

J108/J109/J110/MMBFJ108

N-Channel Switch

- · This device is designed for digital switching applications where very low on resistance is mandatory.
- Sourced from Process 58.

1. Drain 2. Source 3. Gate

1. Drain 2. Source 3. Gate

Absolute Maximum Ratings * T_A=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{DG}	Drain-Gate Voltage	25	V
V_{GS}	Gate-Source Voltage	-25	V
I _{GF}	Forward Gate Current	10	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 ~ +150	°C

^{*} These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

- These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Electrical Characteristics T_A=25°C unless otherwise noted

Symbol	Parameter	Test Condition	on	Min.	Max.	Units
Off Charac	teristics					
V _{(BR)GSS}	Gate-Source Breakdwon Voltage	$I_G = -10\mu A, V_{DS} = 0$		-25		V
I _{GSS}	Gate Reverse Current	$V_{GS} = -15V, V_{DS} = 0$			-3.0	nA
		$V_{GS} = -15V, V_{DS} = 0, T_A = 100^{\circ}C$			-200	nA
V _{GS} (off)	Gate-Source Cutoff Voltage	$V_{DS} = 15V, I_{D} = 10nA$	108	-3.0	-10	V
			109	-2.0	-6.0	V
			110	-0.5	-4.0	V
On Charact	teristics					
I _{DSS}	Zero-Gate Voltage Drain Current *	$V_{DS} = 15V, I_{GS} = 0$	108	80		mA
			109	40		mA
			110	10		mA
r _{DS} (on)	Drain-Source On Resistance	$V_{DS} \le 0.1V, V_{GS} = 0$	108		8.0	Ω
			109		12	Ω
			110		18	Ω
Small Sign	al Characteristics					
C _{da} (on)	Drain Gate & Source Gate On	$V_{DS} = 0$, $V_{GS} = 0$, $f = 1.0MHz$			85	pF
C _{sg} (off)	Capacitance					
C _{dg} (on)	Drain-Gate Off Capacitance	V _{DS} = 0, V _{GS} = -10, f = 1.0MHz			15	pF
C _{sq} (off)	Source-Gate Off Capacitance	$V_{DS} = 0$, $V_{GS} = -10$, $f = 1$.	0MHz		15	pF

* Pulse Test: Pulse Width ≤ 300μs, Duty Cycle ≤ 2.0%

Thermal Characteristics $\rm T_A=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ma	Lleito	
		J108 - 110	*MMBFJ108	Units
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W

^{*} Device mounted on FR-4 PCB 1.6" × 1.6" × 0.06"

Typical Characteristics

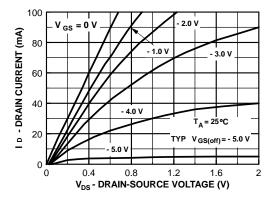


Figure 1. Common Drain-Source

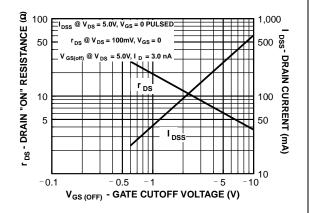


Figure 2. Parameter Interactions

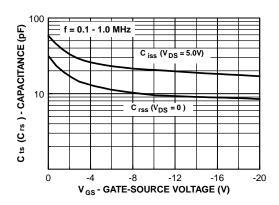


Figure 3. Common Drain-Source

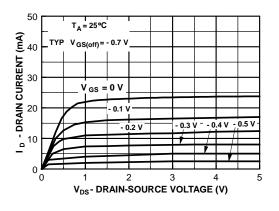


Figure 4. Common Drain-Source

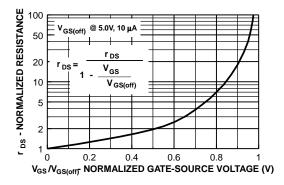


Figure 5. Normalized Drain Resistance vs Bias Voltage

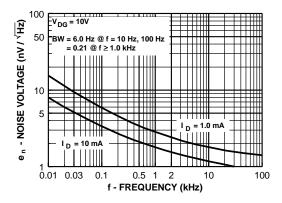


Figure 6. Noise Voltage vs Frequency

Typical Characteristics (Continued)

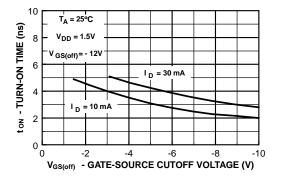


Figure 7. Switching Turn-On Time vs Gate-Source Cutoff Voltage

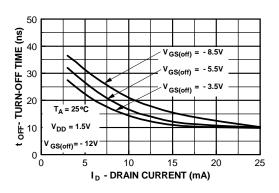


Figure 8. Switching Turn-On Time vs Drain Current

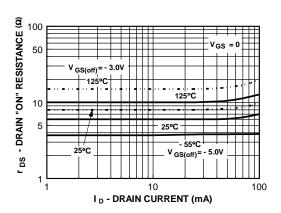


Figure 9. On Resistance vs Drain Current

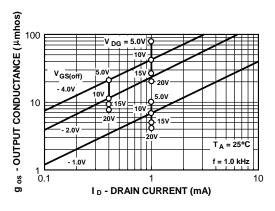


Figure 10. Output Conductance vs Drain Current

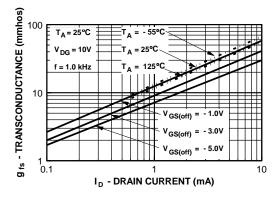
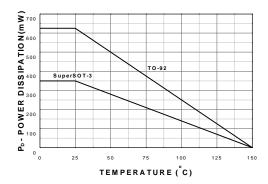
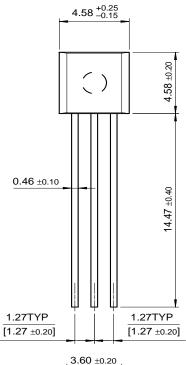
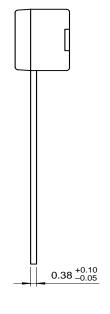
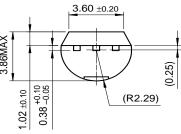


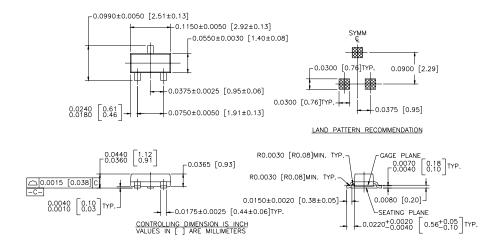
Figure 11. Transconductance vs Drain Current


Figure 12. Power Dissipation vs Ambient Temperature

Package Dimensions

TO-92



Package Dimensions (Continued)

SuperSOT-3

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FACT™	ImpliedDisconnect™	PACMAN™	SPM TM
ActiveArray™	FACT Quiet series™	ISOPLANAR™	POP™	Stealth™
Bottomless™	FAST [®]	LittleFET™	Power247™	SuperSOT™-3
CoolFET™	FASTr™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	FRFET™	MicroPak™	QFET™	SuperSOT™-8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS^{TM}	SyncFET™
EcoSPARK™	GTO™	MSX™	QT Optoelectronics™	TinyLogic™
E ² CMOS™	HiSeC™	MSXPro™	Quiet Series™	TruTranslation™
EnSigna™	I ² C TM	OCX^{TM}	RapidConfigure™	UHC™
Across the board.	. Around the world.™	OCXPro™	RapidConnect™	UltraFET [®]
The Power Franchise™		OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
Programmable Active Droop™		OPTOPLANAR™	SMART START™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

J108_Q J108_D26Z J108_D27Z J108_D74Z J109_Q J110_Q J108