



PRELIMINARY

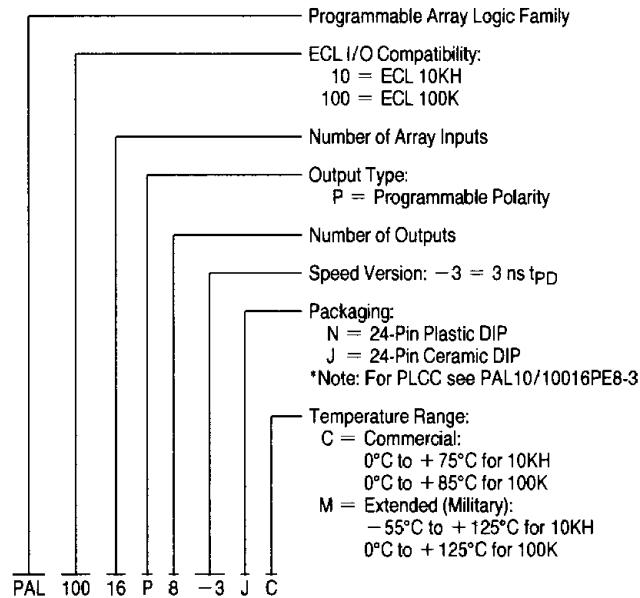
## PAL10/10016P8-3 (DIP Only) 3 ns ECL ASPECT™ Programmable Array Logic

### General Description

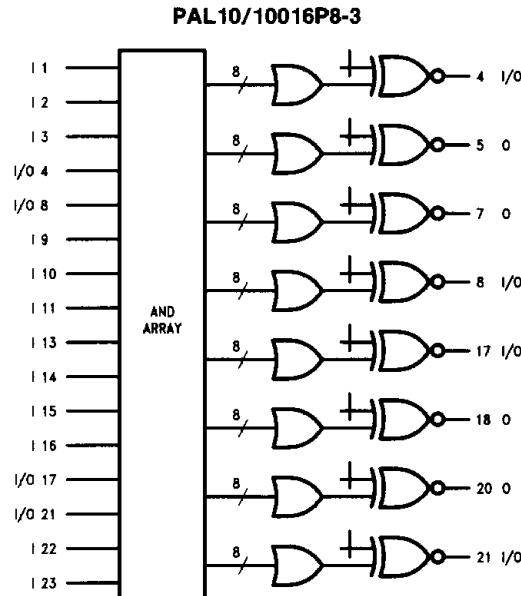
The PAL10/10016P8-3 is a member of the National Semiconductor 28-pin high speed ECL PAL® family. This device utilizes National Semiconductor's ASPECT (Advanced Single Poly Emitter Coupled Technology) process with a newly developed tungsten fuse technology to provide the highest-speed user-programmable replacements for conventional ECL SSI-MSI logic with significant chip-count reduction. The JEDEC fuse-map format and programming algorithm of this device is compatible with those of all prior ECL PAL products from National.

Programmable logic devices provide convenient solutions for a wide variety of applications—specific functions, including random logic, custom decoders, state machines, etc. By programming fuse links to configure AND/OR gate connections, the system designer can implement custom logic as convenient sum-of-products Boolean functions. System prototyping and design iterations can be performed quickly using these off-the shelf products.

The PAL10/10016P8-3 logic array has a total of 16 complementary input pairs, 64 product terms and 8 programmable polarity output functions. Each output function is the OR-sum of 8 product terms. Each product term is satisfied when all array inputs which are connected to it (via intact fuses) are in the correct state as defined by the equation for that


product term. Each output function is provided with output polarity fuses. These fuses permit the designer to configure each output independently to produce either a logic high (by leaving the fuse intact) or a logic low (by programming the fuse) when the equation defining that output is satisfied.

Programming equipment and software make PAL design development quick and easy. Programming is accomplished using TTL voltage levels and is therefore supported by industry standard TTL PLD programmers. After programming and verifying the logic array, an additional security fuse may be programmed to prevent direct copying of proprietary logic designs.


### Features

- High speed:  $t_{PD} = 3$  ns max
- Programmable replacement for ECL logic
- Both 100K and 10 KH I/O compatible versions
- Eight output functions with programmable polarity
- Improved programmability tungsten fuses
- Security fuse to prevent direct copying
- Programmed on conventional TTL PLD programmers
- Fully supported by PLANT™ software
- Commercial and Military ranges

### Ordering Information



### Block Diagram



TL/L/10714-1

**Absolute Maximum Ratings**

|                                             |                          |                                                                                                                             |        |
|---------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------|
| Temperature under Bias                      | −55°C to +125°C          | Output Current                                                                                                              | −50 mA |
| Storage Temperature Range                   | −65°C to +150°C          | Lead Temperature (Soldering, 10 Seconds)                                                                                    | 300°C  |
| V <sub>EE</sub> Relative to V <sub>CC</sub> | −7V to +0.5V             | ESD Tolerance                                                                                                               | TBD    |
| Input Voltage                               | V <sub>EE</sub> to +0.5V | C <sub>ZAP</sub> = 100 pF<br>R <sub>ZAP</sub> = 1500Ω<br>Test Method: Human Body Model<br>Test Specification: NSC SOP-5-028 |        |

**Recommended Operating Conditions** for Commercial Range

| Symbol          | Parameter                    | Min          | Typ            | Max          | Units |
|-----------------|------------------------------|--------------|----------------|--------------|-------|
| V <sub>EE</sub> | Supply Voltage               | 10KH<br>100K | −5.46<br>−4.80 | −5.2<br>−4.5 | V     |
| T               | Operating Temperature (Note) | 10KH         | 0              | +75          | °C    |
|                 |                              | 100K         | 0              | +85          |       |

**Electrical Characteristics** Over Recommended Operating Conditions Output Load = 50Ω to −2.0V

| Symbol          | Parameter                 | Conditions                                                   | T <sub>A</sub> | Min                   | Max                     | Units                   |
|-----------------|---------------------------|--------------------------------------------------------------|----------------|-----------------------|-------------------------|-------------------------|
| V <sub>IH</sub> | High Level Input Voltage  | Guaranteed Input Voltage<br>High for All Inputs              | 10KH           | 0°C<br>+25°C<br>+75°C | −1170<br>−1130<br>−1070 | −840<br>−810<br>−735    |
|                 |                           |                                                              | 100K           | 0°C to +85°C          | −1165                   | −880                    |
| V <sub>IL</sub> | Low Level Input Voltage   | Guaranteed Input Voltage<br>Low for All Inputs               | 10KH           | 0°C<br>+25°C<br>+75°C | −1950<br>−1950<br>−1950 | −1480<br>−1480<br>−1450 |
|                 |                           |                                                              | 100K           | 0°C to +85°C          | −1810                   | −1475                   |
| V <sub>OH</sub> | High Level Output Voltage | V <sub>IN</sub> = V <sub>IH</sub> Max or V <sub>IL</sub> Min | 10KH           | 0°C<br>+25°C<br>+75°C | −1020<br>−980<br>−920   | −840<br>−810<br>−735    |
|                 |                           |                                                              | 100K           | 0°C to +85°C          | −1025                   | −880                    |
| V <sub>OL</sub> | Low Level Output Voltage  | V <sub>IN</sub> = V <sub>IH</sub> Max or V <sub>IL</sub> Min | 10KH           | 0°C<br>+25°C<br>+75°C | −1950<br>−1950<br>−1950 | −1630<br>−1630<br>−1600 |
|                 |                           |                                                              | 100K           | 0°C to +85°C          | −1810                   | −1620                   |
| I <sub>IH</sub> | High Level Input Current  | V <sub>IN</sub> = V <sub>IH</sub> Max                        | 10KH           | 0°C<br>+75°C          | 220                     | μA                      |
|                 |                           |                                                              | 100K           | 0°C to +85°C          |                         |                         |
| I <sub>IL</sub> | Low Level Input Current   | V <sub>IN</sub> = V <sub>IL</sub> Min                        | 10KH           | 0°C<br>+75°C          | 0.5                     | μA                      |
|                 |                           |                                                              | 100K           | 0°C to +85°C          |                         |                         |
| I <sub>EE</sub> | Supply Current            | V <sub>EE</sub> = Min<br>All Inputs and Outputs Open         | 10KH           | 0°C to +75°C          | −220                    | mA                      |
|                 |                           |                                                              | 100K           | 0°C to +85°C          |                         |                         |

**Note:** Operating temperatures for circuits in J and N packages are specified as ambient temperatures (T<sub>A</sub>) with circuits in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.

**Absolute Maximum Ratings**

|                               |                    |                                                                                                                            |        |
|-------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|--------|
| Temperature under Bias        | −55°C to + 125°C   | Output Current                                                                                                             | −50 mA |
| Storage Temperature Range     | −65°C to + 150°C   | Lead Temperature (Soldering, 10 Seconds)                                                                                   | 300°C  |
| $V_{EE}$ Relative to $V_{CC}$ | −7V to + 0.5V      | ESD Tolerance                                                                                                              | TBD    |
| Input Voltage                 | $V_{EE}$ to + 0.5V | $C_{ZAP} = 100 \text{ pF}$<br>$R_{ZAP} = 1500\Omega$<br>Test Method: Human Body Model<br>Test Specification: NSC SOP-5-028 |        |

**Recommended Operating Conditions** for Extended (Military) Range\*

| Symbol   | Parameter                    | Min          | Typ            | Max          | Units          |
|----------|------------------------------|--------------|----------------|--------------|----------------|
| $V_{EE}$ | Supply Voltage               | 10KH<br>100K | −5.46<br>−4.80 | −5.2<br>−4.5 | −4.94<br>−4.20 |
| T        | Operating Temperature (Note) | 10KH         | −55            |              | + 125          |
|          |                              | 100K         | 0              |              | + 125          |

**Electrical Characteristics** Over Recommended Operating Conditions Output Load = 50Ω to −2.0V

| Symbol   | Parameter                 | Conditions                                           | $T_A$ | Min                        | Max                                                | Units         |
|----------|---------------------------|------------------------------------------------------|-------|----------------------------|----------------------------------------------------|---------------|
| $V_{IH}$ | High Level Input Voltage  | Guaranteed Input Voltage<br>High for All Inputs      | 10KH  | −55°C<br>+ 25°C<br>+ 125°C | −1250<br>−1130<br>−1000<br>−660                    | mV            |
|          |                           |                                                      | 100K  | 0°C to + 125°C             | −1165<br>−880                                      |               |
| $V_{IL}$ | Low Level Input Voltage   | Guaranteed Input Voltage<br>Low for All Inputs       | 10KH  | −55°C<br>+ 25°C<br>+ 125°C | −1950<br>−1950<br>−1950<br>−1480<br>−1480<br>−1420 | mV            |
|          |                           |                                                      | 100K  | 0°C to + 125°C             | −1810<br>−1475                                     |               |
| $V_{OH}$ | High Level Output Voltage | $V_{IN} = V_{IH}$ Max or $V_{IL}$ Min                | 10KH  | −55°C<br>+ 25°C<br>+ 125°C | −1110<br>−980<br>−830<br>−930<br>−810<br>−660      | mV            |
|          |                           |                                                      | 100K  | 0°C to + 125°C             | −1025<br>−880                                      |               |
| $V_{OL}$ | Low Level Output Voltage  | $V_{IN} = V_{IH}$ Max or $V_{IL}$ Min                | 10KH  | −55°C<br>+ 25°C<br>+ 125°C | −1950<br>−1950<br>−1950<br>−1630<br>−1630<br>−1570 | mV            |
|          |                           |                                                      | 100K  | 0°C to + 125°C             | −1810<br>−1620                                     |               |
| $I_{IH}$ | High Level Input Current  | $V_{IN} = V_{IH}$ Max                                | 10KH  | −55°C<br>+ 125°C           | 220                                                | $\mu\text{A}$ |
|          |                           |                                                      | 100K  | 0°C to + 125°C             |                                                    |               |
| $I_{IL}$ | Low Level Input Current   | $V_{IN} = V_{IL}$ Min                                | 10KH  | −55°C<br>+ 125°C           | 0.5                                                | $\mu\text{A}$ |
|          |                           |                                                      | 100K  | 0°C to + 125°C             |                                                    |               |
| $I_{EE}$ | Supply Current            | $V_{EE} = \text{Min}$<br>All Inputs and Outputs Open | 10KH  | −55°C to + 125°C           | −220                                               | mA            |
|          |                           |                                                      | 100K  | 0°C to + 125°C             |                                                    |               |

**Note:** Operating temperatures for circuits in J and N packages are specified as ambient temperatures ( $T_A$ ) with circuits in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.

\* Extended (Military) range available in J package only.

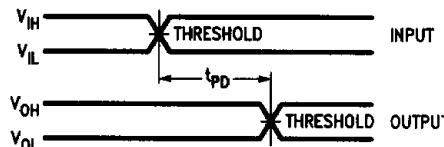
## Switching Characteristics

Over Recommended Operating Conditions, Output load:  $R_L = 50\Omega$  to  $-2.0V$ ,  $C_L = 5\text{ pF}$  to GND

| Symbol   | Parameter        | Measured Test Conditions              | Commercial |      | Military |      | Units |
|----------|------------------|---------------------------------------|------------|------|----------|------|-------|
|          |                  |                                       | Min        | Max  | Min      | Max  |       |
| $t_{PD}$ | Input to Output  | Measured at Threshold Points (Note 1) |            | 3.0  |          | 4.0  | ns    |
| $t_r$    | Output Rise Time | Measured between 20% and 80% Points   | 0.25       | 1.25 | 0.25     | 1.25 | ns    |
| $t_f$    | Output Fall Time |                                       | 0.25       | 1.25 | 0.25     | 1.25 | ns    |

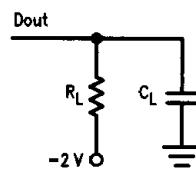
Note 1: All AC Measurements are to be made from Threshold Point.

$$V_{IH} = \text{Threshold} + 400\text{ mV}$$


$$V_{IL} = \text{Threshold} - 400\text{ mV}$$

$$V_{IH\text{Min}} + V_{IL\text{Max}}$$

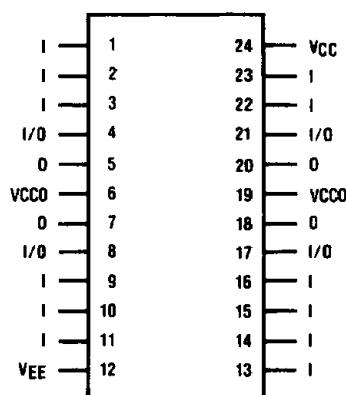
$$\text{Threshold} = \frac{V_{IH\text{Min}} + V_{IL\text{Max}}}{2}$$


| Part  | Temp  | $V_{IN\text{Min}}$ | $V_{IL\text{Max}}$ | Threshold | $V_{IH}$ | $V_{IL}$ |
|-------|-------|--------------------|--------------------|-----------|----------|----------|
| 10 kH | -55°C | -1250              | -1480              | -1365     | -965     | -1765    |
|       | 0°C   | -1170              | -1480              | -1325     | -925     | -1725    |
|       | 25°C  | -1130              | -1480              | -1300     | -900     | -1700    |
|       | 75°C  | -1070              | -1450              | -1260     | -860     | -1660    |
|       | 125°C | -1000              | -1420              | -1210     | -810     | -1610    |
| 100k  | All   | -1165              | -1475              | -1300     | -900     | -1700    |

## Timing Measurements



TL/L/10714-2


## Test Load



TL/L/10714-3

## Connection Diagram

Dual-In-Line Package



Top View

TL/L/10714-4

## Functional Testing

As with all field-programmable devices, the user of the ECL PAL devices provides the final manufacturing step. While National's PAL devices undergo extensive testing when they are manufactured, their logic function can be fully tested only after they have been programmed to the user's pattern.

To ensure that the programmed PAL devices will operate properly in your system, National Semiconductor (along with most other manufacturers of PAL devices) strongly recommends that devices be functionally tested before being installed in your system. Even though the number of post-programming functional failures is small, testing the logic function of the PAL devices before they reach system assembly will save board debugging and rework costs. For more information about the functional testing of PAL devices, please refer to National Semiconductor's Application Note #351 and the *Programmable Logic Design Guide*.

## Design Development Support

A variety of software tools and programming hardware is available to support the development of designs using PAL

products. Typical software packages accept Boolean logic equations to define desired functions. Most are available to run on personal computers and generate JEDEC-compatible "fuse maps". The industry-standard JEDEC format ensures that the resulting fuse-map files can be downloaded into a large variety of programming equipment. Many software packages and programming units support a large variety of programmable logic products as well. The PLAN software package from National Semiconductor supports all programmable logic products available from National and is fully JEDEC-compatible. PLAN software also provides automatic device selection based on the designer's Boolean logic equations.

A detailed logic diagram showing all JEDEC fuse-map addresses for the PAL10/10016P8-3 is provided for direct map editing and diagnostic purposes. For a list of current software and programming support tools available for these devices, please contact your local National Semiconductor sales representative or distributor. If detailed specifications of the ECL PAL programming algorithm are needed, please contact the National Semiconductor Programmable Device Support Department.

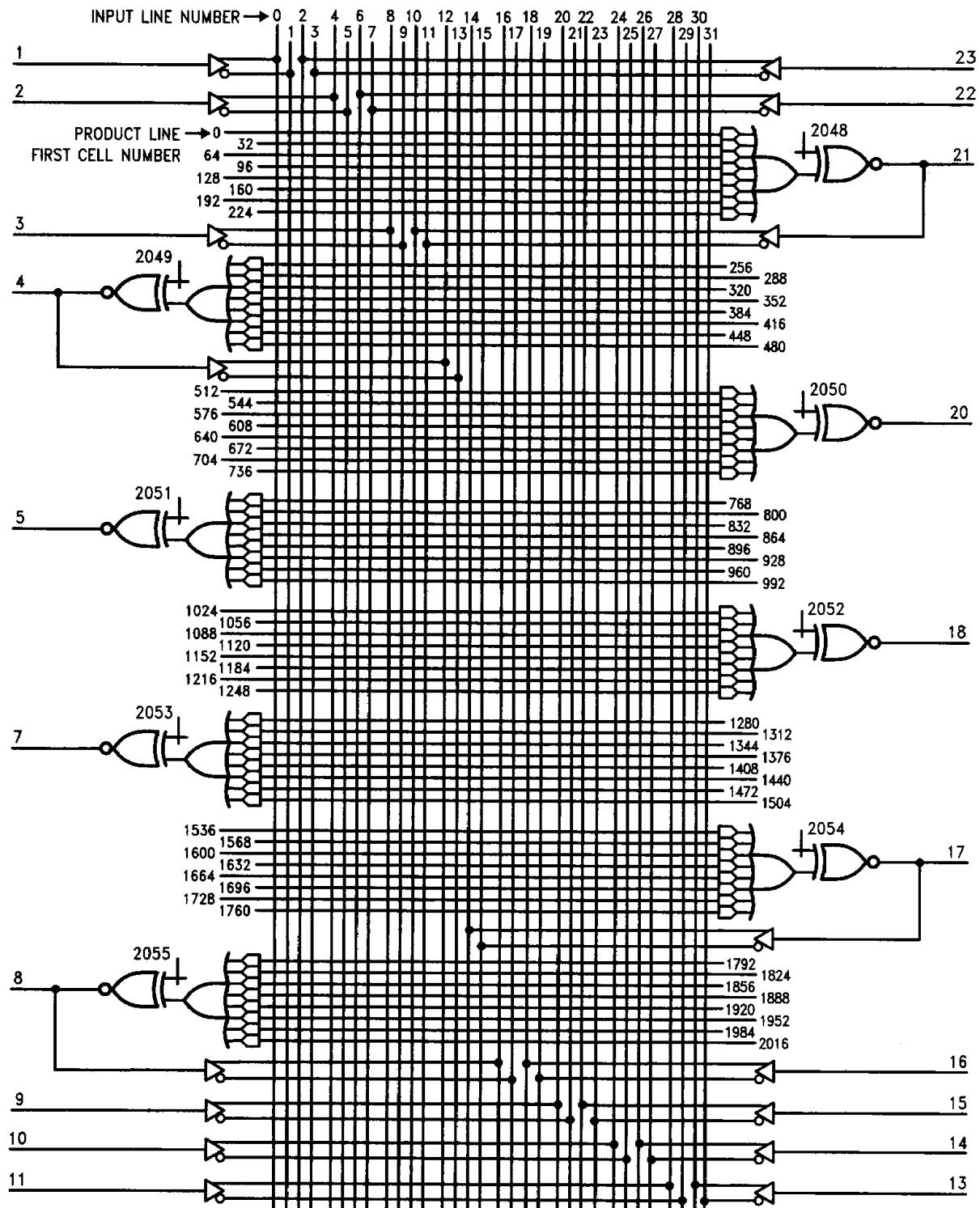
## Programmer Support

Advin Systems

Data I/O

Digelec

International Microsystems


Logical Devices

SMS

Stag Microsystems

|             |        |
|-------------|--------|
| Sailor PAL  | V8.40  |
| Unisite 40  | V2.20  |
| Model 860   | VA-3.2 |
| ECL-2       |        |
| Allpro      | V1.44C |
| Palpro 2x   | V4.0   |
| Sprint Plus | V3.2J  |
| ZL30A       | V31    |

## Logic Diagram—PAL1016P8-3/PAL10016P8-3



TL/L/10714-5