

RDS / RBDS decoder

BU1920 / BU1920F / BU1920FS

The BU1920, BU1920F and BU1920FS are RDS / RBDS decoders that employ a digital PLL. It has a built-in anti-aliasing filter and an eight-stage BPF (switched-capacitor filter). Linear CMOS circuitry is used for low current dissipation.

● Applications

RDS/RBDS compatible FM receivers for Europe and North America, car stereo systems, home stereo systems and FM pagers.

● Features

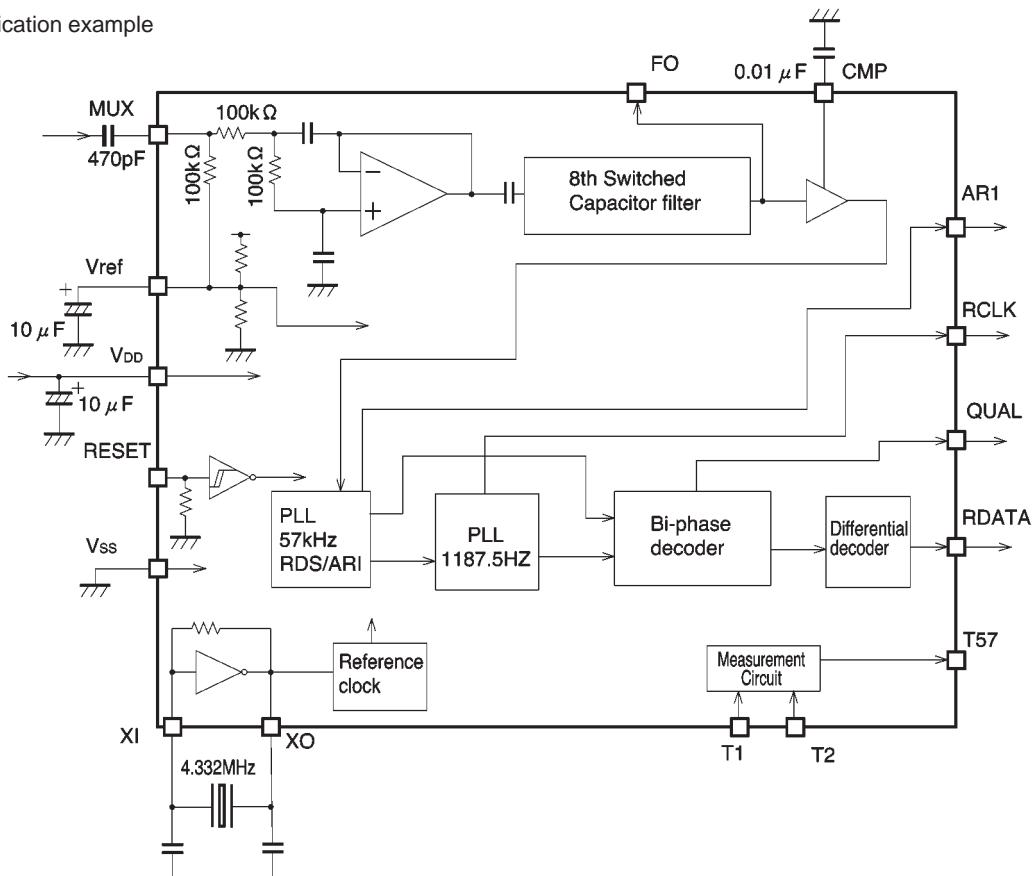
1) Low current dissipation.	4) DSB demodulation (digital PLL).
2) Two-stage anti-aliasing filter.	5) ARI signal discrimination.
3) 57kHz bandpass filter.	6) Quality indication output for demodulated data.

● Absolute maximum ratings (Ta = 25°C)

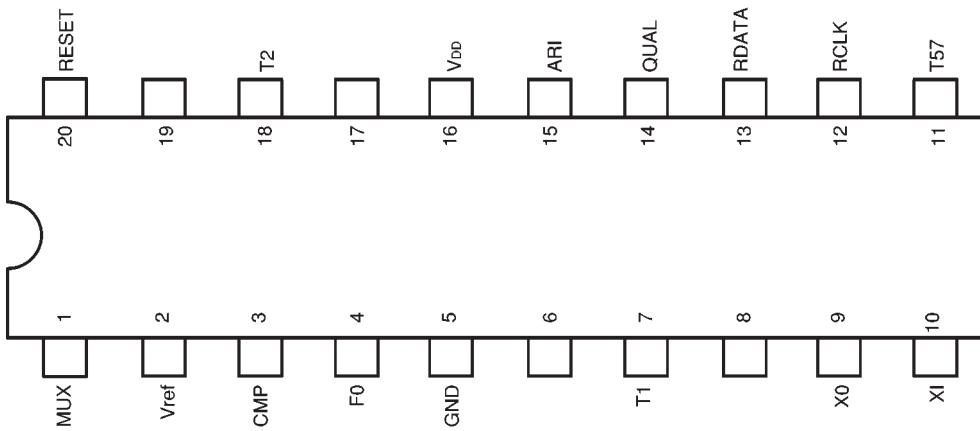
Parameter	Symbol	Limits	Unit
Power supply voltage	V _{DD}	-0.3~+7.0	V
Maximum input voltage	V _{MAX.}	-0.3~V _{DD} +0.3* ¹	V
Maximum output current	I _{MAX.}	±4.0* ²	mA
Power dissipation	P _d	350* ³	mW
Operating temperature	T _{opr}	-40~+85	°C
Storage temperature	T _{stg}	-55~+125	°C

*1 All input / output pins.

*2 All output pins.


*3 Reduced by 3.5mW for each increase in Ta of 1°C over 25°C.

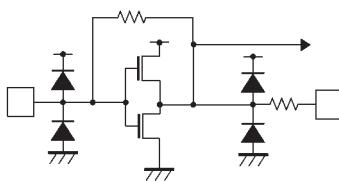
● Recommended operating conditions (Ta = 25°C)


Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	V _{DD}	4.5	—	5.5	V

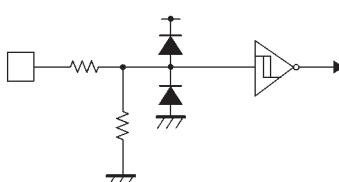
● Block diagram

Application example

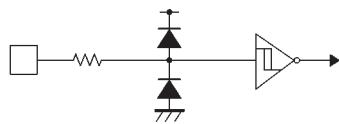
Pin assignments



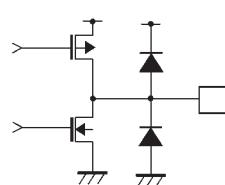
●Pin descriptions

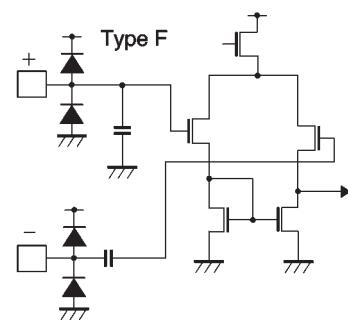

Pin No.	Symbol	Pin name	Function	Input/output type
1	MUX	Input	Composite signal input (refer to the circuit example)	Type F
2	Vref	Reference voltage	1/2 VDD1 (refer to the circuit example)	Type G
3	CMP	Comparator	Refer to the circuit example	Type H
4	FO	Output	Open, for monitoring the filter output	Type I
5	GND	—	—	—
6	(N.C.)	—	Not connected (floating)	—
7	T1	Test input	Open or connected to GND	Type B
8	(N.C.)	—	Not connected (floating)	—
9	XO	Crystal oscillator	Connects to 4.332MHz oscillator (refer to the circuit example)	Type A
10	XI			
11	T57	Test output	Open	Type E
12	RCLK	Demodulator clock	1187.5kHz clock (refer to the timing diagram)	
13	RDATA	Demodulator data	Refer to the timing diagram	
14	QUAL	Demodulator quality	Good data: HI, bad data: LO	
15	ARI	ARI signal discrimination	ARI + RDS: HI, RDS: LO, no signal: unstable	
16	V _{DD}	Power supply	4.5~5.5V	—
17	(N.C.)	—	Not connected (floating)	—
18	T2	Test input	Open or connected to GND	Type B
19	(N.C.)	—	Not connected (floating)	—
20	RESET	Reset	HI: reset, open/LO: operating	Type B

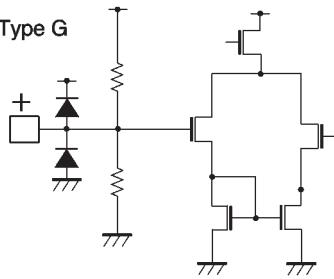
●Input/output circuits

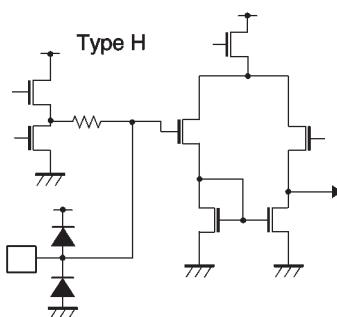

Type A

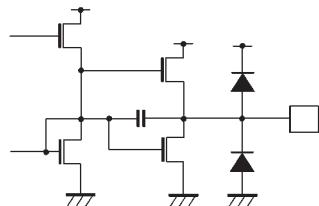
Type B


Type C


Type D


Type E


Type F

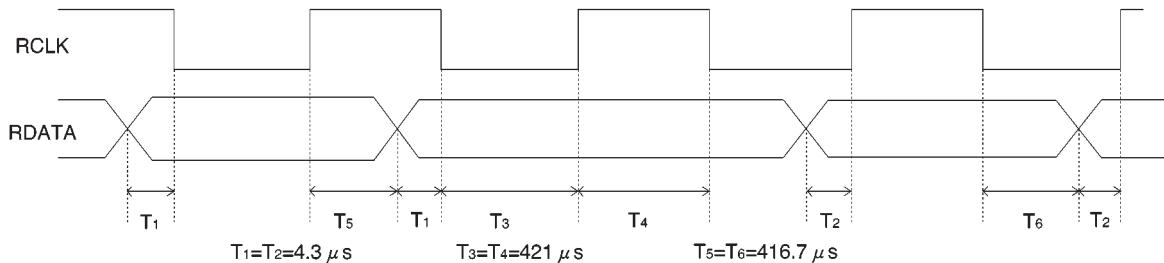

Type G

Type H

Type I

●Electrical characteristics (unless otherwise noted, $T_a = 25^\circ\text{C}$, $V_{DD} = 5.0\text{V}$ and $\text{GND} = 0.0\text{V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Operating power supply current	I_{DD}	—	4.5	7.0	mA	I_{DD}
Reset current	I_{DD}	—	2.0	4.0	mA	I_{DD}
Reference voltage	V_{ref}	—	$1/2V_{DD1}$	—	V	Pin 2
Input current 1	I_{IN1}	—	—	1.0	μA	MUX $V_{IN}=V_{DD}$
Output current 1	I_{OUT1}	—	—	1.0	μA	MUX $V_{IN}=V_{DD}$
Input current 2	I_{IN2}	—	—	1.0	μA	RESET XI $V_{IN}=V_{DD}$
Output current 2	I_{OUT2}	—	—	1.0	μA	RESET XI $V_{IN}=V_{DD}$
Output high level voltage 1	V_{OH1}	V_{DD2} —1.0	V_{DD2} —0.3	—	V	RCLK RDATA QUAL ARI $I_o=-1.0\text{mA}$
Output low level voltage 1	V_{OL1}	—	0.2	1.0	V	RCLK RDATA QUAL ARI $I_o=1.0\text{mA}$
Input high level voltage	V_{IH}	$0.8V_{DD2}$	—	—	—	RESET
Input low level voltage	V_{IL}	—	—	$0.2V_{DD2}$	V	RESET


Filter block

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Center frequency	F_C	56.5	57.0	57.5	kHz	
Gain	G_A	18	20	22	dB	$F=57.0\text{kHz}$
Attenuation 1	$ATT1$	18	22	—	dB	$57\text{kHz}\pm4\text{kHz}$
Attenuation 2	$ATT2$	50	80	—	dB	38kHz
Attenuation 3	$ATT3$	35	50	—	dB	67kHz
S / N ratio	SN	30	40	—	dB	57kHz $V_{IN}=3\text{mV}_{\text{rms}}$
Maximum input level	V_{MAX1}	—	—	500	mV_{rms}	

Demodulator block

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
RDS detector sensitivity	$SRDS$	—	0.5	1.0	mV_{rms}	
RDS maximum input level	$MRDS$	—	—	300	mV_{rms}	
ARI detector sensitivity	$SARI$	—	1.5	3.0	mV_{rms}	
ARI maximum input level	$MARI$	—	—	500	mV_{rms}	
Lockup time (RDS)	TL	—	100	200	ms	
Data rate	$DRATE$	—	1187.5	—	Hz	
Clock transient vs. data	CT	—	4.3	—	μs	

● Output data timing

The clock (RCLK) frequency is 1187.5Hz. Depending on the state of the internal PLL clock, the data (RDATA) is replaced in synchronous with either the rising or falling edge of the clock. To read the data, you may

choose either the rising or falling edge of the clock as the reference. The data is valid for 416.7 μ s, after the reference clock edge.

QUAL pin operation: Indicates the quality of the demodulated data.

- (1) Good data : HI
- (2) Poor data : LO

ARI pin operation: ARI/RDS discrimination.

- (1) ARI : LO
- (2) RDS + ARI : LO
- (3) RDS : HI
- (4) No signal : unstable

● Electrical characteristics curve

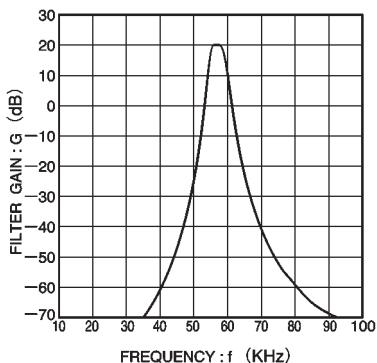


Fig. 1 Bandpass filter characteristics

