

ESD Protection Diode Low Clamping Voltage NZQA5V6AXV5 Series

This integrated surge protection device is designed for applications requiring transient overvoltage protection. It is intended for use in sensitive equipment such as computers, printers, business machines, communication systems, medical equipment, and other applications. Its integrated design provides very effective and reliable protection for four separate lines using only one package. These devices are ideal for situations where board space is at a premium.

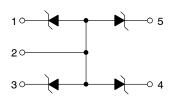
- Low Clamping Voltage
- Small SOT-553 SMT Package
- Stand Off Voltage: 3 V
- Low Leakage Current
- Four Separate Unidirectional Configurations for Protection
- ESD Protection: IEC61000-4-2: Level 4 ESD Protection MILSTD 883C – Method 3015-6: Class 3
- Complies to USB 1.1 Low Speed & Full Speed Specifications
- These are Pb-Free Devices

Benefits

- Provides Protection for ESD Industry Standards: IEC 61000, HBM
- Protects Four Lines Against Transient Voltage Conditions
- Minimize Power Consumption of the System
- Minimize PCB Board Space

Typical Applications

- Instrumentation Equipment
- Serial and Parallel Ports
- Microprocessor Based Equipment
- Notebooks, Desktops, Servers
- Cellular and Portable Equipment


MAXIMUM RATINGS (T_A = 25 °C unless otherwise noted)

Characteristic	Symbol	Value	Unit
Peak Power Dissipation (Note 1)	P _{PK}	20	W
Steady State Power - 1 Diode (Note 2)	P _D	380	mW
Thermal Resistance, Junction-to-Ambient Above 25 °C, Derate	$R_{\theta JA}$	327 3.05	°C/W mW/°C
Maximum Junction Temperature	T _{Jmax}	150	°C
Operating Junction and Storage Temperature Range	T _J T _{stg}	–55 to +150	°C
Lead Solder Temperature (10 seconds duration)	T_L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Non-repetitive current per Figure 5.
- Only 1 diode under power. For all 4 diodes under power, P_D will be 25%. Mounted on FR-4 board with min pad.

See Application Note <u>AND8308/D</u> for further description of survivability specs.

SCALE 4:

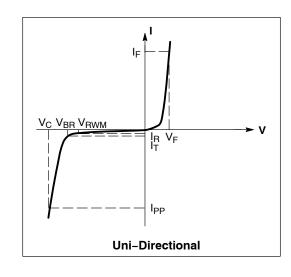
SOT-553 CASE 463B PLASTIC

MARKING DIAGRAM

xx = Device Code
M = Date Code*
= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION


See detailed ordering, marking, and shipping information on page 5 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 5.

ELECTRICAL CHARACTERISTICS

(T_A = 25 °C unless otherwise noted)

	<u>.</u>
Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ IPP
V_{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V_{BR}	Breakdown Voltage @ I _T
Ι _Τ	Test Current
ΘV_{BR}	Maximum Temperature Coefficient of V _{BR}
I _F	Forward Current
V _F	Forward Voltage @ I _F
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}
I_{ZK}	Reverse Current
Z_{ZK}	Maximum Zener Impedance @ I _{ZK}

ELECTRICAL CHARACTERISTICS (T_A = 25 °C)

			eakdov Voltage @ 1 m/		Cur	kage rent V _{RM}	ĬĘ	ax @ pp te 4)	Capac @ 0 \ (p	/p citance / Bias oF) te 3)		F)	v _c
Device	Device Marking	Min	Nom	Max	V _{RWM}	I _{RWM} (μΑ)	V _C (V)	I _{PP} (A)	Тур	Max	Тур	Max	Per IEC61000-4-2 (Note 5)
NZQA5V6AXV5	5P	5.3	5.6	5.9	3.0	1.0	13	1.6	13	17	7.0	11.5	Figures 1 and 2 (See Below)
NZQA6V8AXV5	6H	6.47	6.8	7.14	4.3	1.0	13	1.6	12	15	6.7	9.5	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 3. Capacitance of one diode at f = 1 MHz, $V_R = 0$ V, $T_A = 25$ °C
- 4. Surge current waveform per Figure 5.
- 5. For test procedure see Figures 3 and 4 and Application Note AND8307/D.

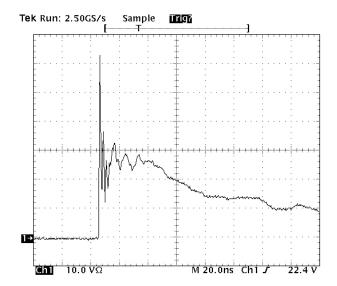


Figure 1. ESD Clamping Voltage Screenshot Positive 8 kV Contact per IEC61000-4-2

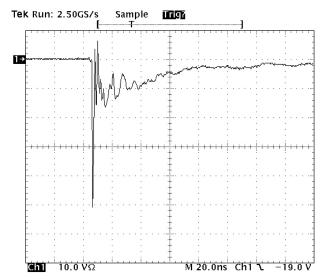


Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000-4-2

See Application Note <u>AND8308/D</u> for detailed explanations of data sheet parameters.

IEC 61000-4-2 Spec.

Level	Test Voltage (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

Figure 3. IEC61000-4-2 Spec

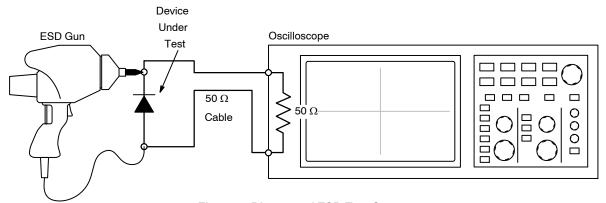


Figure 4. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D – Interpretation of Data Sheet Parameters for ESD Devices.

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger

systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. **onsemi** has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the data sheets for all ESD protection diodes. For more information on how **onsemi** creates these screenshots and how to interpret them please refer to AND8307/D.

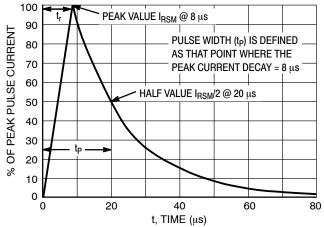


Figure 5. 8 x 20 µs Pulse Waveform

TYPICAL ELECTRICAL CHARACTERISTICS - NZQA6V8AXV5

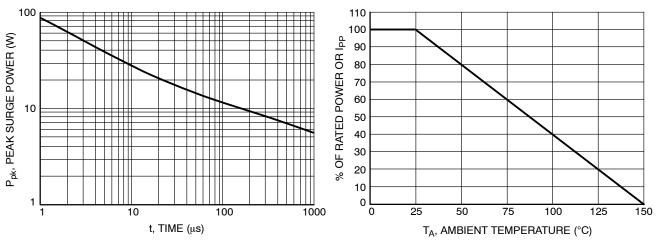


Figure 6. Pulse Width

Figure 7. Power Derating Curve

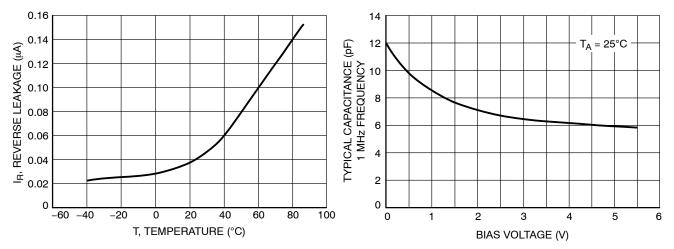


Figure 8. Reverse Leakage versus Temperature

Figure 9. Capacitance

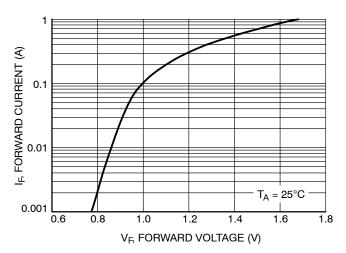


Figure 10. Forward Voltage

Table 1. ORDERING INFORMATION

Device	Package	Shipping [†]
NZQA5V6AXV5T1G	SOT-553*	4000 / Tape & Reel
NZQA6V8AXV5T1G		

DISCONTINUED (Note 6)

NZQA5V6AXV5T1	SOT-553*	4000 / Tape & Reel
NZQA6V8AXV5T1		
NZQA6V8AXV5T3		
NZQA6V8AXV5T3G		

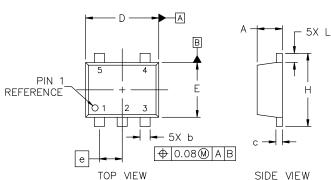
[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{6.} DISCONTINUED: These devices are not available. Please contact your onsemi representative for information. The most current information on these devices may be available on www.onsemi.com.

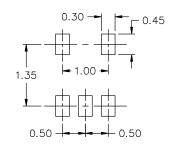
* This package is inherently Pb-Free.

REVISION HISTORY

Revision	Description of Changes	Date
9	Rebranded the Data Sheet to onsemi format. NZQA5V6AXV5T1, NZQA6V8AXV5T1, NZQA6V8AXV5T3, NZQA6V8AXV5T3G OPNs Marked as Discontinued.	09/16/2025


This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

SOT-553-5 1.60x1.20x0.55, 0.50P CASE 463B ISSUE D


DATE 21 FEB 2024

NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
 - ALL DIMENSION ARE IN MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

DIM	MILLIMETERS				
DIIVI	MIN.	NOM.	MAX.		
А	0.50	0.55	0.60		
b	0.17	0.22	0.27		
С	0.08	0.13	0.18		
D	1.55	1.60	1.65		
Е	1.15	1.20	1.25		
е	0.50 BSC				
Н	1.55	1.60	1.65		
L	0.10	0.20	0.30		

RECOMMENDED MOUNTING FOOTPRINT*

* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 2: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4	STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1	STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2	STYLE 5: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR 5. CATHODE
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 1 5. COLLECTOR 2/BASE 1	STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	

DOCUMENT NUMBER:	98AON11127D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-553-5 1.60x1.20x0.55	5, 0.50P	PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales