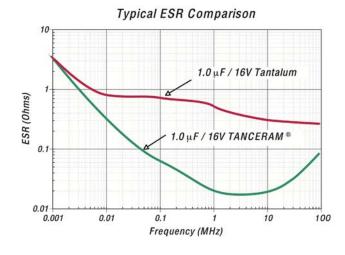
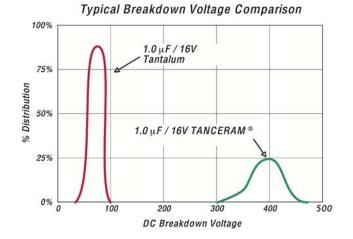
## TANCERAM® CHIP CAPACITORS WAS



TANCERAM® chip capacitors can replace tantalum capacitors in many applications and offer several key advantages over traditional tantalums. Because TANCERAM® capacitors exhibit extremely low ESR, equivalent circuit performance can often be achieved using considerably lower capacitance values. Low DC leakage reduces current drain, extending the battery life of portable products. TANCERAM® high DC breakdown voltage ratings offer improved reliability and eliminate large voltage de-rating common when designing with tantalums.


### **ADVANTAGES**


Low ESR

- Low DC Leakage
- Higher Surge Voltage
- Non-polarized Devices
- Reduced CHIP Size
- Improved Reliability
- Higher Insulation Resistance
  Higher Ripple Current

### **APPLICATIONS**

- Switching Power Supply Smoothing (Input/Output)
- DC/DC Converter Smoothing (Input/Output)
- · Backlighting Inverters
- · General Digital Circuits





#### How to Order TANCERAM®

100 VOLTAGE

6R3 = 6.3 V 100 = 10 V 160 = 16 V 250 = 25 V

500 = 50 V

101 = 100 V

R15

SIZE See Chart X

**DIELECTRIC** W = X7RX = X5R

1st two digits are significant; third digit denotes number of

zeros. 105 = 1.00 µF  $476 = 47.0 \,\mu\text{F}$  $107 = 100 \,\mu\text{F}$ 

106

CAPACITANCE

M

**TOLERANCE**  $K = \pm 10\%$ 

 $M = \pm 20\%$ 

٧ **TERMINATION** 

V = Nickel Barrier with 100% Tin Plating (Matte)

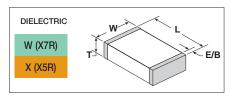
 $T = SnPb^*$ (\*available on select parts)

4

Part number written: 100R15X106MV4E

MARKING

4 = Unmarked


Code Type Reel Plastic Paper Tape specifications conform to EIA RS481

Ε

**PACKING** 



# TANCERAM® CHIP CAPACITORS ROHS



## CASE SIZE

## **CAPACITANCE SELECTION**

|   | EIA / JDI   |                   | INCHES                                                   | (mm)                                                 | VDC                                      | 1.0 | μF | 2.2 | μF | 3.3 | μF | 4.7 | μF | 10 | μF | 22 | μF | 47 | μF | 100 | μF |
|---|-------------|-------------------|----------------------------------------------------------|------------------------------------------------------|------------------------------------------|-----|----|-----|----|-----|----|-----|----|----|----|----|----|----|----|-----|----|
| - | 0402<br>R07 | L<br>W<br>T<br>EB | .040 ±.004<br>.020 ±.004<br>.025 Max.<br>.008 ±.004      | (1.02 ±.10)<br>(0.51 ±.10)<br>(0.64)<br>(0.20±.10)   | 16<br>10<br>6.3                          |     |    |     |    |     |    |     |    |    |    |    |    |    |    |     |    |
|   | 0603<br>R14 | L<br>W<br>T<br>EB | .063 ±.008<br>.032 ±.008<br>.035 Max.<br>.010±.005       | (1.60 ±.20)<br>(0.81 ±.20)<br>(0.89)<br>(.25±.13)    | 25<br>16<br>10<br>6.3                    |     |    |     |    |     |    |     |    |    |    |    |    |    |    |     |    |
|   | 0805<br>R15 | L<br>W<br>T<br>EB | .080 ±.010<br>.050 ±.010<br>.060 Max.<br>.020±.010       | (2.03 ±.25)<br>(1.27 ±.25)<br>(1.52)<br>(0.51±.25)   | 50<br>25<br>16<br>10<br>6.3              |     |    |     |    |     |    |     |    |    |    |    |    |    |    |     |    |
|   | 1206<br>R18 | L<br>W<br>T<br>EB | .125 ±.013<br>.062 ±.010<br>.070 Max.<br>.020 +.015-0.01 | (3.17 ±.35)<br>(1.57 ±.25)<br>(1.78)<br>(0.51+.3825) | 100<br>50<br>35<br>25<br>16<br>10<br>6.3 |     |    |     |    |     |    |     |    |    |    |    |    |    |    |     |    |
|   | 1210<br>S41 | L<br>W<br>T<br>EB | .126 ±.016<br>.098 ±.012<br>.110 Max.<br>.020 +.015010   | (3.20 ±.40)<br>(2.50 ±.30)<br>(2.8)<br>(0.51+.3825)  | 100<br>50<br>35<br>25<br>16<br>10<br>6.3 |     |    |     |    |     |    |     |    |    |    |    |    |    |    |     |    |
|   | 1812<br>S43 | L<br>W<br>T<br>EB | .177 ±.016<br>.126 ±.015<br>.140 Max.<br>.035 ±.020      | (4.50 ±.40)<br>(3.20 ±.38)<br>(3.55)<br>(0.89 ±0.51) | 100<br>50<br>25<br>16<br>10<br>6.3       |     |    |     |    |     |    |     |    |    |    |    |    |    |    |     |    |
|   |             |                   |                                                          |                                                      |                                          | W   | Χ  | W   | Χ  | W   | Х  | W   | Χ  | W  | Χ  | W  | Χ  | W  | Χ  | W   | Χ  |

## **ELECTRICAL CHARACTERISTICS**

| DIELECTRIC:                               | X7R                                                                                                                            | X5R                                             |  |  |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|--|--|
| TEMPERATURE COEFFICIENT:                  | ±15% (-55 to +125°C)                                                                                                           | ±15% (-55 to +85°C)                             |  |  |  |  |  |  |
| DISSIPATION FACTOR:                       | For $\geq$ 50 VDC: 5% max.<br>For $\leq$ 35 VDC: 10% max.                                                                      | For ≥ 50 VDC: 5% max.<br>For ≤ 35 VDC: 10% max. |  |  |  |  |  |  |
| INSULATION RESISTANCE (MIN. @ 25°C, WVDC) | 100 $\Omega F$ or 10 $G\Omega$ , whichever is less                                                                             |                                                 |  |  |  |  |  |  |
| DIELECTRIC STRENGTH:                      | 2.5 X WVDC, 25°C, 50mA max.                                                                                                    |                                                 |  |  |  |  |  |  |
| TEST CONDITIONS:                          | Capacitance values $\leq$ 10 $\mu$ F: 1.0kHz±50Hz @ 1.0±0.2 Vrms Capacitance values $>$ 10 $\mu$ F: 120Hz±10Hz @ 0.5V±0.1 Vrms |                                                 |  |  |  |  |  |  |
| OTHER:                                    | See page 70 for additional dielectric specifications.                                                                          |                                                 |  |  |  |  |  |  |