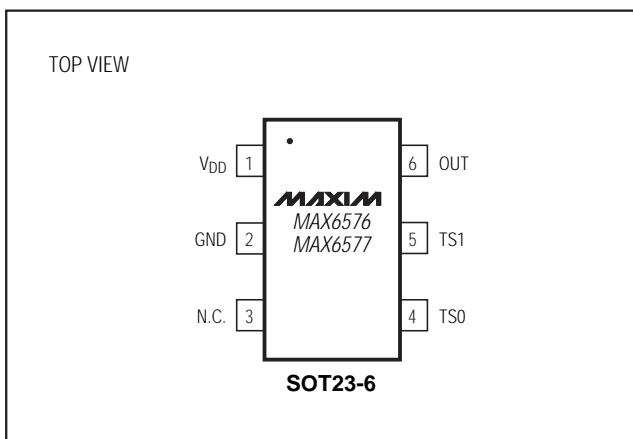


**MAXIM**

# SOT Temperature Sensors with Period/Frequency Output

## General Description


The MAX6576/MAX6577 are low-cost, low-current temperature sensors with a single-wire output. The MAX6576 converts the ambient temperature into a square wave with a period proportional to absolute temperature (°K). The MAX6577 converts the ambient temperature into a square wave with a frequency proportional to absolute temperature. The MAX6576 offers accuracy of  $\pm 3^\circ\text{C}$  at  $+25^\circ\text{C}$ ,  $\pm 4.5^\circ\text{C}$  at  $+85^\circ\text{C}$ , and  $\pm 5^\circ\text{C}$  at  $+125^\circ\text{C}$ . The MAX6577 offers accuracy of  $\pm 3^\circ\text{C}$  at  $+25^\circ\text{C}$ ,  $\pm 3.5^\circ\text{C}$  at  $+85^\circ\text{C}$ , and  $\pm 4.5^\circ\text{C}$  at  $+125^\circ\text{C}$ .

Both devices feature a single-wire output that minimizes the number of pins necessary to interface with a microprocessor. The period/frequency range of the output square wave can be selected by hard-wiring the two time-select pins (TS0, TS1) to either V<sub>DD</sub> or GND. The MAX6576/MAX6577 are available in space-saving 6-pin SOT23 packages.

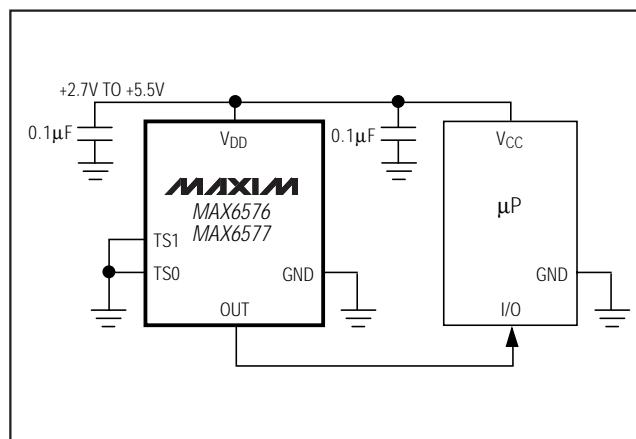
## Applications

- Critical µP and µC Temperature Monitoring
- Portable Battery-Powered Equipment
- Cell Phones
- Battery Packs
- Hard Drives/Tape Drives
- Networking and Telecom Equipment
- Medical Equipment
- Automotive

## Pin Configuration



## Features


- ♦ Simple Single-Wire Output
- ♦ Two Output Types Available
  - Temperature to Period (µs) (MAX6576)
  - Temperature to Frequency (Hz) (MAX6577)
- ♦  $\pm 0.8^\circ\text{C}$  Accuracy at  $+25^\circ\text{C}$  ( $\pm 3^\circ\text{C}$  max)
- ♦ No External Components
- ♦ Operates from  $+2.7\text{V}$  to  $+5.5\text{V}$  Supply Voltage
- ♦ Low  $140\mu\text{A}$  Typical Supply Current
- ♦ Standard Operating Temperature Range:  $-40^\circ\text{C}$  to  $+125^\circ\text{C}$
- ♦ Small 6-Pin SOT23 Package

MAX6576/MAX6577

## Ordering Information

| PART              | TEMP. RANGE                                 | PIN-PACKAGE | SOT TOP MARK |
|-------------------|---------------------------------------------|-------------|--------------|
| <b>MAX6576ZUT</b> | $-40^\circ\text{C}$ to $+125^\circ\text{C}$ | 6 SOT23     | AABI         |
| <b>MAX6577ZUT</b> | $-40^\circ\text{C}$ to $+125^\circ\text{C}$ | 6 SOT23     | AABJ         |

## Typical Operating Circuit



**MAXIM**

Maxim Integrated Products 1

For free samples & the latest literature: <http://www.maxim-ic.com>, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.

# SOT Temperature Sensors with Period/Frequency Output

## ABSOLUTE MAXIMUM RATINGS

|                                                            |                             |
|------------------------------------------------------------|-----------------------------|
| Terminal Voltage (with respect to GND)                     |                             |
| $V_{DD}$                                                   | -0.3V to +6V                |
| TS1, TSO, OUT                                              | -0.3V to ( $V_{DD}$ + 0.3V) |
| Input/Output Current, All Pins                             |                             |
| Continuous Power Dissipation ( $T_A = +70^\circ\text{C}$ ) | $\pm 20\text{mA}$           |
| 6-pin SOT23 (derate 7.10mW/°C above $+70^\circ\text{C}$ )  | 571mW                       |

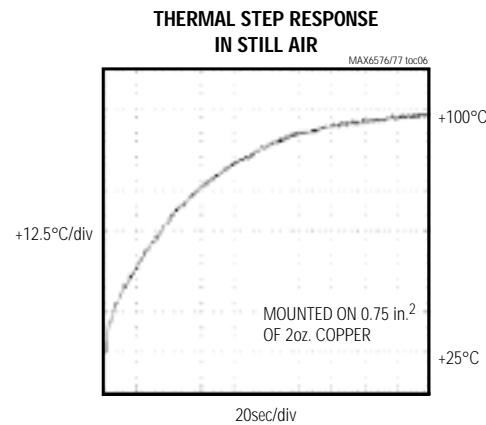
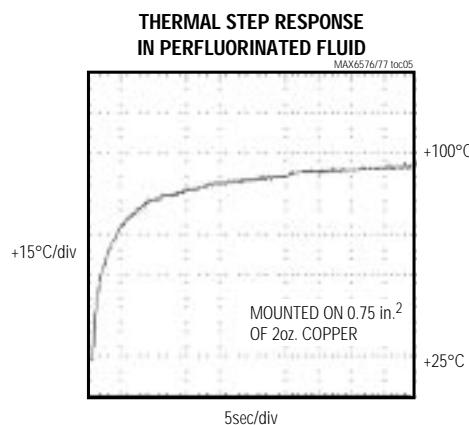
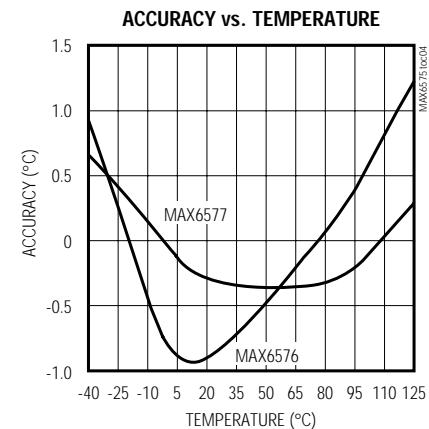
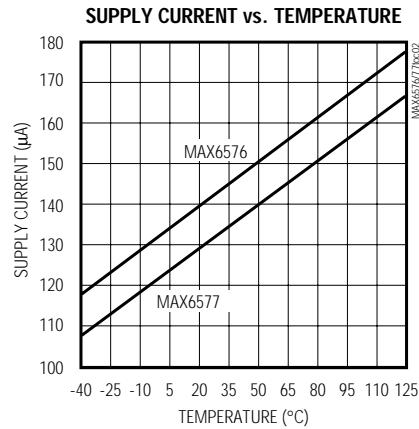
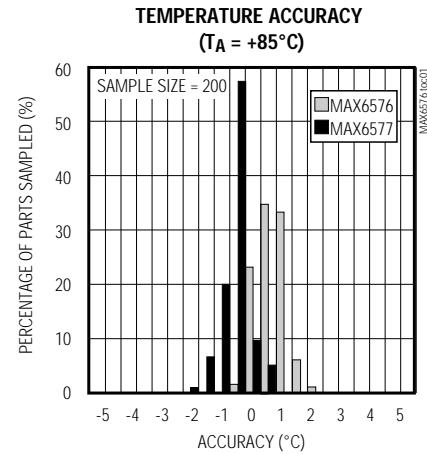
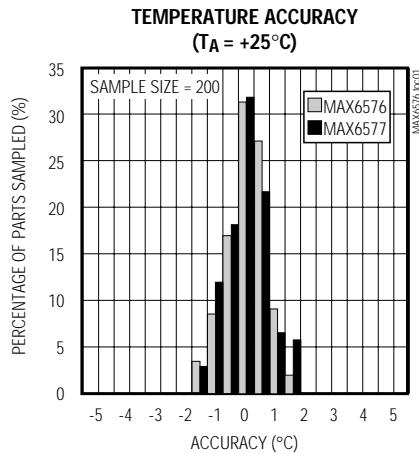
|                                     |                 |
|-------------------------------------|-----------------|
| Operating Temperature Range         | -40°C to +125°C |
| Storage Temperature Range           | -65°C to +150°C |
| Lead Temperature (soldering, 10sec) | +300°C          |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

( $V_{DD} = +2.7\text{V}$  to  $+5.5\text{V}$ ,  $T_A = -40^\circ\text{C}$  to  $+125^\circ\text{C}$ , unless otherwise noted. Typical values are specified at  $T_A = +25^\circ\text{C}$  and  $V_{DD} = +5\text{V}$ , unless otherwise noted.)

| PARAMETER                         | SYMBOL          | CONDITIONS                                          | MIN                                               | TYP  | MAX       | UNITS         |
|-----------------------------------|-----------------|-----------------------------------------------------|---------------------------------------------------|------|-----------|---------------|
| $V_{DD}$ Range                    | $V_{DD}$        |                                                     | 2.7                                               | 5.5  |           | V             |
| Supply Current                    | $I_{DD}$        | $V_{DD} = 5.5\text{V}$                              | $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$  | 140  | 250       | $\mu\text{A}$ |
|                                   |                 |                                                     | $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$ |      | 400       |               |
| Temperature Sensor Error (Note 1) | MAX6576         |                                                     | $T_A = -20^\circ\text{C}$                         | -7.5 | $\pm 1.1$ | +7.5          |
|                                   |                 |                                                     | $T_A = 0^\circ\text{C}$                           | -5.5 | $\pm 0.9$ | +5.5          |
|                                   |                 |                                                     | $T_A = +25^\circ\text{C}$                         | -3.0 | $\pm 0.8$ | +3.0          |
|                                   |                 |                                                     | $T_A = +85^\circ\text{C}$                         | -4.5 | $\pm 0.5$ | +4.5          |
|                                   |                 |                                                     | $T_A = +125^\circ\text{C}$                        | -5.0 | $\pm 0.5$ | +5.0          |
|                                   | MAX6577         |                                                     | $T_A = -20^\circ\text{C}$                         | -7.5 | $\pm 1.1$ | +7.5          |
|                                   |                 |                                                     | $T_A = 0^\circ\text{C}$                           | -6.5 | $\pm 0.9$ | +6.5          |
|                                   |                 |                                                     | $T_A = +25^\circ\text{C}$                         | -3.0 | $\pm 0.8$ | +3.0          |
|                                   |                 |                                                     | $T_A = +85^\circ\text{C}$                         | -3.5 | $\pm 0.5$ | +3.5          |
|                                   |                 |                                                     | $T_A = +125^\circ\text{C}$                        | -4.5 | $\pm 0.5$ | +4.5          |
| Output Clock Period               | tout            | MAX6576,<br>$T$ (temp) in °K,<br>Figure 1           | $V_{TS1} = \text{GND}$ , $V_{TS0} = \text{GND}$   | 10T  |           | $\mu\text{s}$ |
|                                   |                 |                                                     | $V_{TS1} = \text{GND}$ , $V_{TS0} = V_{DD}$       | 40T  |           |               |
|                                   |                 |                                                     | $V_{TS1} = V_{DD}$ , $V_{TS0} = \text{GND}$       | 160T |           |               |
|                                   |                 |                                                     | $V_{TS1} = V_{DD}$ , $V_{TS0} = V_{DD}$           | 640T |           |               |
| Output Clock Frequency            | fout            | MAX6577,<br>$T$ (temp) in °K,<br>Figure 2           | $V_{TS1} = \text{GND}$ , $V_{TS0} = \text{GND}$   | 4T   |           | Hz            |
|                                   |                 |                                                     | $V_{TS1} = \text{GND}$ , $V_{TS0} = V_{DD}$       | 1T   |           |               |
|                                   |                 |                                                     | $V_{TS1} = V_{DD}$ , $V_{TS0} = \text{GND}$       | T/4  |           |               |
|                                   |                 |                                                     | $V_{TS1} = V_{DD}$ , $V_{TS0} = V_{DD}$           | T/16 |           |               |
| OUT Duty Cycle (Note 2)           |                 |                                                     |                                                   | 0.5  |           |               |
| Time-Select Pin Logic Levels      | $V_{IL}$        |                                                     |                                                   | 0.8  |           | V             |
|                                   | $V_{IH}$        |                                                     |                                                   | 2.3  |           |               |
| OUT Voltage                       | V <sub>OL</sub> | $V_{DD} > 4.5\text{V}$ , $I_{SINK} = 3.2\text{mA}$  |                                                   | 0.4  |           | V             |
|                                   |                 |                                                     |                                                   | 0.3  |           |               |
|                                   | V <sub>OH</sub> | $V_{DD} > 4.5\text{V}$ , $I_{SRC} = 800\mu\text{A}$ | $V_{DD} - 1.5$                                    |      |           | V             |
|                                   |                 |                                                     | $0.8V_{DD}$                                       |      |           |               |







**Note 1:** See the Temperature Accuracy histograms in the *Typical Operating Characteristics*.

**Note 2:** The output duty cycle is guaranteed to be 50% by an internal flip-flop.

# SOT Temperature Sensors with Period/Frequency Output

## Typical Operating Characteristics

( $V_{DD} = +5V$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)



# SOT Temperature Sensors with Period/Frequency Output

## Pin Description

| PIN  | NAME            | FUNCTION                                                                                                                                       |
|------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | V <sub>DD</sub> | Positive Supply Voltage                                                                                                                        |
| 2    | GND             | Ground                                                                                                                                         |
| 3    | N.C.            | No Connection. Connect pin to GND or leave open.                                                                                               |
| 4, 5 | TS1, TS0        | Time-Select Pins. TS1 and TS0 set the temperature scale factor by connecting TS1 and TS0 to either V <sub>DD</sub> or GND. See Tables 1 and 2. |
| 6    | OUT             | Square-Wave Output with a Clock Period Proportional to Absolute Temperature (°K) (MAX6576)                                                     |
|      |                 | Square-Wave Output with a Clock Frequency Proportional to Absolute Temperature (°K) (MAX6577)                                                  |

**Table 1. MAX6576 Time-Select Pin Configuration**

| TS1             | TS0             | SCALAR MULTIPLIER (μs/°K) |
|-----------------|-----------------|---------------------------|
| GND             | GND             | 10                        |
| GND             | V <sub>DD</sub> | 40                        |
| V <sub>DD</sub> | GND             | 160                       |
| V <sub>DD</sub> | V <sub>DD</sub> | 640                       |

**Note:** The temperature, in °C, may be calculated as follows:

$$T(^\circ\text{C}) = \frac{\text{period}(\mu\text{s})}{\text{scalar multiplier}(\mu\text{s/}^\circ\text{K})} - 273.15^\circ\text{K}$$

**Table 2. MAX6577 Time-Select Pin Configuration**

| TS1             | TS0             | SCALAR MULTIPLIER (Hz/°K) |
|-----------------|-----------------|---------------------------|
| GND             | GND             | 4                         |
| GND             | V <sub>DD</sub> | 1                         |
| V <sub>DD</sub> | GND             | 1/4                       |
| V <sub>DD</sub> | V <sub>DD</sub> | 1/16                      |

**Note:** The temperature, in °C, may be calculated as follows:

$$T(^\circ\text{C}) = \frac{\text{frequency}(\text{Hz})}{\text{scalar multiplier}(\text{Hz/}^\circ\text{K})} - 273.15^\circ\text{K}$$

## Detailed Description

The MAX6576/MAX6577 low-cost, low-current (140μA typ) temperature sensors are ideal for interfacing with microcontrollers (μCs) or microprocessors (μPs). The MAX6576 converts ambient temperature into a 50% duty-cycle square wave with a period proportional to absolute temperature. The MAX6577 converts ambient temperature into a 50% duty-cycle square wave with a frequency proportional to absolute temperature. Time-select pins (TS1, TS0) permit the internal temperature-controlled oscillator (TCO) to be scaled by four preset multipliers. The MAX6576/MAX6577 feature a single-wire interface to minimize the number of port pins necessary for interfacing with a μP.

### MAX6576 Characteristics

The MAX6576 temperature sensor converts temperature to period. The output of the device is a free-running, 50% duty-cycle square wave with a period that

is proportional to the absolute temperature (°K) of the device (Figure 1). The MAX6576 has a push/pull CMOS output with sharp edges. The speed of the output square wave can be selected by hard-wiring TS1 and TS0 as shown in Table 1. One of four scaled output periods can be selected using TS1 and TS0.

### MAX6577 Characteristics

The MAX6577 temperature sensor converts temperature to frequency. The output of the device is a free-running, 50% duty-cycle square wave with a frequency that is proportional to the absolute temperature (°K) of the device (Figure 2). The MAX6577 has a push/pull CMOS output with sharp edges. The speed of the output square wave can be selected by hard-wiring TS1 and TS0 as shown in Table 2. One of four scaled output frequencies can be selected using TS1 and TS0.

# SOT Temperature Sensors with Period/Frequency Output

MAX6576/MAX6577

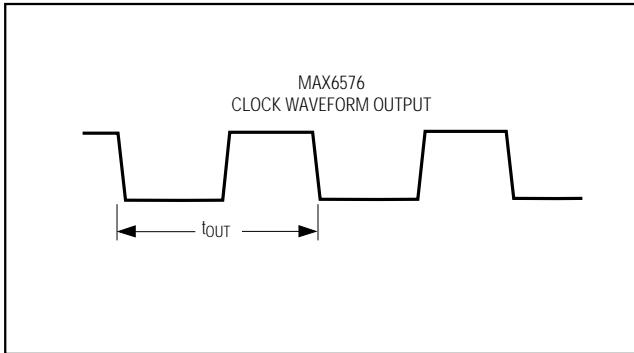



Figure 1. MAX6576 Timing Diagram

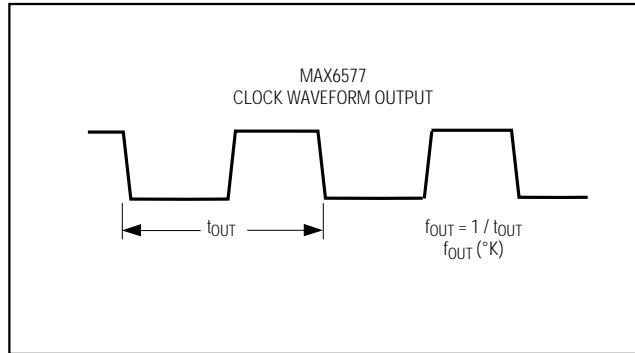



Figure 2. MAX6577 Timing Diagram

## Applications Information

### Quick-Look Circuits

Figure 3 shows a quick-look application circuit for the MAX6576 using a universal counter measuring period. TS1 and TS0 are both tied to ground to select a scalar multiplier of  $10\mu\text{s}/^{\circ}\text{K}$ . The MAX6576 converts the ambient temperature into a square wave with a period that is 10 times the absolute temperature of the device in  $\mu\text{s}$ . At room temperature, the universal counter will display approximately 2980 $\mu\text{s}$ .

Figure 4 shows a quick-look application circuit for the MAX6577 using a universal counter measuring frequency. TS1 is tied to ground and TS0 is tied to  $V_{DD}$  to select a scalar multiplier of  $1\text{Hz}/^{\circ}\text{K}$ . The MAX6577 converts the ambient temperature into a square wave with a frequency that is equal to the absolute temperature of the device in Hertz. At room temperature, the universal counter will display approximately 298Hz.

### Interfacing with a Microcontroller

Figure 5 shows the MAX6577 interfaced with an 8051  $\mu\text{C}$ . In this example, TS1 is tied to ground and TS0 is

tied to  $V_{DD}$  to select a scalar multiplier of  $1\text{Hz}/^{\circ}\text{K}$ . The MAX6577 converts the ambient temperature into a square wave with a frequency that is equal to the absolute temperature of the device in Hertz. The 8051  $\mu\text{C}$  reads the frequency of the square-wave output of the MAX6577 into Timer 0 and displays the temperature as degrees Celsius in binary on Port 1. Listing 1 provides the code for this application. The interface is similar for the MAX6576, except the  $\mu\text{C}$  will perform a period measurement.

### Noise Considerations

The accuracy of the MAX6576/MAX6577 is susceptible to noise generated both internally and externally. The effects of external noise can be minimized by placing a  $0.1\mu\text{F}$  ceramic bypass capacitor close to the supply pin of the devices. Internal noise is inherent in the operation of the devices and is detailed in Table 3. Internal averaging minimizes the effect of this noise when using longer scalar timeout multipliers. The effects of this noise are included in the overall accuracy of the devices as specified in the *Electrical Characteristics*.

## SOT Temperature Sensors with Period/Frequency Output



Figure 3. MAX6576 Quick-Look Circuit

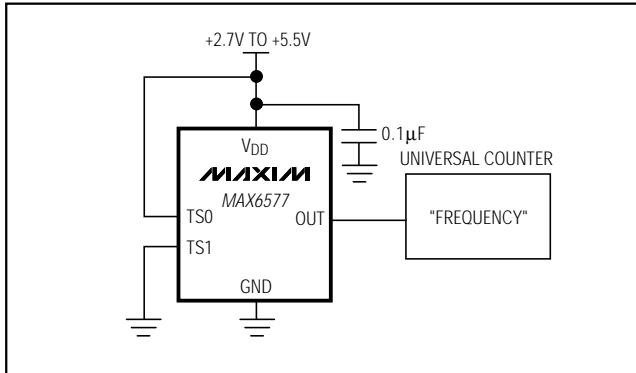



Figure 4. MAX6577 Quick-Look Circuit

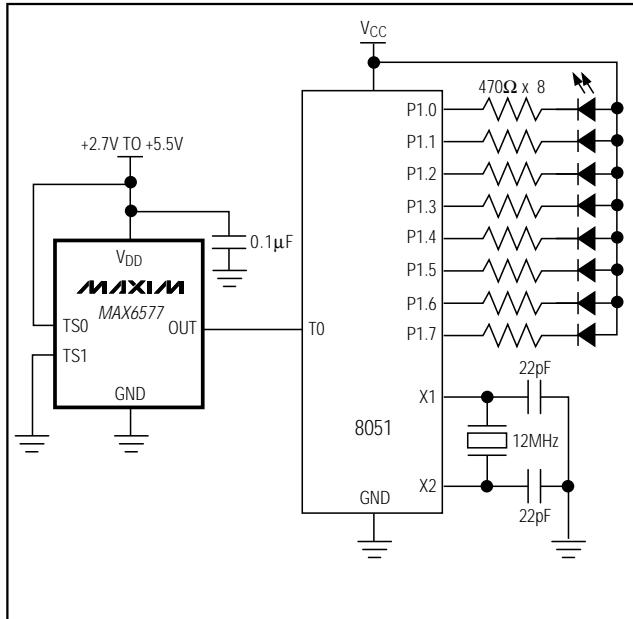



Figure 5. Interfacing with a  $\mu$ C

Chip Information  
TRANSISTOR COUNT: 302

Table 3. Typical Peak Noise Amplitude

| PARAMETER                       | MAX6576    |            |            |             | MAX6577    |             |             |             |
|---------------------------------|------------|------------|------------|-------------|------------|-------------|-------------|-------------|
|                                 | 10         | 40         | 160        | 640         | 4          | 1           | 1/4         | 1/16        |
| Scalar Multiplier               |            |            |            |             |            |             |             |             |
| Noise Amplitude ( $^{\circ}$ C) | $\pm 0.38$ | $\pm 0.17$ | $\pm 0.11$ | $\pm 0.094$ | $\pm 0.13$ | $\pm 0.066$ | $\pm 0.040$ | $\pm 0.028$ |

# SOT Temperature Sensors with Period/Frequency Output

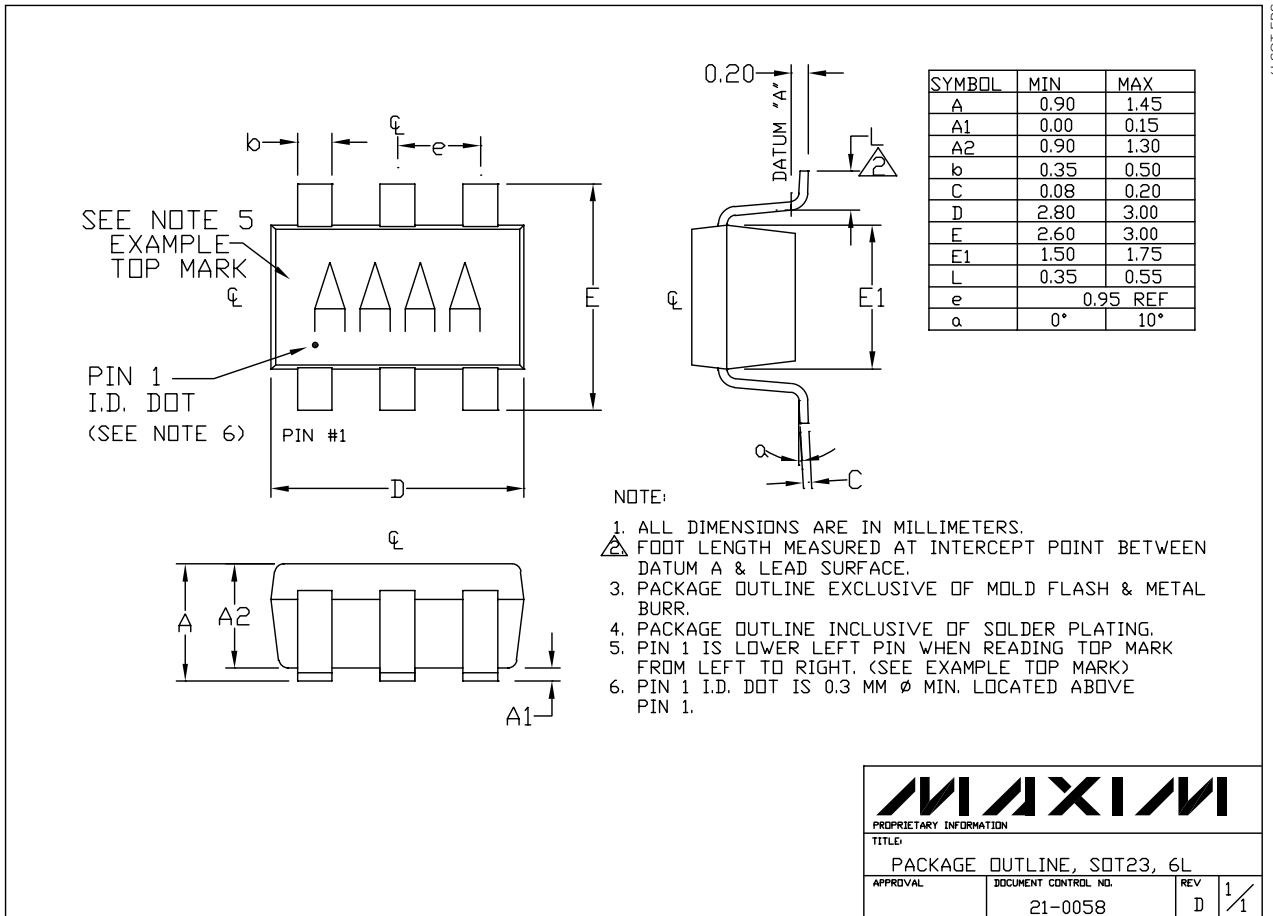
## Listing 1. 8051 Code Example

```
;*****  
; Demonstration and test code for MAX6577 Temp to Frequency  
; Takes in temperature values from a sensor into timer 0  
; and displays temp as degrees C in binary on port 1.  
; example: room temp= 21 C, display 21 or 00010101 on P1  
;*****  
;EQUATES  
TEMPH EQU 10H ;TEMPERATURE  
TEMPL EQU 11H  
TICKS EQU 12H ;number of 50 ms- counts to 1 second  
  
NEWT BIT 00h ;new temp flag- bit address in 20h  
;MAIN  
        ORG 0 ;note one isr's used- timer overflow  
        AJMP BEGIN ;jump over isr's  
        ORG 1BH ;TF1 ISR  
TICK:    PUSH ACC ;stash acc  
        PUSH PSW ;stash psw  
; reload timer- 50 ms  
        CLR C ;clear for subb  
        MOV A,#0B0H ;latency fix  
        SUBB A,TL1 ;subtract timer low latency < 20  
        MOV TL1,A ;50 ms reload value- low  
        MOV TH1,#03CH ;50 ms reload value- high  
        DJNZ TICKS,NORL ;jump over counter code  
        MOV TICKS,#20 ;reload ticks  
;read counter to temp and temp high if 1 second  
GTAG:    MOV A,TH0 ;get timer high  
        MOV B,TL0 ;grab timer low  
        CJNE A,TH0,GTAG ;get again if rollover  
        MOV TEMPB,A ;stash high  
        MOV TEMPB,B ;stash low  
        MOV TH0,#0 ;zero counter  
        MOV TL0,#0 ;zero counter  
        SETB NEWT ;set data ready flag  
NORL:    POP PSW  
        POP ACC  
        RETI ;done  
  
BEGIN:    MOV SP,#70H ;set sp at 70H  
;setup timers to do timing- t0 input, t1 timer 50 ms  
        MOV TMOD,#15H ;t1 timer- t0 counter  
        MOV TH1,#03CH ;50 ms reload value- high  
        MOV TL1,#0B0H ;50 ms reload value- low  
        MOV TL0,#0 ;reset counter low  
        MOV TH0,#0 ;reset counter high  
        MOV TCON,#50H ;start both timers  
        MOV TICKS,#20 ;20 x 50 ms = 1 sec  
        MOV IE,#88H ;enable t1 ints and global  
;  
;inits done- measure  
DOTMP:    CLR NEWT ;clear data flag  
WAITT:    JNB NEWT,WAITT ;wait for data  
  
; temp is stored- display bin value of selected on P1
```

# SOT Temperature Sensors with Period/Frequency Output

## Listing 1. 8051 Code Example (continued)

```


; temp is in kelvin- subtract 273
    MOV  A,TEMP1          ;get temp (K)
    CLR  C                ;ready for subb
    SUBB A,#011H          ;sub low byte of 273
    MOV  TEMP1,A          ;stash back
    MOV  A,TEMPH           ;get high byte for completeness
    SUBB A,#01H            ;sub high byte and prop carry
    MOV  TEMPH,A          ;stash

;display it
    MOV  A,TEMP1          ;get temp (C)
    CPL  A                ;compliment for led's- active low
    MOV  P1,A              ;output it
    JMP  DOTMP

    END

```

## Package Information



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600