

SPECIFICATIONS FOR LEDMAN HIGH POWER LED

Model No.: LPEH03HRHR3-LC0

Document No.: LPS-40-79

Revision No.: 03

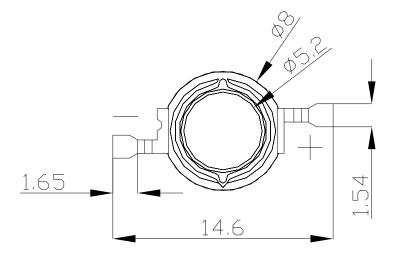
Description:

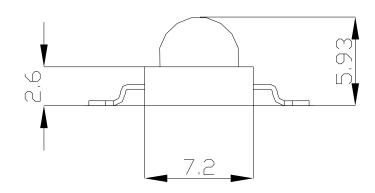
■ 3W High Power LED

■ Lens Color: Water Transparent

■ Emission Color: Red■ Viewing Angle :120°

Dice Material: AlGalnP


Add: Building 8,Block 2,Baimang Baiwangxin Industrial Park, Xili Area,Nanshan District,Shenzhen, P.R.China


Tel: 86-755-86139688 Fax: 86-755-86139001

Model	No.:	LPEH03HRHR3-LC0
Documer	nt No.:	LPS-40-79
Revision	No .	03

Outline Drawing

NOTES:

- 1. All dimensions area in mm tolerance is ±0.25mm unless otherwise noted.
- 2. Thermoelectric separation type high power LED.
- 3. Not being able to take reflow soldering.

Model	No.:	LPEH03HRHR3-LC0
Document	t No.:	LPS-40-79
Revision	No.:	03

Applications:

1	Signal lighting backlighting
2	Flashlight Headlight
3	Decorative entertainment and landscape lighting
4	Signage and channel letter

Absolute Maximum Ratings ($T_a = 25^{\circ}C$)

Items	Symbol	Absolute maximum Rating	Unit
DC Forward Current	l _F	700	mA
Peak Forward Current*	I _{FP}	1500	mA
Reverse Voltage	V_{R}	5	V
Power Dissipation	P_{D}	1680	mW
Operation Temperature	T_{opr}	-40 ~ +95	°C
Storage Temperature	T_{stg}	-40 ~ +100	°C

^{*}pulse width <=0.1msec duty <=1/10

Typical Electrical & Optical Characteristics ($Ta = 25^{\circ}C$)

Items	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	V _F	I _F = 700mA		2.4		V
Reverse Current	I _R	V _R = 5V			10	μA
Color Temperature	λ_{D}	I _F = 700mA		622		nm
Luminous Flux	Ф٧	$I_F = 700 \text{mA}$		80		lm
50% Power Angle	2 θ ½	$I_F = 700 \text{mA}$		120		deg
Thermal Resistance (Junction to Board)	R _{J-B}	I _F = 700mA		8		°C/W

Important Notes:

- 1) All ranks will be included per delivery, rank ratio will be determined by Ledman.
- 2) Tolerance of measurement of V_F is ±0.1 V.
- 3) Tolerance of measurement of dominant wavelength is ±1nm.
- 4) Tolerance of measurement of luminous intensity is ±15%.
- 5) For Reliability test conditions and data, Please refer to "Reliability Test" section on page 5
- 6) For how to use Ledman LED product safely ,Please refer to "Application Notes" section on page 7 to 8.
- 7) Packaging methods are available to be chosen from , please refer to "**packaging**" section on page 10.
- 8) As we are making continous efforts to improve the performance of LED, Specifications are subject to change without notice.
- 9) Information is tentative and subject to change without notice.

Model No.: LPEH03HRHR3-LC0
Document No.: LPS-40-79

Revision No.: 03

Typical Optical-Electronic Characteristic Curves:

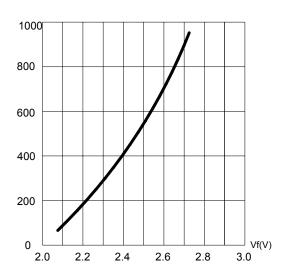


Fig.1 Forward Current vs. Forward Voltage

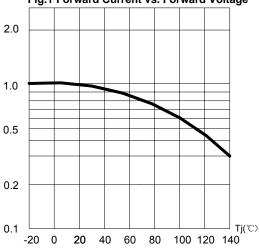


Fig.3 Relative Luminous Intensity vs.
Ambient Temperature

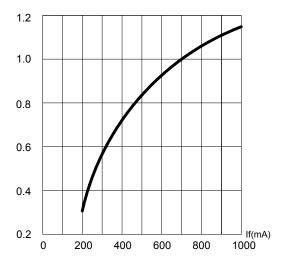


Fig.2 Relative Luminous Intensity vs. Forward Current

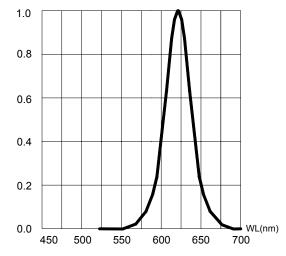


Fig.4 Relative Luminous Flux vs. Wavelength

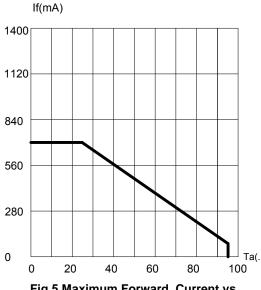


Fig.5 Maximum Forward Current vs.
Ambient Temperature

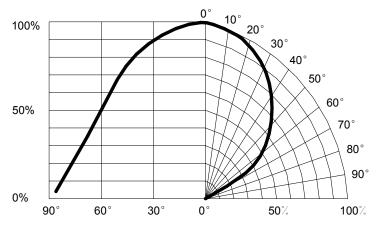


Fig.6 Relative Luminous Intensity vs.Radiation Angle

Model No.: LPEH03HRHR3-LC0

Document No.: LPS-40-79

Revision No.: 03

Reliability Test Standards

Test item:

Туре	Test item	Applicable standard	Test condition	Duration	Sampling number	Accept criteria
	Temperature cycles	JEITA ED-4701 100 105	-40℃~25℃~100℃~25℃ 30min 5min 30min 5min	100cycles	30	0/30
st	Thermal shock	MIL-STD-202G	-40℃~100℃ 15min 15min	300cycles	30	0/30
nent te	High humidity heat cycles	JEITA ED-4701 200 203	30 $^{\sim}$ $^{\sim}$ 65 $^{\sim}$ RH=90% 24hrs/1 cycle	50cycles	30	0/30
environment test	High temperature storage	JEITA ED-4701 200 201	T _a =100℃	1000hrs	30	0/30
en	Low temperature storage	JEITA ED-4701 200 202	T _a =-40℃	1000hrs	30	0/30
	High temperature & high humidity storage	JEITA ED-4701 100 103	T _a =60℃ RH=90%	1000hrs	30	0/30
	Normal temperature life test		T _a =25℃ I _F =700mA	1000hrs	30	0/30
life test	High temperature & high humidity life test		T _a =60℃ RH=90% I _F =500mA	1000hrs	30	0/30
=	Low temperature life test		T _a =-30 $^{\circ}$ C I _F =600mA	1000hrs	30	0/30
ıctive ment	Resistance to soldering heat	JEITA ED-4701 300 301	T _{sol} =260°C±5°C,10sec	one time	5	0/5
destructive experiment	Solderability		T _{sol} =245°C±5°C,5sec using flux	one time	5	0/5
physical experiment	Vibration	JEITA ED-4701 400 403	20G 20-2000HZ 4mins X,Y,Z 3directions	each 4cycles	5	0/5
phy expe	Drop		75CM	3 times	5	0/5

Failure Criteria:

Item	Symbol	Test condition	Criteria for Judgment
Forward Voltage	V _F	I _F =700mA	Initial Data±10%
Reverse Current	I _R	V _R =5V	≦10µA
Luminous flux	ϕ_{V}	I _F =700mA	and Average degradation ≦
Solderability			Over 95%
Vibration		I _F =700mA	No dead lamps or visual damage
Drop		I _F =700mA	No dead lamps or visual damage

Page 5 of 9

 $\label{eq:remark: RH:Environment humidity: Ta:Environment temperature: Tsoi:Tin temperature: IF:Forward current: VR:Reverse voltage. \\$

Model No.: LPEH03HRHR3-LC0

Document No.: LPS-40-79

Revision No.: 03

High Power LED Product Naming Rule L P X XXX XX XX X - X XX 9 Serial number of product creation <u>23</u> <u>1</u> <u>2</u> 8 50% Power Angle (2 θ 1/2) C0: 120° D0: 135° -7 the shape of lens L: Lambertian M: Molding T: Top viewing 6 Power Dissipation 0: 0.5W 1: 1W 3: 3W 5 Emitted color distinguishing YL: Yellow HR: Red PG: Green BL: Blue WW: white WR: warm white 4 Chip, code-named 1: The manufacturer code 2: The size code 3 Bracket, code-named 1: The manufacturer code 23: Serial number -2 The substrate appearance shape E: Without substrate S: Star R: Round F: Quadrate -1 Product Type P: High-Power LED Ledman code

Model	No.:	LPEH03HRHR3-LC0
Document	No.:	LPS-40-79
Revision	No.:	03

Application Notes

Storage

- 1. Before opening the package, the LEDs should be kept under the condition < 30°C and < 90%RH. After opening the package, the LEDs should be stored under the condition < 30°C and < 70%RH.
- 2. The LEDs should be used within a year. And after opening the package, The LEDs should be used within 168 hours (7 days).
- 3. If the desiccant is faded or the LEDs have exceeded the storage time, Re-baking is required under the condition 60±6℃ for 24 hours.
- 4. The lens of LEDs is prone to attact dust so the relevant steps should be taken to keep the emitter free of dust.

Handling

Handle the component along the side surfaces by using forceps or appropriate tools. The forceps or other appropriate tools should not put any pressure on the lens, it's also strictly forbidden to poke and press the lens.

Thermal Management

When the LED is drived by large current, the TJ (junction temperature) will exceed its limit, which will shorten the lifetime of LEDs seriously. The thermal management should effectively reduce the thermal resistance of products.

The general way for the thermal management is to mount the LED on a metal core printed circuit board(MCPCB). It is recommended that the surface area of the MCPCB is at least 30 cm² for 1W LED(and 80cm² for 3W LED), and the MCPCB material with a thermal conductivity greater than 2.0W/mK. The thermal glue or paste should with a thermal conductivety greater than 1.0W/mK and its thickness must be less than 100um.

Soldering

Soldering Iron

It is recommended to solder by soldering iron with the soldering iron tip temperature less than 350° C and with the time less than 3 seconds. The power of soldering iron should be less than 60W. After finishing one lead soldering, wait 2 seconds or more for another lead soldering. Do not press the lens while soldering, the problems often start at the time of soldering, so be careful for the soldering.

Cleaning

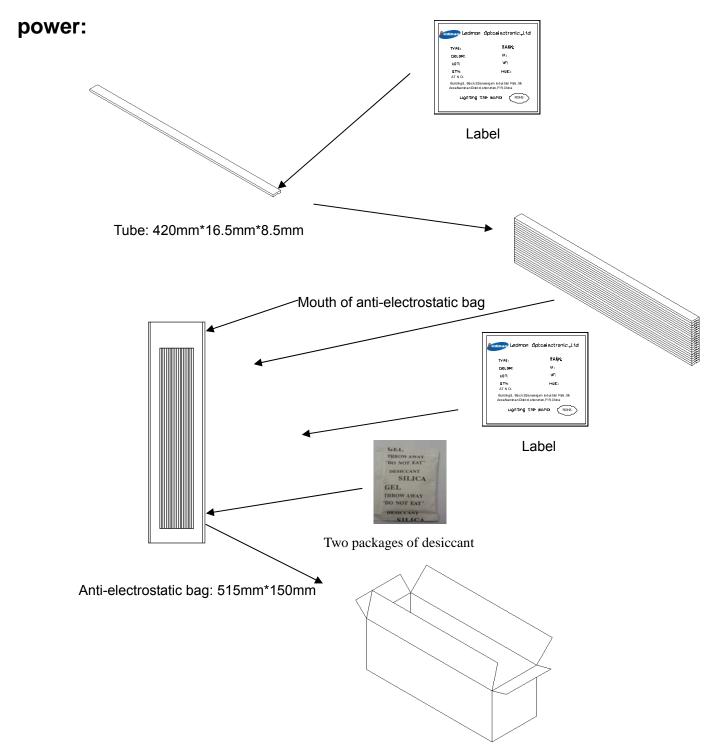
When cleaning is necessary, using the clean soft cloth and dipping the isopropyl alcoho to erasure the dirt gently. Do not clean it with the solvents such as Acetone, lest erode or destroy the LEDs.

Model No.:		LPEH03HRHR3-LC0
Documer	nt No.:	LPS-40-79
Revision	No.:	03

Electrical Notes

- 1. The LED can not be drived reversely.
- 2. It's necessary to have the measures to limit the current Otherwise slight voltage shift may cause enormous current change and results in the failure of LEDs.
- 3. It is recommended that the drive current should be lower when the light output is enough for applying. It would be helpful to improve the product's reliability.

ntistatic The LEDs are electrostatic sensitive devices,so antistatic steps should be taken during the processing.					


Model No.: LPEH03HRHR3-LC0

Document No.: LPS-40-79

Revision No.: 03

Packaging Specifications of High Power

Tube packaging Specifications for Lambertian series products of high

Carton: 600mm*300mm*300mm

Туре	Quantity per tube	Tubes per bag	Bags per carto	on Quantity	Total Remark
Tube pack	50pcs	10	10	5000pcs	Lambertian series products of high power

Indication: We can use cardboard box to package, only if there are enough products.