 M8 = stud base DO-5 (DO-203AB) M8 x 1.25

LINKS TO RELATED DOCUMENTS		
Dimensions	www.vishay.com/doc?95342	


DO-5 (DO-203AB) for 85HF(R), 86HF(R) and 88HF(R)Series

DIMENSIONS FOR 85HF(R) SERIES in millimeters (inches)



DIMENSIONS FOR 86HF(R) SERIES in millimeters (inches)

DIMENSIONS 88HF(R) SERIES in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

VS-85HFR60 VS-87HF100 VS-86HFR60 VS-87HF60 VS-87HFR60 VS-86HF100 VS-87HFR20 VS-87HFR40

VS-87HF160 VS-87HF40 VS-87HFR100 VS-87HFR160 VS-87HFR10 VS-85HF10 VS-85HF100 VS-85HF120 VS
85HF140 VS-85HF160 VS-85HF20 VS-85HF40 VS-85HF60 VS-85HF80 VS-85HFR100 VS-85HFR120 VS
85HFR140 VS-85HFR160 VS-85HFR20 VS-85HFR40 VS-85HFR80 VS-86HF120 VS-86HF120 VS
86HF80 VS-86HFR10 VS-86HFR120 VS-86HFR160 VS-86HFR20 VS-86HFR40 VS-87HF80 VS-87HF120 VS
86HFR100 VS-87HFR120 VS-87HFR80 VS-87HF20 VS-86HFR10 VS-86HFR80 VS-86HFR80 VS-86HFR40 VS
85HFR120M VS-85HF120M VS-85HF10M