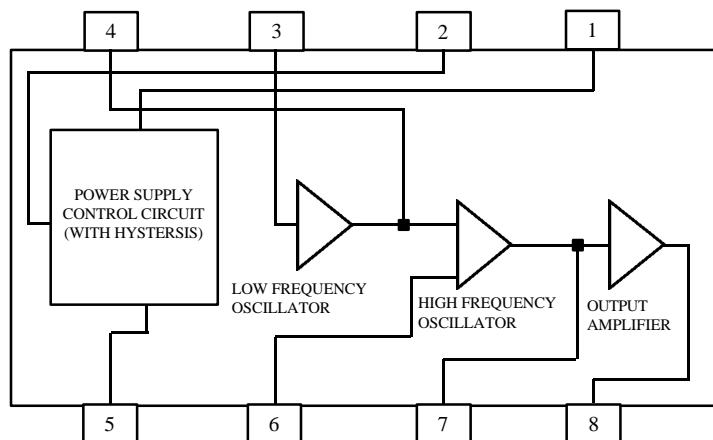


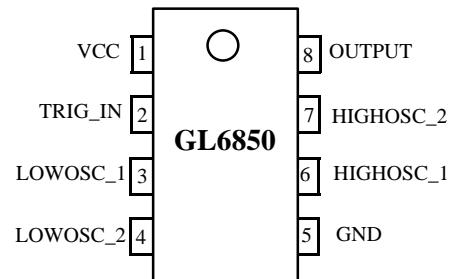
GL6850

TWO TONE RINGER

Description


The GL6850 tone ringer is a monolithic device, which incorporates two oscillators, an output amplifier and a power supply control circuit. The oscillator frequencies can be adjusted over a wide range by selection of external components. One oscillator, normally operated at a low frequency, causes the second oscillator to alternate between its nominal frequency and a related higher frequency. The resulting output is a distinct warbling tone. The output amplifier will drive either a transformer coupled loudspeaker or a piezo-ceramic transducer.

The device can be powered from a telephone line or a fixed d.c. supply. The power control circuit has built-in hysteresis to prevent false triggering and rotary dial chirps. The GL6850 can be triggered externally under logic control.


Features

- Low current consumption.
- Designed for telephone bell replacement.
- Small size MINIDIP package.
- Adjustable 2- frequency tone.
- Built-in hysteresis prevents false triggering and rotary dial CHIRPS.
- Alarms or other alerting devices.
- External triggering or ringer disable.
- Include ESD protection.

Block Diagram

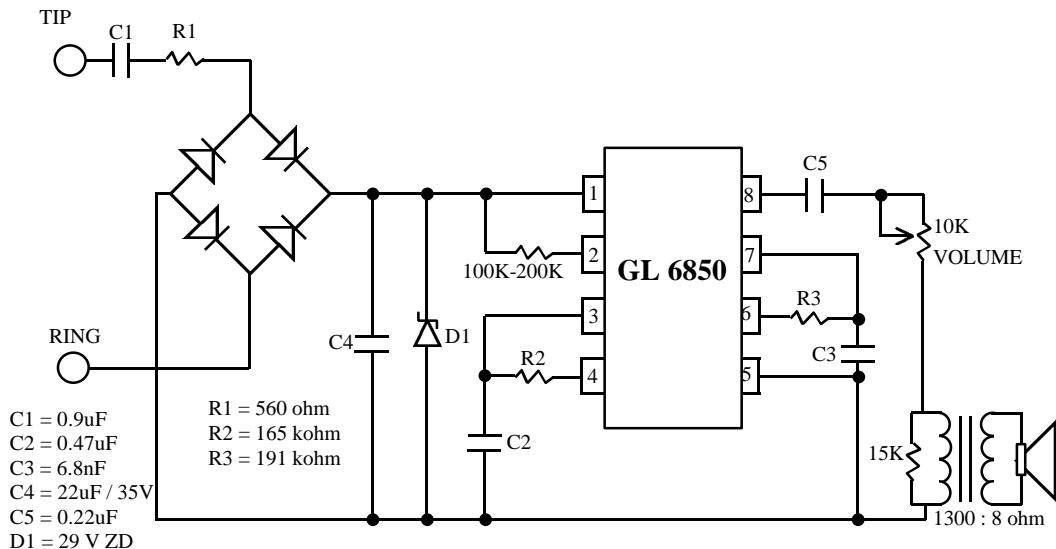
Pin Configuration

Absolute Maximum Ratings (Ta = 25°C)

CHARACTERISTICS	SYMBOL	VALUE	UNIT
Supply Voltage	V _{CC}	30	V
Power Dissipation	P _o	400	mW
Operating Temperature	T _{op}	-25 to 65	°C
Storage Temperature	T _{stg}	-65 to 150	°C

Electrical Characteristics (Ta = 25°C)

CHARACTERISTICS	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Operating Supply Voltage	V _{CC}		-	-	29.0	V
Initiation Supply Voltage ¹	V _{SI}		17	19	21	V
Initiation Supply Current ¹	I _{SI}		0.9	2.0	3.7	mA
Sustaining Voltage ²	V _{SUS}		9.7	11.0	12.0	V
Sustaining Current ²	I _{SUS}		0.4	1.0	2.0	mA
Trigger Voltage ³	V _{TR}	V _{CC} = 15 V	9.5	-	-	V
Trigger Current ³	I _{TR}	V _{CC} = 15 V	40	-	1000 ⁵	µA
Disable Voltage ⁴	V _{DIS}	V _{CC} = 21 V	-	-	0.8	V
Disable Current ⁴	I _{DIS}	V _{CC} = 21 V	-50	-	-	µA
Output Voltage High	V _{OH}	V _{CC} = 21V, I ₈ = -10mA Pin6 = 6V, Pin7 = GND	17	19	21	V
Output Voltage Low	V _{OL}	V _{CC} = 21V, I ₈ = -10mA Pin6 = GND, Pin7 = 6V	-	-	2	V
High Frequency 1	f _{H1}					
High Frequency 2	f _{H2}	R3 = 191K, C3 = 6800pF	461	461	563	Hz
Low Frequency	f _L	R3 = 191K, C3 = 6800pF	576	640	704	Hz
		R2 = 165K, C2 = 0.47µF	9.0	10	11.0	Hz


* NOTE

1. Initial supply voltage (V_{SI}) is the supply voltage required to start the tone ringer oscillation.
2. Sustaining voltage (V_{SUS}) is the supply voltage required to maintain oscillation.
3. V_{TR} and I_{TR} are the conditions applied to trigger to start for V_{SUS} \geq V_{CC} \geq V_{SI}
4. V_{DIS} and I_{DIS} are the conditions applied to trigger to inhibit oscillation for V_{SI} \geq V_{CC}
5. Trigger current must be limited to this value externally.

PIN DESCRIPTION

PIN NUMBER	PIN FUNCTION	DESCRIPTION
PIN 1	VCC	Operating supply D.C. voltage rectified from ringing signal.
PIN2	TRIG_IN	Oscillator External Trigger/Inhibit pin (must be connected through a current limiting resistor, which is used to program the slope of supply current vs voltage.)
PIN3	LOWOSC_1	Low Frequency Time Constant Adjustment pins f_L is controlled externally by R_2 and C_2 $f_L = 1/1.289R_2C_2$
PIN 4	LOWOSC_2	
PIN 5	GND	Ground
PIN 6	HIGHOSC_1	High Frequency Time Constant Adjustment Pins f_{H1} and f_{H2} are controlled externally by R_3 and C_3 . $f_{H1}=1/1.504R_3C_3, f_{H2}=1/1.203R_3C_3$
PIN 7	HIGHOSC_2	
PIN 8	OUTPUT	Tone output

APPLICATION CIRCUIT

