NS32FV16,NS32FX161,NS32FX164

NS32FX161 NS32FX164 NS32FV16 Advanced Imaging/Communication Signal

Processors

I3 Texas

INSTRUMENTS

Literature Number: SNOS625A

&National Semiconductor

NS32FX161-15/NS32FX161-20/NS32FX164-20/
NS32FX164-25/NS32FV16-20/NS32FV16-25
Advanced Imaging/Communication Signal Processors

General Description

The NS32FX164, the NS32FV16 and the NS32FX161 are
high-performance 32-bit members of the Series 320009/
EPT™ family of National’s Embedded System Processors™
specifically optimized for CCITT Group 2 and Group 3 Fac-
simile Applications, Data Modems, Voice Mail Systems, La-
ser Printers, or any combination of the above.

Unless specified otherwise any reference to the
NS32FX164 in this document applies to the NS32FV16 and
the NS32FX161 as well.

The NS32FX164 can perform all the computations and con-
trol functions required for a stand-alone Fax system, a PC
add-in Fax/Voice/Data Modem card or a Laser/Fax sys-
tem.

It also meets the performance requirements to implement
14400, 9600 and 7200 bps modems complying with CCITT
V.17, V.29 and V.27 standards. The NS32FV16 supports
V.29 and V.27 standards as well as voice. The NS32FX161
supports V.29 and V.27 standards.

The NS32FX164 provides a 16 Mbyte Linear external ad-
dress space and a 16-bit external data bus.

The CPU core, which is the same as that of the NS32CG16,
incorporates a 32-bit ALU and instruction pipeline, and an
8-byte prefetch queue.

Also integrated on-chip with the CPU are a DSP Module
(DSPM) and a 4K-byte RAM Array (2K in the NS32FV16 and
NS32FX161). The DSPM is a complete processing unit, ca-
pable of autonomous operation parallel to the CPU core
operation. The DSPM executes programs stored in an inter-
nal on-chip Random Access Memory (RAM), and manipu-
lates data stored either in the internal RAM or in an external
off-chip memory. To maximize utilization of hardware re-
sources, the DSPM contains a pipelined DSP-oriented data-
path, and a control logic that implements a set of DSP vec-
tor commands.

February 1992

The NS32FX164 capabilities can be expanded by using an
external floating point unit (FPU) which directly interfaces to
the NS32FX164 using the slave protocol. The CPU-FPU
cluster features high speed execution of the floating-point
instructions.

The NS32FX164 highly-efficient architecture combined with
the NS32CG16 graphics instructions and the high-perform-
ance vector operation capability, makes the device the ideal
choice for Postscript™ and Fax applications.

Features

m Software compatible with the Series 32000/EP
processors

m Designed around the CPU core of the NS32CG16

B Pin compatible with the NS32FX16

W 32-bit architecture and implementation

m On-chip DSP Module for high-speed DSP operations

B Special support for graphics applications
— 18 graphics instructions
— Binary compression/expansion capability for font

storage using RLL encoding
— Pattern magnification
— Interface to an external BITBLT processing units for
fast color BITBLT operations

m 4K-byte on-chip RAM array (2K in NS32FV16 and
NS32FX161)

m On-chip clock generator

B Floating-point support via the NS32081 or NS32181

m Optimal interface to large memory arrays via the
NS32CG821 and the DP84xx family of DRAM
controllers

B Power save mode

m High-speed CMOS technology

W 68-pin PLCC package

BIOCk Diagram INSTRUCTION PIPELINE

8-BYTE
LOADER
QUEVE

INSTRUCTION

DSP
MODULE,

= -

MICROCODE
ROM

1

REGISTER
FILE

4K-BYTE

GRAPHICS
SUPPORT
Lesic

RAM
BUS

INTERFACE
UNIT

ARRAY
(2K in NS32FV16

and NS32FX161)

EXECUTION
UNIT

ADDRESS

FIGURE 1-1. CPU Block Diagram

Series 32000® is a registered trademark of National Semiconductor Corporation.

EP™ and Embedded System Processors™ are trademarks of National Semiconductor Corporation.

Postscript™ is a trademark of Adobe Systems, Inc.

—
—>

& DATA

CONTROL
& STATUS

TL/EE/11267-1

©1995 National Semiconductor Corporation

TL/EE11267

RRD-B30M115/Printed in U. S. A.

S$10SS920.d |eubis uonesiunwwo)/buibew | pasueApy

GC-9LAdCESN/0C-9L AdCESN/SC-VIL XACESN/0C-V9L XACESN/02C-L9L XACESN/SGI-191 XACESN

Table of Contents

1.0 PRODUCT INTRODUCTION 6
1.1 NS32FX164 Special Features 6
2.0 ARCHITECTURALDESCRIPTION 7
21 RegisterSet 7
2.1.1 General Purpose Registers 7
2.1.2 Address Registersoooiiit 8
2.1.3 Processor Status Register 8
2.1.4 Configuration Register 9
2.1.5 DSP Module Registers 9
2.2 Memory Organization 1
2.2.1 AddressMapping.............. ...l 12
2.3 Modular Software Support 12
24 InstructionSet i 12
2.4.1 General Instruction Format 12
2.4.2 AddressingModes. 14
2.4.3 Instruction Set Summary 16
2.5 Graphics SUpport. 20
2.5.1 Frame Buffer Addressing 20
2.5.2 BITBLT Fundamentals 20
2.5.2.1 Frame Buffer Architecture........... 21
2.5.22BitAlignment...................... 21

2.5.2.3 Block Boundaries and Destination
Masks......ooiiiiii 21
2.5.2.4 BITBLT Directions 22
2.5.2.5 BITBLT Variations 23
2.5.3 Graphics Support Instructions 23
2.5.3.1 BITBLT (BIT-aligned BLock Transfer) .23
2538.2PatternFillL 24

2.5.3.3 Data Compression, Expansion and
Magnify. ... 24

2.5.3.3.1 Magnifying Compressed
Data............cooovun.. 26
3.0 FUNCTIONALDESCRIPTION 26
3.1 Instruction Execution 26
3.1.1 OperatingStates 26
3.1.2InstructionEndings 26
3.1.2.1 Completed Instructions 27
3.1.2.2 Suspended Instructions 27
3.1.2.3 Terminated Instructions............. 27
3.1.2.4 Partially Completed Instructions 27
3.1.3 Slave Processor Instructions 27
3.1.3.1 Slave Processor Protocol 27
3.1.3.2 Floating-Point Instructions 28
3.2 Exception Processingcoooeviii.. 29
3.2.1 Exception Acknowledge Sequence 29

3.2.2 Returning from an Exception Service

Procedure ... 30
3.2.3 Maskable Interrupts. 34
3.2.3.1 Non-VectoredMode 34
3.2.3.2 Vectored Mode: Non-Cascaded
CasSe .. 35
3.2.3.3 Vectored Mode: Cascaded Case.. 35
3.2.4 Non-Maskable Interrupt 37
B 25 TrapsS « v oot 37
3.2.6 Priority among Exceptions 37
3.2.7 Exception Acknowledge Sequences: Detailed
FIOW . o 39
3.2.7.1 Maskable/Non-Maskable Interrupt
Sequence ..., 39
3.2.7.2 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND
TrapSequencecoouun. 39
3.2.7.3 Trace Trap Sequence 39
3.3 Debugging Support oo 40
3.3.1 Instruction Tracing........................ 40
34DSPModulecoiiii 40
3.4.1 ProgrammingModel 40
3.4.2 RAM Organization and Data Types 41
3.4.21IntegerValues..................... 41
3.4.2.2 Aligned-Integer Values 41
3423RealValues....................... 41
3.4.3.4 Aligned-Real Values 41
3.4.2.5 Extended Precision Real Values 41
3.4.26 ComplexValues 42
3.4.3 Command List Format 42
3.44CPUCorelnterface 42
3.4.4.1 Synchronization of Parallel Operation .42
3.4.4.2 DSPM RAM Organization 43
3.4.5 DSPM InstructionSet 43
3.4.5.1 Conventions 43
3.452TypeCasting.........cooveeann.. 43
3.453GeneralNotes..................... 44
3.4.5.4 Load Register Instructions 44
3.4.5.5 Store Register Instructions 45
3.4.5.6 Adjust Register Instructions 46
3.4.5.7 Flow Control Instructions 47

3.4.5.8 Internal Memory Move Instructions . . .48
3.4.5.9 External Memory Move Instructions . .48
3.4.5.10 Arithmetic/Logical Instructions 49

3.4.5.11 Multiply-and-Accumulate
Instructions 49

3.4.5.12 Multiply-and-Add Instructions.. 50
3.4.5.13 Clipping and Min/Max Instructions . .52
3.4.5.14 Special Instructions 53

Table of Contents (continued)

3.58Systeminterfacel 55 4.2 Absolute Maximum Ratings 74
3.5.1 Powerand Grounding 55 4.3 Electrical Characteristics 74
8.5.2Clocking ... 56 4.4 Switching Characteristics 74
3.5.3 PowerSaveMode 57 4.44 DEfINIIONS -+ + v v voeeeoe o 74
354 Resetting.................. 57 4.42TimingTables.oooeeeae i, 75
355BusCycles ...t 58 4.4.2.1 Output Signals: Internal Propagation

8551BusStatus ...l 58 Delaysoviiiiiiniiiaa 75
3.5.5.2 Basic Read and Write Cycles 58 4.4.2.2 Input Signal Requirements 77
3.5.5.3CycleExtension 62 4.43 Timing Diagramsoveueennn.. 79
3.5.5.4 Instruction Fetch Cycles 63 APPENDIX A: INSTRUCTION FORMATS 89
3.5.5.5 Interrupt Control Cycles. 64 T e
3.56.,5.6 SpecialBusCycles................. 65 APPENDIX B: INSTRUCTION EXECUTION TIMES. 92
3.5.5.7 Slave Processor Bus Cycles. 65 B.1 Basic and Floating-Point Instructions 92
3.5.5.8 Data Access Sequences 67 B.A.1Equations. ...l 92
8.5.5.9 Bus Access Control ... 68 B.1.2 NotesonTableUse 93
3.5.5.10 Instruction Status 71 . . y .
B.1.3 Calculation of the Execution Time TEX for Basic
4.0 DEVICE SPECIFICATIONS 71 Instructionsl 93

4.1 NS32FX164 Pin Descriptions 71 B.1.4 Calculation of the Execution Time TEX for
AAASUPPIIES o oo 71 Floating-Point Instructions. 93
412 1NPULSIGNAIS .+ e ee oo 71 B.2 Special Graphics Instructions 99
41.30utputSIgnalsooeeiiiiiiiin. 7 B.2.1 Execution Time Calculation for Special
41,4 INPUL-OUtPUL SIGNAIS + + o+ v e, 72 Graphics Instructions 99

B.3 DSPM Instructions 100

FIGURE 1-1.
FIGURE 2-1.
FIGURE 2-2.
FIGURE 2-3.
FIGURE 2-4.
FIGURE 2-5.
FIGURE 2-6.
FIGURE 2-7.
FIGURE 2-8.
FIGURE 2-9.

FIGURE 2-10.
FIGURE 2-11.
FIGURE 2-12.
FIGURE 2-183.
FIGURE 2-14.
FIGURE 2-15.
FIGURE 2-16.
FIGURE 2-17.
FIGURE 2-18.
FIGURE 2-19.
FIGURE 2-20.
FIGURE 2-21.
FIGURE 2-22.
FIGURE 2-283.
FIGURE 2-24.
FIGURE 2-25.
FIGURE 2-26.

List of Figures

CPUBIOCK DIagramottt ettt e e e e e e e e e e e e e e e e e e 1
NS32FX164 Internal Registers 7
Processor Status Register (PSR)ottt 8
Configuration Register (CFG) i 9
DSP Module Registers Address Mapottt ettt et 9
Accumulator FOrmat e 9
X, Y, ZRegisters FOrmato e 9
EABR Register FOrmat. 10
OVF Register Format 10
PARAM Register FOrmMato e 10
REPEAT Register Format 10
EXT Register Format 11
CLSTAT Register FOrmatttt e et et e e 11
DSPINT and DSPMASK Register FOrmatttt 11
NMISTAT Register FOrmatttt e e e 11
NS32FX164 Address Mappingooiinn ittt e 12
NS32FX164 Run-Time EnNVirOnmMent et 13
General Instruction Format 13
Index Byte Format. 13
Displacement ENCOTINGSo oottt e e e 14
Correspondence between Linear and Cartesian Addressing 20
32-Pixel by 32-Scan Line Frame BUFfer 21
Overlapping BITBLT BIOCKSottt ettt e et e e e e e e e e et e e 22
BB Instructions Format 23
BITWT Instruction Format i 24
EXTBLT Instruction Format. 24
MOVMPI Instruction FOrmato e e 24

FIGURE 2-27.
FIGURE 2-28.
FIGURE 2-29.
FIGURE 2-30.

FIGURE 3-1.
FIGURE 3-2.
FIGURE 3-3.
FIGURE 3-4.
FIGURE 3-5.
FIGURE 3-6.
FIGURE 3-7.
FIGURE 3-8.
FIGURE 3-9.

FIGURE 3-10.
FIGURE 3-11.
FIGURE 3-12.
FIGURE 3-13.
FIGURE 3-14.
FIGURE 3-15.
FIGURE 3-16.
FIGURE 3-17.
FIGURE 3-18.
FIGURE 3-19.
FIGURE 3-20.
FIGURE 3-21.
FIGURE 3-22.
FIGURE 3-23.
FIGURE 3-24.
FIGURE 3-25.
FIGURE 3-26.
FIGURE 3-27.
FIGURE 3-28.
FIGURE 3-29.
FIGURE 3-30.

FIGURE 4-1.
FIGURE 4-2.

FIGURE 4-3a.
FIGURE 4-3b.

FIGURE 4-4.
FIGURE 4-5.
FIGURE 4-6.
FIGURE 4-7.
FIGURE 4-8.
FIGURE 4-9.

FIGURE 4-10.
FIGURE 4-11.
FIGURE 4-12.
FIGURE 4-13.
FIGURE 4-14.
FIGURE 4-15.
FIGURE 4-16.

List of Figures (Continued)

TBITS Instruction FOrmat.o e 24
SBITS Instruction FOrmato e 25
SBITPS InStruction FOrMat e e e e e e e e e e e e e e 25
Bus Activity for a Simple BITBLT Operationouuintiitii e 25
Operating States 26
Slave Processor ProtOCOI e 28
Slave Processor Status WOrdo 29
Interrupt Dispatch and Cascade Tablest 30
Exception Acknowledge Sequence: Direct-Exception Mode Disabled 31
Exception Acknowledge Sequence: Direct-Exception Mode Enabled, 32
Return from Trap (RETTn) Instruction Flow: Direct-Exception Mode Disabled 33
Return from Interrupt (RETI) Instruction Flow: Direct-Exception Mode Disabled 34
Interrupt Control Unit Connections (16 Levels) e 35
Cascaded Interrupt Control Unit CONNECHIONSttt ettt et e et ettt e eees 36
Exception Processing Flowchart 38
SEIVICE SEQUENCE . . -« ettt ettt e e e e e e 39
DSP Module BIOCK DIagramttt et ettt e e e e 55
Power and Ground CONNECHIONS oottt e 56
Crystal Interconnections—30 MHZt e e et e e e 56
Crystal Interconnections—40 MHz, 5O MHzZottt 56
Recommended Reset CONNECHIONSttt et ettt e e e e e 56
Power-On Reset ReqUIrEMENTS oottt ettt 57
General Reset TIMING.o e 57
BUS CONNECHONSttt e e e e e e 59
Read Cycle TiMINgG oo e 60
WIrite CyCle TIMING . . . oottt et et e e e e e e e e e e 61
Cycle Extension of aRAA CYCIEttt e e e e e e e e e e e e e e 63
Special Bus CyCle TIMINGottt et e e e e e e e e 65
Slave Processor REAA CYCIE v e e e e e e e e e e e e e e s 66
Slave Processor WHEE CYCIEt e e e e e e e e e e e e e e e e 67
NS32FX164 and FPU INterconnectionsttt e 67
MemOry INTErface e s 67
HOLD Timing (Bus INItially 1AI€)ttt ettt et ettt e e et e e e e e 69
HOLD Timing (Bus Initially NOtIAIE)ottt e et et e e e e e e e e e e et e 70
CoNNECHION DIagram 73
Output Signals Specification Standard 74
Input Signals Specification Standard 74
RSTL INT, NMIHYSEIESIS et ee ettt et e ettt e e e e e e e e e e e e et 74
Read CyCle. 79
WIEE CYCIE . . . oo ettt e e e e e e e 80
SPECIAI BUS CYCIE e e e e e 81
HOLD Acknowledge Timing (Bus Initially NOt II€)\ttt ettt eaas 82
HOLD Timing (Bus Initially IdI€)\ttt et e e e e et 83
External DMA Controller Bus CyCle i 84
Slave Processor Write TIMiNgttt e 85
Slave Processor Read TiMINGottt e et e e 85
SPC TIMING .ottt et e e e e e 85
PES SIgNal TIMING . .« e v ettt et et e e e e e e e e e e e e e 86
TLO SIGNaAI TIMING -+ v e v et et e 86
ClIoCk WaVEOIMS . . oottt e e e e 86
INT SIGNaI TIMING . v v et e 87

List of Figures (Continued)

FIGURE 4-17. NMISIgnal TIMING« o oottt ettt et et e e e e e e e e e e e e e e e e e et e 87
FIGURE 4-18. Power-On Reset i e et i 87
FIGURE 4-19. NON-POWEr-On ReSeto oottt e e 88
FIGURE 4-20. INterrupt OUL. . . .« ottt ettt e e e e e e e e e e e e e 88
List of Tables
TABLE 2-1. NS32FX164 Addressing MOdes e e 15
TABLE 2-2. NS32FX164 Instruction Set SUMMArYot e e 16
TABLE 2-3. ‘op’ and V" Field ENCOAINGS . . .« o oottt ettt e e e e e e e et e et 23
TABLE 3-1. Floating-Point Instruction Protocols 28
TABLE 3-2. Summary of EXCeption ProCEeSSING. . . .« o .u ettt e et e e 40
TABLE 3-3. External Oscillator Specifications Crystal Characteristicsttt 57
TABLE 3-4. INterrUPt SEQUENCES . . . o o ettt ettt e e e e e e e et e e e e e e e e e e e e 64
TABLE 3-5. Bus Cycle Categoriesttt e 67
TABLE 3-6. Data ACCESS SEUUEINCES ettt ettt ettt et e et et e et e et e et et e et e e e 68
TABLE B-1. BasiC INSIrUCHIONS s 94
TABLE B-2. Floating-Point Instructions: CPU Portion e 98
TABLE B-3. Average Instruction Execution Times with No Wait-States i 99
TABLE B-4. Average Instruction Execution Times with Wait-States i i i 100

1.0 Product Introduction

The NS32FX164 is a high speed CMOS microprocessor in
the Series 32000/EP family.

It includes two main execution units: the NS32CG16 com-
patible CPU core and the DSP Module. The CPU core is
designed for general purpose computations and system
control functions. The DSP Module is tuned to perform the
DSP primitives needed in Voice Band Modems. The
NS32FX164 also incorporates a 4K-byte RAM Array as a
shared resource for both the CPU core and the DSP Module
(2K-byte in the NS32FV16 and the NS32FX161).

The NS32FX164 is software-compatible with all other CPUs
in the family.

The device incorporates all of the Series 32000 advanced
architectural features, with the exception of the virtual mem-
ory capability.

Brief descriptions of the NS32FX164 features that are
shared with other members of the family are provided be-
low:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can’t use, the Series 32000 fami-
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op-
erand can be referenced by any one of the addressing
modes provided.

This powerful memory-to-memory architecture permits
memory locations to be treated as registers for all useful
operations. This is important for temporary operands as well
as for context switching.

Large, Uniform Addressing. The NS32FX164 has 24-bit
address pointers that can address up to 16 megabytes with-
out any segmentation; this addressing scheme provides
flexible memory management without add-on expense.

Modular Software Support. Any software package for the
Series 32000 architecture can be developed independent of
all other packages, without regard to individual addressing.
In addition, ROM code is totally relocatable and easy to
access, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec-
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten-

sions to the CPU. This concept of slave processors is
unique to the Series 32000 architecture. It allows software
compatibility even for future components because the slave
hardware is transparent to the software. With future ad-
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-
vide three primary performance advantages and character-
istics:

® High-Level Language Support

e Easy Future Growth Path

e Application Flexibility

1.1 NS32FX 164 SPECIAL FEATURES

In addition to the above Series 32000 features, the
NS32FX164 provides features that make the device ex-
tremely attractive for a wide range of applications where
graphics support, low chip count, and low power consump-
tion are required.

The most relevant of these features are the enhanced Digi-
tal Signal Processing performance which makes the chip
very attractive for facsimile applications, and the graphics
support capabilities, that can be used in applications such
as printers, CRT terminals, and other varieties of display
systems, where text and graphics are to be handled.

Graphics support is provided by eighteen instructions that
allow operations such as BITBLT, data compression/expan-
sion, fills, and line drawing, to be performed very efficiently.
In addition, the device can be easily interfaced to an exter-
nal BITBLT Processing Unit (BPU) for high BITBLT perform-
ance.

The NS32FX164 allows systems to be built with a relatively
small amount of random logic. The bus is highly optimized
to allow simple interfacing to a large variety of DRAMs and
peripheral devices. All the relevant bus access signals and
clock signals are generated on-chip. The cycle extension
logic is also incorporated on-chip.

The device is fabricated in a low-power, high speed CMOS
technology. It also includes a power-save feature that al-
lows the clock to be slowed down under software control,
thus minimizing the power consumption. This feature can be
used in those applications where power saving during peri-
ods of low performance demand is highly desirable.

The power save feature, the DSP Module and the Bus Char-
acteristics are described in the “Functional Description”
section. A general overview of BITBLT operations and a
description of the graphics support instructions is provided
in Section 2.5. Details on all the NS32FX164 graphics in-
structions can be found in the NS32CG16 Printer/Display
Processor Programmer’s Reference Supplement.

1.0 Product Introduction (continued)

Below is a summary of the instructions that are directly ap-
plicable to graphics along with their intended use.

Instruction Application
BBAND The BITBLT group of instructions provide a
BBOR method of quickly imaging characters,

BBFOR creating patterns, windowing and other
BBXOR block oriented effects.

BBSTOD

BITWT

EXTBLT

MOVMP Move Multiple Pattern is a very fast
instruction for clearing memory and drawing

patterns and lines.

TBITS Test Bit String will measure the length of 1’s
or 0’s in an image, supporting many data
compression methods (RLL), TBITS may
also be used to test for boundaries of
images.

SBITS Set Bit String is a very fast instruction for
filling objects, outline characters and
drawing horizontal lines.

The TBITS and SBITS instructions support
Group 3 and Group 4 CCITT standards for
compression and decompression
algorithms.

SBITPS Set Bit Perpendicular String is a very fast
instruction for drawing vertical, horizontal
and 45° lines.

In printing applications SBITS and SBITPS
may be used to express portrait and
landscape respectively from the same
compressed font data. The size of the
character may be scaled as it is drawn.

SBIT The Bit group of instructions enable single
CBIT pixels anywhere in memory to be set,
TBIT cleared, tested or inverted.

IBIT

INDEX The INDEX instruction combines a multiply-
add sequence into a single instruction. This
provides a fast translation of an X-Y
address to a pixel relative address.

CPU Registers

General Purpose
<« 32Bits —

RO-R7

Address
PC
SPO, SP1
FP
SB
INTBASE
MOD

Processor Status
PSR

Configuration
CFG

Peripherals Registers

DSP Module

A

2.0 Architectural Description

2.1 REGISTER SET

The NS32FX164 has 32 internal registers. 17 of these regis-
ters belong to the CPU portion of the device and are ad-
dressed either implicitly by specific instructions or through
the register addressing mode. The other 15 control the op-
eration of the DSP Module, and are memory mapped. Figure
2-1 shows the NS32FX164 internal registers.

x

EABR
CLPTR
OVF

PARAM
REPEAT

ABORT
EXT
CLSTAT
DSPINT
DSPMASK
NMISTAT

FIGURE 2-1. NS32FX 164 Internal Registers

2.1.1 General Purpose Registers

There are eight registers (R0O-R7) used for satisfying the
high speed general storage requirements, such as holding
temporary variables and addresses. The general purpose
registers are free for any use by the programmer. They are
32 bits in length. If a general purpose register is specified for
an operand that is 8 or 16 bits long, only the low part of the
register is used; the high part is not referenced or modified.

2.0 Architectural Description (continued)
2.1.2 Address Registers

The seven address registers are used by the processor to
implement specific address functions. Except for the MOD
register that is 16 bits wide, all the others are 32 bits. A
description of the address registers follows.

PC—Program Counter. The PC register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SP0, SP1—Stack Pointers. The SPO register points to the
lowest address of the last item stored on the INTERRUPT
STACK. This stack is normally used only by the operating
system. It is used primarily for storing temporary data, and
holding return information for operating system subroutines
and interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on the
USER STACK. This stack is used by normal user programs
to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer
(see PSR S-bit), the terms “SP Register” or “SP” are used.
SP refers to either SPO or SP1, depending on the setting of
the S bit in the PSR register. If the S bit in the PSR is 0, SP
refers to SPO. If the S bit in the PSR is 1 then SP refers to
SP1.

Stacks in the Series 32000 architecture grow downward in
memory. A Push operation pre-decrements the Stack Point-
er by the operand length. A Pop operation post-increments
the Stack Pointer by the operand length.

FP—Frame Pointer. The FP register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB—Static Base. The SB register points to the global vari-
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

INTBASE—Interrupt Base. The INTBASE register holds
the address of the dispatch table for interrupts and traps
(Section 3.2.1).

MOD—Module. The MOD register holds the address of the
module descriptor of the currently executing software mod-
ule. The MOD register is 16 bits long, therefore the module
table must be contained within the first 64 kbytes of memo-
ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa-
tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro-
grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

15

8|7 0

B

[L [[vle]sfuln]z[ela]x][c]T]c

FIGURE 2-2. Processor Status Register (PSR)

The C bit indicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used with
the ADDC and SUBC instructions to perform multiple-
precision integer arithmetic calculations. It may have a
setting of 0 (no carry or borrow) or 1 (carry or borrow).

The T bit causes program tracing. If this bit is setto 1, a
TRC trap is executed after every instruction (Section
3.3.1).

The L bit is altered by comparison instructions. In a com-
parison instruction the L bit is set to “1” if the second
operand is less than the first operand, when both oper-
ands are interpreted as unsigned integers. Otherwise, it
is set to “0”. In Floating-Point comparisons, this bit is
always cleared.

Reserved for use by the CPU.
Reserved for use by the CPU.

The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

The Z bit is altered by comparison instructions. In a com-
parison instruction the Z bit is set to “1” if the second
operand is equal to the first operand; otherwise it is set
to “0”.

The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to ““1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0”.

If the U bit is “1” no privileged instructions may be exe-
cuted. If the U bit is “0” then all instructions may be
executed. When U=0 the processor is said to be in Su-
pervisor Mode; when U =1 the processor is said to be in
User Mode. A User Mode program is restricted from exe-
cuting certain instructions and accessing certain regis-
ters which could interfere with the operating system. For
example, a User Mode program is prevented from
changing the setting of the flag used to indicate its own
privilege mode. A Supervisor Mode program is assumed
to be a trusted part of the operating system, hence it has
no such restrictions.

The S bit specifies whether the SPO register or SP1 reg-
ister is used as the Stack Pointer. The bit is automatical-
ly cleared on interrupts and traps. It may have a setting
of 0 (use the SPO register) or 1 (use the SP1 register).

The P bit prevents a TRC trap from occurring more than
once for an instruction (Section 3.3.1). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

If I=1, then all interrupts will be accepted. If =0, only
the NMI interrupt is accepted. Trap enables are not af-
fected by this bit.

2.0 Architectural Description (continued)

B Reserved for use by the CPU. This bit is set to 1 during

the execution of the EXTBLT instruction and causes the Register Register
BPU signal to become active. Upon reset, B is set to Name Address
zero and the BPU signal is set high. PARAM FFFF8000
Note 1: When an interrupt is acknowledged, the B, I, P, S and U bits are set
to zero and the BPU signal is set high. A return from interrupt will OVF FFFF8004
restore the original values from the copy of the PSR register saved
in the interrupt stack. X FFFF8008
Note 2: If BITBLT (BB) or EXTBLT instructions are executed in an interrupt Y FFFF800C
routine, the PSR bits J and K must be cleared first.
. i i z FFFF8010
2.1.4 Configuration Register
The Configuration Register (CFG) is 32 bits wide, of which 5 A FFFF8o14
bits are implemented. The implemented bits enable various REPEAT FFFF8018
operating modes for the CPU, including vectoring of inter-
rupts, execution of floating-point instructions, processing of CLPTR FFFF8020
exceptions and selection of clock scaling factor. The CFG is EABR FFFF8024
programmed by the SETCFG instruction. The format of CFG
is shown in Figure 2-3. The various control bits are de- CLSTAT FFFF9000
scribed below. ABORT FFFF9004
31 8|7 0 DSPINT FFFF9008
Reserved DE Res | C | M | F | | DSPMASK FFFF900C
FIGURE 2-3. Configuration Register (CFG) EXT FFFF9010
1 Interrupt vectoring. This bit controls whether maskable NMISTAT FFFF9014

interrupts are handled in nonvectored (I1=0) or vec-
tored (I=1) mode. Refer to Section 3.2.3 for more in-
formation.

F Floating-point instruction set. This bit indicates wheth-
er a floating-point unit (FPU) is present to execute
floating-point instructions. If this bit is 0 when the CPU
executes a floating-point instruction, a Trap (UND) oc-
curs. If this bit is 1, then the CPU transfers the instruc-
tion and any necessary operands to the FPU using the
slave-processor protocol described in Section 3.1.3.1.

M Clock scaling. This bit is used in conjunction with the
C-bit to select the clock scaling factor.

C Clock scaling. Same as the M-bit above. Refer to Sec-
tion 3.5.3 on “Power Save Mode” for details.

DE Direct-Exception mode enable. This bit enables the Di-
rect-Exception mode for processing exceptions. When
this mode is selected, the CPU response time to inter-
rupts and other exceptions is significantly improved.
Refer to Section 3.2 for more information.

2.1.5 DSP Module Registers

The DSP Module (DSPM) contains 15 memory-mapped reg-
isters. All the registers, except OVF, CLSTAT, ABORT,
DSPINT and NMISTAT, are readable and writable. OVF,
CLSTAT, DSPINT and NMISTAT are read-only. ABORT is
write-only.

The DSPM registers are divided into two groups, according
to their function. PARAM, OVF, X, Y, Z, A, REPEAT, CLPTR
and EABR are called DSPM dedicated registers. CLSTAT,
ABORT, DSPINT, DSPMASK, EXT and NMISTAT are called
CPU core interface registers.

Accesses to these registers must be aligned; word and dou-
ble-word accesses must occur on word and double-word
address boundaries respectively. Failing to do so will cause
unpredictable results. Figure 2-4 shows the address map of
the DSP Module registers.

FIGURE 2-4. DSP Module Registers Address Map
A—Accumulator
The format of the accumulator is shown in Figure 2-5.
33 0|33 0

Imaginary Real

FIGURE 2-5. Accumulator Format

The A register is a complex accumulator. It has two 34-bit
fields: a real part, and an imaginary part. Bits 15 through 30
of the real and the imaginary parts of the accumulator can
be read or written by the core in one double-word access.
Bits 15 through 30 of the real part are mapped to the oper-
and’s bits 0 through 15, and bits 15 through 30 of the imagi-
nary part are mapped to the operand’s bits 16 through 31.
The accumulator can also be read and written by the com-
mand-list execution unit using the SA, SEA, LA and LEA
instructions (See Section 3.4 for more information).

Note that when a value is stored in the accumulator by the
core, the value of PARAM.RND bit is copied into bit position
14 of both real and imaginary parts of the accumulator. This
technique allows rounding of the accumulator’s value in the
following DSPM instructions (See Section 3.4.5.3 for more
information on rounding).

When the Accumulator is loaded either by the core or by the
LA or LEA instructions, bits 31-33 of the real and the imagi-
nary accumulators are loaded with the values of bit 30 of the
real and the imaginary parts respectively.

When the Accumulator is loaded either by the core or by the
LA instruction, bits 0—13 of the real and the imaginary accu-
mulators are loaded with zeros.

X, Y, Z—Vector Pointers

The format of X, Y, and Z registers is shown in Figure 2-6.

31 16 | 15 8|7 4|3 0

ADDRESS | Reserved | WRAP-AROUND | INCREMENT

FIGURE 2-6. X, Y, Z Registers Format

2.0 Architectural Description (continued)

The X, Y, and Z registers are used for addressing up to
three vector operands. They are 32-bit registers, with three
fields: ADDRESS, INCREMENT, and WRAP-AROUND. The
value in the ADDRESS field specifies the address of a word
in the on-chip memory. This field has 16 bits, and can ad-
dress up to 64 Kwords of internal memory. The ADDRESS
fields are initialized with the vector operands’ start-address-
es by commands in the command list. At the beginning of
each vector operation, the contents of the ADDRESS field
are copied to incrementors. Increments can be used by vec-
tor instructions to step through the corresponding vector
operands while executing the appropriate calculations.
There is an address wrap-around for those vector instruc-
tions that require some of their operands to be located in
cyclic buffers. The allowed values for the increment field are
0 through 15. The actual increment will be 2increment words.
The allowed values for the WRAP-AROUND field are 0
through 15. The actual wrap-around will be 2WRAP-AROUND
words. The WRAP-AROUND must be greater or equal to
the INCREMENT.

The X, Y, and Z registers can be read and written by the
core. These registers can be read and written by the com-
mand-list execution unit, as well as by the core, when using
SX, SXL, SXH, SY, SZ, LX, LY and LZ instructions.
EABR—EXxternal Address Base Register

The format of the external address base register is shown in
Figure 2-7.
31 17 | 16 0

ADDRESS 0

FIGURE 2-7. EABR Register Format

The EABR register is used together with a 16-bit address
field to form a 32-bit external address. External addresses
are specified as the sum of the value in EABR and two times
the value of the 16-bit address pointed by registers X, Y or
Z. The only value allowed to be written into bits 0 through 16
of EABR is “0”. The EABR register can be read and written
by the core. It can also be written by the command-list exe-
cution unit by using the LEABR instruction.
EABR can hold any value except for FFFE0000. Accessing
external memory with an FFFE0000 in the EABR will cause
unpredictable results.
CLPTR—Command List Pointer
The CLPTR is a 16-bit register that holds the address of the
current command in the internal RAM. Writing into the
CLPTR causes the DSPM command-list execution unit to
begin executing commands, starting from the address in
CLPTR. The CLPTR can be read and written by the core
while the command-list execution is idle.
Whenever the DSPM command-list execution unit reads a
command from the DSPM RAM, the value of CLPTR is up-
dated to contain the address of the next command to be
executed. This implies, for example, that if the last com-
mand in a list is in address N, the CLPTR will hold a value of
N + 1 following the end of command list execution.

OVF—Overflow Register
The format of the overflow register is shown in Figure 2-8.
15 2 1 0
Reserved OVF | SAT
FIGURE 2-8. OVF Register Format

The OVF register holds the current status of the DSPM
arithmetic unit. It has two fields: OVF and SAT. The OVF bit
is set to “1” whenever an overflow is detected in the DSPM
34-bit ALU (e.g., bits 32 and 33 of the ALU are not equal).
No overflow detection is provided for integers. The SAT bit
is set to “1” whenever a value read from the accumulator
cannot be represented within the limits of its data type (e.g.,
16 bits for real and integer, and 31 bits for extended real). In
this case the value read from the accumulator will either be
the maximum allowed value or the minimal allowed value for
this data type depending on the sign of the accumulator
value. Note that in some cases when the OVF is set, the
SAT will not be set. The reason is that if an OVF occurred,
the value in the accumulator can no longer be used for
proper SAT detection. Upon reset, and whenever the
ABORT register is written, the non reserved bits of the OVF
register is cleared to “0”.
The OVF is a read only register. It can be read by the core. It
can also be read by the command-list execution unit using
the SOVF instruction. Reading the OVF by either the core or
the command-list execution unit clears it to “0”.
PARAM—Vector Parameter Register
The format of the PARAM register is shown in Figure 2-9.
31 26| 25 (24 19| 18 | 17 | 16 | 15 0
Reserved |RND| OP |SUB|CLR|COJ LENGTH
FIGURE 2-9. PARAM Register Format
The PARAM register is used to specify the number of itera-
tions and special options for the various instructions. The
options are: RND, OP, SUB, CLR, and COJ. The effect of
each of the bits of the PARAM register is specified in Sec-
tion 3.4.
The PARAM register can be read and written by the core. It
can also be written by the command-list execution unit, by
using the LPARAM instruction. The value written into PAR-
AM.LENGTH must be greater then 0.
The value of PARAM.LENGTH is not changed during com-
mand-list execution, unless it is written into using the
LPARAM instruction.
REPEAT—Command-List Repeat Register
The format of the repeat register is shown in Figure 2-10.
31 16 | 15 0
COUNT TARGET
FIGURE 2-10. REPEAT Register Format
The REPEAT register is used, together with appropriate
commands, to implement loops and branches in the com-
mand list. The count is used to specify the number of times
a loop in the command list is to be repeated. The target is
used to specify a jump address within the command list.
The REPEAT register can be read and written by the core. It
can also be read and written by the command-list execution
unit by using SREPEAT and LREPEAT instructions respec-
tively.
The value of REPEAT.COUNT changes during the execu-
tion of the DINZ command.
ABORT—Abort Register
The ABORT register is used to force execution of the com-
mand list to halt. Writing any value into this register stops
execution, and clears the contents of OVF, EXT, DSPINT
and DSPMASK. The ABORT register can only be written
and only by the core.

10

2.0 Architectural Description (continued)
EXT—External Memory Reference Control Register

The format of the external memory reference control regis-
ter is shown in Figure 2-11.

15 1 0
HOLD

Reserved

FIGURE 2-11. EXT Register Format
The EXT register controls external references. The com-
mand-list execution unit checks the value of EXT.HOLD be-
fore each external memory reference. When EXT.HOLD is
“0”, external memory references are allowed. When
EXT.HOLD is “1”, and external memory references are re-
quested, the execution of the command list will stop until
EXT.HOLD is “0”. Upon reset, and whenever the ABORT
register is written, EXT.HOLD is cleared to “0”. The EXT
register can be read or written by the core.
CLSTAT—Command-List Execution Status Register

The format of the command-list execution status register is
shown in Figure 2-12.

15 1 0
RUN

Reserved
FIGURE 2-12. CLSTAT Register Format
The CLSTAT register displays the current status of the exe-
cution of the command list. When the command-list execu-
tion is idle, CLSTAT.RUN is “0”, and when it is active,
CLSTAT.RUN is “1”. Upon reset, the CLSTAT register is
cleared to “0”. It can only be read, and only by the core.
DSPINT, DSPMASK, NMISTAT—Interrupt Control
Registers
The format of DSPINT and DSPMASK is shown in Figure
2-13.
15 1 0
Reserved HALT
FIGURE 2-13. DSPINT and DSPMASK Register Format
The DSPINT register holds the current status of interrupt
requests. Whenever execution of the command list is
stopped, the DSPINT.HALT bit is set to “1”. The DSPINT is
a read only register. It is cleared to “0”” whenever it is read,
whenever the ABORT register is written, and upon reset.
The DSPMASK register is used to mask the DSPINT. HALT
flag. An interrupt request is transferred to the interrupt logic
of the IOUT output pin whenever the DSPINT.HALT bit is
set to “1”, and the DSPMASK.HALT bit is unmasked (set to
“1”). See Section 4.0 for the functionality of IOUT.
DSPMASK can be read and written by the core. Upon reset,
and whenever the ABORT register is written, all the bits in
DSPMASK are cleared to “0”.
The format of the NMISTAT register is shown in Figure 2-14.
15 3 2 1 0
Reserved ERR | UND | EXT
FIGURE 2-14. NMISTAT Register Format
The NMISTAT holds the status of the current pending Non-
Maskable Interrupt (NMI) requests.
Whenever the core attempts to access the DSPM address
space while the CLSTAT.RUN bit is “1” (except for access-
es to the CLSTAT, EXT, DSPINT, NMISTAT, DSPMASK,
and ABORT registers) NMISTAT.ERR is set to “1”.

Whenever there is an attempt to execute a DBPT instruc-
tion, or a reserved DSPM instruction (Section 3.4), the
NMISTAT.UND bit is set to “1”.

When a high to low transition is detected on the NMI input
pin, NMISTAT.EXT bit is set to “1”.

When one of the bits in NMISTAT is set to “1”, an NMI
request to the core is issued.

The NMISTAT register is cleared to 0 upon reset, and each
time its contents are read.

When one of the bits in NMISTAT is set to 1, an NMI occurs.
The NMI handler can read the NMISTAT register to deter-
mine the source of the interrupt. Note that since NMIs may
be nested, it is possible that a second NMI handler (invoked
while the previous handler has not yet exited) will read and
handle more than one set bit in NMISTAT. Since the read
operation clears the register, the interrupted handler may
find that no bits are set.

2.2 MEMORY ORGANIZATION

The main memory of the NS32FX164 is a uniform linear
address space. Memory locations are numbered sequential-
ly starting at zero and ending at 224 — 1. The number speci-
fying a memory location is called an address. The contents
of each memory location is a byte consisting of eight bits.
Unless otherwise noted, diagrams in this document show
data stored in memory with the lowest address on the right
and the highest address on the left. Also, when data is
shown vertically, the lowest address is at the top of a dia-
gram and the highest address at the bottom of the diagram.
When bits are numbered in a diagram, the least significant
bit is given the number zero, and is shown at the right of the
diagram. Bits are numbered in increasing significance and
toward the left.

A

Byte at Address A
Two contiguous bytes are called a word. Except where not-
ed, the least significant byte of a word is stored at the lower
address, and the most significant byte of the word is stored
at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word
may start at any address.

15 8|7 0

A+1 A

MSB LSB
Word at Address A

Two contiguous words are called a double-word. Except
where noted, the least significant word of a double-word is
stored at the lowest address and the most significant word
of the double-word is stored at the address two higher. In
memory, the address of a double-word is the address of its
least significant byte, and a double-word may start at any
address.

31 24|23 16| 15 8|7 0

A+3 A+2 A+1 A

MSB LSB
Double Word at Address A

1

2.0 Architectural Description (continued)

Although memory is addressed as bytes, it is actually orga-
nized as words. Therefore, words and double-words that are
aligned to start at even addresses (multiples of two) are
accessed more quickly than words and double-words that
are not so aligned.

2.2.1 Address Mapping

The NS32FX164 supports the use of memory-mapped pe-
ripheral devices and coprocessors. Such memory-mapped
devices can be located at arbitrary locations within the
16-Mbyte address range available externally.

Addresses marked as Reserved in Figure 2-15 are not avail-
able in the present implementation of the NS32FX164, and
should not be used. The top 8-Mbyte block is reserved by
National Semiconductor Corporation, and only a few loca-
tions within this block are presently used to access the on-
chip RAM array and DSP Module registers. Figure 2-15
shows the NS32FX164 address mapping.

Start Address
(HEX)

00000000 Memory and 1/0
0OFFFEO00 Interrupt Control
01000000 Reserved
FFFEO000 DSPM Internal RAM
FFFE1000 Reserved
FFFF8000 DSPM Dedicated Registers
FFFF8028 Reserved
FFFF9000 DSPM Control/Status Registers
FFFF9014 Reserved

FIGURE 2-15. NS32FX164 Address Mapping

2.3 MODULAR SOFTWARE SUPPORT

The NS32FX164 provides special support for software mod-

ules and modular programs.

Each module in a NS32FX164 software environment con-

sists of three components:

1. Program Code Segment.
This segment contains the module’s code and constant
data.

2. Static Data Segment.
Used to store variables and data that may be accessed
by all procedures within the module.

3. Link Table.
This component contains two types of entries: Absolute
Addresses and Procedure Descriptors.
An Absolute Address is used in the external addressing
mode, in conjunction with a displacement and the current
MOD Register contents to compute the effective address
of an external variable belonging to another module.
The Procedure Descriptor is used in the call external pro-
cedure (CXP) instruction to compute the address of an
external procedure.

Normally, the linker program specifies the locations of the
three components. The Static Data and Link Table typically
reside in RAM; the code component can be either in RAM or
in ROM. The three components can be mapped into non-
contiguous locations in memory, and each can be indepen-
dently relocated. Since the Link Table contains the absolute
addresses of external variables, the linker need not assign
absolute memory addresses for these in the module itself;
they may be assigned at load time.

To handle the transfer of control from one module to anoth-
er, the NS32FX164 uses a module table in memory and two
registers in the CPU.

The Module Table is located within the first 64 kbytes of
memory. This table contains a Module Descriptor (also
called a Module Table Entry) for each module in the ad-
dress space of the program. A Module Descriptor has four
32-bit entries corresponding to each component of a mod-
ule:

® The Static Base entry contains the address of the begin-
ning of the module’s static data segment.

® The Link Table Base points to the beginning of the mod-
ule’s Link Table.

® The Program Base is the address of the beginning of the
code and constant data for the module.

e A fourth entry is currently unused but reserved.

The MOD Register in the CPU contains the address of the
Module Descriptor for the currently executing module.

The Static Base Register (SB) contains a copy of the Static
Base entry in the Module Descriptor of the currently execut-
ing module, i.e., it points to the beginning of the current
module’s static data area.

This register is implemented in the CPU for efficiency pur-
poses. By having a copy of the static base entry or chip, the
CPU can avoid reading it from memory each time a data
item in the static data segment is accessed.

In an NS32FX164 software environment modules need not
be linked together prior to loading. As modules are loaded,
a linking loader simply updates the Module Table and fills
the Link Table entries with the appropriate values. No modi-
fication of a module’s code is required. Thus, modules may
be stored in read-only memory and may be added to a sys-
tem independently of each other, without regard to their in-
dividual addressing. Figure 2-16 shows a typical
NS32FX164 run-time environment.

2.4 INSTRUCTION SET

2.4.1 General Instruction Format

Figure 2-17 shows the general format of a Series 32000
instruction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad-
dressing Mode (“Gen”) fields. Following the Basic Instruc-
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se-
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index-
ing.

12

2.0 Architectural Description (continued)

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select-
ed addressing modes. Each Disp/Imm field may contain
one of two displacements, or one immediate value. The size
of a Displacement field is encoded within the top bits of that
field, as shown in Figure 2-19, with the remaining bits inter-
preted as a signed (two’s complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most-signifi-
cant byte first. Note that this is different from the memory
representation of data (Section 2.2).

)

‘1> . MODULE TABLE
31 0

STATIC BASE

MODULE LINK TABLE BASE
TABLE
ENTRY PROGRAM BASE -

RESERVED

SB REGISTER

Some instructions require additional “implied” immediates
and/or displacements, apart from those associated with ad-
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.4.3).

7 3|2 [}

GEN. ADDR. MODE REG. NO.

TL/EE/11267-3
FIGURE 2-18. Index Byte Format

STATIC DATA
SEGMENT

DISP

LINK TABLE

OFFSET== ->@<— -

DISP1x 4

PROGRAM CODE
SEGMENT

»| ABSOLUTE ADDRESS
ABSOLUTE ADDRESS
OFFSET | MODULE
ABSOLUTE ADDRESS

A A

(v

EXTERNAL MODULE

)}

PC REGISTER

EXT. VARIABLE

-~

TL/EE/11267-2

Note: Dashed lines indicate information copied to register during transfer of control between modules.

FIGURE 2-16. NS32FX 164 Run-Time Environment

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
Y ™
1
mspz,msm mspzlmsm !
1
IMPLIED INDEX INDEX GEN ;1 GEN
IMMEDIATE DISP DISP BYTE BYTE 03%2 | ADDR OPCODE
OPERAND(S) ODE MOBDE
MM IMM !
I

t

TL/EE/11267-4

FIGURE 2-17. General Instruction Format

13

2.0 Architectural Description (continued)
2.4.2 Addressing Modes

The NS32FX164 CPU generally accesses an operand by
calculating its Effective Address based on information avail-
able when the operand is to be accessed. The method to be
used in performing this calculation is specified by the pro-
grammer as an ‘“addressing mode”.

Addressing modes in the NS32FX164 are designed to opti-
mally support high-level language accesses to variables. In
nearly all cases, a variable access requires only one ad-
dressing mode, within the instruction that acts upon that
variable. Extraneous data movement is therefore minimized.

NS32FX164 Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen-
eral Purpose Registers. In certain Slave Processor instruc-
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space: Identical to Register Relative above, ex-
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen-
erally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec-
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen-
eral Purpose Register by 1, 2, 4 or 8 and adding into the
total, yielding the final Effective Address of the operand.

Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Series 32000
Instruction Set Reference Manual.

In addition to the general modes, Register-Indirect with
auto-increment/decrement and warps or pitch are available
on several of the graphics instructions.

Byte Displacement: Range —64 to +63

0 SIGNED DISPLACEMENT

Word Displacement: Range —8192 to +8191

Double Word Displacement:
Range (Entire Addressing Space)

e\"‘\e

R
©
o°

TL/EE/11267-5

FIGURE 2-19. Displacement Encodings

ENCODING
Register
00000
00001
00010
00011
00100
00101
00110
00111
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Relative
10000
10001
10010

Reserved
10011
Immediate
10100

Absolute
10101
External
10110

Top Of Stack
10111

Memory Space
11000

11001

11010

11011

Scaled Index
11100

11101

11110

11111

2.0 Architectural Description (continued)

TABLE 2-1. NS32FX 164 Addressing Modes

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

(Reserved for Future Use)

Immediate

Absolute

External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes

Index, words

Index, double words
Index, quad words

ASSEMBLER SYNTAX

RO or FO
R1 or F1
R2 or F2
R3 or F3
R4 or F4
R5 or F5
R6 or F6
R6 or F7

disp(RO)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1 (FP))
disp2(disp1 (SP))
disp2(disp1 (SB))

value

@disp

EXT (disp1) + disp2

TOS

disp(FP)
disp(SP)
disp(SB)
*+ disp

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

EFFECTIVE ADDRESS

None: Operand is in the specified
register.

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp 1 + Register. “SP”
is either SPO or SP1, as selected

in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; “SP” is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.

EA (mode) + 2XRn.

EA (mode) + 4XRn.

EA (mode) + 8<Rn.

“Mode” and “n” are contained
within the Index Byte.

EA (mode) denotes the effective
address generated using mode.

15

2.0 Architectural Description (continued)
2.4.3 Instruction Set Summary

Table 2-2 presents a brief description of the NS32FX164
instruction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De-
scription column provides a short description of the function
provided by that instruction. Further details of the exact op-
erations performed by each instruction may be found in the
Series 32000 Instruction Set Reference Manual and the
NS32CG16 Printer/Display Processor Programmer’s Refer-
ence.

Notations:
i=Integer length suffix: B = Byte
W= Word
D = Double Word

f=Floating Point length suffix: F = Standard Floating
L=Long Floating

gen=General operand. Any addressing mode can be speci-
fied.

short=A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).

imm= Implied immediate operand. An 8-bit value appended
after any addressing extensions.

disp =Displacement (addressing constant): 8, 16 or 32 bits.
All three lengths legal.

reg=Any General Purpose Register: RO-R7.

areg=Any Processor Register: SP, SB, FP, INTBASE,
MOD, PSR, US (bottom 8 PSR bits).

cond= Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

TABLE 2-2. NS32FX164 Instruction Set Summary

MOVES
Format Operation Operands Description
4 MOVi gen,gen Move a value.
2 MOVvQi short,gen Extend and move a signed 4-bit constant.
7 MOVMi gen,gen,disp Move multiple: disp bytes (1 to 16).
7 MOvVZBW gen,gen Move with zero extension.
7 MOVZiD gen,gen Move with zero extension.
7 MOVXBW gen,gen Move with sign extension.
7 MOVXiD gen,gen Move with sign extension.
4 ADDR gen,gen Move effective address.
INTEGER ARITHMETIC
Format Operation Operands Description
4 ADDi gen,gen Add.
2 ADDQiI short,gen Add signed 4-bit constant.
4 ADDCi gen,gen Add with carry.
4 SUBI gen,gen Subtract.
4 SUBCi gen,gen Subtract with carry (borrow).
6 NEGi gen,gen Negate (2’s complement).
6 ABSI gen,gen Take absolute value.
7 MULi gen,gen Multiply.
7 QUOI gen,gen Divide, rounding toward zero.
7 REMi gen,gen Remainder from QUO.
7 DIVi gen,gen Divide, rounding down.
7 MODi gen,gen Remainder from DIV (Modulus).
7 MEli gen,gen Multiply to extended integer.
7 DEli gen,gen Divide extended integer.
PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description
6 ADDPi gen,gen Add packed.
6 SUBPI gen,gen Subtract packed.

2.0 Architectural Description (continued)

INTEGER COMPARISON

Format Operation
4 CMPi
2 CMPQi
7 CMPMi
LOGICAL AND BOOLEAN
Format Operation
4 ANDi
4 ORi
4 BICi
4 XORi
6 COMi
6 NOTi
2 Scondi
SHIFTS
Format Operation
6 LSHi
6 ASHi
6 ROTi
BIT FIELDS

Operands
gen,gen
short,gen
gen,gen,disp

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

Operands

gen,gen
gen,gen
gen,gen

TABLE 2-2. NS32FX 164 Instruction Set Summary (Continued)

Description

Compare.

Compare to signed 4-bit constant.
Compare multiple: disp bytes (1 to 16).

Description

Logical AND.

Logical OR.

Clear selected bits.

Logical exclusive OR.

Complement all bits.

Boolean complement: LSB only.

Save condition code (cond) as a Boolean variable of size i.

Description

Logical shift, left or right.
Arithmetic shift, left or right.
Rotate, left or right.

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Pascal. “Extract” instructions read and align a bit field. “Insert” instructions write a bit field from an aligned source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to bit field pointer.
ARRAYS
Format Operation Operands Description
8 CHECKIi reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
STRINGS Options on all string instructions are:
String instructions assign specific functions to the General B (Backward): Decrement string pointers after each

Purpose Registers:
R4 — Comparison Value

R3 — Translation Table Pointer

R2 — String 2 Pointer
R1 — String 1 Pointer
RO — Limit Count

step rather than incrementing.

U (Until match): End instruction if String 1 entry matches
R4.

W (While match): End instruction if String 1 entry does not
match R4.

All string instructions end when RO decrements to zero.

17

2.0 Architectural Description (continued)

TABLE 2-2. NS32FX164 Instruction Set Summary (Continued)

Format Operation
5 MOVSi
MOVST
5 CMPS;i
CMPST
5 SKPSi
SKPST

JUMPS AND LINKAGE

Format Operation

JUMP
BR
Bcond
CASEi
ACBi
JSR
BSR
CXP
CXPD
SVC
FLAG
BPT
ENTER
EXIT
RET
RXP
RETT
RET

a a d d d d d a A WS 2 WD WO oW

CPU REGISTER MANIPULATION

Format Operation

SAVE
RESTORE
LPRi

SPRi
ADJSPi
BISPSRi
BICPSRi
SETCFG

O wWwwwnn NN = =

Operands

options
options
options
options
options
options

Operands

gen
disp
disp
gen
short,gen,disp
gen
disp
disp
gen

[reg list], disp
[reg list]

disp

disp

disp

Operands

[reg list]
[reg list]
areg,gen
areg,gen
gen

gen

gen
[option list]

Description

Move string 1 to string 2.

Move string, translating bytes.
Compare string 1 to string 2.
Compare, translating string 1 bytes.
Skip over string 1 entries.

Skip, translating bytes for until/while.

Description

Jump.

Branch (PC Relative).

Conditional branch.

Multiway branch.

Add 4-bit constant and branch if non-zero.

Jump to subroutine.

Branch to subroutine.

Call external procedure

Call external procedure using descriptor.

Supervisor call.

Flag trap.

Breakpoint trap.

Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.

Return from external procedure call.

Return from trap. (Privileged)

Return from interrupt. (Privileged)

Description

Save general purpose registers.

Restore general purpose registers.

Load dedicated register. (Privileged if PSR or INTBASE)
Store dedicated register. (Privileged if PSR or INTBASE)
Adjust stack pointer.

Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set configuration register. (Privileged)

18

2.0 Architectural Description (continued)

FLOATING POINT
Format
11
9

© © © ©

9
11
11
11
11
11
11
11

9

9
12
12
12
12

MISCELLANEOUS
Format

1
1
1

GRAPHICS
Format

(&6 6, e, IS NG, BNG, BNC, NG, NG BNe, |

BITS
Format

[RN RN) Re) NN I N

©

Operation
MOVF
MOVLF
MOVFL
MOVif
ROUNDfi
TRUNCHi
FLOOR(i
ADDf
SuUBf
MULf
DIVf
CMPf
NEGf
ABSf
LFSR
SFSR
POLYf
DOTf
SCALBf
LOGBf

Operation

NOP
WAIT
DIA

Operation

BBOR
BBAND
BBFOR
BBXOR
BBSTOD
BITWT
EXTBLT
MOVMPi
TBITS
SBITS
SBITPS

Operation

TBITi
SBITi
SBITIi
CBITi
CBITIi
IBITi
FFSi

Operands
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

gen
gen,gen
gen,gen
gen,gen
gen,gen

Operands

Operands
options*
options

options
options

options

options

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

TABLE 2-2. NS32FX 164 Instruction Set Summary (Continued)

Description

Move a floating point value.

Move and shorten a long value to standard.
Move and lengthen a standard value to long.
Convert any integer to standard or long floating.
Convert to integer by rounding.

Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add.

Subtract.

Multiply.

Divide.

Compare.

Negate.

Take absolute value.

Load FSR.

Store FSR.

Polynomial Step.

Dot Product.

Binary Scale.

Binary Log.

Description

No operation.

Wait for interrupt.

Diagnose. Single-byte ““Branch to Self” for hardware
breakpointing. Not for use in programming.

Description

Bit-aligned block transfer ‘OR’.
Bit-aligned block transfer ‘AND’.
Bit-aligned block transfer fast ‘OR’.
Bit-aligned block transfer ‘XOR’.
Bit-aligned block source to destination.
Bit-aligned word transfer.

External bit-aligned block transfer.
Move multiple pattern.

Test bit string.

Set bit string.

Set bit perpendicular string.

Description

Test bit.

Test and set bit.

Test and set bit, interlocked.
Test and clear bit.

Test and clear bit, interlocked.
Test and invert bit.

Find first set bit.

*Note: Options are controlled by fields of the instruction, PSR status bits, or dedicated register values.

19

2.0 Architectural Description (continued)
2.5 GRAPHICS SUPPORT

The following sections provide a brief description of the
NS32FX164 graphics support capabilities. Basic discus-
sions on frame buffer addressing and BITBLT operations
are also provided. More detailed information on the
NS32FX164 graphics support instructions can be found in
the NS32CG16 Printer/Display Processor Programmer’s
Reference.

2.5.1 Frame Buffer Addressing

There are two basic addressing schemes for referencing
pixels within the frame buffer: Linear and Cartesian (or x-y).
Linear addressing associates a single number to each pixel
representing the physical address of the corresponding bit
in memory. Cartesian addressing associates two numbers
to each pixel representing the x and y coordinates of the
pixel relative to a point in the Cartesian space taken as the
origin. The Cartesian space is generally defined as having
the origin in the upper left. A movement to the right increas-
es the x coordinate; a movement downward increases the y
coordinate.
The correspondence between the location of a pixel in the
Cartesian space and the physical (BIT) address in memory
is shown in Figure 2-20. The origin of the Cartesian space
(x=0, y=0) corresponds to the bit address ‘ORG’. Incre-
menting the x coordinate increments the bit address by one.
Incrementing the y coordinate increments the bit address by
an amount representing the warp (or pitch) of the Cartesian
space. Thus, the linear address of a pixel at location (x, y) in
the Cartesian space can be found by the following expres-
sion.

ADDR = ORG + y * WARP + x
Warp is the distance (in bits) in the physical memory space
between two vertically adjacent bits in the Cartesian space.
Example 1 below shows two NS32FX164 instruction se-
quences to set a single pixel given the x and y coordinates.
Example 2 shows how to create a fat pixel by setting four
adjacent bits in the Cartesian space.

Example 1: Set pixel at location (x, y)
Setup: RO x coordinate
R1 y coordinate

Instruction Sequence 1:

MULD WARP, R1 s Y*WARP

ADDD RO, R1 ; + X = BIT OFFSET
SBITD R1l, ORG ;s SET PIXEL
Instruction Sequence 2:

INDEXD R1, (WARP-1), RO ; Y*WARP + X

SBITD R1l, ORG ;s SET PIXEL

Example 2: Create fat pixel by setting bits at locations
(% ¥), (x+1,y), (x, y+1) and (x+1,y+1).

Setup: RO x coordinate
R1 y coordinate

Instruction Sequence:

INDEXD R1, (WARP-1), RO ; BIT ADDRESS
SBITD 41, ORG ; SET FIRST PIXEL
ADDQD 1, Rl 5 (X+1, Y)

SBITD R1, ORG ; SECOND PIXEL
ADDD (WARP-1), Rl 5 (X, Y+1)

SBITD R1, ORG ; THIRD PIXEL
ADDQD 1, Rl 5 (X+1, Y+1)
SBITD R1, ORG ; LAST PIXEL

ORG ORG+1 ORG+2

Vv x

«4— ORG + WARP

<4— ORG + 2*WARP

® (XY)

ORG + Y*WARP + X

Y v
TL/EE/11267-6
FIGURE 2-20. Correspondence between
Linear and Cartesian Addressing

2.5.2 BITBLT Fundamentals

BITBLT, BIT-aligned BLock Transfer, is a general operator
that provides a mechanism to move an arbitrary size rectan-
gle of an image from one part of the frame buffer to another.
During the data transfer process a bitwise logical operation
can be performed between the source and the destination
data. BITBLT is also called RasterOp: operations on rasters.
It defines two rectangular areas, source and destination,
and performs a logical operation (e.g., AND, OR, XOR) be-
tween these two areas and stores the result back to the
destination. It can be expressed in simple notation as:

Source op Destination — Destination
op: AND, OR, XOR, etc.

20

2.0 Architectural Description (continued)
2.5.2.1 Frame Buffer Architecture

There are two basic types of frame buffer architectures:
plane-oriented or pixel-oriented. BITBLT takes advantage of
the plane-oriented frame buffer architecture’s attribute of
multiple, adjacent pixels-per-word, facilitating the movement
of large blocks of data. The source and destination starting
addresses are expressed as pixel addresses. The width and
height of the block to be moved are expressed in terms of
pixels and scan lines. The source block may start and end
at any bit position of any word, and the same applies for the
destination block.

2.5.2.2 Bit Alignment

Before a logical operation can be performed between the
source and the destination data, the source data must first
be bit aligned to the destination data. In Figure 2-21, the
source data needs to be shifted three bits to the right in
order to align the first pixel (i.e., the pixel at the top left
corner) in the source data block to the first pixel in the desti-
nation data block.

2.5.2.3 Block Boundaries and Destination Masks

Each BITBLT destination scan line may start and end at any
bit position in any data word. The neighboring bits (bits shar-
ing the same word address with any words in the destination
data block, but not a part of the BITBLT rectangle) of the
BITBLT destination scan line must remain unchanged after
the BITBLT operation.

r WORD BOUNDARIES 1

Due to the plane-oriented frame buffer architecture, all
memory operations must be word-aligned. In order to pre-
serve the neighboring bits surrounding the BITBLT destina-
tion block, both a left mask and a right mask are needed for
all the leftmost and all the rightmost data words of the desti-
nation block. The left mask and the right mask both remain
the same during a BITBLT operation.

The following example illustrates the bit alignment require-
ments. In this example, the memory data path is 16 bits
wide. Figure 2-21 shows a 32 pixel by 32 scan line frame
buffer which is organized as a long bit stream which wraps
around every two words (32 bits). The origin (top left corner)
of the frame buffer starts from the lowest word in memory
(word address 00 (hex)).

Each word in the memory contains 16 bits, DO-D15. The
least significant bit of a memory word, DO, is defined as the
first displayed pixel in a word. In this example, BITBLT ad-
dresses are expressed as pixel addresses relative to the
origin of the frame buffer. The source block starting address
is 021 (hex) (the second pixel in the third word). The desti-
nation block starting address is 204 (hex) (the fifth pixel in
the 33rd word). The block width is 13 (hex), and the height is
06 (hex) (corresponding to 6 scan lines). The shift value is 3.

PIXEL NUMBERS
WITHIN WORDS

0123456789ABCDEF0123456789ABCDEF

WORD
ADDRESSES

SSSSSSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSSSSSS

DDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDD

FIGURE 2-21. 32-Pixel by 32-Scan Line Frame Buffer

TL/EE/11267-7

21

2.0 Architectural Description (continued)
2.5.2.4 BITBLT Directions

A BITBLT operation moves a rectangular block of data in a
frame buffer. The operation itself can be considered as a
subroutine with two nested loops. The loops are preceded
by setup operations. In the outer loop the source and desti-
nation starting addresses are calculated, and the test for
completion is performed. In the inner loop the actual data
movement for a single scan line takes place. The length of
the inner loop is the number of (aligned) words spanned by
each scan line. The length of the outer loop is equal to the
height (number of scan lines) of the block to be moved. A
skeleton of the subroutine representing the BITBLT opera-
tion follows.

BITBLT: calculate BITBLT setup parameters;

(once per BITBLT operation).
such as
width, height
bit misalignment (shift number)
left, right masks
horizontal, vertical directions
etc
L]
L]

OUTERLOOP: calculate source, dest addresses;
(once per scanline).

INNERLOOP: move data, (logical operation) and incre-
ment addresses;
(once per word).

UNTIL done vertically

RETURN (from BITBLT).

Note: In the NS32FX164 only the setup operations must be done by the
programmer. The inner and outer loops are automatically executed
by the BITBLT instructions.

Each loop can be executed in one of two directions: the

inner loop from left to right or right to left, the outer loop

from top to bottom (down) or bottom to top (up).

The ability to move data starting from any corner of the
BITBLT rectangle is necessary to avoid destroying the
BITBLT source data as a result of destination writes when
the source and destination are overlapped (i.e., when they
share pixels). This situation is routinely encountered while
panning or scrolling.

A determination of the correct execution directions of the
BITBLT must be performed whenever the source and desti-
nation rectangles overlap. Any overlap will result in the de-
struction of source data (from a destination write) if the cor-
rect vertical direction is not used. Horizontal BITBLT direc-
tion is of concern only in certain cases of overlap, as will be
explained below.

Figures 2-22(a) and (b) illustrate two cases of overlap. Here,
the BITBLT rectangles are three pixels wide by five scan
lines high; they overlap by a single pixel in (@) and a single
column of pixels in (b). For purposes of illustration, the
BITBLT is assumed to be carried out pixel-by-pixel. This
convention does not affect the conclusions.

In Figure 2-22(a), if the BITBLT is performed in the UP direc-
tion (bottom-to-top) one of the transfers of the bottom scan
line of the source will write to the circled pixel of the destina-

UNTIL done horizontally tion. Due to the overlap, this pixel is also part of the upper-
most scan line of the source rectangle. Thus, data needed
later is destroyed. Therefore, this BITBLT must be per-
formed in the DOWN direction. Another example of this oc-

¥
1 SCAN LINE
DESTINATION t —
i \

SOURCE

) 4(4

)) j/ N

SOURCE 1 PIXEL DESTINATION
¥b&_/
TL/EE/11267-8 TL/EE/11267-9
(a) (b)

FIGURE 2-22. Overlapping BITBLT Blocks

The left mask and the right mask are 0000,1111,1111,1111 and 1111,1111,0000,0000 respectively.
Note 1: Zeros in either the left mask or the right mask indicate the destination bits which will not be modified.
Note 2: The BB(function) and EXTBLT instructions use different set up parameters, and techniques.

2.0 Architectural Description (continued)

curs any time the screen is moved in a purely vertical direc-
tion, as in scrolling text. It should be noted that, in both of
these cases, the choice of horizontal BITBLT direction may
be made arbitrarily.

Figure 2-22(b) demonstrates a case in which the horizontal
BITBLT direction may not be chosen arbitrarily. This is an
instance of purely horizontal movement of data (panning).
Because the movement from source to destination involves
data within the same scan line, the incorrect direction of
movement will overwrite data which will be needed later. In
this example, the correct direction is from right to left.

2.5.2.5 BITBLT Variations

The “classical” definition of BITBLT, as described in
“Smalltalk-80 The Language and its Implementation”, by
Adele Goldberg and David Robson, provides for three oper-
ands: source, destination and mask/texture. This third oper-
and is commonly used in monochrome systems to incorpo-
rate a stipple pattern into an area. These stipple patterns
provide the appearance of multiple shades of gray in single-
bit-per-pixel systems, in a manner similar to the “halftone”
process used in printing.

Texture op1 Source op2 Destination — Destination

While the NS32FX164 and the external BPU (if used) are
essentially two-operand devices, three-operand BITBLT op-
erations can be implemented quite flexibly and efficiently by
performing the two operations serially.

2.5.3 GRAPHICS SUPPORT INSTRUCTIONS

The NS32FX164 provides eleven instructions for supporting
graphics oriented applications. These instructions are divid-
ed into three groups according to the operations they per-
form. General descriptions for each of them and the related
formats are provided in the following sections.

2.5.3.1 BITBLT (BIT-aligned BLock Transfer)

This group includes seven instructions. They are used to
move characters and objects into the frame buffer which will
be printed or displayed. One of the instructions works in
conjunction with an external BITBLT Processing Unit (BPU)
to maximize performance. The other six are executed by the
NS32FX164.

BIT-aligned BLock Transfer
Syntax: BB(function) Options
Setup: RO base address, source data
R1 base address, destination data
R2 shift value
R3 height (in lines)
R4 first mask
R5 second mask
R6 source warp (adjusted)
R7 destination warp (adjusted)

0(SP) width (in words)
Function: AND, OR, XOR, FOR, STOD
Options: |A Increasing Address (default option).

When |A is selected, scan lines are
transferred in the increasing BIT/BYTE

order.
DA Decreasing Address.
S True Source (default option).
-8 Inverted Source.

These five instructions perform standard BITBLT operations
between source and destination blocks. The operations
available include the following:

BBAND: src AND dst
—src AND dst
BBOR: src OR dst
—src OR dst
BBXOR: src XOR dst
—src XOR dst
BBFOR: src OR dst
BBSTOD: src TO dst
—src TO dst

‘src’ and ‘—src’ stand for ‘True Source’ and ‘Inverted
Source’ respectively; ‘dst’ stands for ‘Destination’.

Note 1: For speed reasons, the BB instructions require the masks to be
specified with respect to the source block. In Figure 2-21 masking
was defined relative to the destination block.

Note 2: The options —S and DA are not available for the BBFOR instruc-
tion.

Note 3: BBFOR performs the same operation as BBOR with IA and S op-
tions.

Note 4: IA and DA are mutually exclusive and so are S and —S.
Note 5: The width is defined as the number of words of source data to read.
Note 6: An odd number of bytes can be specified for the source warp.
However, word alignment of source scan lines will result in faster
execution.
The horizontal and vertical directions of the BITBLT opera-
tions performed by the above instructions, with the excep-
tion of BBFOR, are both programmable. The horizontal di-
rection is controlled by the IA and DA options. The vertical
direction is controlled by the sign of the source and destina-
tion warps. Figure 2-23 and Table 2-3 show the format of
the BB instructions and the encodings for the ‘op’ and ¥
fields.

23 1615 g7 0

rr T TT T T T_T —TT T T T 1T 17T 177
000000DXS50| op |il00001110

® D is set when the DA option is selected
¢ S is set when the —$S option is selected
* X is set for BBAND, and it is clear for all other BB instructions

FIGURE 2-23. BB Instructions Format
TABLE 2-3. ‘op’ and ‘i’ Field Encodings

Instruction Options ‘op’ Field ‘" Field
BBAND Yes 1010 11
BBOR Yes 0110 01
BBXOR Yes 1110 01
BBFOR No 1100 01
BBSTOD Yes 0100 01

BIT-aligned Word Transfer
Syntax: BITWT

Setup: RO Base address, source word
R1 Base address, destination double word
R2 Shift value

The BITWT instruction performs a fast logical OR operation
between a source word and a destination double word,
stores the result into the destination double word and incre-
ments registers RO and R1 by two. Before performing the
OR operation, the source word is shifted left (i.e., in the
direction of increasing bit numbers) by the value in register
R2.

23

2.0 Architectural Description (continued)

This instruction can be used within the inner loop of a block
OR operation. Its use assumes that the source data is
‘clean’ and does not need masking. The BITWT format is
shown in Figure 2-24.

23 16|15 8|7 0

000000000010000100001110

FIGURE 2-24. BITWT Instruction Format

External BITBLT
Syntax: EXTBLT

Setup: RO base addresses, source data
R1 base address, destination data
R2 width (in bytes)
R3 height (in lines)
R4 horizontal increment/decrement
R5 temporary register (current width)
R6 source warp (adjusted)
R7 destination warp (adjusted)

Note 1: RO and R1 are updated after execution to point to the last source
and destination addresses plus related warps. R2, R3 and R5 will
be modified. R4, R6, and R7 are returned unchanged.

Note 2: Source and destination pointers should point to word-aligned oper-

ands to maximize speed and minimize external interface logic.
This instruction performs an entire BITBLT operation in con-
junction with an external BITBLT Processing Unit (BPU).
The external BPU Control Register should be loaded by the
software before the instruction is executed (refer to the
DP8510 or DP8511 data sheets for more information on the
BPU). The NS32FX164 generates a series of source read,
destination read and destination write bus cycles until the
entire data block has been transferred. The BITBLT opera-
tion can be performed in either horizontal direction. As con-
trolled by the sign of the contents of register R4.

Depending on the relative alignment of the source and des-
tination blocks, an extra source read may be required at the
beginning of each scan line, to load the pipeline register in
the external BPU. The L bit in the PSR register determines
whether the extra source read is performed. If L is 1, no
extra read is performed. The instructions CMPQB 2,1 or
CMPQB 1,2 could be executed to provide the right setting
for the L bit just before executing EXTBLT. Figure 2-25
shows the EXTBLT format. The bus activity for a simple
BITBLT operation is shown in Figure 2-30.

23 8|7 0

000000000001011100001110

15
T

FIGURE 2-25. EXTBLT Instruction Format

2.5.3.2 Pattern Fill

Only one instruction is in this group. It is usually used for
clearing RAM and drawing patterns and lines.

Move Multiple Pattern
Syntax: MOVMPi

Setup: RO base address of the destination
R1 pointer increment (in bytes)
R2 number of pattern moves
R3 source pattern

Note: R1 and R3 are not modified by the instruction. R2 will always be
returned as zero. RO is modified to reflect the last address into which
a pattern was written.

This instruction stores the pattern in register R3 into the
destination area whose address is in register RO. The pat-
tern count is specified in register R2. After each store oper-
ation the destination address is changed by the contents of
register R1. This allows the pattern to be stored in rows, in
columns, and in any direction, depending on the value and
sign of R1. The MOVMPi instruction format is shown in Fig-
ure 2-26.

23 15 8|7 0

00000000000111]i|00001110

FIGURE 2-26. MOVMPi Instruction Format

2.5.3.3 Data Compression, Expansion and Magnify

The three instructions in this group can be used to com-
press data and restore data from compression. A com-
pressed character set may require from 30% to 50% less
memory space for its storage.

The compression ratio possible can be 50:1 or higher de-
pending on the data and algorithm used. TBITS can also be
used to find boundaries of an object. As a character is need-
ed, the data is expanded and stored in a RAM buffer. The
expand instructions (SBITS, SBITPS) can also function as
line drawing instructions.

Test Bit String

Syntax: TBITS option

Setup: RO base address, source (byte address)
R1 starting source bit offset
R2 destination run length limited code
R3 maximum value run length limit
R4 maximum source bit offset

Option: 1 count set bits until a clear bit is found

0 count clear bits until a set bit is found
Note: RO, R3 and R4 are not modified by the instruction execution. R1
reflects the new bit offset. R2 holds the result.

This instruction starts at the base address, adds a bit offset,
and tests the bit for clear if “option” = 0 (and for set if
“option” = 1). If clear (or set), the instruction increments to
the next higher bit and tests for clear (or set). This testing
for clear proceeds through memory until a set bit is found or
until the maximum source bit offset or maximum run length
value is reached. The total number of clear bits is stored in
the destination as a run length value.

When TBITS finds a set bit and terminates, the bit offset is
adjusted to reflect the current bit address. Offset is then
ready for the next TBITS instruction with “option” = 0. After
the instruction is executed, the F flag is set to the value of
the bit previous to the bit currently being pointed to (i.e., the
value of the bit on which the instruction completed execu-
tion). In the case of a starting bit offset exceeding the maxi-
mum bit offset (R1 > R4), the F flag is set if the option was
1 and clear if the option was 0. The L flag is set when the
desired bit is found, or if the run length equalled the maxi-
mum run length value and the bit was not found. It is cleared
otherwise. Figure 2-27 shows the TBITS instruction format.

8|7 0

00000000S0O10011100001110

® Sis set for ‘TBITS 1’ and clear for ‘TBITS 0".

23 15
T T

FIGURE 2-27. TBITS Instruction Format

24

https://www.application-datasheet.com/

2.0 Architectural Description (continued)
Set Bit String
Syntax: SBITS

Setup: RO base address of the destination
R1 starting bit offset (signed)
R2 number of bits to set (unsigned)
R3 address of string look-up table

Note: When the instruction terminates, the registers are returned un-
changed.

SBITS sets a number of contiguous bits in memory to 1, and
is typically used for data expansion operations. The instruc-
tion draws the number of ones specified by the value in R2,
starting at the bit address provided by registers RO and R1.
In order to maximize speed and allow drawing of patterned
lines, an external 1k byte lookup table is used. The lookup
table is specified in the NS32CG16 Printer/Display Proces-
sor Programmer’s Reference Supplement.

When SBITS begins executing, it compares the value in R2
with 25. If the value in R2 is less than or equal to 25, the F
flag is cleared and the appropriate number of bits are set in
memory. If R2 is greater than 25, the F flag is set and no
other action is performed. This allows the software to use a
faster algorithm to set longer strings of bits. Figure 2-28
shows the SBITS instruction format.

23 15 87 0

000000000011011100001110

FIGURE 2-28. SBITS Instruction Format

Set BIT Perpendicular String
Syntax: SBITPS

Setup: RO base address, destination (byte address)
R1 starting bit offset
R2 number of bits to set
R3 destination warp (signed value, in bits)

Note: When the instruction terminates, the RO and R3 registers are re-
turned unchanged. R1 becomes the final bit offset. R2 is zero.
The SBITPS can be used to set a string of bits in any direc-
tion. This allows a font to be expanded with a 90 or 270
degree rotation, as may be required in a printer application.
SBITPS sets a string of bits starting at the bit address speci-
fied in registers RO and R1. The number of bits in the string
is specified in R2. After the first bit is set, the destination
warp is added to the bit address and the next bit is set. The
process is repeated until all the bits have been set. A nega-
tive raster warp offset value leads to a 90 degree rotation. A
positive raster warp value leads to a 270 degree rotation. If
the R3 value is = (space warp +1 or —1), then the resultis
a 45 degree line. If the R3 value is +1 or —1, a horizontal
line results.
SBITS and SBITPS allow expansion on any 90 degree an-
gle, giving portrait, landscape and mirror images from one
font. Figure 2-29 shows the SBITPS instruction format.

23 15 87 0

000000000010111100001110

FIGURE 2-29. SBITPS Instruction Format

CTTL

BPU

"

READ SOURCE
READ DESTINATION

WRITE RESULT
TO DESTINATION

AN

M

READ SOURCE
READ DESTINATION

WRITE RESULT
TC DESTINATION

READ SOURCE
READ DESTINATION

WRITE RESULT
TO DESTINATION

AL

READ SOURCE
READ DESTINATION

WRITE RESULT
TO DESTINATION

NI

7,/

WORD 1 (12 CLOCKS}

|

WORD 2 (12 CLOCKS)

||

-

WORD 3 (12 CLOCKS)

FIGURE 2-30. Bus Activity for a Simple BITBLT Operation
Note 1: This example is for a block 4 words wide and 1 line high.

Note 2: The sequence is common with all logical operations of the DP8510/DP8511 BPU.
Note 3: Mask values, shift values and number of bit planes do not affect the performance.
Note 4: Zero wait states are assumed throughout the BITBLT operation.

Note 5: The extra read is performed when the BPU pipeline register needs to be preloaded.

WORD 4 (12 CLOCKS)

TL/EE/11267-10

25

2.0 Architectural Description (continued)
2.5.3.3.1 Magnifying Compressed Data

Restoring data is just one application of the SBITS and
SBITPS instructions. Multiplying the “length” operand used
by the SBITS and SBITPS instructions causes the resulting
pattern to be wider, or a multiple of “length”.

As the pattern of data is expanded, it can be magnified by
2x, 3x, 4x, ..., 10x and so on. This creates several sizes of
the same style of character, or changes the size of a logo. A
magnify in both dimensions X and Y can be accomplished
by drawing a single line, then using the MOVS (Move String)
or the BB instructions to duplicate the line, maintaining an
equal aspect ratio.

More information on this subject is provided in the
NS32CG16 Printer/Display Processor Programmer’s Refer-
ence Supplement.

3.0 Functional Description

This chapter provides details on the functional characteris-
tics of the NS32FX164 microprocessor.

The chapter is divided into five main sections:

Instruction Execution, Exception Processing, Debugging,
DSP Module and System Interface.

3.1 INSTRUCTION EXECUTION

To execute an instruction, the NS32FX164 performs the fol-
lowing operations:

® Fetch the Instruction

® Read Source Operands, if Any (1)
® Calculate Results

® Write Result Operands, if Any

* Modify Flags, if Necessary

e Update the Program Counter

Under most circumstances, the CPU can be conceived to
execute instructions by completing the operations above in
strict sequence for one instruction and then beginning the
sequence of operations for the next instruction. However,
due to the internal instruction pipelining, as well as the oc-
currence of exceptions, the sequence of operations per-
formed during the execution of an instruction may be al-
tered. Furthermore, exceptions also break the sequentiality
of the instructions executed by the CPU.
Note 1: In this and following sections, memory locations read by the CPU to
calculate effective addresses for Memory-Relative and External ad-
dressing modes are considered like source operands, even if the

effective address is being calculated for an operand with access
class of write.

3.1.1 Operating States

The CPU has four operating states regarding the execution
of instructions and the processing of exceptions: Reset, Ex-
ecuting Instructions, Processing An Exception and Waiting-
For-An-Interrupt. The various states and transitions be-
tween them are shown in Figure 3-1.

Whenever the RSTI signal is asserted, the CPU enters the
reset state. The CPU remains in the reset state until the
RSTI signal is driven inactive, at which time it enters the
Executing-Instructions state. In the Reset state the contents
of certain registers are initialized. Refer to Section 3.5.4 for
details.

RSTI ACTIVE

RSTI INACTIVE

INTERRUPT
OR TRAP

PROCESSING
AN
EXCEPTION

SERVICE CALL
COMPLETE

WAIT INTERRUPT
INSTRUCTION

EXECUTED

WAITING
FOR AN
INTERRUPT

TL/EE/11267-11
FIGURE 3-1. Operating States

In the Executing-Instructions state, the CPU executes in-
structions. It will exit this state when an exception is recog-
nized or a WAIT instruction is encountered. At which time it
enters the Processing-An-Exception state or the Waiting-
For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves
the PC, PSR and MOD register contents on the stack and
reads the new PC and module linkage information to begin
execution of the exception service procedure.

Following the completion of all data references required to
process an exception, the CPU enters the Executing-In-
structions state.

In the Waiting-For-An-Interrupt state, the CPU is idle. A spe-
cial status identifying this state is presented on the system
interface (Section 3.5). When an interrupt is detected, the
CPU enters the Processing-An-Exception State.

3.1.2 Instruction Endings

The NS32FX164 checks for exceptions at various points
while executing instructions. Certain exceptions, like inter-
rupts, are in most cases recognized between instructions.
Other exceptions, like Divide-By-Zero Trap, are recognized
during execution of an instruction. When an exception is
recognized during execution of an instruction, the instruction
ends in one of four possible ways: completed, suspended,
terminated, or partially completed. Each type of exception
causes a particular ending, as specified in Section 3.2.

26

3.0 Functional Description (continued)
3.1.2.1 Completed Instructions

When an exception is recognized after an instruction is
completed, the CPU has performed all of the operations for
that instruction and for all other instructions executed since
the last exception occurred. Result operands have been
written, flags have been modified, and the PC saved on the
Interrupt Stack contains the address of the next instruction
to execute. The exception service procedure can, at its con-
clusion, execute the RETT instruction (or the RETI instruc-
tion for maskable interrupts), and the CPU will begin execut-
ing the instruction following the completed instruction.

3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi-
tions is detected during execution of the instruction. A sus-
pended instruction has not been completed, but all other
instructions executed since the last exception occurred
have been completed. Result operands and flags due to be
affected by the instruction may have been modified, but only
modifications that allow the instruction to be executed again
and completed can occur. For certain exceptions (Trap
(UND) the CPU clears the P-flag in the PSR before saving
the copy that is pushed on the Interrupt Stack. The PC
saved on the Interrupt Stack contains the address of the
suspended instruction.

To complete a suspended instruction, the exception service
procedure takes either of two actions:

1. The service procedure can simulate the suspended in-
struction’s execution. After calculating and writing the in-
struction’s results, the flags in the PSR copy saved on the
Interrupt Stack should be modified, and the PC saved on
the Interrupt Stack should be updated to point to the next
instruction to execute. The service procedure can then
execute the RETT instruction, and the CPU begins exe-
cuting the instruction following the suspended instruction.
This is the action taken when floating-point instructions
are simulated by software in systems without a hardware
floating-point unit.

2. The suspended instruction can be executed again after
the service procedure has eliminated the trap condition
that caused the instruction to be suspended. The service
procedure should execute the RETT instruction at its con-
clusion; then the CPU begins executing the suspended
instruction again. This is the action taken by a debugger
when it encounters a BPT instruction that was temporarily
placed in another instruction’s location in order to set a
breakpoint.

Note 1: It may be necessary for the exception service procedure to alter the

P-flag in the PSR copy saved on the Interrupt Stack: If the exception
service procedure simulates the suspended instruction and the P-
flag was cleared by the CPU before saving the PSR copy, then the
saved T-flag must be copied to the saved P-flag (like the floating-
point instruction simulation described above). Or if the exception
service procedure executes the suspended instruction again and
the P-flag was not cleared by the CPU before saving the PSR copy,
then the saved P-flag must be cleared (like the breakpoint trap de-
scribed above). Otherwise, no alteration to the saved P-flag is nec-
essary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset oc-
curs. Any result operands and flags due to be affected by
the instruction are undefined, as is the contents of the PC.

3.1.2.4 Partially Completed Instructions

When an interrupt condition is recognized during execution
of a string instruction, the instruction is said to be partially
completed. A partially completed instruction has not com-
pleted, but all other instructions executed since the last ex-
ception occurred have been completed. Result operands
and flags due to be affected by the instruction may have
been modified, but the values stored in the string pointers
and other general-purpose registers used during the instruc-
tion’s execution allow the instruction to be executed again
and completed.

The CPU clears the P-flag in the PSR before saving the
copy that is pushed on the Interrupt Stack. The PC saved on
the Interrupt Stack contains the address of the partially
completed instruction. The exception service procedure
can, at its conclusion, simply execute the RETT instruction
(or the RETI instruction for maskable interrupts), and the
CPU will resume executing the partially completed instruc-
tion.

3.1.3 Slave Processor Instructions

The NS32FX164 supports only one group of instructions,
the floating-point instruction set, as being executable by a
slave processor. The floating-point instruction set is validat-
ed by the F-bit in the CFG register.

If a floating-point instruction is encountered and the F-bit in

the CFG register is not set, a Trap (UND) will result, without

any slave processor communication attempted by the CPU.

This allows software emulation in case an external floating-

point unit (FPU) is not used.

3.1.3.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In-

struction field, consisting of an ID Byte followed by an Oper-

ation Word. The ID Byte has three functions:

1. It identifies the instruction as being a Slave Processor
instruction.

2. It specifies which Slave Processor will execute it.

3. It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-
ates the sequence outlined in Figure 3-2. While applying
Status Code 1111 (Broadcast ID, Section 3.5.5.1), the CPU
transfers the ID Byte on the least-significant half of the Data
Bus (ADO-AD7). All Slave Processors input this byte and
decode it. The Slave Processor selected by the ID Byte is
activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this transfer cancels it.

27

3.0 Functional Description (continued)

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Section
3.5.5.1). Upon receiving it, the Slave Processor decodes it,
and at this point both the CPU and the Slave Processor are
aware of the number of operands to be transferred and their
sizes. The Operation Word is swapped on the Data Bus;
that is, bits 0-7 appear on pins AD8-AD15 and bits 8-15
appear on pins ADO-AD7.

Using the Address Mode fields within the Operation Word,
the CPU starts fetching operands and issuing them to the
Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible
for memory accesses, these extensions are not sent to the
Slave Processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Section 3.5.5.1).

After the CPU has issued the last operand, the Slave Proc-
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status). This word has the
format shown in Figure 3-3. If the Q-bit (“Quit”, Bit 0) is set,
this indicates that an error was detected by the Slave Proc-
essor. The CPU will not continue the protocol, but will imme-

Status Combinations:

Send ID (ID): Code 1111

Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110

Step Status Action

1 ID CPU Sends ID Byte

2 OP CPU Sends Operation Word

3 OP CPU Sends Required Operands

4 — Slave Starts Execution.
CPU Pre-Fetches.

5 — Slave Pulses SPC Low

6 ST CPU Reads Status Word.
(Trap? Alter Flags?)

7 OP CPU Reads Results (If Any).

FIGURE 3-2. Slave Processor Protocol

diately trap through the Slave vector in the Interrupt Table.
Certain Slave Processor instructions cause CPU PSR bits to
be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand).
3.1.3.2 Floating-Point Instructions

Table 3-1 gives the protocols followed for each Floating-
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

TABLE 3-1. Floating-Point Instruction Protocols

. Operand 1 Operand 2 Operand 1

Mnemonic
Class Class Issued

ADDf read.f rmw.f f
SuUBf read.f rmw.f f
MULf read.f rmw.f f
DIvf read.f rmw.f f
MOVf read.f write.f f
ABSf read.f write.f f
NEGf read.f write.f f
CMPf read.f read.f f
FLOORfi read.f write.i f
TRUNCi read.f write.i f
ROUNDfi read.f write.i f
MOVFL read.F write.L F
MOVLF read.L write.F L
MOVif read.i write.f i
LFSR read.D N/A D
SFSR N/A write.D N/A
POLYf read.f read.f f
DOTf read.f read.f f
SCALBf read.f rmw.f f
LOGBf read.f write.f f
Notes:

D = Double Word

i = Integer size (B, W, D) specified in mnemonic.

f = Floating-Point type (F, L) specified in mnemonic.
N/A = Not Applicable to this instruction.

Operand 2 Returned Value PSR Bits
Issued Type and Dest. Affected
f fto Op.2 none
f fto Op.2 none
f fto Op.2 none
f fto Op.2 none
N/A fto Op.2 none
N/A fto Op.2 none
N/A fto Op.2 none
f N/A N,Z,L
N/A ito Op.2 none
N/A itoOp.2 none
N/A itoOp.2 none
N/A LtoOp.2 none
N/A F to Op.2 none
N/A fto Op.2 none
N/A N/A none
N/A D to Op. 2 none
f fto FO none
f fto FO none
f fto Op. 2 none
N/A fto Op. 2 none

28

3.0 Functional Description (continued)

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Series 32000 Instruction Set Reference
Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating-Point Unit by the CPU. “D” indi-
cates a 32-bit Double Word. “i” indicates that the instruction
specifies an integer size for the operand (B = Byte,
W = Word, D = Double Word). “f’ indicates that the in-
struction specifies a Floating-Point size for the operand
(F = 32-bit Standard Floating, L = 64-bit Long Floating).
The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-3).
15 87 0

IT)OOOOOOO INZFOOLOQI

New PSR Bit Value(s) /
“Quit"": Terminate Protocol, Trap(FPU).’
TL/EE/11267-12
FIGURE 3-3. Slave Processor Status Word

Any operand indicated as being of type “f”” will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating-Point Registers are physically on the
Floating-Point Unit and are therefore available without CPU
assistance.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of
instruction execution. The CPU recognizes two basic types
of exceptions: interrupts and traps.

An interrupt occurs in response to an event generated either
internally, by the on-chip DSP Module, or externally, by acti-
vating NMI or INT. External interrupts are typically request-
ed by peripheral devices that require the CPU’s attention.

Traps occur as a result either of exceptional conditions
(e.g., attempted division by zero) or of specific instructions
whose purpose is to cause a trap to occur (e.g., supervisor
call instruction).

When an exception is recognized, the CPU saves the PC,
PSR and optionally the MOD register contents on the inter-
rupt stack and then it transfers control to an exception serv-
ice procedure.

Details on the operations performed in the various cases by
the CPU to enter and exit the exception service procedure
are given in the following sections.

It is to be noted that the reset operation is not treated here
as an exception. Even though, like any exception, it alters
the instruction execution sequence.

The reason being that the CPU handles reset in a signifi-
cantly different way than it does for exceptions.

Refer to Section 3.5.4 for details on the reset operation.

3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through
three major steps:

1. Adjustment of Registers. Depending on the source of the
exception, the CPU may restore and/or adjust the con-
tents of the Program Counter (PC), the Processor Status
Register (PSR) and the currently-selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is then set
to reflect Supervisor Mode and selection of the Interrupt
Stack. Trap (TRC) always disabled. Maskable interrupts
are also disabled if the exception is caused by an inter-
rupt.

Vector Acquisition. A vector is either obtained from an
external interrupt control unit or is supplied internally by
default.

. Service Call. The CPU performs one of two sequences
common to all exceptions to complete the acknowledge
process and enter the appropriate service procedure.
The selection between the two sequences depends on
whether the Direct-Exception mode is disabled or en-
abled.

Direct-Exception Mode Disabled

The Direct-Exception mode is disabled while the DE bit in
the CFG register is 0 (Section 2.1.4). In this case the CPU
first pushes the saved PSR copy along with the contents of
the MOD and PC registers on the interrupt stack. Then it
reads the double-word entry from the Interrupt Dispatch ta-
ble at address “INTBASE” + vector X 4”. See Figures 3-4
and 3-5. The CPU uses this entry to call the exception serv-
ice procedure, interpreting the entry as an external proce-
dure descriptor.

A new module number is loaded into the MOD register from
the least-significant word of the descriptor, and the static-
base pointer for the new module is read from memory and
loaded into the SB register. Then the program-base pointer
for the new module is read from memory and added to the
most-significant word of the module descriptor, which is in-
terpreted as an unsigned value. Finally, the result is loaded
into the PC register.

Direct-Exception Mode Enabled

The Direct-Exception mode is enabled when the DE bit in
the CFG register is set to 1. In this case the CPU first
pushes the saved PSR copy along with the contents of the
PC register on the Interrupt Stack. The word stored on the
Interrupt Stack between the saved PSR and PC register is
reserved for future use; its contents are undefined. The CPU
then reads the double-word entry from the Interrupt Dis-
patch Table at address “INTBASE + vector X 4”. The
CPU uses this entry to call the exception service procedure,
interpreting the entry as an absolute address that is simply
loaded into the PC register. Figure 3-6 provides a pictorial of
the acknowledge sequence. It is to be noted that while the
direct-exception mode is enabled, the CPU can respond
more quickly to interrupts and other exceptions because
fewer memory references are required to process an excep-
tion. The MOD and SB registers, however, are not initialized
before the CPU transfers control to the service procedure.
Consequently, the service procedure is restricted from exe-
cuting any instructions, such as CXP, that use the contents
of the MOD or SB registers in effective address calcula-
tions.

n

w

29

3.0 Functional Description (continued)

/‘r ~
MEMORY { 3 M
NVI -
CASCADE ADDR O NON-VECTORED INTERRUPT
- NMI NON-MASKABLE INTERRUPT
CASCADE TABLE ~ A- .
. RESERVED
CASCADE ADDR 14
SLAVE SLAVE PROCESSOR TRAP
INTERRUPT BASE CASCADE ADDR 15 ILL ILLEGAL OPERATION TRAP
REGISTER
A_ FIXED INTERRUPTS 5
T: AN TrARS ;}: sve SUPERVISOR CALL TRAP
A VECTORED 7| DISPATCHTABLE 6| pvz DIVIDE BY ZERO TRAP
T INTERRUPTS >
7
L A FLG FLAG TRAP
8| BPT BREAKPOINT TRAP
91 TRC TRACE TRAP
0] UND UNDEFINED INSTRUCTION TRAP
11-156 A% RESERVED g

VECTORED
INTERRUPTS

TL/EE/11267-13

FIGURE 3-4. Interrupt Dispatch and Cascade Tables

3.2.2 Returning from an Exception Service Procedure
To return control to an interrupted program, one of two in-
structions can be used: RETT (Return from Trap) and RETI
(Return from Interrupt).

RETT is used to return from any trap or non-maskable inter-
rupt service procedure. Since some traps are often used
deliberately as a call mechanism for supervisor mode proce-
dures, RETT can also adjust the Stack Pointer (SP) to dis-
card a specified number of bytes from the original stack as
surplus parameter space.

RETI is used to return from a maskable interrupt service
procedure. A difference of RETT, RETI also informs the on-
chip ICU as well as any external interrupt control logic that
interrupt service has completed. Since interrupts are gener-
ally asynchronous external events, RETI does not discard
parameters from the stack.

Both of the above instructions always restore the Program
Counter (PC) and the Processor Status Register from the
interrupt stack. If the Direct-Exception mode is disabled,
they also restore the MOD and SB register contents. Fig-
ures 3-7 and 3-8 show the RETT and RETI instruction flows
when the Direct-Exception mode is disabled.

30

3.0 Functional Description (Continued)

2BITS ADDRESSES
(PUSH)
RETURN ADDRESS PC
STATUS MODULE PSR MOD
(PUSH)
PSR Mop INTERRUPT
STACK
| ADDRESSES
TL/EE/11267-16
INTBASE REGISTER
INTERRUPT BASE jr DISPATCH
TABLE
VECTOR) D
DESCRIPTOR (32 BITS)
—
DESCRIPTOR
. —=
OFFSET MODULE
MOD REGISTER MODULE TABLE
NEW MODULE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
STATIC BASE POINTER
LINK BASE POINTER
ﬂ» = PROGRAM BASE POINTER
(RESERVED)
PROGRAM COUNTER SBREGISTER
¥—-F-- ENTRY POINT ADDRESS NEW STATIC BASE J

FIGURE 3-5. Exception Acknowledge Sequence:
Direct-Exception Mode Disabled

TL/EE/11267-17

3.0 Functional Description (continued)

LOWER
s28ITS J ADDRESSES
RETURN ADDRESS (PUSH)
PC
STATUS PSR
(PUSH)
PSR INTERRUPT
STACK HIGHER
] ADDRESSES
TL/EE/11267-18
INTBASE REGISTER
| .
| INTERRUPT BASE | DISPATCH
TABLE
®—
ABSOLUTE ADDRESS
PROGRAM COUNTER
ENTRY POINT ADDRESS]

TL/EE/11267-19
FIGURE 3-6. Exception Acknowledge Sequence:
Direct-Exception Mode Enabled

32

3.0 Functional Description (continued)

LOWER
32BITS ADDRESSES
PROGRAM COUNTER
I (POP)
RETURN ADDRESS i PC
(POP)
STATUS MODULE PSR MOD
PSR MoD HIGHER
INTERRUPT L ADDRESSES
STACK
0
MODULE
TABLE
MODULE TABLE ENTRY
[J
MODULE TABLE ENTRY
STATIC BASE POINTER ~ —]
LINK BASE POINTER
LOWER
PROGRAM BASE POINTER ADDRESSES
(RESERVED)
PARAMETERS
n
BYTES
SB REGISTER
STATIC BASE - STACK SELECTED
IN NEWLY-
POPPED PSR. HIGHER
L | ADDRESSES
POP AND
DISCARD

FIGURE 3-7. Return from Trap (RETTn) Instruction Flow:
Direct-Exception Mode Disabled

TL/EE/11267-20

33

3.0 Functional Description (continued)

“END OF INTERRUPT"

BUS CYCLE
INTERRUPT
CONTROL
UNIT
" LOWER
32BITS »| ADDRESSES
PROGRAM COUNTER
1 (POP}
L RETURN ADDRESS | PC
| (POP)
I STATUS | MODULE | PSR MOD
PSR MOD
INTERRUPT
HIGHER
L STACK ADDRESSES
[]
MODULE
TABLE
MODULE TABLE ENTRY
J
MODULE TABLE ENTRY
STATIC BASE POINTER -1
LINK BASE POINTER
PROGRAM BASE POINTER

(RESERVED)

STATIC BASE

SB REGISTER

TL/EE/11267-21

FIGURE 3-8. Return from Interrupt (RETI) Instruction Flow:
Direct-Exception Mode Disabled

3.2.3 Maskable Interrupts

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in-
put is maskable, and is therefore enabled to generate inter-
rupt requests only while the Processor Status Register | bit
is set. The | bit is automatically cleared during service of an
INT or NMI request, and is restored to its original setting
upon return from the interrupt service routine via the RETT
or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit | = 0) or Vec-
tored (bit | = 1).

3.2.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys-
tems in which hardware interrupt prioritization is unneces-
sary.

34

3.0 Functional Description (continued)

3.2.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize up to 16 interrupt requests. Upon re-
ceipt of an interrupt request on the INT pin, the CPU per-
forms an “Interrupt Acknowledge, Master” bus cycle read-
ing a vector value from the low-order byte of the Data Bus.
This vector is then used as an index into the Dispatch Table
in order to find the External Procedure Descriptor for the
proper interrupt service procedure. The service procedure
eventually returns via the Return from Interrupt (RETI) in-
struction, which performs an End of Interrupt bus cycle, in-
forming the ICU that it may re-prioritize any interrupt re-
quests still pending. The ICU provides the vector number
again, which the CPU uses to determine whether it needs
also to inform a Cascaded ICU.

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

Note: During a return from interrupt, the CPU looks at Bit 7 of the vector
number from the master ICU. If Bit 7 is 0, bits 0 through 6 are ignored.

3.2.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS32202 Interrupt Control
Unit (ICU) to transparently support cascading. Figure 3-10
shows a typical cascaded configuration. Note that the Inter-
rupt output from a Cascaded ICU goes to an Interrupt Re-
quest input of the Master ICU, which is the only ICU which
drives the CPU INT pin.

In a system which uses cascading, two tasks must be per-
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number (0 to 15) on which it
receives the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT-
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-4 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range —16 to —1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the “Cascade
Address.”

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega-
tive Cascade Table index instead of a (positive) vector num-
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an “Interrupt Acknowledge, Cascaded” bus cycle,
reading the final vector value. This vector is interpreted by
the CPU as an unsigned byte, and can therefore be in the
range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an “End of Interrupt, Master” bus cycle, whereupon the

Master ICU again provides the negative Cascaded Table

index. The CPU, seeing a negative value, uses it to find the

corresponding Cascade Address from the Cascade Table.

Applying this address, it performs an “End of Interrupt, Cas-

caded” bus cycle, informing the Cascaded ICU of the com-

pletion of the service routine. The byte read from the Cas-
caded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the
corresponding bit in the Interrupt Mask Register of the Interrupt Con-
troller. However, if an interrupt is set pending during the CPU instruc-
tion that masks off that interrupt, the CPU may still perform an inter-
rupt acknowledge cycle following that instruction since it might have
sampled the INT line before the ICU deasserted it. This could cause
the ICU to provide an invalid vector. To avoid this problem the above
operation should be performed with the CPU interrupt disabled.

DATA
- |-
R3 |
® 1
t=— IRS
CONTROL HARDWARE
le—(R7 ' INTERAUPTS
) OR
NSa2 ST CASCADED
ADDR 5 BITS 22202 CONTROLLERS
S—-
NS3ZFX164
cPu l~—R13 ’
le—IR15 |
STATUS 1
F=— Go/IRO
I G1/IR2
iNT iNT (= G2/IR4 |
INTERRUPTS.
"’53/"‘5k CASCADED,
= G4R8 [g3lg
Lo G5/IR10
FROM _ == G6/IR12
ADDRESS ——= &S |
DECODER [~ G7/IR14

TL/EE/11267-22
FIGURE 3-9. Interrupt Control Unit
Connections (16 Levels)

35

3.0 Functional Description (continued)

DATA

CONTROL

CONTROL

ADDR S5 BITS

STATUS 1

Icu

FROM

ADDRESS —={ CS

DECODER

INT

CASCADED
N§32202 [IR9

[=— IR1
[~—IR3
[~=—1RS

~=—IR11
~—IR13
=—R15
[~ GO/IRO
=== G1/IR2
[~ G2/IR4

[~ G4/IR8
[~==- G5/IR10
== G6/I1R12
f==s= G7/IR14

8ITI/0

NS32FX164
CPU ADDR
GROUP

STATUS 1

MASTER
N$32202
ICU

INT

FROM

INT

ADDRESS —{ CS

DECODER

}-e— IR1
L—IR3
[-=—IRS
=—r1IR7

=—1R9

e—IR11 —~—
IR13
l=—iR15
== GO/IRO
== G1/IR2
= G2/IR4
[==G3/IRE
= G4/IR8
= G5/IR10
~—G6/IR12
== G7/IR14

FIGURE 3-10. Cascaded Interrupt Control Unit Connections

[——IR7 HARDWARE
INTERRUPTS

G3/IR6 | INTERRUPTS
OR

TL/EE/11267-23

36

3.0 Functional Description (continued)

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The GPU performs an
“Interrupt Acknowledge” bus cycle from Address FFFF001g
when processing of this interrupt actually begins. The vector
value used for the Non-Maskable Interrupt is taken as 1,
regardless of the value read from the bus.

The service procedure returns from the Non-Maskable-In-
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di-
rect results of the execution of an instruction.

The return address saved on the stack by any trap except
Trap (TRC) is the address of the first byte of the instruction
during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis-
abled.

There are 8 trap conditions recognized by the NS32FX164
as described below.

Trap (SLAVE): An exceptional condition was detected by
the Floating-Point Unit during the execution of a Slave In-
struction. This trap is requested via the Status Word re-
turned as part of the Slave Processor Protocol (Section
3.1.3.1).

Trap (ILL): lllegal operation. A privileged operation was at-
tempted while the CPU was in User Mode (PSR bit U = 1).
Trap (SVC): The Supervisor Call (SVC) instruction was exe-
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The FPU trap is used for Floating-Point division by
zero.)

Trap (FLG): The FLAG instruction detected a “1” in the
PSR F-bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-
ed.

Trap (TRC): The instruction just completed is being traced.
Refer to Section 3.3.1 for details.

Trap (UND): An undefined opcode was encountered by the
CPU.

3.2.6 Priority among Exceptions

The CPU checks for specific exceptions at various points
while executing an instruction. It is possible that several ex-
ceptions occur simultaneously. In that event, the CPU re-
sponds to the exception with highest priority.

Figure 3-11 shows an exception processing flowchart.

Before executing an instruction, the CPU checks for pend-
ing interrupts, or Trap (TRC). The CPU responds to any
pending interrupt requests; nonmaskable interrupts are rec-
ognized with higher priority than maskable interrupts. If no
interrupts are pending, then the CPU checks the P-flag in
the PSR to determine whether a Trap (TRC) is pending. If
the P-flag is 1, a Trap (TRC) is processed. If no interrupt or
Trap (TRC) is pending, the CPU begins executing the in-
struction.

While executing an instruction, the CPU may recognize up

to two exceptions:

1. Interrupt, if the instruction is interruptible.

2.0ne of 7 mutually exclusive traps: SLAVE, ILL, SVC,
DVZ, FLG, BPT, UND

If no exception is detected while the instruction is executing,
then the instruction is completed and the PC is updated to
point to the next instruction.

37

3.0 Functional Description (continued)

INITIALIZE

b 4

PENDING
?

INTERRUPT YES

BEGIN
INSTRUCTION
EXECUTION

v

PT

TRAP (ILL)
?

TRAP (UND)
?

INTERRUPTIBLE
INSTRUCTION

A 4

v

P=0

YES

A 4

YES

A\ 4
v

YES

INTERRUPT

PENDING
?

v

M p<o

SLAVE, SVC,
DVZ, FLG, BPT
TRAP
?

YES

COMPLETE
INSTRUCTION
EXECUTION

v

UPDATE PC

>
»

A 4

SUSPEND
INSTRUCTION
EXECUTION

L,

A 4

PROCESS
EXCEPTION

y N

FIGURE 3-11. Exception Processing Flowchart

TL/EE/11267-24

38

3.0 Functional Description (continued)

3.2.7 Exception Acknowledge Sequences:

Detailed Flow

For purposes of the following detailed discussion of excep-
tion acknowledge sequences, a single sequence called
“service” is defined in Figure 3-12.

Upon detecting any interrupt request or trap condition, the
CPU first performs a sequence dependent upon the type of
exception. This sequence will include saving a copy of the
Processor Status Register and establishing a vector and a
return address. The CPU then performs the service se-
quence.

3.2.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed bme CPU when the NMI pin

receives a falling edge, or the INT pin becomes active with

the PSR | bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, or Graphics instructions which have interior
loops (BBOR, BBXOR, BBAND, BBFOR, EXTBLT, MOVMP,

SBITPS, TBITS), at the next interruptible point during its ex-

ecution. The graphics instructions are interruptible.

1. If a String instruction was interrupted and not yet com-
pleted:

a. Clear the Processor Status Register P bit.

b. Set “Return Address” to the address of the first byte
of the interrupted instruction.

Otherwise, set “Return Address” to the address of the

next instruction.

2. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF004g, applying Status
Code 0100 (Interrupt Acknowledge, Master: Section
3.4.1). Discard the byte read.

b. Set “Vector” to 1.

c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFE00+g, applying Status
Code 0100. Discard the byte read.

b. Set “Vector” to 0.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read “Byte” from ad-
dress FFFE004g, applying Status Code 0100.

6. If “Byte” > 0, then set “Vector” to “Byte” and go to
Step 8.

7. If “Byte” is in the range —16 through —1, then the inter-
rupt source is Cascaded. (More negative values are re-
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE + 4* Byte.

b. Read “Vector”, applying the Cascade Address just
read and Status Code 0101.

8. Perform Service (Vector, Return Address), Figure 3-12.

3.2.7.2 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND

Trap Sequence

1. Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2. Set “Vector” to the value corresponding to the trap type.

SLAVE: Vector = 3.
ILL: Vector = 4.
SVC: Vector = 5.
DVZ: Vector = 6.
FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.

3. If Trap (UND)
a. Clear the Processor Status Register P Bit.

4. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, U, S, and P.

5. Set “Return Address” to the address of the first byte of
the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-12.
3.2.7.3 Trace Trap Sequence
1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR
bits S, U and T.

3. Set “Vector” to 9.

4. Set “Return Address” to the address of the next instruc-
tion.

5. Perform Service (Vector, Return Address), Figure 3-12.

Service (Vector, Return Address):

1. Push the PSR copy onto the Interrupt Stack as a
16-bit value.

2. Read 32-bit Interrupt Dispatch Table (IDT) entry
at address “INTBASE + vector X 4”.

3. If Direct-Exception mode is selected, then go to
Step 10.

4. Move the LS word of the IDT entry (Module
Field) into the temporary MOD register.

5. Read the Program Base pointer from memory
address “MOD + 8”, and add to it the M.S. word
of the IDT entry (Offset Field), placing the resuit
in the Program Counter.

6. Read the new Static Base pointer from the
memory address contained in MOD, placing it
into the SB Register.

7. Push MOD Register into the Interrupt Stack as a
16-bit value.

8. Copy temporary MOD Register into MOD Regis-
ter.

9. Go to Step 11.

10. Place IDT entry in the Program Counter.

11. Push the Return Address onto the Interrupt
Stack as a 32-bit quantity.

12. Flush queue: Non-sequentially fetch first in-
struction of Exception Service Routine.

FIGURE 3-12. Service Sequence
Invoked during All Interrupt/Trap Sequences

39

3.0 Functional Description (continued)

TABLE 3-2. Summary of Exception Processing

Exception Instruction Cleared before Cleared after
P Ending Saving PSR Saving PSR
Interrupt Before Instruction None /P* TUSPI
UND Suspended P TUS
SLAVE, SVC, DVZ, FLG, BPT, ILL Suspended None TUSP
TRC Before Instruction P TUS

3.3 DEBUGGING SUPPORT

The NS32FX164 provides features to assist in program de-
bugging.

Besides the Breakpoint (BPT) instruction that can be used
to generate soft breaks, the CPU also provides the instruc-
tion tracing capability.

3.3.1 Instruction Tracing

Instruction tracing is a very useful feature that can be used
during debugging to single-step through selected portions of
a program. Tracing is enabled by setting the T-bit in the PSR
Register. When enabled, the CPU generates a Trace Trap
(TRC) after the execution of each instruction.

At the beginning of each instruction, the T-bit is copied into
the PSR P (Trace “Pending”) bit. If the P-bit is set at the end
of an instruction, then the Trace Trap is activated. If any
other trap or interrupt request is made during a traced in-
struction, its entire service procedure is allowed to complete
before the Trace Trap occurs. Each interrupt and trap se-
quence handles the P-bit for proper tracing, guaranteeing
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

The beginning of the execution of a TRAP(UND) is not con-
sidered to be a beginning of an instruction, and hence the
T-bit is not copied into the P-bit.

Due to the fact that some instructions can clear the T- and
P-bits in the PSR, in some cases a Trace Trap may not
occur at the end of the instruction. This happens when one
of the privileged instructions BICPSRW or LPRW PSR is
executed.

In other cases, it is still possible to guarantee that a Trace
Trap occurs at the end of the instruction, provided that spe-
cial care is taken before returning from the Trace Trap Serv-
ice Procedure. In case a BICPSRB instruction has been ex-
ecuted, the service procedure should make sure that the
T-bit in the PSR copy saved on the Interrupt Stack is set
before executing the RETT instruction to return to the pro-
gram being traced. If the RETT or RETI instructions have to
be traced, the Trace Trap Service Procedure should set the
P- and T-bits in the PSR copy on the Interrupt Stack that is
going to be restored in the execution of such instructions.

While debugging the NS32FX164 instructions which have
interior loops (BBOR, BBXOR, BBAND, BBFOR, EXTBLT,
MOVMP, SBITPS, TBITS), special care must be taken with
the single-step trap. If an interrupt occurs during a single-
step of one of the graphics instructions, the interrupt will be
serviced. Upon return from the interrupt service routine, the
new NS32FX164 instruction will not be re-entered, due to a
single-step trap. Both the NMI and INT interrupts will cause
this behavior. Another single-step operation (S command in

DBG16/MONCG) will resume from where the instruction
was interrupted. There are no side effects from this early
termination, and the instruction will complete normally.

For all other Series 32000 instructions, a single-step opera-
tion will complete the entire instruction before traping back
to the debugger. On the instructions mentioned above, serv-
eral single-step commands may be required to complete the
instruction, ONLY when interrupts are occurring.

There are some methods to give the appearance of single-
stepping for these NS32FX164 instructions.

1. MON16/MONCG monitors the return from single-step
trap vector, PC value. If the PC has not changed since
the last single-step command was issued, the single-step
operation is repeated. It is also advisable to ensure that
one of the NS32FX164 instructions is being single-
stepped, by inspecting the first byte of the address point-
ed to by the PC register. If it is OxOE, then the instruction
is an NS32FX164-specific instruction.

. A breakpoint following the instruction would also trap af-
ter the instruction had completed.

Note: If instruction tracing is enabled while the WAIT instructioin is execut-
ed, the Trap (TRC) occurs after the next interrupt, when the interrupt
service procedure has returned.

3.4 DSP MODULE

The following sections give full specifications for the
32FX164 on-chip DSP Module.

3.4.1 Programming Model

The DSPM programming model consists of the following el-
ements:

® |nternal RAM

® Dedicated registers

e Command-list execution unit
® |nterface with CPU core

e Vector instruction set

The Internal RAM is used by the DSPM for fetching com-
mands to be executed, and for reading or writing data that is
needed in the course of program execution. DSPM Pro-
grams are encoded as command lists and are interpreted by
the command-list execution unit.

Computations are performed by commands selected from
the set of available ones. These commands employ the
DSP-oriented datapath in a pipelined manner, thus maximiz-
ing the utilization of on-chip hardware resources. A set of
dedicated registers is used to specify operands and options
for subsequent vector commands. These dedicated regis-
ters can be loaded and stored by appropriate commands in
between initiations of vector commands. Additional com-
mands are available for controlling the flow of execution of
the command list, as needed for programming loops and
branches (see Section 3.4.5.7).

N

40

3.0 Functional Description (continued)

The CPU core interface specifies the mapping of the DSPM
internal RAM as a contiguous block within the CPU core’s
address space, thus making it possible for normal CPU in-
structions to access and manipulate data and commands in
the DSPM internal RAM (see Section 3.4.4.2). In addition,
the CPU core interface contains control and status registers
that are needed to synchronize the execution of CPU core
instructions concurrently with execution of the DSPM com-
mand lists (see Section 3.4.4.1).

3.4.2 RAM Organization and Data Types

The DSPM internal RAM is organized as a word or double-
word addressable, uniform, linear address space. Memory
locations are numbered sequentially, starting at 0 for the
first location, and incremented by 1 for each successive lo-
cation. The content of each memory location is a 16-bit
word. Double-words must be aligned to an even address.
Valid RAM addresses for access by the command-list exe-
cution unit are 0 through 0x7FF. Access to memory loca-
tions out of the DSMP RAM boundary are not allowed.

The organization of the DSPM internal RAM is shown be-
low:

15 0

Location 0

Location 1

Location n

The RAM array is not restricted to use by the DSPM, it can
also be accessed by the core with any type of memory ac-
cess (e.g., byte, word, or double-word accesses aligned to
any byte address).

The internal RAM stores command lists to be executed, and
data to be manipulated during program execution. Com-
mand lists consist of 16-bit commands, so that each individ-
ual command occupies one memory location.

Each data item is represented as having either a 16-bit or a
32-bit value, as follows:

® |nteger values (16-bit)

o Aligned-integer values (32-bit)

® Real values (16-bit)

e Aligned-real values (32-bit)

® Extended-precision real values (32-bit)

e Complex values (32-bit)

3.4.2.1 Integer Values

Integer values are represented as signed 16-bit binary num-
bers in 2’s complement format. The range of integer values
is from —215 (—32768) through 215 — 1 (32767). Bit 0 is
the Least Significant Bit (LSB), and bit 15 is the Most Signifi-
cant Bit (MSB).

15 0

Integer Value

Integer values are typically used for addressing vector oper-
ands and for lookup-table index manipulations.

3.4.2.2 Aligned-Integer Values

Aligned-integer values are represented as pairs of integer
values, and must be aligned on a double-word boundary.

The less significant half represents one integer vector ele-
ment, and must be contained in an even-numbered memory
location. The more significant half represents the next vec-
tor element, and must be contained in the next (odd-num-
bered) memory location.

15 0

Integer Value (Low) (Location 2n)

Integer Value (High) (Location 2n + 1)

Aligned-integer values are used for higher throughput in op-
erations where two sequential integer vector elements can
be used in a single iteration. Both elements of an aligned-in-
teger value have the same range and accuracy as specified
for integer values above.

3.4.2.3 Real Values

Real values are represented as 16-bit signed fixed-point
fractional numbers, in 2’s complement format. Bit 15 (MSB)
is the sign bit. Bits 0 (LSB) through 14 represent the frac-
tional part. The binary digit is assumed to lie between bits 14
and 15.

15 0

Real Value

Real values are used to represent samples of analog sig-
nals, coefficients of filters, energy levels, and similar contin-
uous quantities that can be represented using 16-bit accura-
cy. The range of real values is from —1.0 (represented as
0x8000) through 1.0 — 215 (represented as 0x7FFF).
3.4.2.4 Aligned-Real Values

Aligned-real values are represented as pairs of real values,
and they must be aligned on a double-word boundary. The
less significant half represents one real vector element, and
must be contained in an even-numbered memory location.
The more significant half represents the next vector ele-
ment, and must be contained in the next (odd-numbered)
memory location.

15 0

Real Value (Low)
Real Value (High)

(Location 2n)
(Location 2n + 1)

Aligned-real values are used for higher throughput in opera-
tions where two sequential real vector elements can be
used in a single iteration. Both elements of an aligned-real
value have the same range and accuracy as specified for
real values above.

3.4.2.5 Extended-Precision Real Values

Extended-precision real values are represented as 32-bit
signed fixed-point fractional numbers, in 2’s complement
format. Extended-precision real values must be aligned on a
double-word boundary, so that the less significant half is
contained in an even-numbered memory location, and the
more significant half is contained in the next (odd-num-
bered) memory location. Bit 15 (MSB) of the more signifi-
cant part is the sign bit. Bits from 0 (LSB) of the less signifi-
cant part, through 14 of the more significant part, are used
to represent the fractional part. The binary digit is assumed
to lie between bits 14 and 15 of the more significant part.
When extended-precision values are loaded or stored in the
accumulator, bits 1 through 31 of the extended-precision
argument are loaded or stored in bits 0 through 30 of the

41

3.0 Functional Description (continued)

accumulator. Bit 0 of the extended-precision argument is
not used during calculations. This bit is always set to “0”
when stored back in the internal memory.

15 0

Less Significant Part (Location 2n)

(Location 2n + 1)

More Significant Part

Extended-precision real values are used to represent vari-
ous continuous quantities that require high accuracy. The
range of extended-precision real values is from —1.0 (repre-
sented as 0x80000000) through 1.0 —2—30 (represented
as Ox7FFFFFFE).

3.4.2.6 Complex Values

Complex values are represented as pairs of real values, and
must be aligned on a double-word boundary. The less signif-
icant half represents the real part, and must be contained in
an even-numbered memory location. The more significant
half represents the imaginary part, and must be contained in
the next (odd-numbered) memory location.

15 0
Real Part
Imaginary Part

(Location 2n)
(Location 2n + 1)

Complex values are used to represent samples of complex
baseband signals, constellation points in the complex plane,
coefficients of complex filters, and rotation angles as points
on the unit circle, etc. Both the real and imaginary parts
have the same range and accuracy as specified for real
values above.

3.4.3 Command List Format
All commands have the same fixed format, consisting of a
5-bit opcode field and a 11-bit arg field, as shown below:

15 11|10 0

opcode arg

The opcode field specifies an operation to be performed.
The arg field interpretation is determined by the class to
which the command belongs. There are several classes of
commands, as follows:

® |oad Register Instructions

® Store Register Instructions

* Adjust Register Instructions

® Flow Control Instructions

Internal Memory Move Instructions
External Memory Move Instructions
Arithmetic/Logical Instructions
Multiply-and-Accumulate Instructions
e Multiply-and-Add Instructions

® Clipping and Min/Max Instructions
e Special Instructions

See Section 3.4.5 for detailed information on the DSPM in-
struction set.

3.4.4 CPU Core Interface

The interface between the DSPM and the CPU core con-
sists of the following elements:

e Parallel Operation and Synchronization
e CPU Core Address Space Map
e External Memory References

3.4.4.1 Synchronization of Parallel Operation

Since the DSPM is capable of autonomous operation paral-

lel to the CPU core operation, a mechanism is needed to

synchronize the two threads of execution. The parallel syn-

chronization mechanism consists of several control and

status registers, which are used to synchronize the following

activities:

¢ [nitiation of the command list execution

e Termination of the command list execution

e Check the DSPM status

® Access to DSPM internal RAM and registers by CPU
core instructions

® Access to external memory by DSPM commands

The following CPU core interface control and status regis-
ters are available:

Register Function
CLPTR Command-List Pointer
CLSTAT Command-List Status Register
ABORT Abort Register
EXT Disable External Memory References
DSPINT Interrupt Register
DSPMASK Mask Register
NMISTAT NMI Status Register

Execution of the command list begins when the CPU core
writes a value into the CLPTR control register. This causes
the DSPM command-list execution unit to begin executing
commands, starting at the address written to the CLPTR
register. If the written value is outside the range of valid
RAM addresses, the result is unpredictable.

Once started, execution of the command list continues until
one of the following occurs: a HALT or a DBPT command is
executed, the CPU core writes any value into the ABORT
control register, an attempt to execute a reserved com-
mand, an attempt to access the DSPM address space while
the CLSTAT.RUN bit is “1” (except for accesses to the
CLSTAT, EXT, DSPINT, DSPMASK, NMISTAT, and ABORT
registers), or reset occurs. In the last case, the contents of
the DSPM internal RAM, REPEAT, and CLPTR registers are
unpredictable when execution terminates.

The CLSTAT status register can be read by CPU core in-
structions to check whether execution of the DSPM com-
mand list is active or idle. A “0” value read from the
CLSTAT.RUN bit indicates that execution is idle, and a “1”
value indicates that it is active.

Whenever the execution of the command list terminates,
CLSTAT.RUN changes its value from “1” to “0”, and
DSPINT.HALT is set to “1”. The value of the DSPINT.HALT
status bit can be used to generate interrupts. If
DSPMASK.HALT is set, a “1” value on the DSPINT.HALT
will cause the IOUT output signal to become active (low).
IOUT can be connected to an external Interrupt Controller
Unit (ICU), or directly to the INT input of the NS32FX164.

The DSPM internal RAM and the dedicated registers, as
well as the interface control and status registers, are
mapped into certain areas of the CPU core address space
(see Section 2.2.1). Whenever execution of the DSPM com-
mand list is idle, CPU core instructions may access these

42

3.0 Functional Description (continued)

memory areas for any purpose, exactly as they would ac-
cess external off-chip memory locations. However, when
the DSPM command list execution unit is active, any at-
tempt to read or write a location within the above memory
areas, except for accessing the CLSTAT, EXT, DSPMASK,
DSPINT, NMISTAT, or ABORT control registers (see be-
low), will be treated as follows: All read data will have unpre-
dictable values, and any attempt to write data will not
change the DSPM memory and registers. Whenever such
an access occurs, NMISTAT.ERR bit is set to “1”, an NMI
request to the core is issued, and the command list execu-
tion terminates. In this case, as the command-list execution
terminates asyncronously, the currently executed command
may be aborted. The DSPM RAM and the A, X, Y, Z, and
REPEAT registers may hold temporary values created in
this aborted instruction.

Some of the vector instructions executable by the DSPM
can access external off-chip memory to transfer data in or
out of the internal RAM, or to reference large lookup tables.
Normally, external memory references initiated by the
DSPM and CPU core are interleaved by the CPU core bus-
arbitration logic. As a result, it is the user’s responsibility, to
make sure that whenever a write operation is involved, the
DSPM and CPU core should not reference the same exter-
nal memory locations, since the order of these transactions
is unpredictable.

Each time the DSPM needs to access the external bus, it
issues an internal HOLD request to the CPU core, and waits
for an internal HOLD acknowledge. External HOLD requests
(when the HOLD signal is asserted) have higher priority than
DSPM HOLD requests.

In order to ensure fast response for time-critical interrupt
requests, the DSPM external referencing mechanism will re-
linquish the core bus for one clock cycle after each memory
transaction. This allows the core to use the bus for one
memory transaction. To further enhance the core speed on
critical interrupt routines, the EXT.HOLD control flag is pro-
vided.

Whenever the core sets EXT.HOLD to “1”, the DSPM stops
its external memory references. When the DSPM needs to
perform an external memory reference but is disabled, it
enters a HOLD state until a value of “0” is written to the
EXT.HOLD control register.

3.4.4.2 DSPM RAM Organization

The mapping of these locations to CPU core address space
is shown below, where base corresponds to the start of the
mapped area (address 0xFFFE0000):

15 8|7 0
base + 1 base + 0 (RAM Location 0)
base + 3 base + 2 (RAM Location 1)
base + 2n + 1 base + 2n (RAM Locationn)

The RAM array is not restricted to use by the DSPM, but can
also be used by the core as a fast, zero wait-state, on-chip
memory for instructions and data storage. The core can ac-
cess each byte, word, or double-word of the RAM, with no
restrictions on alignment.

3.4.5 DSPM Instruction Set
3.4.5.1 Conventions

The formal description below of DSPM command-list in-
structions is based on the “C” programming language, us-
ing the following conventions:

low Bits 0 through 15 of a 32 bits entity.
high Bits 16 through 31 of a 32 bits entity.
LENG Value of PARAM.LENGTH.

A Accumulator.

aligned__addr An even number in the range [0, 216], used
for specifying a double word-aligned address
in internal memory.

A value in internal memory whose first word
address is k, where 0 < k < 216,

A value in external memory whose first byte
address is k, where 0 < k < 232,

X Vector in internal memory whose first ad-
dress is pointed to by X.ADDR.

Y Vector in internal memory whose first ad-
dress is pointed to by Y.ADDR.

z Vector in internal memory whose first ad-
dress is pointed to by Z.ADDR.

A value in internal memory whose address is
formed by adding an offset to a cyclic buffer
base address. The base address is formed
by clearing the (XWRAP — 1) less-signifi-
cant bits of X.ADDR. The offset within the

buffer is calculated by: (X.ADDR +
n X 2X.INCR) modulo 2X-WRAP,

memlk]

ext__mem[k]

X[n]

Y[n] A value in internal memory whose address is
formed by adding an offset to a cyclic buffer
base address. The base address is formed
by clearing the (Y.WRAP — 1) less-signifi-
cant bits of Y.ADDR. The offset within the
buffer is calculated by: (Y.ADDR +
n x 2Y.NCR) modulo 2Y-WRAP,

A value in internal memory whose address is

formed by adding an offset to a cyclic buffer

base address. The base address is formed

by clearing the (ZZWRAP — 1) less-signifi-

cant bits of Z.ADDR. The offset within the

buffer is calculated by: (Z.ADDR +

n X 2Z.INCR) modulo 2Z.-WRAP,

The word address of X[n].

&Y[n] The word address of Y[n].

&Z[n] The word address of Z[n].

3.4.5.2 Type Casting

The following data type definitions are used in DSPM in-

struction description:

integer An integer value, as described in Section
3.4.2.1.

aligned__integer An aligned integer value, as described in

Section 3.4.2.2.

A real value, as described in Section

3.4.2.3.

ZIn]

&XI[n]

real

43

3.0 Functional Description (continued)

aligned__real An aligned real value, as described in Sec-
tion 3.4.2.4.

extended An extended-precision real value, as de-
scribed in Section 3.4.2.5.

complex A complex value, as described in Section
3.4.2.6.

vector__ptr A valid value for X, Y, and Z registers.

repeat__reg A valid value for REPEAT register.

param__reg A valid value for PARAM register.

eabr__reg A valid value for EABR register.

real__acc A 34-bit value inside either the real part or

the imaginary part of the accumulator.

A 68-bit value inside the complex accumu-
lator.

3.4.5.3 General Notes

The values of the EABR, PARAM, X, Y, and Z registers are
not changed by the execution of the command list.

Some instructions use the accumulator as a temporary reg-
ister and therefore destroy its contents. In general, the user
should assume that the contents of the accumulator are
unpredictable after an instruction terminates, unless stated
otherwise in the notes section following that instruction’s
formal specification.

Non-complex instructions that use the accumulator, can use
either the real or the imaginary parts, or both. In general,
when an integer or real data type is to be read, it is taken
from the real part. An extended-precision real data type is
taken from the imaginary part. When a non-complex data
type is loaded into the accumulator (by the LEA instruction
or within other instructions prior to saving it into memory), it
is written to both real and imaginary parts.

Rounding is implemented by copying PARAM.RND into bit
position 14 of both the real and the imaginary part of the
accumulator, performing the requested operation, and trun-
cating the contents of the accumulator upon storing results
to memory. In Multiply-and-Add instructions and some of the
special instructions, this is done transparently on each vec-
tor element iteration. In Multiply-and-Accumulate instruc-
tions, when PARAM.CLR is “0”, the previous content of the
accumulator is used, so that rounding control is actually per-
formed when the accumulator is first loaded and not when
the multiply operations is executed. On the other hand, if
PARAM.CLR is “1”, the PARAM.RND value is copied into
bit 14 of the cleared accumulator, so that rounding control is
done at the same time that the multiply operation is execut-
ed.

Rounding is performed only for real, aligned-real and com-
plex data types. In operations on complex operands, the
order of accumulation is as follows: the result of the multipli-
cation with the real part of the X operand is added first to
the accumulator, and only then the result of the multiplica-
tion with the imaginary part of the X operand is added.

In general, the X, Y, and Z vectors can overlap. However,
because of the pipelined structure of the DSPM datapath,
the user must verify that a value written into the DSPM inter-
nal memory will not be used in the same vector instruction
as a source operand for the next 8 iterations, in all instruc-
tions except VCPOLY. In VCPOLY, Y[0] cannot be over-rid-
den at all.

complex__acc

The description below specifies the encoding of each DSPM
instruction. All other values are reserved for future use. Any
attempt to execute any reserved instructions will terminate
execution of the command list, issue an NMI request, and
set NMISTAT.UND to “1”. In this case the contents of the
EXT and DSPMASK remain unchanged, but the contents of
the Accumulator and OVF may change.

3.4.5.4 Load Register Instructions

LX—Load X Vector Pointer

The LX instruction loads the double-word at aligned__addr
into the X register.

Syntax:

LX aligned__addr

15 11(10 0
00010

aligned__addr

Operation:

{
X = (vector_ptr) mem[aligned_addr] ;

}

Notes: The value at memlaligned__addr] should conform to vector pointer
specification format.

Accumulator is not affected.
LY—Load Y Vector Pointer

The LY instruction loads the double-word at aligned__addr
into the Y register.

Syntax:
LY aligned__addr

15 11|10 0

00011

aligned__adar

Operation:

{
Y = (vector_ptr) mem[aligned_addr];

}

Notes: The value at memlaligned__adadr] should conform to vector pointer
specification format.

Accumulator is not affected.
LZ—Load Z Vector Pointer

The LZ instruction loads the double-word at aligned__adadr
into the Z register.

Syntax:
LZ aligned__addr

15 11(10 0

00100 aligned__addr

Operation:

{
Z = (vector_ptr) mem[aligned_addr];

}

Notes: The value at memlaligned__addr] should conform to vector pointer
specification format.

Accumulator is not affected.

44

3.0 Functional Description (continued)

LA—Load Accumulator

The LA instruction loads the complex value at aligned__
adar into the A accumulator as a complex value.

Syntax:
LA aligned__addr

15 11|10 0

00101 aligned__adadr

Operation:

{

(complex) A = (complex) mem[aligned_addr];

Notes: The real and imaginary parts are placed in bits 15 through 30 of the
real and imaginary parts of the accumulator.

When PARAM.RND is set to “1”, bit 14 of the real and imaginary
parts is set to “1”, in order to implement rounding upon subsequent
additions into the accumulator. Otherwise, it is cleared to “0”.

LEA—Load Extended Accumulator

The LEA instruction loads the accumulator with the extend-
ed value specified by X[0].

Both the real and the imaginary parts of the accumulator are
loaded.

Syntax:
EXEC LEA

15 11|10 0

10000 1010011 0011

Operation:
{

extended X;

A = (extended) X[0];
}

Note: Bits 1 through 31 of the memory location are read into bit positions 0
through 30 of the accumulator.

LPARAM—Load Parameters Register

The LPARAM instruction loads the double-word at

aligned__addr into the PARAM register.

Syntax:

LPARAM aligned__addr

15 11|10 0
00000 aligned__adadr

Operation:

{
PARAM = (param_reg) mem[aligned_addr];

Notes: The value at memlaligned__addr] should conform to this register
format. The value written into PARAM.LENGTH must be greater
then 0.

Accumulator is not affected.
LREPEAT—Load Repeat Register

The LREPEAT instruction loads the double-word at
aligned__addr into the REPEAT register.

Syntax:
LREPEAT aligned__adadr

15 11|10 0
00110 aligned__adar
Operation:
{
REPEAT = (repeat_reg) mem[aligned_addr];

Notes: The value at memlaligned__addr] should conform to the REPEAT
register format.

Accumulator is not affected.

LEABR—Load External Address Base Register

The LEABR instruction loads the double-word at

memlaligned__addr] into the EABR register.

Syntax:

LEABR aligned__addr

15 11|10 0
00111 aligned__addr

Operation:

{
EABR = (eabr_reg) mem[aligned_addr];
}

Notes: The value at memlaligned__addr] should conform to vector pointer
specification format, that is, bit positions 0 through 16 must be speci-
fied as “0".
Accumulator is not affected.

3.4.5.5 Store Register Instructions

SX—Store X Vector Pointer

The SX instruction stores the contents of the X register into
the double-word at aligned__addr.

Syntax:
SX aligned__addr

15 11|10 0

01010 aligned__addr

Operation:

{

(vector_ptr) mem[aligned_addr] = X;
}
Note: Accumulator is not affected.
SXL—Store X Vector Pointer Lower Half

The SXL instruction stores the contents of the lower-half of
the X register into the word at meml[adar].

Syntax:
SXL addr

15 11(10 0

11100 adar

Operation:

{
mem[aligned_addr] = X.low;

}

Note: Accumulator is not affected.

45

3.0 Functional Description (continued)

SXH—Store X Vector Pointer Higher Half

The SXH instruction stores the contents of the higher-half of
the X register into the word at meml[adar].

Syntax:
SXH addr

15

1

11101

adar

Operation:
{

mem[aligned_addr] = X.high;
}
Note: Accumulator is not affected.
SY—Store Y Vector Pointer

The SY instruction stores the contents of the Y register into
the double-word at aligned__addr.

Syntax:
SY aligned__adadr

15 11|10 0

01011 aligned__addr

Operation:

{
}

Note: Accumulator is not affected.

(vector_ptr) mem[aligned_addr] = Y;

SZ—Store Z Vector Pointer

The SZ instruction stores the contents of the Z register into
the double-word at aligned__adar.

Syntax:
SZ aligned__addr

15 11|10 0

01100 aligned__addr

Operation:
{
(vector_pointer mem[aligned_addr] = Z;
}
Note: Accumulator is not affected.
SA—Store Accumulator

The SA instruction stores the contents of the A accumulator
as a complex value into memlaligned__adar].

Syntax:
SA aligned__adadr

15 11|10 0

01101 aligned__adadr

Operation:
{
(complex mem[aligned_addr] = (complex) A;

}

Notes: Bits 15 through 30 of the real and imaginary parts of the accumulator
are placed in the real and imaginary parts of the complex value at
memlaligned__adar].

Accumulator is not affected.

SEA—Store Extended Accumulator

The SEA stores the contents of bits 0-30 of the imaginary
accumulator as an extended value into a DSPM memory
location specified by Z[0].

Bit 0 of this memory location is loaded with “0”.

Syntax:

EXEC SEA

15

11

10000

101 0011 0110

Operation:

{

extended Z;
Z[0] = (extended) A;
}
Note: Accumulator is not affected.
SREPEAT—Store Repeat Register

The SREPEAT instruction stores the contents of the
REPEAT register in the double-word at memlaligned__
adadr].

Syntax:
SREPEAT aligned__addr
15 11|10 0
01110

aligned__addr

Operation:

{

(repeat_reg)
}
Note: Accumulator is not affected.
SOVF—Store and Clear OVF Register
The SOVF instruction stores the contents of the OVF regis-
ter in the word at memladdr]. The OVF register is then
cleared to “0”.
Syntax:
SOVF adadr

mem[aligned_addr] = REPEAT;

15 1110 0
01001 adar

Operation:

{
(ovf_reg) mem[aligned_addr] = OVF;

Note: Accumulator is not affected.
3.4.5.6 Adjust Register Instructions

INCX—Increment X Vector Pointer

The INCX instruction increments the X vector pointer by one
element, according to the increment and the wrap.

Syntax:

EXEC INCX

15 11) 10 0
10000 100 0101 1001

46

3.0 Functional Description (continued)
Operation:

{
X.ADDR = &X[1];
}

Note: Accumulator is not affected.

INCY—Increment Y Vector Pointer

The INCY instruction increments the Y vector pointer by one
element, according to the increment and the wrap.

Syntax:
EXEC INCY

15 11|10 0

10000 1000101 1011

Operation:

DECY
{

Y.ADDR = &Y[-17:
}

Note: Accumlator is not affected.

DECZ—Decrement Z Vector Pointer

The DECZ instruction decrements the Z vector by one ele-
ment, according to the increment and the wrap.

Syntax:
EXEC DECZ

15 11(10 0

Operation:
{
Y.ADDR = &Y[1];
}
Note: Accumulator is not affected.
INCZ—Increment Z Vector Pointer

The INCZ instruction increments the Z vector pointer by one
element, according to the increment and the wrap.

Syntax:
EXEC INCZ

15 11|10 0

10000 101 0011 0001

10000 1000101 1101

Operation:

{
Z.ADDR = &Z[1];
J

Note: Accumulator is not affected.

DECX—Decrement X Vector Pointer

The DECX instruction decrements the X vector pointer by
one element, according to the increment and the wrap.

Syntax:
EXEC DECX

15 11|10 0

Operation:

{

\ Z.ADDR = &Z[-1];

Note: Accumulator is not affected.

3.4.5.7 Flow Control Instructions
NOPR—No Operation

The NOPR command passes control to the next command
in the command list. No operation is performed.

Syntax:
NOPR

15 11|10 0

11010 00000000

Note: Accumulator is not affected.

HALT—Terminate Command-List Execution

The HALT command terminates execution of the command
list. No further commands are executed. This event is made
visible to the CPU core, as specified in Section 3.6.

Syntax:
HALT

15 11|10 0

11001 00000000000

10000 101 0010 1101

Operation:

{
X.ADDR = &X[—1]
}

Note: Accumulator is not affected.

DECY—Decrement Y Vector Pointer

The DECY instruction decrements the Y vector pointer by
one element, according to the increment and the wrap.

Syntax:
EXEC DECY

15 11|10 0

10000 101 0010 1111

Note: Accumulator is not affected.

DJNZ—Decrement and Jump If Not Zero

The DJNZ command is used to implement loops and
branches in the command list. The value of the REPE-
AT.COUNT field is decremented by 1 and compared to 0. If
it is not equal to 0, then execution of the command list con-
tinues with the command located in the RAM address speci-
fied by the REPEAT.TARGET field. When the
REPEAT.COUNT field is equal to 0, then execution contin-
ues with the next command in the command list.

The DSPM has only one REPEAT register. To nest loops,
user must save the contents of the REPEAT register before
starting an inner loop, and restore it at the end of the inner
loop.

3.0 Functional Description (continued)

Syntax:
EXEC DINZ

15 11(10 0

10000 10101101100

Note: Accumulator is not affected.

DBPT—Debug Breakpoint

The DBPT instruction is used for implementing software de-
bug breakpoint in the DSPM command-list. Whenever there
is an attempt to execute a DBPT instruction, the NMIS-
TAT.UND bit is set to “1”.

Syntax:

EXEC DBPT

15 11(10 0

10000 11111111110

Note: Accumulator is not affected.
3.4.5.8 Internal Memory Move Instructions
VRMOV—Vector Real Move

The VRMOV instruction copies the real X vector to the real
Z vector.

Syntax:
EXEC VRMOV
15 11|10 0
10000 101 0010 1011

Operation:
{

real X, Z;

for (n = 0; n < LENG; n++)

{

Z[n] = X[n];

}
}
VARMOV—Vector Aligned Real Move

The VARMOV instruction copies the aligned real X vector to
the aligned real Z vector.

Syntax:
EXEC VARMOV
15 11|10 0
10000 100 0011 1000

Operation:

{

aligned_real X, Z;
for (n = 0; n < LENG; n++)
{
Z[n].low = X[n].low;
Z[n].high = X[n].high;
}
}

VRGATH—Vector Real Gather

The VRGATH instruction gathers non-contiguous elements
of the Xreal vector, as specified by the Y integer vector, and
places them in contiguous locations in the Z real vector.

Syntax:
EXEC VRGATH

15 11|10 0
10000 100 0011 1010

Operation:
{
real X, Z;
integer X.ADDR, Y;
for (n = 0; n < LENG; n++)
{
Z[n] =
}
}

VRSCAT—Vector Real Scatter

The VRSCAT instruction scatters contiguous elements of
the X real vector, and places them in non-contiguous loca-
tions in the Z real vector, as specified by the Y integer vec-
tor.

Syntax:

EXEC VRSCAT

mem[(X.ADDR+Y[n]) & OxXFFFF];

15 11|10 0
10000 100 0100 0000
Operation:
{
real X, Z;

integer Z.ADDR, Y;

for (n=0; n < LENG; n++)
{
mem[Z.ADDR+Y[n]) & OxFFFF] = X[n];

}

3.4.5.9 External Memory Move Instructions

VXLOAD—Vector External Load

The VXLOAD instruction loads a vector from external mem-
ory into the Z vector. The external memory address is speci-
fied in the EABR and X registers.

Syntax:

EXEC VXLOAD

15 11|10 0
10000 100 0100 1111
Operation:
VXLOAD
{
real X, Z;

ext_address EABR;
for (n=0; n<LENG; n++)
{
Z[n] =
2%&X[n]]
}
}

VXSTORE—Vector External Store

The VXSTORE instruction stores the Z vector into an exter-
nal memory vector. The external memory address is speci-
fied in the EABR and X registers.

ext_mem[EABR + (ext_address)

48

3.0 Functional Description (continued)
Syntax:
EXEC VXSTORE

15 11|10 0
10000 100 0101 0101
Operation:
{
real X, Z;

ext_address EABR;

for (n=0; n < LENG; n++)
{
ext_mem[EABR + (ext_address) 2*&Z[n]] =
X[n];
}
}

VXGATH—Vector External Gather

The VXGATH instruction gathers non-contiguous elements
of the external memory vector, as specified by the Y integer
vector, and places them in contiguous locations in the Z real
vector. The external memory address is specified in the
EABR and X registers.

Syntax:

EXEC VXGATH

15 11|10 0
10000 100 0100 0110
Operation:
{
real X, Z;

ext_address EABR;
integer Y, X.ADDR;
for (n=0; n < LENG; n++)

{

Z[n]=ext_mem

[EABR+(ext_address)2*((X.ADDR+(integer)Y[n])
& OxFFFF)];

}
}

3.4.5.10 Arithmetic/Logical Instructions

VROP—Vector Real Op

The VROP instruction performs one of 7 operations be-
tween corresponding elements of the X and Y real vectors,
and writes the result in the corresponding place in the Z
output vector. The operation to be performed is specified in
PARAM.OP field.

Syntax:

EXEC VROP

15 11|10 0
10000 1010110 1000

Operation:
{
real X,Y,Z;
for (n=0; n < LENG; n++)
{
Z[n] =
}

(real) (X[n] <op> Y[n]);

The allowed values in PARAM.OP are:

<op> Operation

011010 ADD Z=X+Y
100111 suB Z=X-Y
001000 BIC Z=X&Y
100000 AND Z=X&Y
111000 OR Z=X]|Y
011000 XOR Z=XoY
001100 INV z=Y

VAROP—Vector Aligned Real Op

The VARORP instruction performs one of 7 operations be-
tween corresponding elements of the X and Y aligned vec-
tors, and writes the result in the coresponding place in the Z
output vector. The operation to be performed is specified in
PARAM.OP field.

Syntax:

EXEC VAROP

15 11(10 0

10000 100 0001 1010

Operation:

{
aligned_real X,Y,Z;
for (n=0; n < LENG; n++)
{

Z[n].low = (real) (X[n].low <op>
Y[n].low) ;
Z[n].high = (real) (X[n].high <op>

Y[n].high) ;
}
}

Note: The allowed values in PARAM.OP are the same as those in VROP.
3.4.5.11 Multiply-and-Accumulate Instructions

VRMAC—Vector Real Multiply and Accumulate

The VRMAC instruction performs a convolution sum of the
Xand Y real vectors. The previous value of the accumulator
is used and the result stored in Z[0].

Syntax:
EXEC VRMAC

15 11(10 0

10000 100 0000 0111

Operation:
{
real X,Y,Z;
real_acc A;
for (n=0; n < LENG; n++)

{

}
z[0] =
}
Note: When PARAM.CLR is set to “1”, A is cleared to “0” prior to the first
addition. When PARAM.SUB is set to “1”, the “+” sign is replaced
by a “—" sign.

A=A + X[n] * Y[n];

(real) A;

49

3.0 Functional Description (continued)

VARMAC—Vector Aligned Real Multiply
and Accumulate

The VARMAC instruction performs a convolution sum of the
Xand Y real vectors. The previous value of the accumulator
is used and the result is stored in Z[0].

Syntax:
EXEC VARMAC
15 11|10 0
10000 100 0000 0000

Operation:

{

aligned_real X,Y;

real Z;

real_acc A;

for (n=0; n < LENG; n++)

{

A=A + X[n].low * Y[n].low +
X[n].high * Y[n].high ;

}

Z[0] =
}

Note: When PARAM.CLR is set to “1”, A is cleared to “0” prior to the first
addition. When PARAM.SUB is set to “1”, the “+” sign is replaced
by a “—" sign.

(real) A;

VCMAC—Vector Complex Multiply and Accumulate

The VCMAC instruction performs a convolution sum of the
X and Y complex vectors. The previous value of the accu-
mulator is used, and the result is stored in Z[0].

Syntax:
EXEC VCMAC
15 11) 10 0
10000 1000111 0101

Operation:

{
complex X,Y,Z;
complex_acc A;
for (n=0; n < LENG; n++)

{

}
Z[0] =
}

Note: When PARAM.COJ is set to “1”, X[n] is multiplexed by the conjugate
of Y[n]. When PARAM.CLR is set to “1”, A is cleared to “0” prior to
the first addition. When PARAM.SUB is set to “1”, the “+” sign is
replaced by a “—" sign.

VRLATP—Vector Real Lattice Propagate

The VRLATP instruction is used for implementing lattice and
inverse lattice filter operations. This instruction is used to
update the propagating values of vector Z.

A=A + X[n] * Y[n];

(complex) Aj;

Syntax:
EXEC VRLATP
15 11|10 0
10000 100 0010 1100

Operation:
{
real X,Y,Z;
real_acc A;
A = (real_acc) Z[0];
for (n=1; n < LENG; n++)
{
A=A+ X[n-1]
Z[n] = (real) A;
A = (real_acc) Z[n];
}
}

Note: When PARAM.SUB is set to “1”, the “+ " sign is replaced by a “—"
sign. The LENG parameter for this operation must be greater than 1.

*Y[n - 1];

VCLATP—Vector Complex Lattice Propagate

The VCLATP instruction is used for implementing lattice and
inverse lattice filter operations. This instruction is used to
update the propagating values of vector Z.

Syntax:

EXEC VCLATP

15 11(10 0
10000 100 1110 1000

Operation:
{
complex X,Y,Z;
complex_acc Aj;
A = (complex_acc) Z[0];
for (n=1; n < LENG; n++)
{
A=A + X[n-1] * Y[n-1];
Z[n] = (complex) A;
}
}

Note: When PARAM.COJ is set to “1”, X[n] is multiplied by the conjugate of
Y[n]. When PARAM.SUB is set to ““1”, the “+” sign is replaced by a
“—"" sign. The LENG parameter for this operation must be greater
than 1.

3.4.5.12 Multiply-and-Add Instructions
VAIMAD—Vector Aligned Integer Multiply and Add

The VAIMAD instruction multiplies corresponding elements
of the X and Y integer vectors, and adds or subtracts the
result, as an integer value, to the integer vector Z. This re-
sult is placed in the Z output vector.

Syntax:
EXEC VAIMAD

15

11

10000

100 0001 0100

50

3.0 Functional Description (continued)
Operation:

{
aligned_integer X,Y;
integer Z;
for (n=0; n < LENG; n++)
{
Z[2n] = (integer)
Y[n].low) ;
Z[2n+l] = (integer)
* Y[n].high) ;
}

}

Note: When PARAM.CLR is set to “1”, only multiplication is done without
addition. When PARAM.SUB is set to “1”, the “+ " sign is replaced
by a “—" sign.

(Z[2n] + X[n].low *

(Z[2n+1] + X[n].high

VAIMADS—Vector Aligned Integer Multiply and Add
Saturated

The VAIMADS instruction multiplies corresponding ele-
ments of the X and Y integer vectors, and adds or subtracts
the result, as an integer value, to the integer vector Z. This
result is placed in the Z output vector. The saturation logic
provides clamping of the accumulator results before writing
the result back to the Z vector whenever the result cannot
be represented correctly within the limits of the integer data
type.

Syntax:

EXEC VAIMADS

15 11|10 0

10000 1010101 1100

Operation:
{
aligned_integer X,Y;
integer Z;
for (n=0; n < LENG; n++)
{
Z[2n] = (integer)
Y[n].low) ;
Z[2n+1] = (integer)
Y[n].high) ;
}

}

VRMAD—Vector Real Multiply and Add

The VRMAD instruction multiplies corresponding elements
of the X and Y real vectors and adds or subtracts the result
to the real vector Z. This result is placed in the Z output
vector.

Syntax:

EXEC VRMAD

(z[2n] + X[n].low *

(Z[2n+1] + X[n].high *

15 11|10 0
10000 1000011 0011

Operation:
{
real X,Y,Z;
for (n=0; n < LENG; n++)
{
Z[n] =
}

(real) (Z[n] + X[n] * Y[n]);

}

Note: When PARAM.CLR is set to “1”, only multiplication is performed,
without addition. When PARAM.SUB is set to “1”, the “+” sign is
replaced by a “—" sign.

VARMAD—Vector Aligned Real Multiply and Add

The VARMAD instruction multiplies corresponding elements
of the X and Y real vectors and adds or subtracts the result
to the real vector Z. This result is placed in the Z output
vector.

Syntax:
EXEC VARMAD
15 11| 10 0
10000 100 0000 1110

Operation:
{
aligned_real X,Y,Z;
for (n=0; n < LENG; n++)
{
Z[n].low =
Y[n].low) ;
Z[n].high = (real)
* Y[n].high) ;
}

}

Note: When PARAM.CLR is set to “1”, only multiplication is performed,
without addition. When PARAM.SUB is set to “1”, the “+” sign is
replaced by a “—" sign.

VEMAD—Vector Extended Multiply and Add

The VEMAD instruction multiplies corresponding elements
of the X and Y real vectors and adds or subtracts the result,
as an extended-precision value, to the extended-precision
vector Z. This result is placed in the Z output vector.
Syntax:

EXEC VEMAD

(real) (Z[n].low + X[n].low *

(Z[n].high + X[n].high

15 11|10 0

10000 101 0001 0010

51

3.0 Functional Description (continued)
Operation:
{

aligned_real X,Y;

extended Z;

for (n=0; n < LENG; n++)

{

Z[2n] = (extended)
Y[n].low) 3

Z[2n+1] = (extended)
* Y[n].high) ;

}

}

Note: When PARAM.CLR is set to “1”, only multiplication is performed,
without addition. When PARAM.SUB is set to “1”, the “+” sign is
replaced by a “—" sign.

VCMAD—Vector Complex Multiply and Add

The VCMAD instruction multiplies the corresponding ele-
ments of the X and Y complex vectors and adds or sub-
tracts the result to the complex vector Z. This result is
placed in the Z output vector.

Syntax:

EXEC VCMAD

(z[2n] + X[n].low *

(Z[2n+1] + X[n].high

15 11|10 0
10000 100 1110 0000

Operation:

{
complex X,Y,Z;
for (n=0; n < LENG; n++)

{

}

}

Note: When PARAM.COJ is set to “1”, X[n] is multiplied by the conjugate
of Y[n]. When PARAM.CLR is set to “1”, only multiplication is per-
formed, without addition. When PARAM.SUB is set to “1”, the “+”
sign is replaced by a “—" sign.

Z[n] = (complex) (Z[n] + X[n] * Y[n]);

3.4.5.13 Clipping and Min/Max Instructions
VARABS—Vector Aligned Real Absolute Value

The VARABS instruction computes the absolute value of
each element in the real vector X and places the result in
the corresponding place in the Y output vector.

Syntax:

EXEC VARABS

15 11|10 0
10000 100 0001 1111

Operation:

{
aligned_real X,Z;
for (n=0; n < LENG; n++)
{
Z[n].low = abs (X[n].low) ;
Z[n].high = abs (X[n].high) ;
}
}
Note: There is no representation for the absolute value of 0x8000. Whenev-
er an absolute value of 0x8000 is needed, OVF.SAT is set to “1”, and
the maximum positive number 0x7FFF is returned.

VARMIN—Vector Aligned Real Minimum

The VARMIN instruction compares corresponding elements
of the X and Y real vectors, and writes the smaller of the two
in the corresponding place in the Z integer vector.

Syntax:

EXEC VARMIN

15 1110 0
10000 100 0101 1111

Operation:
{
aligned_real X,Y,Z;
for (n=0; n < LENG; n++)
{
Z[n].low = min (X[n].low ,Y[n].low) ;
Z[n].high = min (X[n].high ,Y[n].high) ;
}
}

VARMAX—Vector Aligned Real Maximum

The VARMAX instruction compares corresponding ele-
ments of the X and Y real vectors, and writes the larger of
the two in the corresponding place in the Z integer vector.

Syntax:
EXEC VARMAX

15 11{10 0

10000 10001100110

Operation:
{
aligned_real X,Y,Z;
for (n=0; n < LENG; n++)
{
Z[n].low = max (X[n].low , Y[n].low);
Z[n].high = max (X[n].high , Y[n].high) ;
}
}

VRFMIN—Vector Real Find Minimum

The VRFMIN instruction scans the X real vector and returns
the address of the element with the smallest value. The
resulting address is placed in Z[0].

Syntax:

EXEC VRFMIN

15 11(10 0

10000 1000110 1101

52

3.0 Functional Description (continued)
Operation:
{
real X ;
integer Z ;
internal_register real tempX;
internal_register integer tempA;
tempX = X[0];
tempA = &X[0];
for (n=1; n < LENG; n++)
{
if (X[n] < tempX)
{
tempX =
tempA =
}
}
Z{0} = tempA;

X[n];
&X[n];

}
Note: The LENG parameter for this operation must be greater than 1.
VRFMAX—Vector Real Find Maximum

The VRFMAX instruction scans the X real vector and re-
turns the address of the element with maximum value. The
resulting address is placed in Z[0].

Syntax:
EXEC VRFMAX

15 11|10 0

10000 1000010 0100

Operation:
{
real X;
integer Z;
internal_register real tempX;
internal_register integer tempA;

tempX = X[0];
tempA = &X[0];
for (n=1; n < LENG; n++)

{
if (X[n] > tempX)
{

tempX = X[n];
tempA = &X[n];
}
}
Z[0] = tempA;

Note: The LENG parameter for this operation must be greater than 1.

EFMAX—Extended Find Maximum

This instruction is not supported by the NS32FX161.

The EFMAX instruction implements a single iteration of
maximum search loop. The extended value in the accumula-
tor is compared with the first element of the extended Z
vector. The large value is stored back into the Z vector. In
case the larger value was the accumulator, then ss is stored
in the second location of the Z-vector (as an integer).
Syntax:

EXEC EFMAX

15 11|10 0

10000 101 0100 1011

Operation:

{
integer Y, Z[1];

extended temp, Z[0];

real X;

real_acc A;

A = (real_acc) ((extended)A);
temp = Z[0];

if (A > temp)
{

temp = (extended) A;
Z[1] = &X[0];

}

Z[0] = temp;

}

Note: The Y vector must hold the following values: Y[0] must be Ox7fff, Y[1]
must be 0x0001, and Y[2] must be 0x4000.

3.4.5.14 Special Instructions
ESHL—Extended Shift Left
This instruction is not supported by the NS32FX161.

The ESHL instruction performs a shift-left operation on ex-
tended-precision data in the accumulator, and stores the
more significant half of the result as a real value into the first
element of the real Z vector.

Syntax:

EXEC ESHL

15 1110 0
10000 1010110 0100

Operation:
{
real_acc A;
A = (real_acc) ((extended)A);
if (LENG > 1) for (n=l; n<LENG; n++)
{

}
Z[0] =

}

Note: The LENG parameter for this operation must be greater than 0. When
LENG equals 1, only the real part of the accumulator is updated.
When LENG is greater than 1, both the real and the imaginary parts of
the accumulator are updated to the same value.

A=A+ A

(real) A;

VCPOLY—Vector Complex Polynomial

The VCPOLY instruction performs one iteration of evaluat-
ing a polynomial with real coefficients, for a vector of com-
plex-valued arguments, including down-scaling of the coeffi-
cients to avoid overflow. In addition, the instruction accumu-
lates the scaled-down energy, with a decay factor, of the
polynomial’s real coefficients.

53

3.0 Functional Description (continued)

Syntax:

EXEC VCPOLY

15 11|10 0
10000 101 0001 1000

Operation:
{
complex
real Y;
complex

X,Z;

temp ;
temp.re = (real) * X[0].re;
temp.im = 0;

(n=0; n < LENG; n++)

Y[0]

for
{
Z[n] =
}
Z[LENG].re = (real) (Z[LENG].re *
X[LENG+1].re + Y[O] * temp.re);
Y.ADDR = &Y[1];
}

Note: The LENG parameter for this operation must be greater than 1.

(complex) Z[n] * X[n+l] + temp;

VDECIDE—Vector Nearest Neighbor Decision Logic
The VDECIDE instruction is used to implement nearest
neighbor decision in Quadrature Amplitude Modulation
(QAM) modem applications. The input is the X complex vec-
tor. The output is placed in the Z integer vector, which can
be used as an index vector to extract information from look-
up tables. The indicated constant values are taken from the
Y vector.

Syntax:
EXEC VDECIDE

15 11|10 0

10000 100 1111 0000

Operation:

{
complex X;
aligned_real Y;
real Z;
internal_register complex temp;

for (n=0; n < LENG; n++)

{

temp.re = min (X[n].re, Y[0].low) ;
temp.im = min (X[n].im, Y[O].high) ;
temp.re = max (temp.re, Y[1l].low) ;
temp.im = max (temp.im, Y[1].high) ;
X[n] = temp;

Z[n] = (real) ((temp.re * Y[2].low) &

(extended) Y[3].low)
((temp.im * Y[2].high) &
Y[3].high) ;
}

(extended)

}

Note: Y.INCR must be specified as 1, and Y.WRAP must be specified as 3.

VDIST—Vector Euclidean Distance

The VDIST instruction calculates the square of the Euclide-
an distance between corresponding elements of the X and
Y complex vectors, and places the result in the Z real vec-
tor.

Syntax:

EXEC VDIST

15 11|10 0
10000 100 1111 1110

Operation:
{
complex X,Y;
real Z;
for (n=0; n < LENG; n++)
{
Z[n] = (real)

}
}

VFFT—Vector Fast Fourier Transform

The VFFT instruction implements one pass of in-place FFT
vector update, according to the radix-2 FFT method.

Syntax:
EXEC VFFT

(X[n].re — Y[n].re)** 2+
(X[n].im = Y[n].im) **2 3

15 11(10 0
10000 101 0000 0110

Operation:
{
complex X,Y,Z;
complex temp;
f‘or (n=0; n < LENG; n++)

temp = (complex) (Z[n] + X[n] * Y[n]);
Y[n] = (complex) (Z[n] - X[n] * Y[n]);
Z[n] = temp

}
}
VESIIR—Vector Extended Single-Pole IIR
This instruction is not supported by the NS32FX161.

The VESIIR instruction performs a special form of an Infi-
nite-lmpulse Response (lIR) filter. The samples and coeffi-
cient are given as real values, as well as the output result.
However, the accumulation is performed using extended-
precision arithmetic.

Syntax:

EXEC VESIIR

15 11|10 0
10000 101 0011 0111

54

3.0 Functional Description (continued)
Operation:
{
real X,Y,Z;
real_acc A;
for (n=0; n < LENG; n++)
{
A (real_acc) ((extended)A) ;
A (real_acc) (A * X[n])) + Y[n+2];
Z[n] = (real) A;
}

}

Note: The term (A * X [n]) is a 32-bit by 16-bit multiplication. During the
conversion of this product to a real__accumulator data type, rounding
is done if PARAM.RND is “1”. During the conversion of A to a real
data type, the result is rounded if Y[0] = 0x0080, or truncated if Y[0]
= 0x0. The result with other values of Y[0] are unpredictable. Y[1]
must be specified as 0x7fff.

3.5 SYSTEM INTERFACE

This section provides general information on the
NS32FX164 interface to the external world. Descriptions of
the CPU requirements as well as the various bus character-
istics are provided here. Details on other device characteris-
tics including timing are given in Sections 4.2-4.4.2.

3.5.1 Power and Grounding

The NS32FX164 requires a single 5V power supply, applied
on the Vg pins. These pins should be connected together
by a power (Vcc) plane on the printed circuit board.

The grounding connections are made on the GND pins.
These pins should be connected together by a ground
(GND) plane on the printed circuit board.

Both power and ground connections are shown in Figure

3-14.
| EABR |

(2K in NS32FV16
and NS32FX161)

4K-BYTE
RAM | CLPTR |

TO CORE

[ree] [rec] E

MULTIPLIER

<_ CONTROL UNIT
LENGTH

y

OPTIONS
COUNT

A 4

| COMPLEX ACCUMULATOR |

!
AN S

h

TL/EE/11267-25

FIGURE 3-13. DSP Module Block Diagram

3.0 Functional Description (continued)

For optimal noise immunity, the power and ground pins
should be connected to Vgc and ground planes respective-
ly. If Voc and ground planes are not used, single conductors
should be run directly from each Vg pin to a power point,
and from each GND pin to a ground point. Daisy-chained
connections should be avoided.

Decoupling capacitors should also be used to keep the
noise level to a minimum. Standard 0.1 uF ceramic capaci-
tors can be used for this purpose. They should attach to
Vce, GND pins as close as possible to the NS32FX164.

During prototype using wire-wrap or similar methods, the
capacitors should be soldered directly to the power pins of
the NS32FX164 socket, or as close as possible, with very
short leads.

Design Notes

When constructing a board using high frequency clocks with
multiple lines switching, special care should be taken to
avoid resonances on signal lines. A separate power and
ground layer is recommended. This is true when designing
boards for the NS32FX164. Switching times of under 5 ns
on some lines are possible. Resonant frequencies should
be maintained well above the 200 MHz frequency range on
signal paths by keeping traces short and inductance low.
Loading capacitance at the end of a transmission line con-
tributes to the resonant frequency and should be minimized
if possible. Capacitors should be located as close as
possible across each power and ground pair near the
NS32FX164.

Power and ground connections are shown in Figure 3-14.

vee I3
o [20
30
;g oo 51 OTHER Ve
T3l » Ve |34 CONNECTIONS
52| © Ns32FX164 (Vee PLANE)
56l ¢ cpy
53] GND
OTHER GROUND

CONNECTIONS
(GND PLANE) TL/EE/11267-26
FIGURE 3-14. Power and Ground Connections

RESET

1

1

1
EXTERNAL RESET : 4_?_
(OPTIONAL) 1

-l
RESET SWITCH
(OPTIONAL)

3.5.2 Clocking

The NS32FX164 provides an internal oscillator that inter-
acts with an external clock source through two signals;
OSCIN and OSCOUT.

Either an external single-phase clock signal or a crystal can
be used as the clock source. If a single-phase clock source
is used, only the connection on OSCIN is required; OSC-
OUT should be left unconnected or loaded with no more
than 5 pF of stray capacitance. The voltage level require-
ments specified in Section 4.3 must also be met for proper
operation.

When operation with a crystal is desired, special care
should be taken to minimize stray capacitances and induc-
tances. The crystal, as well as the external components,
should be placed in close proximity to the OSCIN and OSC-
OUT pins to keep the printed circuit trace lengths to an
absolute minimum. Figures 3-15 and 3-16 show the external
crystal interconnections. Table 3-3 provides the crystal
characteristics and the values of the R, C, and L compo-
nents, including stray capacitance, required for various fre-
quencies.

AN
> 0SCIN

i —
“g élXTAL IR
b oscour
o2 R2

l TL/EE/11267-27

FIGURE 3-15. Crystal Interconnections—30 MHz

J_ = XTAL 2RI

>

$ L_< 0SCOUT

D, 0SCIN
7

C1

E TL/EE/11267-28

FIGURE 3-16. Crystal Interconnections—
40 MHz, 50 MHz

NS32FX164

RSTI RSTO System RESET

> 50 us

TL/EE/11267-29

FIGURE 3-17. Recommended Reset Connections

3.0 Functional Description (continued)

TABLE 3-3. External Oscillator
Specifications Crystal Characteristics

Type AT-Cut
Tolerance 0.005% at +25°C
Stability 0.01% from 0°C to +70°C
Resonance
30 MHz: Fundamental (Parallel)
40 MHz or 50 MHz: Third Overtone (Parallel)
Maximum Series Resistance 50Q
Maximum Shunt Capacitance 7 pF
R, C and L Values
Frequency | R1 | R2 | C1 | C2 Cc3 L
(MHz) (k) | (2) | (PF) | (PF) (pF) (uH)
30 180 | 51 | 20 20
30 180 | 51 | 20 20 | 800-1300 | 3.3
40 150 | 51 | 20 20 | 800-1300 | 1.8
50 150 | 51 | 20 20 | 800-1300 | 1.1

3.5.3 Power Save Mode

The NS32FX164 provides a power save feature that can be
used to significantly reduce the power consumption at times
when the computational demand decreases. The device
uses the clock signal at the OSCIN pin to derive the internal
clock as well as the external signals CTTL and FCLK. The
frequency of these clock signals is affected by the clock
scaling factor. Scaling factors of 1, 2, 4, or 8 can be select-
ed by properly setting the C- and M-bits in the CFG register.
The power save mode should not be used to reduce the
clock frequency below the minimum frequency required by
the CPU.

Upon reset, both C and M are set to zero, thus maximum
clock rate is selected.

Due to the fact that the C- and M-bits are programmed by
the SETCFG instruction, the power save feature can only be
controlled by programs running in supervisor mode.

The following table shows the C- and M-bit settings for the
various scaling factors, and the resulting supply current for a
crystal frequency of 50 MHz.

Clock Scaling Factor vs Supply Current

c M Scaling CPU Clock Typical Icc
Factor Frequency at +5V
0 0 1 25 MHz 200 mA
0 1 2 12.5 MHz 120 mA
1 0 4 6.25 MHz 80 mA
1 1 8 3.13 MHz 55 mA
3.5.4 Resetting

The RSTI input pin is used to reset the NS32FX164. The
CPU samples RSTI on the falling edge of CTTL.

Whenever a low level is detected, the CPU responds imme-
diately. Any instruction being executed is terminated; any
results that have not yet been written to memory are dis-
carded; and any pending interrupts and traps are eliminated.
The internal latch for the edge-sensitive NMI signal is
cleared. The DSP module ST register is set to 0.

On application of power, RSTI must be held low for at least
50 us after Vg is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 CTTL cycles. See Figures 3-18 and 3-19.

Iqa

4.5V 3
Vee /

= 64 CLOCK

CYCLES
RSTI .

=50 us

————

TL/EE/11267-30
FIGURE 3-18. Power-On Reset Requirements

[LML LI

> 64 CLOCK

CYCLES
RSTI [

LG
e

TL/EE/11267-31
FIGURE 3-19. General Reset Timing

W_hileﬂ tfiReset state, the CPU drives the signals ADS,
IAS, RD, WR, DBE, TSO, BPU, IOUT and DDIN inactive.
ADO-AD15, A16-A23 and SPC are floated, ALE is HIGH
and the state of all other output signals is undefined.

The internal CPU clock and CTTL run at half the frequency
of the signal on the OSCIN pin.

The HOLD signal must be kept inactive. After the RSTI sig-
nal is driven high, the CPU will stay in the reset condition for
approximately 8 clock cycles and then it will begin execution
at address 0.

The PSR is reset to 0. The CFG C- and M-bits are reset to 0.
FCLK runs at the same frequency as OSCIN. NMI is en-
abled to allow Non-Maskable Interrupts. The following con-
ditions are present after reset due to the PSR being reset to
0:

Tracing is disabled.

Supervisor mode is enabled.

Supervisor stack space is used when the TOS addressing
mode is indicated.

No trace traps are pending.

Only NMI is enabled. Maskable interrupts are disabled.
BPU is inactive high.

The Clock Scaling Factor is set to 1, refer to Section 3.5.3.
Note that vector/non-vectored interrupts have not been se-
lected. While interrupts are disabled, a SETCFG [I] instruc-
tion must be executed to enable vectored interrupts. If non-
vectored interrupts are required, a SETCFG without the [I]
must be executed.

The presence/absence of the NS32081, NS32181, or
NS32381 has also not been declared. If there is a Floating-
Point Unit, a SETCFG [F] instruction must be executed. If
there is no floating-point unit, a SETCFG without the [F]
must be executed.

57

3.0 Functional Description (continued)

In general, a SETCFG instruction must be executed in the
reset routine, in order to properly configure the CPU. The
options should be combined, and executed in a single in-
struction. For example, to declare vectored interrupts, a
Floating-Point unit installed, and full CPU clock rate, exe-
cute a SETCFG [F, 1] instruction. To declare non-vectored
interrupts, no FPU, and full CPU clock rate, execute a
SETCFG [] instruction.

3.5.5 Bus Cycles
The NS32FX164 will perform bus cycles for one of the fol-
lowing reasons:
. To fetch instructions from memory.
2. To write or read data to or from memory or external pe-
ripheral devices.
3. To acknowledge an interrupt, or to acknowledge comple-
tion of an interrupt service routine.
4. To notify external logic of any accesses to the on-chip
peripheral device registers or internal RAM.
5. To transfer information to or from a Slave Processor.
3.5.5.1 Bus Status
The NS32FX164 CPU presents four bits of Bus Status infor-
mation on pins STO-ST3. The various combinations on
these pins indicate why the CPU is performing a bus cycle,
or, if it is idle on the bus, they why it is idle.
The Bus Status pins are interpreted as a 4-bit value, with
STO the least significant bit. Their values decode as follows:
0000 — The bus is idle because the CPU does not need to
perform a bus access.
0001 — The bus is idle because the CPU is executing the
WAIT instruction.
0010 — DSP Module Data Transfer.
0011 — The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.
0100 — Interrupt Acknowledge, Master
The CPU is performing a Read cycle to acknowl-
edge an interrupt request. See Section 3.2.3.
0101 — Interrupt Acknowledge, Cascaded.
The CPU is reading an interrupt vector to acknowl-
edge a maskable interrupt request from a Cascad-
ed Interrupt Control Unit.
0110 — End of Interrupt, Master.
The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt (RETI)
instruction at the completion of an interrupt’s serv-
ice procedure.
0111 — End of Interrupt, Cascaded.
The CPU is performing a read cycle from a Cas-
caded Interrupt Control Unit to indicate that it is
executing a Return from Interrupt (RETI) instruc-
tion at the completion of an interrupt’s service pro-
cedure.
1000 — Sequential Instruction Fetch.
The CPU is reading the next sequential word from
the instruction stream into the Instruction Queue. It
will do so whenever the bus would otherwise be
idle and the queue is not already full.

—_

1001 — Non-Sequential Instruction Fetch

The CPU is performing the first fetch of instruction
code after the Instruction Queue is purged. This
will occur as a result of any jump or branch, any
interrupt or trap, or execution of certain instruc-
tions.

1010 — Data Transfer.

The CPU is reading or writing an operand of an
instruction.

1011 — Read RMW Operand.

The CPU is reading an operand which will subse-
quently be modified and rewritten. The write cycle
of RMW will have a “write” status.

1100 — Read for Effective Address Calculation.

The CPU is reading information from memory in
order to determine the Effective Address of an op-
erand. This will occur whenever an instruction uses
the Memory Relative or External addressing mode.

1101 — Transfer Slave Processor Operand.

The CPU is either transferring an instruction oper-
and to or from a Slave Processor, or it is issuing
the Operation Word of a Slave Processor instruc-
tion.

1110 — Read Slave Processor Status.

The CPU is reading a Status Word from a Slave
Processor after the Slave Processor has signalled
completion of an instruction.

1111 — Broadcast Slave ID.

The CPU is initiating the execution of a Slave Proc-
essor instruction by transferring the first byte of the
instruction, which represents the slave processor
indentification.

3.5.5.2 Basic Read and Write Cycles

The sequence of events occurring during a CPU access to
either memory or peripheral device is shown in Figure 3-21
for a read cycle, and Figure 3-22 for a write cycle.

The cases shown assume that the selected memory or pe-
ripheral device is capable of communicating with the CPU at
full speed. If not, then cycle extension may be requested
through CWAIT.

A full-speed bus cycle is performed in four cycles of the
CTTL clock signal, labeled T1 through T4. Clock cycles not
associated with a bus cycle are designated Ti (for “idle”).

During T1, the CPU applies an address on pins ADO-AD15
and A16-A23 and provides a low-going pulse on the ADS
pin, which serves the dual purpose of informing external
circuitry that a bus cycle is starting and of providing control
to an external latch for demultiplexing Address bits 0-15
from the ADO-AD15 pins. It also deasserts the ALE signal,
which eliminates the need to invert ADS to generate the
strobe for the address latches. See Figure 3-20. During this
time also the status signals DDIN, indicating the direction of
the transfer, and HBE, indicating whether the high byte
(AD8-AD15) is to be referenced, become valid.

During T2 the CPU switches the Data Bus, ADO-AD15, to
either accept or present data. Note that the signals A16-
A23 remain valid, and need not be latched.

58

3.0 Functional Description (Continued)

DOIN
DATA
ADO-AD15 BUFFER “
NS32FX164
— HBE
HBE
ALE j
AO(LBE)
LATCH
’ A1-A23
A16-A23
DBE
cTTL
CTTL
_ RD
RD
o WR
WR
— TS0
TSO

TL/EE/11267-32
FIGURE 3-20. Bus Connections

59

3.0 Functional Description (continued)

CTTL

A16-A23

ADO-AD15

ADS

ALE

ST0-ST3

DDIN

CWAIT

DBE

TS0

T4 OR Ti

L

T1

T2

L] L

L

T4

L

Ti OR T1

L

ADDRESS VALID

X NEXT

ADDR

A

-

-—-< NEXT

ADDR

\

/

\]

SR

STATUS VALID

>< NEXT STATUS

A

/ NEXT

X

VALID

X NEXT

~

\

/

\k\\

\

/

FIGURE 3-21. Read Cycle Timing

TL/EE/11267-33

60

3.0 Functional Description (Continued)

CTTL

A16-A23

ADO-AD15

ADS

ALE

STO-ST3

HBE

CWAIT

DBE

TSO

T4 ORTi

L

T

T2

L] L

T3

L

T4

Ti ORT1

L

ADDRESS VALID

X NEXT

ADDR

ADDRESS
VALID

DATA oUT

X NEXT

ADDR

\

/

\

S

STATUS VALID

X NEXT STATUS

7

\ NEXT

X

VALID

X NEXT

/

\k\\

/

FIGURE 3-22. Write Cycle Timing

TL/EE/11267-34

61

3.0 Functional Description (continued)

At this time the signals TSO (Timing State Output), DBE
(Data Buffer Enable) and either RD (Read Strobe) or WR
(Write Strobe) will also be activated.

The T3 state provides for access time requirements, and it
occurs at least once in a bus cycle. At the end of T2, on the
rising edge of CTTL, the CWAIT signal is sampled to deter-
mine whether the bus cycle will be extended. See Section
3.5.5.3.

If the CPU is performing a read cycle, the data bus (ADO-
AD15) is sampled at the beginning of T4 on the rising edge
of CTTL. Data must, however, be held a little longer to meet
the data hold time requirements. The RD signal is guaran-
teed not to go inactive before this time, so its rising edge
can be safely used to disable the device providing the input
data.

The T4 state finishes the bus cycle. At the beginning of T4,
the RD or WR, and TSO signals go inactive, and on the
falling edge of CTTL, DBE goes inactive, having provided for
necessary data hold times. Data during Write cycles re-
mains valid from the CPU throughout T4. Note that the Bus
Status lines (STO-ST3) change at the beginning of T4, an-
ticipating the following bus cycle (if any).

3.5.5.3 Cycle Extension

To allow sufficient access time for any speed of memory or
peripheral device, the NS32FX164 provides for extension of

a bus cycle. Any type of bus cycle except a Slave Processor
cycle and a special bus cycle can be extended.

In Figures 3-21 and 3-22, note that during T3 all bus control
signals from the CPU are flat. Therefore, a bus cycle can be
cleanly extended by causing the T3 state to be repeated.
This is the purpose of the CWAIT input signal.

At the end of state T2, on the rising edge of CTTL, CWAIT is
sampled.

CWAIT causes wait states to be inserted continuously as
long as it is sampled active. It is normally used when the
number of wait states to be inserted in the CPU bus cycle is
not known in advance.

The following sequence shows the CPU response to the
WAIT1-2 and CWAIT inputs.

1. Start bus cycle.

2. Sample CWAIT at the end of state T2.

3. If CWAIT is not active, then go to step 6.
4. Insert one wait state.

5. Sample CWAIT again, then go to step 3.
6. Complete bus cycle.

Figure 3-23 shows a bus cycle extended by three wait
states due to CWAIT.

62

3.0 Functional Description (Continued)

. T T2 T3 T3(W) T3(W) T3(W) T4 T1 ORTi
CTTL]
A16-A23 : :>< ADDRESS VALID ><
7 ADDR >____ ________________ - DATA:>______
ADO-AD15] >< VALID -< N -<
- \/
ALE : __\ /- ;
SN -
w[X X_
AW 7/ /%G
LT N /T

TL/EE/11267-35

FIGURE 3-23. Cycle Extension of a Read Cycle

3.5.5.4 Instruction Fetch Cycles

Instructions for the NS32FX164 CPU are “prefetched”; that
is, they are input before being needed into the next available
entry of the eight-byte instruction Queue. The CPU performs
two types of instruction Fetch cycles: Sequential and Non-
Sequential. These can be distinguished from each other by
their differing status combinations on pins ST0O-ST3 (Sec-
tion 3.5.5.1).

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full. Sequential Fetches are always
Even Word Read cycles (Table 3-5).

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions flush the instruction queue, causing the
next instruction fetch to display Non-Sequential status. Only
the first bus cycle after a break displays Non-Sequential
status, and that cycle is either an Even Word Read or an
Odd Byte Read, depending on whether the distination ad-
dress is even or odd.

63

3.0 Functional Description (continued)

3.5.5.5 Interrupt Control Cycles

Activating the INT or NMI pin on the GPU will initiate one or
more bus cycles whose purpose in interrupt control rather
than the tranfer of instructions or data. Execution of the
Return from Interrupt Instruction (RETI) will also cause In-
terrupt Control bus cycles. These differ from instruction or

data transfers only in the status presented on pins STO-
ST3. All Interrupt Control cycles are single-byte Read cy-
cles.

Table 3-4 shows the Interrupt Control sequences associat-
ed with each interrupt and with the return from its service
routine. For full details of the NS32FX164 interrupt struc-
ture, see Section 3.2.

TABLE 3-4. Interrupt Sequences

Cycle Status Address DDIN HBE
A. Non-Maskable Interrupt Control Sequence

Interrupt Acknowledge
1 0100 FFFF0016 0

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

A0 High Bus Low Bus

0 Don’t Care Don’t Care

B. Non-Vectored Interrupt Control Sequence

Interrupt Acknowledge
1 0100 FFFEOO1g 0

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

0 Don’t Care Don’t Care

C. Vectored Interrupt Sequence: Non-Cascaded

Interrupt Acknowledge
1 0100 FFFEOO1g 0

Interrupt Return
1 0110 FFFEO001g 0

0 Don’t Care Vector:
Range: 0-127

0 Don’t Care Vector: Same as
in Previous Int.
Ack. Cycle

D. Vectored Interrupt Sequence: Cascaded

Interrupt Acknowledge
1 0100 FFFEOO1g 0

0 Don’t Care Cascade Index:
range —16to —1

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0101 Cascade 0 1or

Address

Interrupt Return
1 0110 FFFEOO1g 0

Oor Vector, range 0-255; on appropriate
1* half or Data Bus for even/odd
address
0 Don’t Care Cascade Index:
same as in
previous Int.
Ack. Cycle

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0111 Cascade 0 1or

Address

Oor Don’t Care Don’t Care
1 *

* If the Cascaded ICU Address is Even (AQ is low), then the CPU applies HBE high and reads the vector number from bits 0-7 of the Data Bus.
If the address is Odd (A0 is high), then the CPU applies HBE low and reads the vector number from bits 8-15 of the Data Bus. The vector number may be in the

range 0-225.

64

3.0 Functional Description (continued)

3.5.5.6 Special Bus Cycles

Special bus cycles are performed during CPU accesses to
the DSP Module (DSPM) registers or internal RAM. These
cycles may be used by external logic to track CPU activities
involving on-chip bus transactions.

A special buSﬂcle starts with the assertion of the special
output signal IAS. The ALE signal stays high during the en-

tire cycle, and the signals ADS, TSO, DBE, RD and WR are
not activated. CWAIT is ignored.

A CPU access to a DSP Module register or internal RAM
occurring while a vector operation is being executed, is de-
layed until the end of the vector operation. This delay can-
not be observed externally.

The CPU drives the data bus with the same data that is
being written into the on-chip register or RAM during a spe-

T4 OR Ti

(L

CTTL

T2 T3 T4

cial write cycle, and ignores the data placed on the data bus
during a special read cycle. The 24 least significant address
bits of the DSPM register being accessed are output on the
ADO-AD15 and A16-A23 signals. Figure 3-24. shows the
timing for special read and write cycles.

3.5.5.7 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-25 and 3-26).
During a Read cycle SPC is active from the beginning of T1
to the beginning of T4, and the data is sampled at the end of
T1. The Cycle Status pins lead the cycle by one clock peri-
od, and are sampled on the leading edge of SPC. During a
Write cycle, the CPU applies data and activates SPC at T1,
removing SPC at T4. The Slave Processor latches the
status on the leading edge of SPC and latches data on the
trailing edge.

ADO-AD15

X___ ____________ }---

A16-A23

_L
X
X
\/

ADS

ALE

§

TS0

DBE

\IK\\

TL/EE/11267-36

FIGURE 3-24. Special Bus Cycle Timing

65

3.0 Functional Description (continued)

T

spinininiin
7N/

NEXT CYCLE
Ti OR T1

N

*)

A4

-< DATA IN >——- —< NEXT

VALID

X NEXT STATUS

NEXT

\
S
;o

PREV. CYCLE
T4 OR Ti
qut
SPC
ADO-AD15
B
ST0-ST3 Z
ADS
ALE /
DDIN
HBE
DBE /

Note: CPU samples Data Bus here.

TL/EE/11267-37

FIGURE 3-25. Slave Processor Read Cycle

The CPU does not pulse the Address Strobe (ADS), and no
bus signals are generated. The direction of a transfer is de-
termined by the sequence (“protocol”) established by the
instruction under execution; but the CPU indicates the direc-
tion on the DDIN pin for hardware debugging purposes.

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (ADO-AD7), and a

Word operand is transferred on the entire bus. A Double
Word is transferred in a consecutive pair of bus cycles,
least-significant word first. A Quad Word is transferred in
two pairs of Slave cycles, with other bus cycles possibly
occurring between them. The word order is from least-signif-
icant word to most-significant.

Figure 3-27 shows the NS32FX164 and FPU connection di-
agram.

66

3.0 Functional Description (Continued)

NEXT CYCLE
Ti OR T1

PREV. CYCLE
T4 OR Ti T T4

L L L
/N N

ADO-AD15 DATA OUT

CTTL

X NEXT
X NEXT STATUS

STO-ST3 VALID

[17 X
_ NG
/=

DDIN

HBE NEXT

DBE /

*Note: Slave Processor samples Data Bus here.
FIGURE 3-26. Slave Processor Write Cycle
3.5.5.8 Data Access Sequences

The 24-bit address provided by the NS32FX164 is a byte
address; that is, it uniquely identifies one of up to
16,777,216 8-bit memory locations. An important feature of
the NS32FX164 is that the presence of a 16-bit data bus
imposes no restrictions on data alignment; any data item,
regardless of size, may be placed starting at any memory
address. The NS32FX164 provides a special control signal,
High Byte Enable (HBE), which facilitates individual byte ad-
dressing on a 16-bit bus.

Memory is organized as two 8-bit banks, each bank receiv-
ing the word address (A1-A23) in parallel. One bank, con-
nected to Data Bus pins ADO-AD?7, is enabled to respond
to even byte addresses; i.e., when the least significant ad-
dress bit (A0) is low. The other bank, connected to Data Bus
pins AD8-AD15, is enabled when HBE is low. See Figure
3-28.

TL/EE/11267-38

Any bus cycle falls into one of three categories: Even Byte
Access, Odd Byte Access, and Even Word Access. All ac-
cesses to any data type are made up of sequences of these
cycles. Table 3-5 gives the state of A0 and HBE for each
category.

+5V +5V
10k 1k
_ ___ NOE
SPC |¢—o | SPC
16=BIT
AD0-AD15K _DATA BUS_) D0-D15
sTo » sTO
ST > sT1
NS32FX164 NS32181
FPU
CcTTL »| cLK
RSTO »| RST
RSTI |«
SYSTEM
RESET >

TL/EE/11267-39
FIGURE 3-27. NS32FX164 and FPU Interconnections

HBE AO(LBE)
8BITS §BITS

A1-A23

LS BYTE

16 BITS DATA

TL/EE/11267-40
FIGURE 3-28. Memory Interface

TABLE 3-5. Bus Cycle Categories

Category HBE A0
Even Byte 1 0
Odd Byte 0 1
Even Word 0 0

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-states separating
them. The number of bus cycles required to transfer an op-
erand depends on its size and its alignment (i.e., whether it
starts on an even byte address or an odd byte address).
Table 3-6 lists the bus cycles performed for each situation.
For the timing of A0 and HBE, see Section 3.5.5.2.

67

3.0 Functional Description (continued)

TABLE 3-6. Data Access Sequences

Cycle Type Address HBE A0 High Bus Low Bus
A. Odd Word Access Sequence
Byte 1 Byte 0 «— A
1 Odd Byte A 0 1 Byte 0 Don’t Care
2 Even Byte A+1 1 0 Don’t Care Byte 1
B. Even Double-Word Access Sequence
Byte 3 Byte2 | Byted Byte 0 <A
1 EvenWord A 0 0 Byte 1 Byte 0
1 EvenWord A + 2 0 0 Byte 3 Byte 2
C. Odd Double-Word Access Sequence
Byte3 | Byte2 | Bytet1 | Byed | <A
1 Odd Byte A 0 1 Byte 0 Don’t Care
2 EvenWord A + 1 0 0 Byte 2 Byte 1
3 Even Byte A+3 1 0 Don’t Care Byte 3
D. Even Quad-Word Access Sequence
[Byte7| Byte6 [Byte5|Bytesa| Bytes | Byte2 Byte 1 Byte 0 <A
1 EvenWord A 0 0 Byte 1 Byte 0
2 EvenWord A + 2 0 0 Byte 3 Byte 2
Other Bus Cycles (Instruction Prefetch or Slave) can occur here.
3 EvenWord A + 4 0 0 Byte 5 Byte 4
4 EvenWord A + 6 0 0 Byte 7 Byte 6
E. Odd Quad-Word Access Sequence
[Byte7| Byte6 |[Byte5|Bytea| Bytes Byte2 | Bytet Byte 0 <A
1 Odd Byte A 0 1 Byte 0 Don’t Care
2 EvenWord A + 1 0 0 Byte 2 Byte 1
3 EvenByte A+ 3 1 0 Don’t Care Byte 3
Other Bus Cycles (Instruction Prefetch or Slave) can occur here.
4 Odd Byte A+4 0 1 Byte 4 Don’t Care
5 EvenWord A + 5 0 0 Byte 6 Byte 5
6 EvenByte A+ 7 1 0 Don’t Care Byte 7

3.5.5.9 Bus Access Control

The NS32FX164 CPU has the capability of relinquishing its
control of the bus upon request from a DMA controller or
another CPU. This capability is implemented by means of
the HOLD (Hold Request) and HLDA (Hold Acknowledge)
pins. By asserting HOLD low, an external device requests
access to the bus. On receipt of HLDA from the CPU, the
device may perform bus cycles, as the CPU at this point has

set ADO-AD15, A16-A23 and HBE to the TRI-STATE®
condition and has switched ADS and DDIN to the input
mode. ALE is asserted in T4, and stays high during the time
the bus is granted. The CPU now monitors ADS and DDIN
from the external device to generate the relevant strobe
signals (i.e., TSO, DBE, RD or WR). To return control of the
bus to the CPU, the device sets HOLD inactive, and the
CPU acknowledges it by setting HLDA inactive.

68

3.0 Functional Description (Continued)

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOLD request is made,
as the CPU must always complete the current bus cycle.
Figure 3-29 shows the timing sequence when the CPU is
idle. In this case, the CPU grants the bus during the immedi-
ately following clock cycle. Figure 3-30 shows the sequence
when the CPU is using the bus at the time the HOLD re-
quest is made. If the request is made during or before the

clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T4. If
the request occurs closer to T4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.

Note 1: The logic value of the status pins, ST0-3, is undefined during DMA

activity.
Ti Ti ¢ o0 Ti Ti TiORT4 | TiORTI
— ol G I
CTTL
HOLD \ /
- L
R
HLDA \ /
— =1
ALE _
s \._--..55.-_-- -./

DDIN \---..Ss.----------/ YNEXT
HBE \.---.ﬁ.----------< XNEXT
ADO-AD15 %_----SS----.-----..-----------.-< NEXT ADDR
A16-A23 %.---..ss.-----_-_-.--_-_-.(NEXT ADDR

¢ ¢
STO-ST3 PREVIOUS W NEXT STATUS
7/

TL/EE/11267-41

FIGURE 3-29. HOLD Timing (Bus Initially Idle)

69

3.0 Functional Description (continued)

CTTL

HOLD

HLDA

ALE

ADS

ADO-AD15

A16-A23

ST0-ST3

NEXT ADDR

T20R T3 T3 T4 Ti Ti Ti Ti Ti OR T1
]
N PR 4
VALID >-———- -SS-———--—__——-/ * NEXT
VALID >-———- -SS-———--—————-(X NEXT
-5 {
N

VALID >-———--SS-————————--—————

VALID

NEXT STATUS

FIGURE 3-30. HOLD Timing (Bus Initially Not Idle)

TL/EE/11267-42

70

3.0 Functional Description (continued)
3.5.5.10 Instruction Status

In addition to the four bits of Bus Cycle status (ST0-3), the
NS32FX164 CPU also presents Instruction Status informa-
tion on three separate pins. These pins differ from
STO0-3 in that they are synchronous to the CPU’s internal
instruction execution section rather than to its bus interface
section.

PFS (Program Flow Status) is pulsed low as each instruction
begins execution. It is intended for debugging purposes.

U/S originates from the U-bit of the Processor Status Regis-
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. Although it is not synchronous to
bus cycles, there are guarantees on its validity during any
given bus cycle. See the Timing Specifications in Section
4.4.2.

ILO (Interlocked Operation) is activated during an SBITI (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema-
phore primitive operations for multi-processor communica-
tion and resource sharing. ILO is guaranteed to be active
during the operand accesses performed by the interlocked
instructions.

Note: The acknowledge of HOLD is on a cycle by cycle basis. Therefore, it
is possible to have HLDA active when an interlock operation is in
progress. In this case, ILO remains low and the interlocked instruction
continues only after HOLD is de-asserted.

4.0 Device Specifications

4.1 NS32FX 164 PIN DESCRIPTIONS

The following is a brief description of all NS32FX164 pins.
The descriptions reference portions of the Functional De-
scription, Section 3.0.

Note: An asterisk next to the signal name indicates a TRI-STATE condition
for that signal during HOLD acknowledge.

4.1.1 Supplies
Vee Power.

+ 5V positive supply.
GND Ground.

Ground reference for both on-chip logic and
output drivers.

4.1.2 Input Signals
RSTI Reset Input.

Schmitt triggered, asynchronous signal used to

generate a CPU reset. See Section 3.5.4.

Note: The reset signal is a true asynchronous input. Therefore,
no external synchronizing circuit is needed.

HOLD Hold Request.

When active, causes the CPU to release the bus
for DMA or multiprocessing purposes. See Sec-
tion 3.5.5.9.

Note: If the HOLD signal is generated asynchronously, its set
up and hold times may be violated. In this case, it is
recommended to synchronize it with CTTL to minimize
the possibility of metastable states.

The CPU provides only one synchronization stage to
minimize the HLDA latency. This is to avoid speed deg-
radations in cases of heavy HOLD activity (i.e., DMA
controller cycles interleaved with CPU cycles).

=5

Interrupt.

A Iowﬂlel on this pin requests a maskable inter-
rupt. INT must be kept asserted until the interrupt
is acknowledged.

Non-Maskable Interrupt.

A High-to-Low transition on this signal requests a
non-maskable interrupt.

Note: INT and NMI are true asynchronous inputs. Therefore,
no external synchronizing circuit is needed.

CWAIT Continuous Wait.
Causes the CPU to insert continuous wait states
if sampled low at the end of T2 and each follow-
ing T-State. See Section 3.5.5.3.

OSCIN Crystal/External Clock Input.

Input from a crystal or an external clock source.
See Section 3.5.2.

4.1.3 Output Signals
A16-A23 *High-Order Address Bits.
These are the most significant 8 bits of the mem-
ory address bus.
HBE *High Byte Enable.
Status signal used to enable data transfers on
the most significant byte of the data bus.
ST0-3 Status.
Bus cycle status code; STO is the least signifi-
cant. Encodings are:
0000— Idle: CPU Inactive on Bus.
0001— Idle: WAIT Instruction.
0010— DSP Module Data Transfer.
0011— Idle: Waiting for Slave.
0100— Interrupt Acknowledge, Master.
0101— Interrupt Acknowledge, Cascaded.
0110— End of Interrupt, Master.
0111— End of Interrupt, Cascaded.
1000— Sequential Instruction Fetch.
1001— Non-Sequential Instruction Fetch.
1010— Data Transfer.
1011— Read Read-Modify-Write Operand.
1100— Read for Effective Address.
1101— Transfer Slave Operand.
1110— Read Slave Status Word.
1111— Broadcast Slave ID.
u/s User/Supervisor.
User or Supervisor Mode status. High indicates
User Mode; low indicates Supervisor Mode.
IL Interlocked Operation.
When active, indicates that an interlocked opera-
tion is being executed.
HLDA Hold Acknowledge.
Activated by the CPU in response to the HOLD
input to indicate that the CPU has released the
bus.
Program Flow Status.

A pulse on this signal indicates the beginning of
execution of an instruction.

|
-
(7]

4.0 Device Specifications (continued)

BPU

O
o]
m

oscouTt

BPU Cycle.

This signal is activated during a bus cycle to en-
able an external BITBLT processing unit. The
EXTBLT instruction activates this signal.

Note: BPU is low (Active) only during bus cycles involving pre-
fetching instructions and execution of EXTBLT oper-
ands. It is recommended that BPU, ADS and status lines
(STO-ST3) be used to qualify BPU bus cycles. If a DMA
circuit exists in the system, the HLDA signal should be
used to further qualify BPU cycles. BPU may become
active during T4 of a non-BPU bus cycle, and may be-
come inactive during T4 of a BPU bus cycle. BPU must
be qualified by ADS and status lines (STO-ST3) to be
used as an external gating signal.

Reset Output.

This signal becomes active when RSTI is low,
initiating a system reset.

Read Strobe.

Activated during CPU or DMA read cycles to en-
able reading of data from memory or peripherals.
See Section 3.5.5.2.

Write Strobe.

Activated during CPU or DMA write cycles to en-
able writing of data to memory or peripherals.
Timing State Output.

The falling edge of TSO identifies the beginning
of state T2 of a bus cycle. The rising edge identi-
fies the beginning of state T4.

Data Buffers Enable.

Used to control external data buffers. It is active
when the data buffers are to be enabled.
Crystal Output.

This line is used as the return path for the crystal
(if used). When an external clock source is used,
OSCOUT should be left unconnected or loaded
with no more than 5 pF of stray capacitance.

1AS Special Cycle Address Strobe.
Signals the beginning of a special bus cycle.
CTTL1-2 System Clock.
Output clock for bus timing. CTTL1 and CTTL2
must be externally connected together.
FCLK Fast Clock.
This clock is derived from the clock waveform on
OSCIN. lIts frequency is either the same as
OSCIN or is lower, depending upon the scale fac-
tor programmed into the CFG register.
ALE Address Latch Enable.
Active high signal that can be used to control
external address latches.
Interrupt Output
Activated when the execution of a command list
stops and the associated interrupt is enabled.

o
C
=5

4.1.4 Input-Output Signals
ADO-15 *Address/Data Bus.

Multiplexed Address/Data Information. Bit O is
the least significant bit of each.

Slave Processor Control.

Used by the CPU as the data strobe output for
slave processor transfers; used by a slave proc-
essor to acknowledge completion of a slave in-
struction. See Section 3.5.5.7.

*Data Direction.

Status signal indicating the directon of the data
transfer during a bus cycle. During HOLD ac-
knowledge this signal becomes an input and de-
termines the activation of RD or WR.

*Address Strobe

Controls address latches; signals the beginning
of a bus cycle. During HOLD acknowledge this
signal becomes an input and the CPU monitors it
to detect the beginning of a DMA cycle and gen-
erate the relevant strobe signals. When a DMA is
used, ADS should be pulled up to Vg through a
10 kQ resistor.

7]
|
O

g
=
Z

>
(]
7]

72

4.0 Device Specifications (continued)

68-Pin PCC Package

—

sc2iRlEESRIRIE 8385828

| I 1 I T T N N N O I A A |

/10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26
st2—o 27} A18
sT3—8 28} A17
PFs—{7 29— A16
DDIN—] 6 30— Vee
ADS —{5 31— AD15
SPC —] 4 32— AD14
Vee =13 33— AD13
HBE — 2 NS32FX164 34— AD12
HoLDA —{ 1 NS32FV16 35— AD11
HOLD —{ 68 NS32FX161 36— AD10
RSTO —{ 67 37— AD9
RES — 66 38|~ AD8
RES —{ 65 39}~ GND
CWAIT —{ 64 40— AD7
GND — 63 41— AD6
OSCIN — 62 42|~ ADS
RSTI—{ 61 43— AD4

60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44

rrrrrrirrrirrr i1l

clplER g SEE sE338282

o
Bottom View

Order Number NS32FX164V-20, NS32FX164V-25, NS32FV 16-20,

NS32FV16-25, NS32FX161V-15 or NS32FX161-20
NS Package Number V68A

FIGURE 4-1. Connection Diagram

Note: Pins 65 and 66 must be connected to GND or Vg

TL/EE/11267-43

73

4.0 Device Specifications (continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Temperature under Bias 0°Cto +70°C
Storage Temperature —65°Cto +150°C

All Input or Output Voltages

with Respect to GND —0.5Vto +6.5V
Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS Tp = 0°Cto +70°C, Vg = 5V £10%, GND = 0V

Symbol Parameter Conditions Min Typ Max Units
VIH High Level Input Voltage 2.0 Vee + 0.5 \%
ViL Low Level Input Voltage —0.5 0.8 \Y
VxL OSCIN Input Low Voltage 0.5 \"
VxH OSCIN Input High Voltage 3.8 \"
VRIH RSTI High Level Input Voltage 5, V’!ZX— '5) Voo + 05 v
VRIL RSTI Low Level Input Voltage -0.5 0.7 Y
VRHys | RSTI Hysteresis Loop Width (Note 3) 0.5 \%
Vhys INT, NMI Hysteresis Loop Width (Note 3) 0.2 Y
VoH High Level Output Voltage loy = —400 pA 2.4 \
VoL Low Level Output Voltage loL =4mA 0.45 \"
ILs SPC Input Current (Low) Vin = 0.4V, SPCin Input Mode 1.0 mA
I Input Load Current %ﬁn\mfe;/fg,;t — _20 20 A
IL Leakage Current 0.4 < Vout < Vco

Output and 170 Pins in —20 20 nA

TRI-STATE or Input Mode
lcc Active Supply Current louT = 0,Ta = 25°C 200 mA

(Note 2)

Note 1: Care should be taken by designers to provide a minimum inductance path between the GND pins and system ground in order to minimize noise.
Note 2: Igc is affected by the clock scaling factor selected by the C- and M-bits in the CFG register, see Section 3.5.3.

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
0.8V or 2.0V on the rising or falling edges of all the signals
as illustrated in Figures 4-2 and 4-3 unless specifically stat-
ed otherwise. The capacitive load is assumed to be 100 pF
on CTTL and 50 pF on all the other output signals.

2.0V
CTTL [g 0.8V

) T, 2.4V
SIG1 [\ 0.8V
tsi611 .
ts162h

| 4V
SI62 [’ 2.0V
- 0.45v

TL/EE/11267-44
FIGURE 4-2. Output Signals Specification Standard

Abbreviations:
L.E.— Leading Edge R.E.— Rising Edge
T.E.— Traling Edge F.E.— Falling Edge

cml: ggxx
F—tsic1—
3|c1|: Y

SIGZ[
TL/EE/11267-45

FIGURE 4-3a. Input Signals Specification Standard

VRuys
Vs
-
. +—> ViN
VRIL VR
\ Vin

o TL/EE/11267-71
FIGURE 4-3b. RSTI, INT, NMI Hysteresis

74

4.0 Device Specifications (continued)
4.4.2 Timing Tables
4.4.2.1 Output Signals: Internal Propagation Delays, NS32FX161-15, NS32FX164-20, NS32FX164-25

® The output to input timings (e.g., address to data-in) are at least 2 ns better than the worst case values calculated from the
output valid and input setup times relative to CTTL.

. . Reference/ NS32FX161-15 NS32FX164-20 NS32FX164-25)
Symbol|Figure Description e Units
y 9 P Conditions Min Max Min Max Min Max
tctp 4-15 |CTTL Clock Period R.E., CTTL to Next
R.E. CTTL 66 1000 50 1000 40 1000 ns
toTh 4-15 |CTTL High Time At 2.0V (Both Edges) 0.5 tcTp 0.5 tcTp 051tcTp
—6ns —5ns —5ns
tcTi 4-15 |CTTL Low Time At 0.8V (Both Edges) 0.5 tcTp 0.5 tcTp 0.5 tctp
—6ns —5ns —4ns
toTr 4-15 |CTTL Rise Time 0.8V to 2.0V
onR.E., CTTL 6 5 4 ns
toTs 4-15 |CTTL Fall Time 2.0Vto 0.8V
onF.E., CTTL 6 5 4 ns
txcTd 4-15 |OSCIN to CTTL Delay [4.2VonR.E.,
OSCIN to R.E., CTTL 29 29 25 | ns
txFr 4-15 |OSCIN to FCLK 4.2V on R.E., OSCIN
R.E. Delay to R.E., FCLK 25 20 15 | ns
trer 4-15 |FCLK to CTTL R.E.,FCLK to R.E., CTTL 10 10 10 ns
R.E. Delay
tece 4-15 |FCLK to CTTL R.E., FCLK to F.E,, CTTL 10 10 10 | ns
F.E. Delay
taLy 4-4 |ADO-AD15 Valid After R.E., CTTL T1
(Note 5) 14 13 12 ns
tALh 4-4 |ADO-AD15 Hold After R.E., CTTL T2 0 0 0 ns
tAHv 4-4 |A16-A23 Valid After R.E., CTTL T1
(Note 5) 14 13 12 ns
tAHR 4-4 |A16-A23 Hold After R.E., CTTL
Next T1 or Ti 0 0 0 ns
taLfr 4-4 ADQ—AD1 5 Floating After R.E., CTTL T2 14 13 12 ns
(during Read)
tALf 4-7 |ADO-AD15 Floating After R.E., CTTL Ti 14 13 12 ns
tans 4-7 |A16-A23 Floating After R.E., CTTL Ti 14 13 12 ns
tpy 4-5 |Data Valid (Write Cycle)| After R.E., CTTL
T2 or TH 14 13 12 ns
tpn 4-5 |Data Hold After R.E., CTTL
Next T1 or Ti 0 0 0 ns
tADSa 4-4 | ADS Signal Active After R.E., CTTL T1 14 13 12 ns
tADSia 4-4 | ADS Signal Inactive After R.E.,, CTTL T1 0.5tcTp [0.5tcTp [0.5tCTp | 0.5tCTp | 0.5 tCTp | 0.5 tCTp
(Note 4) —6ns | +16ns| —6ns | +15ns| —6ns | +14ns
tADSwW 4-5 [ADS Pulse Width At 0.8V (Both Edges) 20 15 10 ns
taDSf 4-7 | ADS Floating After R.E., CTTL Ti 14 13 12 ns
taALADSs| 4-4 |ADO-AD15 Setup Before ADS T.E. 10 10 10 ns
tupey | 4-4 |HBE Signal Valid After R.E., CTTL T1 14 13 12 ns
tHBEN 4-4 |HBE Signal Hold After R.E., CTTL
Next T1 or Ti 0 0 0 ns
tHBEf 4-7 |HBE Signal Floating After R.E,CTTLTi 14 13 12 ns

75

4.0 Device Specifications (continued)

4.4.2 Timing Tables (Continued)
4.4.2.1 Output Signals: Internal Propagation Delays, NS32FX161-15, NS32FX164-20, NS32FX164-25

Symbol| Figure Description Refer.epce/ NS32FX161-15 | NS32FX164-20 | NS32FX164-25 Units
Conditions Min Max Min Max Min Max
tDDINV 4-4 |DDIN Signal Valid After R.E., CTTL T1 14 13 12 ns
tDDINR 4-4 |DDIN Signal Hold After R.E., CTTL 0 0 0 ns
Next T1 or Ti
tDDINF 4-7 |DDIN Floating After R.E.,, CTTL Ti 14 13 12 ns
tspca 4-10 |SPC Output Active After R.E., CTTL T1 14 13 12 ns
tspcia 4-10 |SPC Output Inactive After R.E., CTTL T4 14 13 12 ns
tHLDAa 4-7 |HLDA Signal Active After R.E., CTTL Ti 14 13 12 ns
tHLDAIa 4-8 |HLDA Signal Inactive After R.E., CTTL Ti 14 13 12 ns
tsTv 4-4 |Status STO-ST3 Valid g::f; :ZI_EH ’C;Tel_,\];e) 14 13 19 ns
tsTh 4-4 |Status STO-ST3 Hold |After R.E., CTTL T4 0 0 0 ns
tBpUV 4-4 |BPU Signal Valid After R.E., CTTL T4 or Ti 14 13 12 ns
tspuh 4-4 |BPU Signal Hold After R.E.,, CTTL T4 or Ti 0 0 0 ns
tTs0a 4-4 |TSO Signal Active After R.E., CTTL T2 14 13 12 ns
t1SOia 4-4 |TSO Signal Inactive After R.E., CTTL T4 14 13 12 ns
tRDa 4-4 |RD Signal Active After R.E., CTTL T2 14 13 12 ns
tRDia 4-4 |RD Signal Inactive After R.E., CTTL T4 14 13 12 ns
twRa 4-5 |WR Signal Active After R.E.,, CTTL T2 14 13 12 ns
twRia 4-5 |WR Signal Inactive After R.E., CTTL T4 14 13 12 ns
tpea(r)| 4-4 |DBE Active (Read Cycle)|After R.E., CTTL T2 0.5tcTp | 0.5tcTp | 0.5 tcTp | 0.5 tcTp | 0-5tCTP | 0.5 toTp
(Note 4) —6ns | +16ns| —6ns | +15ns| —6ns | +14ns
tpgeaw)| 4-5 |DBE Active (Write Cycle)|After R.E., CTTL T2 14 13 12 ns
tpgEia |4-5, 4-6|DBE Inactive After R.E., CTTL T4 0.5 toTp | 0.5 tcTp | 0.5 toTp | 0.5 tcTp | 0.5 toTp | 0.5 teTp
(Note 4) —6ns | +16ns| —6ns | +15ns| —6ns | +14ns
tusy 4-4 |U/S Signal Valid After R.E., CTTL T4 14 13 12 ns
tush 4-4 |U/S Signal Hold After R.E., CTTL T4 0 0 0 ns
tPFsa 4-13 |PFS Signal Active After R.E., CTTL 0.5tcTp | 0.5tcTp | 0.5 tcTp | 0.5 tcTp | 0.5 tCTP | 0.5 toTp
(Note 4) —6ns | +16ns| —6ns | +15ns| —6ns | +14ns
tPESia 4-13 |PFS Signal Inactive After R.E., CTTL 0.5tcTp | 0.5tcTp | 0-5tcTp | 0.5 tCTp | 0.5 tCTp | 0.5 toTp
(Note 4) —6ns | +16ns| —6ns | +15ns| —3ns [+14ns
tALEa 4-5 |ALE Signal Active After R.E.,,CTTL T4 0.5tcTp | 0.5tcTp | 0.5tCcTp | 0.5 tCTp | 0.5 tCTp | 0.5 tCTp
(Note 4) —6ns | +16ns| —6ns | +15ns| —6ns | +14ns
tALEia 4-5 |ALE Signal Inactive After R.E., CTTL T1 0.5tcTp | 0.5tcTp | 0.5 tcTp | 0.5 teTp | 0.5 tCTp | 0.5 toTp
(Note 4) —6ns | +16ns| —6ns | +15ns| —6ns | +14ns
TaLALEs| 4-5 |ADO-AD15 Setup Before ALE T.E. 10 10 10 ns

76

4.0 Device Specifications (continued)

4.4.2 Timing Tables (Continued)
4.4.2.1 Output Signals: Internal Propagation Delays, NS32FX161-15, NS32FX164-20, NS32FX164-25

Symbol | Figure Description Refer.er\ce/ NS32FX161-15 NS32FX164-20 NS32FX164-25 Units
Conditions Min Max Min Max Min Max
tiaSa 4-6 | TAS Signal Active After R.E., CTTL T1 14 13 12 ns
tiASia 4-6 |TAS Signal Inactive | After R.E., CTTLT1 | 0.5 totp | 0.5tcTp | 0.5tcTp | 0.5tcTp | 0.5tCTH | 0.5 tCTP
(Note 4) —6ns | +16ns| —6ns | +15ns| —6ns | +14ns
tiasw 4-6 | TAS Pulse Width At 0.8V (Both Edges) 20 15 10 ns
talASs 4-6 | ADO-AD15 Setup Before TAS T.E. 10 10 10 ns
tiLoa 4-14 |TLO Signal Active After R.E., CTTL 14 13 12 ns
tiLoia 4-14 |TLO Signal Inactive | After R.E., CTTL 14 13 12 ns
trsToa | 4-19 |RSTO Signal Active | After R.E., CTTL 14 13 12 ns
trsToia | 4-19 |RSTO Signal Inactive | After R.E., CTTL 14 13 12 ns
trTOI 4-19 (RNeostzt ;()3 Idle After F.E. of RSTO 10 10 10 —
tiouTv 4-20 |TOUT Signal Valid After R.E. CTTL 14 13 12 ns
tiouTh 4-20 |1OUT Signal Hold After R.E. CTTL 0 0 0 ns
Note 1: Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be “ ... Ti, T4, T1...". If the CPU was
not idling, the sequence willbe “ ... T4, T1...".

Note 2: The parameters related to the “floating/not floating” conditions are guaranteed by characterization. Due to tester conditions, these parameters are not

100% tested.

Note 3: Not tested, guaranteed by design.
Note 4: Minimum values not tested, guaranteed by design.

Note 5: When the load on AD0-15 is increased to 90 pF the value of ta| is increased by no more than 5 ns. When the load on A16-23 is increased to 90 pF the

value of taHy is increased by no more than 5 ns.

4.4.2.2 Input Signal Requirements: NS32FX164-15, NS32FX164-20 and NS32FX164-25

. i Reference/ NS32FX164-15 | NS32FX164-20 | NS32FX164-25 .
Symbol | Figure Description Conditi Units
ongiions Min Max Min Max Min Max
txp 4-15 OSCIN Clock Period | R.E., OSCIN
to Next R.E, OSCIN 33 500 25 500 20 500 ns
txh 4-15 | OSCIN High Time | At3.5V (Both Edges) | 0.5 ty, 0.5 txp 0.5 typ
(External Clock) —5ns —4ns —3ns
txi 4-15 OSCIN Low Time At 1.0V (Both Edges) | 0.5 txp 0.5 txp 0.51txp
—5ns —4ns —3ns
tois 4-4,4-11 | Data In Setup Before R.E., CTTL T4 15 14 10 ns
tDih 4-4,4-11 | Data In Hold After R.E., CTTL T4 0 0 0 ns
(Note 1)
tows 4-4,4-5 | CWAIT Signal Setup | Before R.E., CTTL 18 13 10 ns
T3 or T3(w)
towh 4-4,4-5 | CWAIT Signal Hold | After R.E., CTTL 0 0 0 ns
T3 or T3(w)
tHLDs 4-7,4-8 | HOLD Setup Time Before .R'E" CTTL 16 15 14 ns
T2orTi
tHLDh 4-7,4-8 | HOLD Hold Time After R.E., CTTL Ti 0 0 0 ns

77

4.0 Device Specifications (continued)

4.4.2.2 Input Signal Requirements: NS32FX161-15, NS32FX164-20 and NS32FX164-25 (Continued)

. . Reference/ NS32FX161-15 | NS32FX164-20 | NS32FX164-25 .
Symbol | Figure Description Conditi Units
onditions Min | Max | Min | Max | Min | Max
tpwR 4-18 | Power Stable to | After Vgc Reaches 4.5V
RSTIR.E. 50 40 30 us
(Note 2)
tRSTW 4-19 | RSTI Pulse Width | At 0.8V (Both Edges) 64 64 64 teTp
tiNTh 4-16 | INT Signal Hold | After R.E., CTTL T2 of 0 0 0 ns
Interrupt Acknowledge Cycle
tNMIs 4-17 | NMI Setup Time | Before F.E., CTTL 15 14 12 ns
tNMIh 4-17 | NMI Hold Time After F.E., CTTL 0 0 0 ns
tspcd 4-12 | SPC Pulse Delay | After F.E., CTTL T4
from Slave 2 2 2 teTp
(Note 2)
tspcs 4-12 | SPC Input Setup | Before R.E., CTTL 22 21 20 ns
tspch 4-12 | SPC Hold Time | After R.E., CTTL 0 0 0 ns
tADSs 4-9 | ADS Input Setup | Before F.E., CTTL 15 totp—3 14 tcTp—3 12 tctp—8| ns
taDSh 4-9 | ADS Input Hold | After F.E., CTTL T1 0 0 o ns
(Note 3)
tDDINS 4-9 | DDIN Input Setup | Before F.E., CTTL 15 14 12 ns
tDDINih 4-9 | DDIN Input Hold | After R.E., CTTL T4 0 0 0 ns

Note 1: tpj, is always less than or equal to tgpja.
Note 2: Not tested, guaranteed by design.
Note 3: ADS must be deasserted before state T4 of the DMA controller cycle.

78

4.0 Device Specifications (continued)

4.4.3 Timing Diagrams

CTTL

ADO-AD15

A16-A23

ADS

HBE

STO-ST3

u/s

BPU

TS0

DBE

CWAIT

T4 OR TI il 72 13 T4 Ti OR T1
t
tly —] — ALh e |~
ADDRESS <
VALID DATA IN
— taLer —
taLaDSs i —| J«— tann
[P S - . ADDRESS X
Yy —]
tapsa —»|
—»{ Yosia |-
tipEy —] — i tgen
topiny —»| —| J?M‘
[
—| le— ts1y tsth —»] |=—
—| le— sy tysh —»{ |=—
— l«— tapuy tgpyn —>{ fa—|
Yrs0a —>] { trsoia —» %
tRoa —»] g; tRpia —>| }»
topEi
] loa[a(q; =
t(?Ws [
— |ty

FIGURE 4-4. Read Cycle

TL/EE/11267-46

79

4.0 Device Specifications (continued)

CTTL

ADO-AD15

A16-A23

ADS

ALE

STO-ST3

u/s

BPU

TS0

DBE

CWAIT

T4 OR Ti T 12 13 T3(W) T3(W) T4 T1 OR Ti
— t[Jv —> th
o ————— -XI DATA OUT
le— taLaLes
4
ks tapsw
m YLk
—»| |<_ topiny — |~— tpinn
- >< r
- \N
— >< r
- N
— >< "
— N
tyra —» tyria —»|
tpBEa(w) —=| |«— —| topEia
tows —
I
|<— tcwn

FIGURE 4-5. Write Cycle

TL/EE/11267-47

80

4.0 Device Specifications (continued)

CTTL

ADO-AD15

A16-A23

1A

ADS

ALE

TS0

DBE

T4 T 12 T3 T4
tov
taLiass |-
Yiasa —»]
Yasw
/
— tasia |

N

/

FIGURE 4-6. Special Bus Cycle

TL/EE/11267-48

81

4.0 Device Specifications (continued)

T1 T2 T3 T4 Ti Ti Ti

CTTL

tLps

HOLD tHLDh

tHLbAa
HLDA
— tupes

tapst

toping
55
HEE N I E P ———
DDIN (FLOATING)

ALE /

taLs
ADO-AD15 —
(FLOATING)

A16-A23

- (FLOATING)

TL/EE/11267-49

Note: When the bus is not idle, HOLD must be asserted before the rising edge of CTTL of the timing state that precedes state T4 in order for the request to be
acknowledged.

FIGURE 4-7. HOLD Acknowledge Timing (Bus Initially Not Idle)

82

4.0 Device Specifications (continued)

CTTL

HOLD

HLDA

ADS

ALE

ADO-AD15

A16-A23

- ___--SS..

-/

T4 OR Ti Ti Ti Ti Ti Ti TAORTi | TIORT
LS—
<— tHLDs l<— tHLDs
— ’<— t4Lon
| «
| T PRl
tHLDAa tHLDAI2 —>
(e
PRl
tapst —
——t e e] _./
tuper —
X JRNEEY S I ——— _.<
toping — \’k—*

___.SS..

___.SS-.

s Ngle
Sl

FIGURE 4-8. HOLD Timing (Bus Initially Idle)

TL/EE/11267-50

83

4.0 Device Specifications (continued)

CPU STATES Ti Ti Ti Ti Ti Ti Ti
EXT. DMA STATES Ti T1 2 13 T3(W) T4 T1 OR Ti
cTIL | |

HOLD
HLDA \ /
— |-4— tapsh
tapss e
[|
tooine —>] | oIk [+
DDIN >'----§ X.---.X
ALE \ / \
TS0
RD
W \
DBE \
CWAIT \ /

Note 1: ADS must be deactivated before state T4 of the external DMA controller cycle.

TL/EE/11267-51

Note 2: During an external DMA cycle WAIT1-2 must be kept inactive unless they are monitored by the DMA Controller. An external DMA cycle is similar to a CPU

cycle. The NS32FX164 generates TSO, RD, WR, ALE and DBE. The external DMA controller drives the address/data lines HBE, ADS and DDIN.
Note 3: During an external DMA cycle, if the ADS signal is pulsed in order to initiate a bus cycle, the HOLD signal must remain asserted until state T4 of the DMA

cycle.

FIGURE 4-9. External DMA Controller Bus Cycle

84

4.0 Device Specifications (continued)

T T4
CTIL
] ton
ADO-15 ——< DATA OUT
— th, |
'SPC
—tspca —tspcia
DDIN _-///,
NEXT CYCLE
ST0-ST3 STATUS VALID X RS
— HiGH
ADS (HicH)

TL/EE/11267-52
FIGURE 4-10. Slave Processor Write Timing

T T4
CTTL
—>{ (=—1pin
tDls
ADO=15 __< VALID }7_

DDIN

LT
\

DATA (FROM SLAVE)

STO-ST3 STATUS VALID

X NEXT STATUS

ADS

(HIGH)

TL/EE/11267-53

FIGURE 4-11. Slave Processor Read Timing

|
em | L1 L1 L

SPC

(FROM CPU)

tspcd

SPC__
(FROM FPU)

TL/EE/11267-54

After transferring the last operand to the FPU, the CPU turns OFF the output driver and holds SPC high with an internal 5 kQ pullup.
FIGURE 4-12. SPC Timing

85

4.0 Device Specifications (continued)

CTTL

ADS

CTIL
PFS
TL/EE/11267-55
FIGURE 4-13. PFS Signal Timing
T4 OR Ti iE| 72 T4 OR Ti K 2 13 T4
-“-l I
YL0a YLoia

Note: ILO may be asserted more than one clock cycle before the beginning of an interlocked access.

FIGURE 4-14. 1LO Signal Timing

OSCIN

FCLK

CTTL

FIGURE 4-15. Clock Waveforms

TL/EE/11267-56

TL/EE/11267-57

86

4.0 Device Specifications (continued)

Npligipipigip
LT *J,/i////////// I,

FIGURE 4-16. INT Signal Timing
Note 1: Once INT is asserted, it must remain asserted until it is acknowledged.
Note 2: INTA is the Interrupt Acknowledge bus cycle (not a CPU signal). Refer to Section 3.2.1.

CTTL [

TL/EE/11267-58

- Fe— tumis

— - tNMih

FIGURE 4-17. NMI Signal Timing

TL/EE/11267-59

)7

4.5V)~
Vee /
CTTL
= tewr
RSTI
. c
J
RSTO

trsToia

FIGURE 4-18. Power-On Reset

TL/EE/11267-60

87

4.0 Device Specifications (continued)

CTTL

L

T @(

tesTw

RSTO

ADO-15,
A16-23,

SPC

Note 1: During Reset the HOLD signal must be kept high.

Note 2: After RSTI is deasserted the first bus cycle will be an instruction fetch at address zero.
FIGURE 4-19. Non-Power-On Reset

tRsToia

r—

TL/EE/11267-61

CTTL

L

] Youty

Io0uT

LG
)

FIGURE 4-20. Interrupt Out

Youth

TL/EE/11267-72

88

Appendix A: Instruction Formats

NOTATIONS
i = Integer Type Field
B = 00 (Byte)
W = 01 (Word)
D = 11 (Double Word)
f = Floating-Point Type Field
F = 1 (Std. Floating: 32 bits)
L = 0 (Long Floating: 64 bits)
op = Operation Code
Valid encodings shown with each format.
gen,gen 1,gen2 = General Addressing Mode Field
See Section 2.4.2 for encodings.
reg = General Purpose Register Number
cond = Condition Code Field

0000 = EQual: Z = 1

0001 = Not Equal: Z = 0

0010 = Carry Set: C = 1

0011 = Carry Clear: C = 0

0100 = Higher: L = 1

0101 = Lower or Same: L = 0

0110 = Greater Than: N = 1

0111 = Less or Equal: N = 0

1000 = Flag Set: F = 1

1001 = Flag Clear: F = 0

1010 = LOwer: L = 0and Z = 0

1011 = Higher or Same: L = 1orZ = 1
1100 = Less Than:N = 0andZ = 0
1101 = Greater or Equal: N = 1orZ = 1

1110 = (Unconditionally True)
1111 = (Unconditionally False)
short = Short Immediate Value. May contain

quick: Signed 4-bit value, in MOVQ, ADDQ,
CMPQ, ACB

cond: Condition Code (above), in Scond.
areg: CPU Dedicated Register, in LPR, SPR

0000 = UPSR
0001-0111 = (Reserved)
1000 = FP

1001 = SP

1010 = SB

1011 = (Reserved)

1100 = (Reserved)

1101 = PSR

1110 = INTBASE

1111 = MOD

Options: in String Instructions

luw [8] 1]

T = Translated

B = Backward

U/W = 00: None
01: While Match
11: Until Match

Configuration bits in SETCFG instruction:

[o[m[r[1]
7 0
T T T T T
cond 1010
Format 0
Bcond (BR)
7 0
T T T T T
op 0010
Format 1
BSR —0000 ENTER —1000
RET —0001 EXIT —1001
CXP —0010 NOP —1010
RXP —0011 WAIT —1011
RETT —0100 DIA —1100
RETI —0101 FLAG —1101
SAVE —0110 SVC —1110
RESTORE —0111 BPT —1111
15 8|7 0
T T T T T T T T T T T
gen short op 11 i
Format 2
ADDQ —000 ACB —100
CMPQ —001 MovQ —101
SPR —010 LPR —110
Scond —011
15 8|7 0
T T T T T T T T T T T T
gen op 11111 i
Format 3
CXPD —0000 ADJSP —1010
BICPSR —0010 JSR —1100
JUMP —0100 CASE —1110
BISPSR —0110
Trap (UND) on XXX1, 1000
15 8|7 0
T T T T T T T T T T T T
gen i gen2 op i
Format 4
ADD —0000 SuUB —1000
CMP —0001 ADDR —1001
BIC —0010 AND —1010
ADDC —0100 SUBC —1100
MOV —0101 TBIT —1101
OR —0110 XOR —1110
23 16|15 8|7 0

LN I | L 1T
|00000| short |O| op |i

00001110

89

Appendix A: Instruction Formats (continued)

Format 5
MOVS —0000 BITWT —1000
CMPS —0001 TBITS —1001
SETCFG —0010 BBAND —1010
SKPS —0011 SBITPS —1011
BBSTOD —0100 BBFOR —1100
EXTBLT —0101 SBITS —1101
BBOR —0110 BBXOR —1110
MOVMP —0111
No Operation on 1111
23 16|15 8|7 0
T T T T LI L T T T T T T T T
|gen1 | gen 2 | op |i01001110|
Format 6
ROT —0000 NEG —1000
ASH —0001 NOT —1001
CBIT —0010 Trap (UND) —1010
CBITI —0011 SuUBP —1011
Trap (UND) —0100 ABS —1100
LSH —0101 COM —1101
SBIT —0110 IBIT —1110
SBITI —0111 ADDP —1111
23 16|15 8|7 0
T T T T LI T T T T T T T T
|gen1 |gen2| op |i11001110
Format 7
MOVM —0000 MUL —1000
CMPM —0001 MEI —1001
INSS —0010 Trap (UND) —1010
EXTS —0011 DEI —1011
MOVXBW —0100 QuUO —1100
MOVZBW —0101 REM —1101
MOVZiD —0110 MOD —1110
MOVXiD —0111 DIV —1111
23 16|15 8|7 0
T T 11 TTT1 TT { T FTTTT
| gen1 [gen 2 reg l i ’1 01110
\op
TL/EE/11267-62
Format 8
EXT —000 INDEX —100
CVTP —001 FFS —101
INS —-010
CHECK —011

Trap (UND)on —110and —1 11

23 16|15 8|7 0
T T T T T T T T T T T T
| gen1 | gen2 |op|f|i00111110
Format 9
MOVif —000 ROUND —100
LFSR —001 TRUNC —101
MOVLF —010 SFSR —-110
MOVFL —011 FLOOR —-111
7 0
TL/EE/11267-63
Format 10
Trap (UND) Always
23 16|15 8|7 0
T T T T T T T T 1T T T
| gen1 | gen2 | op |0|f10111110
Format 11
ADDf —0000 DIVf —1000
MOV§ —0001 (Note 1) —1001
CMPf —0010 Trap (UND) —1010
(Note 3) —0011 Trap (UND) —1011
SuBf —0100 MULf —1100
NEGf —0101 ABSf —1101
Trap (UND) —0110 Trap (UND) —-1110
Trap (UND) —0111 Trap (UND) —1111
23 16|15 8|7 0
T T T T T T T T T T T T
| gen1i | gen 2 | op |0|f11111110
Format 12
(Note 2) —0000 (Note 2) —1000
(Note 1) —0001 (Note 1) —1001
POLYf —0010 Trap (UND) —1010
DOTf —0011 Trap (UND) —1011
SCALBf —0100 (Note 2) —1100
LOGBf —0101 (Note 1) —1101
Trap (UND) —0110 Trap (UND) —1110
Trap (UND) —0111 Trap (UND) —1111

*Instructions with Format 12 are available only when the NS32381 is used.

Trap (UND)

~
o

TL/EE/11267-64

Format 13

Always

00011110

TL/EE/11267-65

90

Appendix A: Instruction Formats (continued)

Format 14
Trap (UND) Always
TL/EE/11267-66
Format 15
Trap (UND) Always
7 0
61011110
TL/EE/11267-67
Format 16
Trap (UND) Always
.7 0
TL/EE/11267-68
Format 17
Trap (UND) Always

~
(=]

10001110

TL/EE/11267-69

Format 18
Trap (UND) Always
7 0
TL/EE/11267-70
Format 19
Trap (UND) Always

Implied Immediate Encodings:
7 0

T T T T T T T
r7 r6 5 r4 r3 r2 r1 r0

Register Mask, appended to SAVE, ENTER

7 0

ro r1 r2 r3 r4 r5 r6 r7

Register Mask, appended to RESTORE, EXIT

T T T T T T
offset length—1

Offset/Length Modifier appended to INSS, EXTS

Note 1: Opcode not defined; CPU treats like MOVH. First operand has access class of read; second operand has access class of write; f-field selects 32-bit or

64-bit data.

Note 2: Opcode not defined; CPU treats like ADDf. First operand has access class of read; second operand has access class of read-modify-write. f-field selects

32-bit or 64-bit data.

Note 3: Reserved opcode; execution of this opcode will generate an undefined result.

91

Appendix B: Instruction Execution Times

This section provides the necessary information to calculate

the instruction execution times for the NS32FX164.

The following assumptions are made:

B The entire instruction, with all displacements and imme-
diate operands, is assumed to be present in the instruc-
tion queue when needed.

B Interference from instruction prefetches, which is very
dependent upon the preceding instruction(s), is ignored.
This assumption will tend to affect the timing estimate
in an optimistic direction.

m |t is assumed that all memory operand transfers are
completed before the next instruction begins execution.
In the case of an operand of access class rmw in
memory, this is pessimistic, as the Write transfer occurs
in parallel with the execution of the next instruction.

W |t is assumed that there is no overlap between the
fetch of an operand and the following sequences of mi-
crocode. This is pessimistic, as the fetch of Operand 1
will generally occur in parallel with the effective address
calculation of Operand 2, and the fetch of Operand 2
will occur in parallel with the execution phase of the in-
struction.

m Where possible, the values of operands are taken into
consideration when they affect instruction timing, and a
range of times is given. Where this is not done, the
worst case is assumed.

B.1 BASIC AND FLOATING-POINT INSTRUCTIONS
Execution times for basic and floating-point instructions are
given in Tables B-1 and B-2. The parameters needed for the
various calculations are defined below.

TEA— The time required to calculate an operand’s Effec-
tive Address. For a Register or Immediate oper-
and, this includes the fetch of that operand.

TEA1— TEA value for the GEN or GEN1 operand.
TEA2— TEA value for the GEN2 operand.
TOPB— The time needed to read or write a memory byte.
TOPW— The time needed to read or write a memory word.

TOPD— The time needed to read or write a memory dou-
ble-word.

TOPi— The time needed to read or write a memory oper-
and, where the operand size is given by the opera-
tion length of the instruction. It is always equiva-
lent to either TOPB, TOPW or TOPD.

TCY— Internal processing overhead, in clock cycles.

L— Internal processing whose duration depends on
the operation length. The number of clock cycles
is derived by multiplying this value by the number
of bytes in the operation length.

NCYC— Number of bus cycles performed by the CPU to
fetch or store an operand. NCYC depends on the
operand size and alignment.

TPR— CPU processing (in clock cycles) performed in par-
allel with the FPU.

TFPU— Processing time required by the FPU to execute
the instruction. This is the time from the last data
sent to the FPU, until done is issued. TFPU can be
found in the FPU data sheets.

f— This parameter is related to the floating-point op-
erand size.

Tf— The time required to transfer 32 bits of floating
point value to or from the FPU.

Ti— The time required to transfer an integer value to or
from the FPU.

B.1.1 Equations
The following equations assume that:
® Memory accesses occur at full speed.

® Any wait states should be reflected in the calculations of
TOPB, TOPW and TOPD.

Note: When multiple writes are performed during the execution of an in-
struction, wait states occurring during intermediate write transactions
may be partially hidden by the internal execution. Therefore, a certain
number of wait states can be inserted with no effect on the execution
time. For example, in the case of the MOVSi instructions each wait
state on write operations subtracts 1 clock cycle per write bus access,
from the TCY of the instruction, since updating the pointers occurs in
parallel with the write operation. This means that wait states can be
added to write cycles without changing the execution time of the in-
struction, up to a maximum of 13 wait states on writes for MOVSB and
MOVSW, and 4 wait states on writes for MOVSD.

TEA— TEA values for the various addressing modes are
provided in the following table.

TEA TABLE
Addressing TEA
N
Mode Value otes
IMMEDIATE, 4
ABSOLUTE
EXTERNAL 11 + 2*TOPD
MEMORY RELATIVE 7 + TOPD
REGISTER 2
REGISTER RELATIVE, 5
MEMORY SPACE
TOP OF STACK 4 Access Class Write
2 Access Class Read
3 Access Class RMW
SCALED INDEXED TH + TI2

T = TEA of the basemode except:

if basemode is REGISTER then TI1 = 5

if basemode is TOP OF STACK then TI1 = 4
TI2 depends on the scale factor:

if byte indexing T = 5

if word indexing TI2 = 7

if double-word indexing TI12 = 8

if quad-word indexing TI2 = 10
TOPB— If operand is in a register or is immediate then

TOPB =0
else TOPB = 3

TOPW—If operand is in a register or is immediate then
TOPW = 0

else TOPW = 4 ¢ NCYC — 1

TOPD— If operand is in a register or is immediate then
TOPD = 0

else TOPD = 4 ¢ NCYC — 1

https://www.application-datasheet.com/

Appendix B: Instruction Execution Times (Continued)

TOPi— If operand is in a register or is immediate then

TOPi = 0
else if i = byte then TOPi = TOPB
else if i = word then TOPi = TOPW
else (i = double-word) then TOPi = TOPD

L— If i (operation length) = byte then L = 1
else ifi = word thenL = 2
else (i = double-word) L = 4

f— If standard floating (32 bits): f = 1
If long floating (64 bits): f = 2

TI—Tf = 4
Ti— If integer = byte or word, then Ti = 2
If integer = double-word, then Ti = 4

B.1.2 Notes on Table Use
Values in the # TEA1 and # TEA2 columns indicate whether
effective addresses need to be calculated.
A value of 1 indicates that address calculation time is re-
quired for the corresponding operand. A 0 indicates that the
operand is either missing, or it is in a register and the in-
struction has an optimized form which eliminates the TEA
calculation for it.
In the L column, multiply the entry by the operation length in
bytes (1, 2 or 4).
In the TCY column, special notations sometimes appear:
n1 — n2 means n1 minimum, n2 maximum
n1%n2 means that the instruction flushes the instruction
queue after n1 clock cycles and nonsequentially fetches the
next instruction. The value n2 indicates the number of clock
cycles for the internal execution of the instruction (including
nt).
The effective number of cycles (TCY) must take into ac-
count the time (Tsetcn) required to fetch the portion of the
next instruction including the basic encoding and the index
bytes. This time depends on the size and the alignment of
this portion.
If only one memory cycle is required, then:

TCY = n1 + 6 + Tsetch
If more than one memory cycle is required, then:

TCY =n1 + 5 + Tietch
In the notes column, notations held within angle brackets
< > indicate alternatives in the operand addressing modes
which affect the execution time. A table entry which is af-
fected by the operand addressing may have multiple values,
corresponding to the alternatives. These addressing nota-
tions are:
<I> Immediate
<R> CPU Register
<M> Memory
<F> FPU Register, either 32 or 64 Bits
<x> Any Addressing Mode

<ab> a and b represent the addressing modes of operand
1 and 2 respectively. Both a and b can be any ad-
dressing mode (e.g., <MR> means memory to CPU
register).
Note: Unless otherwise specified the TCY value for immediate addressing is
the same as for CPU register addressing.

B.1.3. Calculation of the Execution Time TEX for

Basic Instructions

The execution time for a basic instruction is obtained by

performing the following steps:

1. Find the desired instruction in Table B-1.

2. Calculate the values of TEA, TOPB, etc. using the num-
bers in the table and the equations given in the previous
sections.

3. The result derived by adding together these values is the
execution time TEX in clock cycles.

EXAMPLE

Calculate TEX for the instruction CMPW RO, TOS.

Operand 1 is in a register; Operand 2 is in memory. This

means that we must use the table values corresponding to

the <xM> case as given in the Notes column.

Only the #TEA1, #TEA2, # TOPi and TCY columns have

values assigned for the CMPi instruction. Therefore, they

are they only ones that need to be calculated to find TEX.

The blank columns are irrelevant to this instruction.

Both # TEA1 and # TEA2 columns contain 1 for the <xM>

case. This means that effective address times have to be

calculated for both operands. (For the <MR> case, the

Register operand would have required no TEA time, there-

fore only the Memory operand TEA would have been neces-

sary.) From the equations:

TEA1 (Register mode) = 2.

TEA2 (Top of Stack mode, access class read) = 2.

The #TOPi column represents potential operand transfers

to or from memory. For a Compare instruction, each oper-

and is read once, for a total of two operand transfers.
TOPi (Word, Register) = 0,
TOPi (Word, TOS) = 3 (assuming the operand aligned)
Total TOPi = 3

TCY is the time required for internal operation within the

CPU. The TCY value for this case is 3.

TEX = TEA1 + TEA2 + TOPi + TCY =2 + 2 + 3 + 3

= 10 machine cycles.

If the CPU is running at 20 MHz then a machine cycle (clock

cycle) is 50 ns. Therefore, this instruction would take 10 X

50 ns, or 0.5 us, to execute.

B.1.4 Calculation of the Execution Time TEX for
Floating-Point Instructions

The execution time for a floating-point instruction is ob-
tained by performing the following steps:

1. Find the desired instruction in Table B-2.

2. Calculate the values of TEA1, TEA2, TOPB, etc., using
the numbers in the table, and the equations given in the
previous sections.

. Get the floating-point instruction execution time TFPU
from the appropriate FPU data sheet.

Choose the higher value between TPR and TFPU + 3.

The result derived by adding together these values is the
execution time TEX in clock cycles.

EXAMPLE 1

Calculate TEX for the instruction MOVLF FO,@h’3000.
Assumptions:

® The FPU being used is the NS32181.

e Write cycles are performed with no wait states.

w

o &

93

https://www.application-datasheet.com/

Appendix B: Instruction Execution Times (continued)

TEX Calculation:

Operand 1 is in a register, operand 2 is in memory. This
means that we have to use the table values for the <FM>
case.

The following parameter values are obtained from Table B-2
and the equations in the previous sections.

TEA2 (Absolute Mode) = 4

TOPD (Memory Write) = 7 (Operand aligned, no waits)
Tf =4

TCY = 32

TPR = TEA2 + 6 = 4 + 6 = 10

From the FPU Execution Timing table in the NS32181 data
sheet we get a TFPU for MOVLF of 19 clock cycles.

The higher value between TPR and TFPU + 3 is 22. The
total execution time in clock cycles is:

TEX = TEA2 + TOPD + TF + TCY + 22 = 65
EXAMPLE 2
Calculate TEX for the instruction MULF 20(RO0), 4(10(FP))
Assumptions:
® The FPU being used is the NS32181.
® 20(RO0) is an aligned read with one wait state.
® 10(FP) is an aligned read with no wait states.
® 4(10 (FP)) is an unaligned rmw with two wait states.

TEX Calculation:

Operand 1 and operand 2 are both in memory. Therefore,

the table values for the <MM> case must be used.

The parameter values obtained from Table B-2 and the

equations in the previous sections are as follows:

TEA1 (Register Relative Mode) = 5

TEA2 (Memory Relative Mode) = 8 + TOPD = 15
(TOPD = 7 (Operand Aligned, No Wait))

TOPD; (Read from GEN1) = 7 + 2 = 9 (Operand
Aligned, One Wait)

TOPD, (RMW from GEN2) = 11 + 6 = 17 (Operand Una-
ligned, Two Waits)

Ty =14
TCY = 22 — 28
TPR =0

From the FPU Execution Timing Table in the NS32181 data
sheet we get a TFPU for MULF of 33 clock cycles.
The higher value between TPR and TFPU + 3 is 36. The
total execution time in clock cycles is:
TEX = TEA1+TEA2+TOPD{+TOPDy+ 3eT;+TCY +
36=5+15+9+17+(22 — 28)+36=133 — 140

TABLE B-1. Basic Instructions

Mnemonic #TEA1 #TEA2 #TOPB #TOPW #TOPD #TOPI #L TCY Notes
ABSi 1 1 — — — 2 — 9 SCR <0
1 1 _ — — 2 — 8 SCR >0
ACBI 1 — — — — 2 — 16 <M> no branch
1 — — — — 2 — 15%20 <M> branch
— — — — —_ — — 18 <R> no branch
— — — — — — — 17%22 <R> branch
ADDi 1 — - — 3 - 3 <xM>
1 — — — = 1 — 4 <MR>
— — — — — — — 4 <RR>
ADDCGi 1 1 — — — 3 — 3 <xM>
1 — — — — 1 — 4 <MR>
— — h_ — — — — 4 <RR>
ADDPi 1 1 — — — 3 — 16 No Carry
1 1 — — — 3 — 18 Carry
ADDQi — 1 — — — 2 — 6 <M>
— — - b — — — 4 <R>
ADDR 1 1 — — 1 — — 2 <xM>
1 — — — — — — 3 <xR>
ADJSPi 1 — — — — 1 — 6
ANDi 1 1 — — — 3 — 3 <xM>
1 = — — — 1 — 4 <MR>
— — — — — — — 4 <RR>
ASHi 1 1 1 — — 2 — 14 — 45
Bcond — — — — — — — 7 no branch
— — — — — — — 6%10 branch
BICi 1 1 — — — 3 — 3 <xM>
1 — — — — 1 — 4 <MR>
— — — — — — — 4 <RR>

94

Appendix B: Instruction Execution Times (Continued)
TABLE B-1. Basic Instructions (Continued)

Mnemonic | #TEA1 #TEA2 | #TOPB | #TOPW | #TOPD | #TOPi | #L TCY Notes
BICPSRB 1 — 1 — — — — 18%22
BICPSRW 1 — — 1 — — — 30%34
BISPSRB 1 — 1 — — — — 18%22
BISPSRW 1 — — 1 — — — 30%34
BPT — — — 2 4 — — 40
BR — — — — — — — 4%10
BSR — — — — 1 — —_ 6%16
CASEi 1 — — — — 1 — 4%9
CBITi 1 1 2 — — 1 — 15 <xM>
1 _ i — — 1 J— 7 <xR>
CBITIi 1 1 2 — — — 15 <xM>
1 — — — — — 7 <xR>
CHECKIi 1 1 — — — 3 — 7 high
1 1 — — — 3 — 10 low
1 1 — — — 3 — 11 ok
CMPi 1 1 — — — 2 — 3 <xM>
1 — — — — 1 — 3 <MR>
— — — — — — — 3 <RR>
CMPMi 1 1 _ _ _ P 4 9%n+ 24 n= # of elements
in block
CMPQi 1 — — — — 1 — 3 <M>
— — — — — — — 3 <R>
CMPSi _ _ _ _ _ P — | s5*nass | "™ # of elements,
not Translated
CMPST — — n — — 2*n — 38 *n + 53 | Translated
COMi 1 1 — — — 2 — 7
CVTP 1 1 — — 1 — — 7
CXP — — — 3 4 — — 16%21
CXPD 1 — — 3 3 — — 13%18
DEli 1 1 — — — 5 16 38 <xM>
1 — — — — 1 16 31 <xR>
DIA — — — — — — — 3%7
DIVi 1 1 — — — 3 16 58 — 68
ENTER . . _ . N+ . _ 4%n+ 18 n=. # of general
registers saved
EXIT _ . _ _ N1 _ _ 5%n 4+ 17 n= # of general
registers restored
EXTi 1 1 — — 1 1 — 19 — 29 field in memory
1 1 — — — 1 — 17 — 51 field in register
EXTSi 1 1 — — 1 1 — 26 — 36
FFSi 1 1 2 — — 1 24 24 — 28
FLAG — — — — — — — 6 no trap
— — — 4 3 - — 44 trap
IBITi 1 1 2 — — 1 — 17 <xM>
1 — — — — — — 9 <xR>

95

Appendix B: Instruction Execution Times (continued)

TABLE B-1. Basic Instructions (Continued)

Mnemonic #TEA1 #TEA2 #TOPB #TOPW #TOPD #TOPI #L TCY Notes
INDEXi 1 1 — — — 2 16 25
INSI 1 1 — — 2 1 — 29 — 39 field in memory
1 — — — — 1 — 28 — 96 field in register
INSSi 1 1 — — 2 1 — 39 — 49
JSR 1 — — — 1 1 — 5%15
JUMP 1 — — — — - - 2%6
LPRi 1 — — — — 1 — 19 — 33
LSHi 1 1 1 — — 2 — 14 — 45
MEIi 1 1 — — — 4 16 23
MODi 1 1 — — — 3 16 54 — 73
MOVi 1 1 — — — 2 — 1 <xM>
1 — — — — 1 — 3 <MR>
— — — — — — — 3 <RR>
i = #
MOVMi 1 1 _ _ _ 2%n _ 3%n 4 20 n of elements
in block
MOVQi 1 — — — — 1 — 2 <M>
— — — — — — — 3 <R>
MOVSB, W n = # elements
— — — — — 2*n — 14*n + 59 | no options
— — — — — 2*n — 24 *n + 54 B, Wand/or U
option in effect
MOVSD n = # of elements
— — — — — 2*%n — 10 *n + 59 | no options
— — — — — 2* — 24*n+ 54 | B,Wand/orU
option in effect
MOVST — — n — — 2*n — 27 *n + 54 | Translated
MOVXBD 1 1 1 — 1 — — 6
MOVXBW 1 1 1 1 — — — 6
MOVXWD 1 1 — 1 1 — — 6
MOVZBD 1 1 1 — 1 — — 5
MOVZBW 1 1 1 1 — — — 5
MOVZWD 1 1 — 1 1 — — 5
MULi 1 1 — — — 3 16 15
NEGi 1 1 — — — 2 — 5
NOP — — — — — — — 3
NOTi 1 1 — — — 2 — 5
ORi 1 1 — — — 3 — 3 <xM>
1 — — — — 1 — 4 <MR>
— — — — — — — 4 <RR>
QUOI 1 1 — — — 3 16 49 — 55

96

Appendix B: Instruction Execution Times (Continued)
TABLE B-1. Basic Instructions (Continued)

Mnemonic | #TEA1 #TEA2 | #TOPB | #TOPW | #TOPD | #TOPi | #L TCY Notes
REMi 1 1 — — — 3 16 57 — 62
RESTORE _ _ _ _ n _ _ 5%n 4+ 12 n= # of general
registers restored
RET — — — — 1 — — 2%8
RETI — — 1 2 2 — — 60 Non-Cascaded
— — 2 2 3 — — 60 Cascaded
RETT — — — 2 2 — — 45
ROTi 1 1 1 — — 2 — 14 — 45
RXP — — — 1 2 — — 2%6
Scondi 1 — — — — 1 — 9 False
1 — — — — 1 — 10 True
SAVE _ _ _ _ n _ _ 4%n 413 ne # of general
registers saved
SBITi 1 1 2 — — 1 — 15 <xM>
1 _ _ — — 1 — 7 <xR>
SBITIi 1 1 2 — — 1 — 15 <xM>
1 _ _ — — 1 — 7 <xR>
SETCFG — — — — — — — 15
SKPSi _ _ _ _ _ n 4 27%n + 51 n = # of elements,
not Translated
SKPST — — n — — n — 30 *n + 51 Translated
SPRi 1 — — — — 1 — 21 — 27
SUBI 1 1 — — — 3 — 3 <xM>
1 — — — — 1 — 4 <MR>
— — — — — — — 4 <RR>
SUBCi 1 1 — — — 3 — 3 <xM>
1 —_ — — — 1 — 4 <MR>
— — — — — — — 4 <RR>
SUBPI 1 1 — — — 3 — 16 no carry
1 1 — — — 3 —_ 18 carry
SVGC — — — 2 4 — — 40
TBIti 1 1 1 — — 1 — 14 <xM>
1 b — —_ — 1 — 4 <xR>
WAIT _ _ _ _ _ _ _ 6 — 2 ’? = until an
interrupt/reset
XORi 1 1 — — — 3 — 3 <xM>
1 — — — — 1 — 4 <MR>
b — — — — — — 4 <RR>

97

Appendix B: Instruction Execution Times (continued)
TABLE B-2. Floating-Point Instructions: CPU Portion

Mnemonic #TEA1 #TEA2 #TOPD #TOPiI #Ti #Tf TCY TPR Notes
ADDf, — — — — — — 17 8 <FF>
SUBH, 1 — f — — f (14 — 17) +3f 0] <MF>
MULS, — — — — — f 24 + f 0 <IF>
DIVf — 1 2f — — 2f (25 — 29) +6f 0 <FM>
— 1 2f — — 3f (27 — 30) +3f 0 <IM>
1 1 3f — — 3f (13 — 19) +9of 0 <MM>
MOVA, — — — — — — 17 6 <FF>
ABSH, 1 — f — — f (14 — 17) + 3f 0 <MF>
NEGf — — — — — f 24 + f 0 <IF>
— — f — — f 23 + 3f 6 + TEA2 <FM>
— — f — — 2f 33 + f TEA2 — 2 — f <IM>
1 — 2f — — 2f (20 — 23) +6f TEA2-3 <MM>
MOVFL — — — — — — 17 8 <FF>
1 — 1 — — 1 17 — 20 0 <MF>
— — — — — 1 25 0 <IF>
— — 2 — — 2 35 6 + TEA2 <FM>
— — 2 — — 3 43 TEA2 — 3 <IM>
1 — 3 — — 3 35 — 38 TEA2 — 3 <MM>
MOVLF — — — — — — 16 8 <FF>
1 — 2 — — 2 20 — 23 0 <MF>
— — — — — 2 26 0 <IF>
— — 1 — — 1 32 TEA2 + 6 <FM>
— — 1 — — 3 42 TEA2 — 4 <IM>
1 — 3 — — 3 35 — 38 TEA2 — 3 <MM>
TRUNCHi, — — — — 1 — 20 9 <FR>
FLOORfi, 1 — f — 1 f (17 — 20) + 3f 0 <MR>
ROUNDfi — — — — 1 f 25 + f 0 <IR>
— — — 1 1 — 20 TEA2 + 6 <FM>
— — — 1 1 f 26 + f TEA2 — 2 <IM>
1 — f 1 1 f (16 — 19) +4f TEA2 — 2 — f <MM>
MOVif — — — — 1 — 25 — f 0 <RF>
1 — — 1 1 — 18 0 <MF>
— — — — 1 — 26 0 <IF>
— 1 f — 1 f 20 + 4f 0 <RM>
— 1 f — 1 f 22 + 5f 0 <IM>
1 1 f 1 1 f (10 — 13) + 5f 0 <MM>
CMPf — — — — — — 23 13 <FF>
1 — f — — f (20 — 23) + 3f 7 <MF>
— — — — — f 31 +f 7 <IF>
— 1 f — — f (27 — 30) + 3f 0 <FM>
— 1 f — — 2f 29 0 <IM>
1 1 2f — — 2f (15 — 21) + 6f 0 <MM>
— — — — — f 37 +f 0 <FI>
1 — f — — of (21 — 29) + 8f 0 <MI>
— — — — — 2f 35 + 2f 0 <>
SFSR — — — — — 1 19 7 <R>
1 — 1 — — 1 20 TEA1 + 4 <M>
LFSR — — — — — 1 23 0 <R>
1 — 1 — — 1 18 — 21 0 <M>

98

Appendix B: Instruction Execution Times (Continued)

B.2 SPECIAL GRAPHICS INSTRUCTIONS

This section provides the execution times for the special
graphics instructions. Table B-3 lists the average instruction
execution times for different shift values and for a no-wait-
state system design. The “No Option” of each instruction is
used. The effect of wait states on the execution time is rath-
er difficult to evaluate due to the pipelined nature of the read
and write operations.

Instructions that have shift amounts, such as BBOR,
BBXOR, BBAND, BBFOR and BITWT, make use of the par-
allel nature of the Series 32000®/EP processors by doing
the actual shift during the reading of the double-word desti-
nation data. This means that if there are wait states on read
operations, these instructions are able to shift further, with-
out impacting the overall execution time. For example, the
total execution time for a BBFOR operation, shifting 8 bits,
with 2 wait states on read operations, is the same as for a
BBFOR operation shifting by 12 bits. This is because a des-
tination read takes 4 clock cycles longer than a no-wait-
state double-word read does. Note that this effect is not
valid for more than 4 wait states because at 4 wait states, all
possible shift values (0-15) are “hidden” during the desti-
nation read.

Table B-4 shows the average execution times with wait
states, assuming a shift value of eight unless stated other-
wise. The parameters used in the execution time equations
are defined below.

Twaitrd The number of wait states applied for a Read
operation.

Twaitr The number of wait states applied for a Write op-
eration.

Twaitrds The number of wait states applied for a Read
operation on source data. This also refers to the
number of wait states applied for a table memory
access (in the SBITS instruction, for example).

Twaitrdd The number of wait states applied for a Read
operation on destination data.

Twaitwrd The number of wait states applied for a Write op-
eration on destination data.

Twaitrds + Twaitrdd * 2 + Twaitwrd * 2, the
value used for BITBLT timing.

width The width of a BITBLT operation, in words.
height The height of a BITBLT operation, in scan lines.
shift The number of bits of shift applied.

Twaitbt

B.2.1 Execution Time Calculation for Special Graphics
Instructions
The execution time for a special graphics instruction is ob-
tained by inserting the appropriate parameters to the equa-
tion for that instruction and evaluating it.
For example, to calculate the execution time of the BBOR
instruction applied to a 10-word wide and 5-line high data
block, assuming a shift count of 15 and a no-wait-state sys-
tem, the following equation from Table B-3 is used.
42 + (107 + 44 * (width — 2)) * height + ((shift — 8) *
width * height)
Substituting the appropriate values to the shift, width and
height parameters yields:
45 + (107 + 44 * (10 — 2)) *50 + ((15 — 8) * 10 * 50)
or
42 + (107 + 352) * 50 + (7 * 500) = 26,492 clocks or
1.77 ms @ 15 MHz

This represents the “worst case” time for this instruction,
since a shift of greater than 15 bits can be handled by mov-
ing the source and destination pointers by 2 bytes and ad-
justing the shiff amount.

The “best case” and “average case” times for most in-
structions are the same, due to reading the destination data
during the shifting of the source data.

TABLE B-3. Average Instruction Execution Times with No Wait-States

Instruction Number of Clock Cycles Notes

BBOR 42 + (107 + 44 * (width — 2)) * height Shift=0 — 8
42 + (107 + 44 * (width — 2)) * height Shift > 8
+ ((shift — 8) * width * height)

BBXOR 44 + (107 + 44 * (width — 2)) * height Shift =0 —
44 + (107 + 44 * (width — 2)) * height Shift > 8
+ ((shift — 8) * width * height)

BBAND 45 + (111 + 44 * (width — 2)) * height Shift =0 —
45 + (111 + 44 * (width — 2)) * height Shift > 8
+ ((shift — 8) * width * height)

BBFOR 48 + (61 + 25 * (width — 2)) * height Shift = 0
48 + (74 + 32 * (width — 2)) * height Shift =1 —
48 + (74 + 32 * (width — 2))* height + Shift > 8
((shift — 8) * width * height)

BBSTOD 66 + (170 + 60 * (width — 2)) * height Shift =0 —
66 + (170 + 60 * (width — 2)) * height Shift > 8
+ ((shift — 8) * width * height)

99

Appendix B: Instruction Execution Times (Continued)
TABLE B-3. Average Instruction Execution Times with No Wait-States (Continued)

Instruction Number of Clock Cycles Notes
BITWT 16 Shift = 0
28 Shift=1 — 8
28 + (shift — 8) Shift > 8
EXTBLT 35 + (19 + 12 * width) * height Shift = 0 — 8, Pre-Read
35 + (13 + 12 * width) * height Shift = 0 — 8, No Pre-Read
35 + (17 + 13 * width) * height Shift > 8, Pre-Read
35 + (11 + 13 * width) * height Shift > 8, No Pre-Read
MOVMPB,W 16 + 7 *R2
MOVMPD,W 16 + 8 *R2
SBITS 39 R2 < 25
42 R2 > 25
SBITP 8 + (34 *R2)
TABLE B-4. Average Instruction Execution Times with Wait-States
Instruction Number of Clock Cycles Notes
BBOR 42 + ((107 + 2 * Twaitblt) + (44 + Twaitblt) * (width — 2)) * height
BBXOR 44 + ((107 + 2 * Twaitblt) + (44 + Twaitblt) * (width — 2)) * height
BBAND 45 + ((111 + 2 * Twaitblt) + (44 + Twaitblt) * (width — 2)) * height
BBFOR 48 + ((74 + 2 * Twaitblt) + (32 + Twaitblt) * (width — 2)) * height
BBSTOD 66 + ((170 + 2 * Twaitblt) + (60 + Twaitblt) * (width — 2)) * height
BITWIT 16 + Twaitrds + Twaitrdd + Twaitwrd Shift =0
28 + Twaitblt Shift=1 — 8
EXTBLT 35 + (19 + (12 + (Twaitrds + Twaitrdd + Twaitwrd))* width) * height Pre-Read
35 + (18 + (12 + (Twaitrds + Twaitrdd + Twaitwrd)) * width) * height No Pre-Read
MOVMPB,W 16 + 7 * R2 + (Twaitwr — 1) * R2 Twaitwr > 1
16 + 7 *R2 Twaitwr < 1
MOVMPD 16 + 8 * R2 + Twaitwr * R2
SBITS 39 + (2 * Twaitrdd + 2 * Twaitwrd + 2 * Twaitrds) R2 < 25
42 + (2 * Twaitrdd + 2 * Twaitrds) R2 > 25
SBITP 8 + (34 * R2) + ((Twaitrdd + Twaitwrd) * R2)

B.3 DSPM INSTRUCTIONS
The performance of the command list operations is given in

the following tables:

Load Register Instructions

Store Register Instructions

Instruction Cycles Instruction Cycles
LX 3 SX 3
LY 3 SXL 3
Lz 3 SXH 4
LA 3 Sy 3
LEA 5 Sz 3
LPARAM 3 SA 3
LREPEAT 3 SEA 3
LEABR 3 SREPEAT 3
SOVF 3

100

Appendix B: Instruction Execution Times (Continued)
Arithmetic/Logical Instructions

Adjust Register Instructions

External Memory Move Instructions
Assuming EXT.HOLD = 0:

Instruction Cycles

VXLOAD (5+w)*leng +k + 2
VXSTORE 5+ w)*leng + k + 2
VXGATH 5+ w) *leng + k+ 2

w = Number of wait states in external memory access.

k = Number of cycles until HLDA is received, in external memory instruc-

tions.

Instruction Cycles Instruction Cycles
INCX 4 VROP 3 X /leng + 3
INCY 4 VAROP 3 Xleng + 4
INCZ 4
DECX 4 Multiply-and-Accumulate Instructions
DECY 4 Instruction Cycles
DECZ 4
VRMAC 2 Xleng +7
Flow Control Instructions VARMAC 2 X leng +7
N VCMAC 4 Xleng +7
Instruction Cycles VRLATP 4% Jeng + 5
NOPR 2 VCLATP 4 X leng + 2
HALT 1
DJNZ 5 Multiply-and-Add Instructions
DBPT 3 Instruction Cycles
Internal Memory Move Instructions VAIMAD 6*leng + 2
" VAIMADS 6*/leng + 4
Instruction Cycles VRMAD 4%leng + 3
VRMOV 2 X leng + 2 VARMAD 4*leng + 4
VARMOV 2 X leng + 2 VEMAD 6 *leng + 2
VRGATH 4 X leng + 4 VCMAD 4*leng + 6
VRSCAT 4 X leng + 4

Clipping and Min/Max Instructions

Instruction Cycles
VARABS 2 X leng + 5
VARMIN 7 X leng + 2
VARMAX 7 X leng + 2
VRFMIN 4 X leng + 6
VRFMAX 4 X leng + 6
EFMAX 17

Special Instructions

Instruction Cycles

ESHL 1 Xleng + 4
VCPOLY 4 X leng + 16
VDECIDE 12 X leng + 4
VDIST 5 X leng + 5
VFFT 8 X leng + 6
VESIIR 16 X /leng + 6

If leng = 1 in ESHL instruction, then the timing is 4 cycles.

101

0.950 13-996
o

|:25,13+8'15

PIN 1 IDENT

9 N\ 168 61
Anoonnnabdnonnaon

10 \O 60

Oooonnnoooonnonn
o g

26

L
Toooooooooo oo ow D

43

Advanced Imaging/Communication Signal Processors
t

LIFE SUPPORT POLICY

to the user.

0.029£0.003 . j
[0.74£0.08]

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury

Physical Dimensions inches (millimeters)

0.01740.004
[0.43%0.10]

0.045

459X
[1.14]
=

0.910£0.020
[23.11£0.51]

t_ 0.020

[0.51]

— SEATING PLANE

TYP

o
T
o
I
=,
=,
o
T
o
T
o
o,
o
1
o
A

MIN TYP

| 0.105%0.015

[2.67£0.38)
0.165-0.180

[4.19-4.57]

TYP

~J0.004[0.10]

68-Pin Plastic Leaded Chip Carrier (V)
Order Number NS32FX164V-15, NS32FX164V-20 or NS32FX164V-25

NS Package Number V68A

HH
0.990+0.005
[25.15+0.13] al

V68A (REV 1)

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

2. A critical component is any component of a life

support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National Semiconductor
Corporation

1111 West Bardin Road
Arlington, TX 76017

Tel: 1(800) 272-9959
Fax: 1(800) 737-7018

Europe

o)

NS32FX161-15/NS32FX161-20/NS32FX164-20/NS32FX164-25/NS32FV16-20/NS32FV16-25

National Semiconductor

Fax: (+49) 0-180-530 85 86

Email: cnjwge @tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85
English Tel: (+49) 0-180-532 78 32
Frangais Tel: (+49) 0-180-532 93 58
Italiano ~ Tel: (+49) 0-180-534 16 80

National Semiconductor
Hong Kong Ltd.

18th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon

Hong Kong

Tel: (852) 2737-1600

Fax: (852) 2736-9960

National Semiconductor
Japan Ltd.

Tel: 81-043-299-2309
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from Tl to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Audio www.ti.com/audio Communications and Telecom www.ti.com/communications
Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers
Data Converters dataconverter.ti.com Consumer Electronics Www.ti.com/consumer-apps
DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy
DSP dsp.ti.com Industrial www.ti.com/industrial
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Security www.ti.com/security
Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com
https://www.application-datasheet.com/

