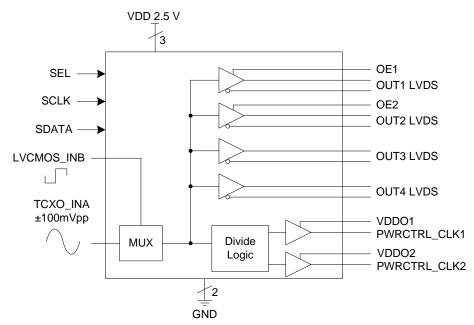


CLOCK DISTRIBUTION CIRCUIT

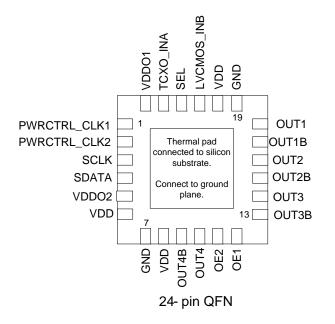
IDT6T39007A

Description

The IDT6T39007A is a low-power, four output clock distribution circuit. The device takes a TCXO or 1.8 V to 2.5 V LVCMOS input and generates four high-quality LVDS outputs, and two programmable divided outputs.


It includes a redundant input with automatic glitch-free switching when the primary reference is removed. The primary input may be selected by the user by pulling the SEL pin low or high. If the primary input is removed and brought back, it will not be re-selected until 1024 cycles have passed.

The IDT6T39007A specifically addresses the needs of handheld applications in both performance and package size. The device is packaged in a small 4mm x 4mm 24-pin QFN, allowing optimal use for limited board space.


Features

- Packaged in 24-pin QFN
- TCXO sine wave input
- +2.5 V operating voltage
- Four buffered LVDS outputs
- Two programmable outputs for power control up to 3.0 V LVCMOS levels based on VDDO1/VDDO2
- Individual output enables controlled via I²C or OEx
- Pb-free, RoHS compliant package
- Industrial temperature range (-40°C to +85°C)

Block Diagram

Pin Assignment

SEL Pin Configuration Table

SEL	Primary Input
0	LVCMOS_INB
1	TCXO_INA

OE Pin Configuration Table

OEx	OUTx LVDS
0	Disabled
1	Enabled

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	PWRCTRL_CLK1	Output	Programmable power control output 1. See I ² C table.
2	PWRCTRL_CLK2	Output	Programmable power control output 2. See I ² C table.
3	SCLK	Input	I ² C clock input.
4	SDATA	Input	I ² C data input.
5	VDDO2	Power	Connect to +3.0 V.
6	VDD	Power	Connect to +2.5 V.
7	GND	Power	Connect to ground.
8	VDD	Power	Connect to +2.5 V.
9	OUT4B	Output	Buffered LVDS output. Outputs tri-state when disabled.
10	OUT4	Output	Buffered LVDS output. Outputs tri-state when disabled.
11	OE2	Input	Output enable control for OUT2 LVDSpins. Internal pull-up resistor. See table above.
12	OE1	Input	Output enable control for OUT1 LVDSpins. Internal pull-up resistor. See table above.
13	OUT3B	Output	Buffered LVDS output. Outputs tri-state when disabled.
14	OUT3	Output	Buffered LVDS output. Outputs tri-state when disabled.
15	OUT2B	Output	Buffered LVDS output. Outputs tri-state when disabled.

Pin Number	Pin Name	Pin Type	Pin Description
16	OUT2	Output	Buffered LVDS output. Outputs tri-state when disabled.
17	OUT1B	Output	Buffered LVDS output. Outputs tri-state when disabled.
18	OUT1	Output	Buffered LVDS output. Outputs tri-state when disabled.
19	GND	Power	Connect to ground.
20	VDD	Power	Connect to +2.5 V.
21	LVCMOS_INB	Input	Connect to primary LVCMOS input INB. See table above.
22	SEL	Input	Select pin for primary inputs. See table above. Internal pull-up resistor.
23	TCXO_INA	Input	Connect to TCXO input.
24	VDDO1	Power	Connect to +3.0 V.

General I²C Serial Interface

How to Write:

- · Controller (host) sends a start bit
- Controller (host) sends the write address D4_(H)
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location =N
- IDT clock will acknowledge
- Controller (host) sends the data byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X 1 (see Note 2)
- IDT clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

Index Block Write Operation						
Control	ller (Host)		IDT (Slave/Receiver)			
Т	starTbit					
Slave Ad	dress D4 _(H)					
WR	WRite					
			ACK			
Beginnin	ng Byte = N					
			ACK			
Data Byte	e Count = X					
			ACK			
Beginnin	ng Byte = N					
			ACK			
	0	— X — В				
	0	Y	0			
	0	T F	0			
		0				
Byte N	N + X - 1					
			ACK			
Р	stoP bit					

How to Read:

- · Controller (host) sends a start bit
- Controller (host) sends the write address D4_(H)
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location =N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address D5_(H)
- IDT clock will acknowledge
- Controller (host) sends the data byte count = X
- IDT clock sends Byte N + X 1
- IDT clock sends Byte 0 through byte X (if X_(H) was written to byte 8)
- · Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block Read Operation						
Со	ntroller (Host)	IDT (Slave/Receiver)					
Т	starTbit						
Slav	e Address D4 _(H)						
WR	WRite						
			ACK				
Beg	inning Byte = N						
	T		ACK				
RT	Repeat starT						
Slav	e Address D5 _(H)						
RD	ReaD						
			ACK				
			Data Byte Count = X				
	ACK						
			Beginning Byte N				
	ACK	V					
		X B	0				
	0	Υ	0				
	0	T	0				
	0	Ε					
			Byte N + X - 1				
N	Not acknowledge						
Р	stoP bit						

I²C Address

The IDT6T39007A is a slave-only device that supports block read and block write protocol using a single 7 bit address and read/write bit. A block write $(D4_{(H)})$ or block read $(D5_{(H)})$ is made up of seven (7) bits and one (1) read/write bit.

A6	A 5	A 4	А3	A2	A 1	Α0	R/W#
1	1	0	1	0	1	0	Х

In applications where the indexed block write and block read are used, the dummy byte (bit 11-18) functions as a register-offset (8 bits) pointer.

Byte 0: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7	Reserved	R	Undefined	Not applicable	
6	Reserved	R	Undefined	Not applicable	
5	OE for OUT3	RW	1	LVDS clock output	1=enabled 0=disabled
4	OE for OUT4	RW	1	LVDS clock output	1=enabled 0=disabled
3	Reserved	R	Undefined	Not applicable	
2	Reserved	R	Undefined	Not applicable	
1	Reserved	R	Undefined	Not applicable	
0	Reserved	R	Undefined	Not applicable	

Byte 1: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7	PWRCTRL_CLK1 Divider SEL bit 7	RW	0	PWRCTRL_CLK1	Default is /15 to get 866.666 kHz from 13 MHz
6	PWRCTRL_CLK1 Divider SEL bit 6	RW	0	PWRCTRL_CLK1	Default is /15 to get 866.666 kHz from 13 MHz
5	PWRCTRL_CLK1 Divider SEL bit 5	RW	0	PWRCTRL_CLK1	Default is /15 to get 866.666 kHz from 13 MHz
4	PWRCTRL_CLK1 Divider SEL bit 4	RW	0	PWRCTRL_CLK1	Default is /15 to get 866.666 kHz from 13 MHz
3	PWRCTRL_CLK1 Divider SEL bit 3	RW	1	PWRCTRL_CLK1	Default is /15 to get 866.666 kHz from 13 MHz
2	PWRCTRL_CLK1 Divider SEL bit 2	RW	1	PWRCTRL_CLK1	Default is /15 to get 866.666 kHz from 13 MHz
1	PWRCTRL_CLK1 Divider SEL bit 1	RW	1	PWRCTRL_CLK1	Default is /15 to get 866.666 kHz from 13 MHz
0	PWRCTRL_CLK1 Divider SEL bit 0	RW	1	PWRCTRL_CLK1	Default is /15 to get 866.666 kHz from 13 MHz

Byte 2: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7	PWRCTRL_CLK2 Divider SEL bit 7	RW	0	PWRCTRL_CLK2	Default is /46 to get 282.6kHz from 13 MHz
6	PWRCTRL_CLK2 Divider SEL bit 6	RW	0	PWRCTRL_CLK2	Default is /46 to get 282.6kHz from 13 MHz
5	PWRCTRL_CLK2 Divider SEL bit 5	RW	1	PWRCTRL_CLK2	Default is /46 to get 282.6kHz from 13 MHz
4	PWRCTRL_CLK2 Divider SEL bit 4	RW	0	PWRCTRL_CLK1	Default is /46 to get 282.6kHz from 13 MHz
3	PWRCTRL_CLK2 Divider SEL bit 3	RW	1	PWRCTRL_CLK1	Default is /46 to get 282.6kHz from 13 MHz

2	PWRCTRL_CLK2 Divider SEL bit 2	RW	1	PWRCTRL_CLK1	Default is /46 to get 282.6kHz from 13 MHz
1	PWRCTRL_CLK2 Divider SEL bit 1	RW	1	PWRCTRL_CLK1	Default is /46 to get 282.6kHz from 13 MHz
0	PWRCTRL_CLK2 Divider SEL bit 0	RW	0	PWRCTRL_CLK1	Default is /46 to get 282.6kHz from 13 MHz

Byte 3: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7 to 0	Reserved	R	Undefined	Not applicable	

Byte 4 through 5: Control Register

Bit	Description	Туре	Power Up Condition	Output(s) Affected	Notes
7 to 0	Reserved	R	Undefined	Not applicable	

Byte 6: Control Register

Bit	Description	Туре	Power Up	Output(s) Affected	Notes
7	Revision ID bit 3	R	0	Not applicable	
6	Revision ID bit 2	R	0	Not applicable	
5	Revision ID bit 1	R	0	Not applicable	
4	Revision ID bit 0	R	0	Not applicable	
3	Vendor ID bit 3	R	0	Not applicable	
2	Vendor ID bit 2	R	0	Not applicable	
1	Vendor ID bit 1	R	0	Not applicable	
0	Vendor ID bit 0	R	1	Not applicable	

Applications Information

External Components

A minimum number of external components are required for proper operation.

Decoupling Capacitors

Decoupling capacitors of 0.01 μF should be connected between VDD and GND as close to the device as possible. Do not share ground vias between components. Route power from power source through the capacitor pad and then into IDT pin.

PCB Layout Recommendations

For optimum device performance and lowest output phase noise, the following guidelines should be observed.

- 1. Each $0.01\mu F$ decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible.
- 2. No vias should be used between decoupling capacitor and VDD pin.
- 3. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical.
- 4. An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (any ferrite beads and bulk decoupling capacitors can be mounted on the back). Other signal traces should be routed away from the IDT6T39007A. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT6T39007A. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Max Supply Voltage, VDD	5 V
LVCMOS_INB, SCLK and SDATA Inputs	-0.5 V to +3.3 V
All Other Inputs and Outputs	-0.5 V to VDD+0.5 V
Ambient Operating Temperature	-40 to +85° C
Storage Temperature	-65 to +150° C
Junction Temperature	125° C
Peak Soldering Temperature	260° C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	-40		+85	°C
Power Supply Voltage (measured in respect to GND)	+2.25	+2.5	+2.75	V
Output Supply Voltage (VDDO1, VDDO2)	VDD	+3.0	+3.15	V

DC Electrical Characteristics

Unless otherwise specified, VDD =2.5 V ±10%, VDDO1 = VDDO2 = 3.0 V ±5%, Ambient Temp. -40 to +85° C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Supply Voltage	VDD		+2.25	+2.5	+2.75	V
Output Supply Voltage	VDDO	VDDO1, VDDO2	VDD	3.0	3.15	V
Input High Voltage	V _{IH}	SEL, OEx, LVCMOS_INB	0.75xVDD			V
		SCLK and SDATA	0.7xVDD			
Input Low Voltage	V _{IL}	SEL, OEx, LVCMOS_INB			0.35xVDD	V
		SCLK and SDATA			0.3xVDD	
High-Level Output Voltage	V _{OH}	I _{OH} = -4 mA	1.7			V
Low-Level Output Voltage	V _{OL}	I _{OL} = 4 mA			0.7	V
Operating Supply Current	IDD	No load, all outputs switching at 13 MHz		15	18	mA
		All outputs disabled		TBD		mA
Short Circuit Current	I _{OS}	Single-ended clocks		±70		mA

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Impedance	Z _O	All clock outputs, OEx=1		15		Ω
Internal Pull-Up Resistance	R _{pu}	SEL, OEx		500		kΩ
Input Capacitance	C _{IN}	All input pins		6		pF

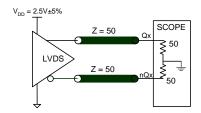
AC Electrical Characteristics - Single-Ended Outputs

Unless otherwise stated, VDD =2.5 V ±10%, VDDO1 = VDDO2 = 3.0 V ±5%, Ambient Temp. -40 to +85° C

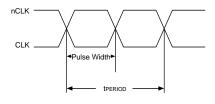
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency	F _{IN}		12.6	13	13.4	MHz
Variance Input Frequencies		LVCMOS_INB, TCXO_INA, Note 2			0.4	MHz
Time Switch Clock Inputs		LVCMOS_INB, TCXO_INA, Note 3		80		μs
TCXO Input Swing		TCXO_INA	±100		±900	mV
Output Frequency Error				0		ppm
Output Rise Time	t _{OR}	20% to 80%, Note 1		1	1.5	ns
Output Fall Time	t _{OF}	80% to 20%, Note 1		1	1.5	ns
Output Clock Duty Cycle		Measured at VDDO/2, Note 1	45	50	55	%
Output Enable time		OE goes high, output within 1% of final frequency			1	ms
Clock Stabilization Time from Power Up		Power up, output within 1% of final frequency		3	10	ms

Note 1: CL = 8 pF.

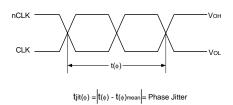
Note 2: Delta from 13 MHz.

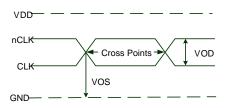

Note 3: By removing primary input and then bringing back primary input.

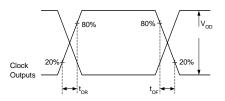
AC Electrical Characteristics - LVDS Outputs

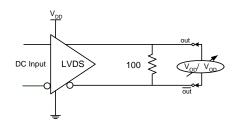

Unless otherwise stated, **VDD = 2.5 V ±10%**, Ambient Temperature -40 to +85° C

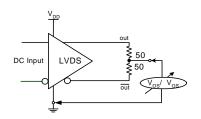
Parameter	Conditions	Min.	Тур.	Max.	Units
Differential Output Voltages V _{OD}	$R_L = 100\Omega$	250	350	450	mV
ΔV _{OD}	V _{OD} Magnitude Change	-40	0	40	mV
Offset Voltage (V _{OS})		1.125	1.25	1.375	V
Output CLock Duty Cycle	Measured at V _{OS}	45	50	55	%
ΔV _{OS}	V _{OS} Magnitude Change		3	25	mV
Output Short Circuit Current (I _{OS})			-10		mA
Output Rise Time	20% to 80%, $R_L = 100\Omega$		0.5	1.0	ns
Output Fall Time	20% to 80%, $R_L = 100Ω$		0.5	1.0	ns


Parameter Measurement Information

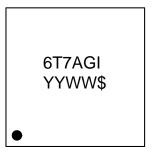

2.5V OUTPUT LOAD AC TEST CIRCUIT


tpw & tperiod


PHASE JITTER


DIFFERENTIAL INPUT LEVEL

OUTPUT RISE/FALL TIME

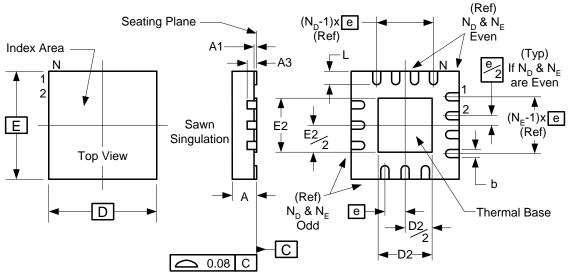


 ${\rm V_{OD}}$ SETUP

 ${\rm V_{OS}}$ SETUP

Marking Diagram

Notes:


- 1. YYWW is the last two digits of the year and week that the part was assembled.
- 2. "\$" is the assembly mark code.
- 3. "G" after the two-letter package code designates RoHS compliant package.
- 4. "I" at the end of part number indicates industrial temperature range.
- 5. Bottom marking: country of origin if not USA.

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		29.1		° C/W
Ambient	θ_{JA}	1 m/s air flow		22.8		° C/W
	θ_{JA}	2.5 m/s air flow		21.0		° C/W
Thermal Resistance Junction to Case	θ_{JC}			41.8		° C/W

Package Outline and Package Dimensions (24-pin QFN)

Package dimensions are kept current with JEDEC Publication No. 95

	Millimeters		
Symbol	Min	Max	
Α	0.80	1.00	
A1	0	0.05	
A3	0.25 Re	eference	
b	0.18	0.30	
е	0.50 BASIC		
N	2	24	
N _D	6		
N _E	(6	
D x E BASIC	4.00	x 4.00	
D2	2.3	2.55	
E2	2.3	2.55	
L	0.30	0.50	

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
6T39007ANLGI	see page 13	Tray	24-pin QFN	-40 to +85° C
6T39007ANLGI8		Tape and Reel	24-pin QFN	-40 to +85° C

"G" after the two-letter package code are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Originator	Date	Description of Change
Н	RDW	02/22/12	1. Added device top-side marking.

IDT6T39007A CLOCK DISTRIBUTION CIRCUIT

DISTRIBUTION CIRCUITS

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/