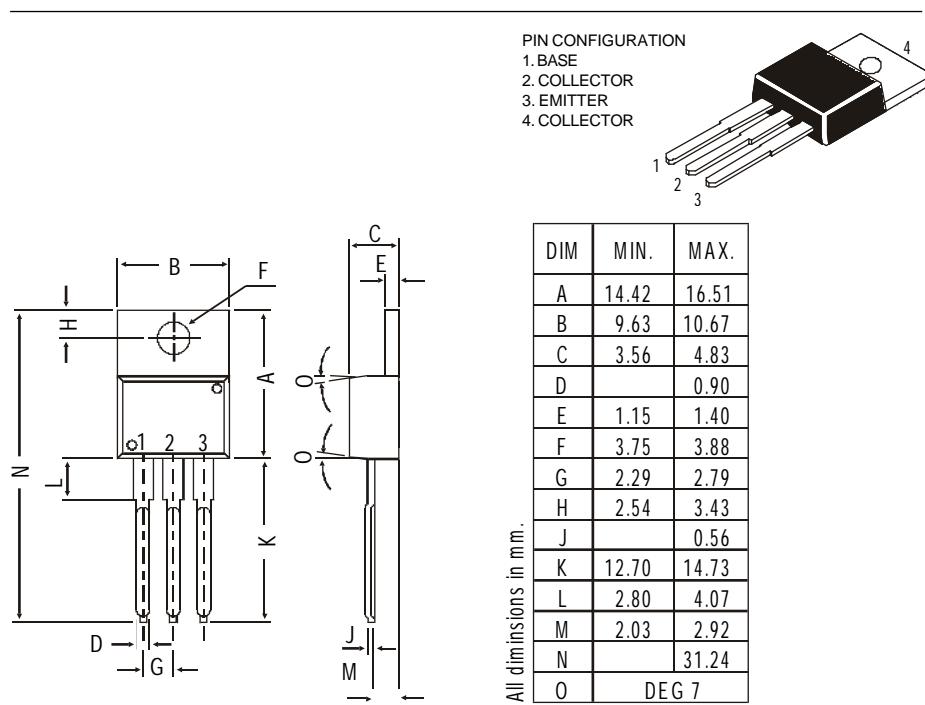


TO-220 Plastic Package

**BD533, BD535, BD537
BD534, BD536, BD538**


BD533, 535, 537

NPN PLASTIC POWER TRANSISTORS

BD534, 536, 538

PNP PLASTIC POWER TRANSISTORS

Medium Power Linear and Switching Applications

ABSOLUTE MAXIMUM RATINGS

		533	535	537		
		534	536	538		
Collector-base voltage (open emitter)	V_{CBO}	max.	45	60	80	V
Collector-emitter voltage (open base)	V_{CEO}	max.	45	60	80	V
Collector and emitter current	I_C, I_E	max.		8.0		A
Total power dissipation up to $T_C = 25^\circ C$	P_{tot}	max.		50		W
Junction temperature	T_j	max.		150		$^\circ C$
Collector-emitter saturation voltage $I_C = 2 A; I_B = 0.2 A$	V_{CESat}	max.		0.8		V
D.C. current gain $I_C = 10 mA; V_{CE} = 5 V$	h_{FE}	min.	20	20	15	

RATINGS (at $T_A=25^\circ C$ unless otherwise specified)

	533	535	537	
	534	536	538	

Collector-base voltage (open emitter)	V_{CBO}	max.	45	60	80	V
Collector-emitter voltage (open base)	V_{CEO}	max.	45	60	80	V
Collector-emitter voltage ($V_{BE} = 0$)	V_{CES}	max.	45	60	80	V
Emitter-base voltage (open collector)	V_{EBO}	max.		5.0		V
Collector and emitter current	I_C, I_E	max.		8.0		A

**BD533, BD535, BD537
BD534, BD536, BD538**

<i>Base current</i>	I_B	<i>max.</i>	1.0	A
<i>Total power dissipation up to $T_C = 25^\circ C$</i>	P_{tot}	<i>max.</i>	50	W
<i>Junction temperature</i>	T_j	<i>max.</i>	150	$^\circ C$
<i>Storage temperature</i>	T_{stg}		-65 to +150	$^\circ C$

THERMAL RESISTANCE

<i>From junction to case</i>	R_{thj-c}		2.5	$^\circ C/W$
<i>From junction to ambient</i>	R_{thj-a}		70	$^\circ C/W$

CHARACTERISTICS

$T_{amb} = 25^\circ C$ unless otherwise specified		533	535	537
		534	536	538

Collector cutoff current

$I_E = 0; V_{CB} = 45 V$	I_{CBO}	<i>max.</i>	100	-	-	μA
$I_E = 0; V_{CB} = 60 V$	I_{CBO}	<i>max.</i>	-	100	-	μA
$I_E = 0; V_{CB} = 80 V$	I_{CBO}	<i>max.</i>	-	-	100	μA
$V_{BE} = 0; V_{CE} = 45V$	I_{CES}	<i>max.</i>	100	-	-	μA
$V_{BE} = 0; V_{CE} = 60V$	I_{CES}	<i>max.</i>	-	100	-	μA
$V_{BE} = 0; V_{CE} = 80V$	I_{CES}	<i>max.</i>	-	-	100	μA

Emitter cut-off current

$I_C = 0; V_{EB} = 5 V$	I_{EBO}	<i>max.</i>	1.0		mA
-------------------------	-----------	-------------	-----	--	------

Breakdown voltages

$I_C = 100 mA; I_B = 0$	$V_{CEO(sus)}^*$	<i>min.</i>	45	60	80	V
$I_C = 1 mA; I_E = 0$	V_{CBO}	<i>min.</i>	45	60	100	V
$I_E = 1 mA; I_C = 0$	V_{EBO}	<i>min.</i>		5.0		V

Saturation voltages

$I_C = 2.0 A; I_B = 0.2 A$	V_{CEsat}^*	<i>max.</i>	0.8		V
$I_C = 6.0 A; I_B = 0.6 A$	V_{CEsat}^*	<i>typ.</i>	0.8		V

Base-emitter on voltage

$I_C = 2A; V_{CE} = 2V$	$V_{BE(on)}^*$	<i>max.</i>	1.5		V
-------------------------	----------------	-------------	-----	--	---

D.C. current gain

$I_C = 10mA; V_{CE} = 5V$	h_{FE}^*	<i>min.</i>	20	20	15
---------------------------	------------	-------------	----	----	----

$I_C = 500mA; V_{CE} = 2V$	h_{FE}^*	<i>min.</i>	40		
----------------------------	------------	-------------	----	--	--

$I_C = 2A; V_{CE} = 2V$	h_{FE}^*	<i>min.</i>	25	25	15
-------------------------	------------	-------------	----	----	----

Transition frequency

$I_C = 500 mA; V_{CE} = 1V$	f_T	<i>min.</i>	3.0		MHz
-----------------------------	-------	-------------	-----	--	-----

h_{FE} Groups:

$I_C = 2A; V_{CE} = 2V$	J	<i>min.</i>	30		
-------------------------	----------	-------------	-----------	--	--

<i>max.</i>	75			
-------------	----	--	--	--

$I_C = 3A; V_{CE} = 2V$		<i>min.</i>	15		
-------------------------	--	-------------	-----------	--	--

$I_C = 2A; V_{CE} = 2V$	K	<i>min.</i>	40		
-------------------------	----------	-------------	-----------	--	--

$I_C = 3A; V_{CE} = 2V$		<i>max.</i>	100		
-------------------------	--	-------------	------------	--	--

<i>min.</i>	20			
-------------	----	--	--	--

* Pulsed: pulse duration = 300 μs ; duty cycle = 1.5%.

Notes

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of
Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.
Telephone + 91-11-579 6150 Fax + 91-11-579 9569, 579 5290
e-mail sales@cdil.com www.cdil.com