
NS32FV16,NS32FX161,NS32FX164

NS32FX161 NS32FX164 NS32FV16 Advanced Imaging/Communication Signal

Processors

Literature Number: SNOS625A

TL/EE11267

N
S
3
2
F
X

1
6
1
-1

5
/
N

S
3
2
F
X

1
6
1
-2

0
/
N

S
3
2
F
X

1
6
4
-2

0
/
N

S
3
2
F
X

1
6
4
-2

5
/
N

S
3
2
F
V

1
6
-2

0
/
N

S
3
2
F
V

1
6
-2

5
A

d
v
a
n
c
e
d

Im
a
g
in

g
/
C

o
m

m
u
n
ic

a
tio

n
S
ig

n
a
l
P
ro

c
e
s
s
o
rs

February 1992

NS32FX161-15/NS32FX161-20/NS32FX164-20/
NS32FX164-25/NS32FV16-20/NS32FV16-25
Advanced Imaging/Communication Signal Processors
General Description
The NS32FX164, the NS32FV16 and the NS32FX161 are

high-performance 32-bit members of the Series 32000É/

EPTM family of National’s Embedded System ProcessorsTM

specifically optimized for CCITT Group 2 and Group 3 Fac-

simile Applications, Data Modems, Voice Mail Systems, La-

ser Printers, or any combination of the above.

Unless specified otherwise any reference to the

NS32FX164 in this document applies to the NS32FV16 and

the NS32FX161 as well.

The NS32FX164 can perform all the computations and con-

trol functions required for a stand-alone Fax system, a PC

add-in Fax/Voice/Data Modem card or a Laser/Fax sys-

tem.

It also meets the performance requirements to implement

14400, 9600 and 7200 bps modems complying with CCITT

V.17, V.29 and V.27 standards. The NS32FV16 supports

V.29 and V.27 standards as well as voice. The NS32FX161

supports V.29 and V.27 standards.

The NS32FX164 provides a 16 Mbyte Linear external ad-

dress space and a 16-bit external data bus.

The CPU core, which is the same as that of the NS32CG16,

incorporates a 32-bit ALU and instruction pipeline, and an

8-byte prefetch queue.

Also integrated on-chip with the CPU are a DSP Module

(DSPM) and a 4K-byte RAM Array (2K in the NS32FV16 and

NS32FX161). The DSPM is a complete processing unit, ca-

pable of autonomous operation parallel to the CPU core

operation. The DSPM executes programs stored in an inter-

nal on-chip Random Access Memory (RAM), and manipu-

lates data stored either in the internal RAM or in an external

off-chip memory. To maximize utilization of hardware re-

sources, the DSPM contains a pipelined DSP-oriented data-

path, and a control logic that implements a set of DSP vec-

tor commands.

The NS32FX164 capabilities can be expanded by using an

external floating point unit (FPU) which directly interfaces to

the NS32FX164 using the slave protocol. The CPU-FPU

cluster features high speed execution of the floating-point

instructions.

The NS32FX164 highly-efficient architecture combined with

the NS32CG16 graphics instructions and the high-perform-

ance vector operation capability, makes the device the ideal

choice for PostscriptTM and Fax applications.

Features
Y Software compatible with the Series 32000/EP

processors
Y Designed around the CPU core of the NS32CG16
Y Pin compatible with the NS32FX16
Y 32-bit architecture and implementation
Y On-chip DSP Module for high-speed DSP operations
Y Special support for graphics applications

Ð 18 graphics instructions

Ð Binary compression/expansion capability for font

storage using RLL encoding

Ð Pattern magnification

Ð Interface to an external BITBLT processing units for

fast color BITBLT operations
Y 4K-byte on-chip RAM array (2K in NS32FV16 and

NS32FX161)
Y On-chip clock generator
Y Floating-point support via the NS32081 or NS32181
Y Optimal interface to large memory arrays via the

NS32CG821 and the DP84xx family of DRAM

controllers
Y Power save mode
Y High-speed CMOS technology
Y 68-pin PLCC package

Block Diagram

TL/EE/11267–1

FIGURE 1-1. CPU Block Diagram
Series 32000É is a registered trademark of National Semiconductor Corporation.
EPTM and Embedded System ProcessorsTM are trademarks of National Semiconductor Corporation.

PostscriptTM is a trademark of Adobe Systems, Inc.

C1995 National Semiconductor Corporation RRD-B30M115/Printed in U. S. A.

Obs
ole

te

Table of Contents

1.0 PRODUCT INTRODUCTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ6

1.1 NS32FX164 Special Features ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ6

2.0 ARCHITECTURAL DESCRIPTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ7

2.1 Register Set ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ7

2.1.1 General Purpose Registers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ7

2.1.2 Address Registers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ8

2.1.3 Processor Status Register ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ8

2.1.4 Configuration Register ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ9

2.1.5 DSP Module Registers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ9

2.2 Memory Organization ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ11

2.2.1 Address MappingÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ12

2.3 Modular Software Support ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ12

2.4 Instruction Set ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ12

2.4.1 General Instruction Format ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ12

2.4.2 Addressing ModesÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ14

2.4.3 Instruction Set Summary ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ16

2.5 Graphics SupportÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ20

2.5.1 Frame Buffer Addressing ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ20

2.5.2 BITBLT Fundamentals ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ20

2.5.2.1 Frame Buffer ArchitectureÀÀÀÀÀÀÀÀÀÀÀ21

2.5.2.2 Bit AlignmentÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ21

2.5.2.3 Block Boundaries and Destination

MasksÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ21

2.5.2.4 BITBLT Directions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ22

2.5.2.5 BITBLT Variations ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ23

2.5.3 Graphics Support InstructionsÀÀÀÀÀÀÀÀÀÀÀÀÀÀ23

2.5.3.1 BITBLT (BIT-aligned BLock Transfer)À23

2.5.3.2 Pattern Fill ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ24

2.5.3.3 Data Compression, Expansion and

MagnifyÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ24

2.5.3.3.1 Magnifying Compressed

DataÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ26

3.0 FUNCTIONAL DESCRIPTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ26

3.1 Instruction Execution ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ26

3.1.1 Operating States ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ26

3.1.2 Instruction Endings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ26

3.1.2.1 Completed Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀ27

3.1.2.2 Suspended InstructionsÀÀÀÀÀÀÀÀÀÀÀÀÀ27

3.1.2.3 Terminated InstructionsÀÀÀÀÀÀÀÀÀÀÀÀÀ27

3.1.2.4 Partially Completed Instructions ÀÀÀÀÀ27

3.1.3 Slave Processor InstructionsÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ27

3.1.3.1 Slave Processor Protocol ÀÀÀÀÀÀÀÀÀÀÀ27

3.1.3.2 Floating-Point Instructions ÀÀÀÀÀÀÀÀÀÀ28

3.2 Exception Processing ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ29

3.2.1 Exception Acknowledge Sequence ÀÀÀÀÀÀÀÀÀ29

3.2.2 Returning from an Exception Service

Procedure ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ30

3.2.3 Maskable InterruptsÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ34

3.2.3.1 Non-Vectored Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ34

3.2.3.2 Vectored Mode: Non-Cascaded

Case ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ35

3.2.3.3 Vectored Mode: Cascaded CaseÀÀÀÀÀ35

3.2.4 Non-Maskable Interrupt ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ37

3.2.5 Traps ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ37

3.2.6 Priority among Exceptions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ37

3.2.7 Exception Acknowledge Sequences: Detailed

Flow ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ39

3.2.7.1 Maskable/Non-Maskable Interrupt

Sequence ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ39

3.2.7.2 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND

Trap Sequence ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ39

3.2.7.3 Trace Trap Sequence ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ39

3.3 Debugging Support ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ40

3.3.1 Instruction TracingÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ40

3.4 DSP Module ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ40

3.4.1 Programming Model ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ40

3.4.2 RAM Organization and Data Types ÀÀÀÀÀÀÀÀÀ41

3.4.2.1 Integer ValuesÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ41

3.4.2.2 Aligned-Integer Values ÀÀÀÀÀÀÀÀÀÀÀÀÀ41

3.4.2.3 Real Values ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ41

3.4.3.4 Aligned-Real Values ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ41

3.4.2.5 Extended Precision Real Values ÀÀÀÀÀ41

3.4.2.6 Complex Values ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ42

3.4.3 Command List Format ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ42

3.4.4 CPU Core Interface ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ42

3.4.4.1 Synchronization of Parallel OperationÀ42

3.4.4.2 DSPM RAM Organization ÀÀÀÀÀÀÀÀÀÀÀ43

3.4.5 DSPM Instruction Set ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ43

3.4.5.1 Conventions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ43

3.4.5.2 Type Casting ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ43

3.4.5.3 General NotesÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ44

3.4.5.4 Load Register Instructions ÀÀÀÀÀÀÀÀÀÀ44

3.4.5.5 Store Register Instructions ÀÀÀÀÀÀÀÀÀÀ45

3.4.5.6 Adjust Register Instructions ÀÀÀÀÀÀÀÀÀ46

3.4.5.7 Flow Control Instructions ÀÀÀÀÀÀÀÀÀÀÀ47

3.4.5.8 Internal Memory Move InstructionsÀÀÀ48

3.4.5.9 External Memory Move Instructions ÀÀ48

3.4.5.10 Arithmetic/Logical Instructions ÀÀÀÀÀ49

3.4.5.11 Multiply-and-Accumulate

Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ49

3.4.5.12 Multiply-and-Add InstructionsÀÀÀÀÀÀÀ50

3.4.5.13 Clipping and Min/Max Instructions ÀÀ52

3.4.5.14 Special Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ53

2

Obs
ole

te

Table of Contents (Continued)

3.5 System Interface ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ55

3.5.1 Power and Grounding ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ55

3.5.2 Clocking ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ56

3.5.3 Power Save Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ57

3.5.4 ResettingÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ57

3.5.5 Bus Cycles ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ58

3.5.5.1 Bus Status ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ58

3.5.5.2 Basic Read and Write Cycles ÀÀÀÀÀÀÀÀ58

3.5.5.3 Cycle Extension ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ62

3.5.5.4 Instruction Fetch Cycles ÀÀÀÀÀÀÀÀÀÀÀÀ63

3.5.5.5 Interrupt Control CyclesÀÀÀÀÀÀÀÀÀÀÀÀÀ64

3.5.5.6 Special Bus CyclesÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ65

3.5.5.7 Slave Processor Bus CyclesÀÀÀÀÀÀÀÀÀ65

3.5.5.8 Data Access SequencesÀÀÀÀÀÀÀÀÀÀÀÀ67

3.5.5.9 Bus Access Control ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ68

3.5.5.10 Instruction Status ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ71

4.0 DEVICE SPECIFICATIONS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ71

4.1 NS32FX164 Pin Descriptions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ71

4.1.1 Supplies ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ71

4.1.2 Input SignalsÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ71

4.1.3 Output Signals ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ71

4.1.4 Input-Output Signals ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ72

4.2 Absolute Maximum Ratings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ74

4.3 Electrical Characteristics ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ74

4.4 Switching CharacteristicsÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ74

4.4.1 DefinitionsÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ74

4.4.2 Timing TablesÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ75

4.4.2.1 Output Signals: Internal Propagation

Delays ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ75

4.4.2.2 Input Signal Requirements ÀÀÀÀÀÀÀÀÀÀ77

4.4.3 Timing Diagrams ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ79

APPENDIX A: INSTRUCTION FORMATS ÀÀÀÀÀÀÀÀÀÀÀÀÀ89

APPENDIX B: INSTRUCTION EXECUTION TIMESÀÀÀÀÀ92

B.1 Basic and Floating-Point Instructions ÀÀÀÀÀÀÀÀÀÀÀÀ92

B.1.1 EquationsÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ92

B.1.2 Notes on Table Use ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ93

B.1.3 Calculation of the Execution Time TEX for Basic

Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ93

B.1.4 Calculation of the Execution Time TEX for

Floating-Point InstructionsÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ93

B.2 Special Graphics Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ99

B.2.1 Execution Time Calculation for Special

Graphics Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ99

B.3 DSPM Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ100

List of Figures
FIGURE 1-1. CPU Block Diagram ÀÀ1

FIGURE 2-1. NS32FX164 Internal Registers ÀÀÀ7

FIGURE 2-2. Processor Status Register (PSR) ÀÀÀ8

FIGURE 2-3. Configuration Register (CFG) ÀÀ9

FIGURE 2-4. DSP Module Registers Address MapÀÀ9

FIGURE 2-5. Accumulator Format ÀÀ9

FIGURE 2-6. X, Y, Z Registers Format ÀÀ9

FIGURE 2-7. EABR Register FormatÀÀÀ10

FIGURE 2-8. OVF Register Format ÀÀ10

FIGURE 2-9. PARAM Register Format ÀÀÀ10

FIGURE 2-10. REPEAT Register Format ÀÀ10

FIGURE 2-11. EXT Register Format ÀÀ11

FIGURE 2-12. CLSTAT Register Format ÀÀ11

FIGURE 2-13. DSPINT and DSPMASK Register Format ÀÀÀ11

FIGURE 2-14. NMISTAT Register Format ÀÀÀ11

FIGURE 2-15. NS32FX164 Address Mapping ÀÀ12

FIGURE 2-16. NS32FX164 Run-Time Environment ÀÀÀ13

FIGURE 2-17. General Instruction Format ÀÀÀ13

FIGURE 2-18. Index Byte FormatÀÀÀ13

FIGURE 2-19. Displacement Encodings ÀÀÀ14

FIGURE 2-20. Correspondence between Linear and Cartesian Addressing ÀÀ20

FIGURE 2-21. 32-Pixel by 32-Scan Line Frame BufferÀÀÀ21

FIGURE 2-22. Overlapping BITBLT Blocks ÀÀ22

FIGURE 2-23. BB Instructions Format ÀÀ23

FIGURE 2-24. BITWT Instruction Format ÀÀ24

FIGURE 2-25. EXTBLT Instruction FormatÀÀÀ24

FIGURE 2-26. MOVMPi Instruction Format ÀÀ24

3

Obs
ole

te

List of Figures (Continued)

FIGURE 2-27. TBITS Instruction FormatÀÀÀ24

FIGURE 2-28. SBITS Instruction Format ÀÀ25

FIGURE 2-29. SBITPS Instruction Format ÀÀÀ25

FIGURE 2-30. Bus Activity for a Simple BITBLT Operation ÀÀÀ25

FIGURE 3-1. Operating States ÀÀ26

FIGURE 3-2. Slave Processor Protocol ÀÀ28

FIGURE 3-3. Slave Processor Status Word ÀÀÀ29

FIGURE 3-4. Interrupt Dispatch and Cascade Tables ÀÀ30

FIGURE 3-5. Exception Acknowledge Sequence: Direct-Exception Mode Disabled ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ31

FIGURE 3-6. Exception Acknowledge Sequence: Direct-Exception Mode Enabled ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ32

FIGURE 3-7. Return from Trap (RETTn) Instruction Flow: Direct-Exception Mode Disabled ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ33

FIGURE 3-8. Return from Interrupt (RETI) Instruction Flow: Direct-Exception Mode Disabled ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ34

FIGURE 3-9. Interrupt Control Unit Connections (16 Levels) ÀÀ35

FIGURE 3-10. Cascaded Interrupt Control Unit Connections ÀÀÀ36

FIGURE 3-11. Exception Processing Flowchart ÀÀ38

FIGURE 3-12. Service SequenceÀÀÀ39

FIGURE 3-13. DSP Module Block Diagram ÀÀ55

FIGURE 3-14. Power and Ground ConnectionsÀÀÀ56

FIGURE 3-15. Crystal InterconnectionsÐ30 MHz ÀÀ56

FIGURE 3-16. Crystal InterconnectionsÐ40 MHz, 50 MHzÀÀÀ56

FIGURE 3-17. Recommended Reset ConnectionsÀÀ56

FIGURE 3-18. Power-On Reset Requirements ÀÀÀ57

FIGURE 3-19. General Reset TimingÀÀ57

FIGURE 3-20. Bus ConnectionsÀÀ59

FIGURE 3-21. Read Cycle Timing ÀÀ60

FIGURE 3-22. Write Cycle Timing ÀÀ61

FIGURE 3-23. Cycle Extension of a Read Cycle ÀÀ63

FIGURE 3-24. Special Bus Cycle Timing ÀÀ65

FIGURE 3-25. Slave Processor Read CycleÀÀ66

FIGURE 3-26. Slave Processor Write CycleÀÀ67

FIGURE 3-27. NS32FX164 and FPU Interconnections ÀÀ67

FIGURE 3-28. Memory Interface ÀÀÀ67

FIGURE 3-29. HOLD Timing (Bus Initially Idle) ÀÀÀ69

FIGURE 3-30. HOLD Timing (Bus Initially Not Idle)ÀÀ70

FIGURE 4-1. Connection DiagramÀÀÀ73

FIGURE 4-2. Output Signals Specification Standard ÀÀÀ74

FIGURE 4-3a. Input Signals Specification Standard ÀÀÀ74

FIGURE 4-3b. RSTI, INT, NMI HysteresisÀÀ74

FIGURE 4-4. Read CycleÀÀÀ79

FIGURE 4-5. Write CycleÀÀÀ80

FIGURE 4-6. Special Bus Cycle ÀÀÀ81

FIGURE 4-7. HOLD Acknowledge Timing (Bus Initially Not Idle) ÀÀÀ82

FIGURE 4-8. HOLD Timing (Bus Initially Idle) ÀÀÀ83

FIGURE 4-9. External DMA Controller Bus Cycle ÀÀ84

FIGURE 4-10. Slave Processor Write TimingÀÀÀ85

FIGURE 4-11. Slave Processor Read TimingÀÀÀ85

FIGURE 4-12. SPC Timing ÀÀ85

FIGURE 4-13. PFS Signal TimingÀÀÀ86

FIGURE 4-14. ILO Signal Timing ÀÀÀ86

FIGURE 4-15. Clock Waveforms ÀÀÀ86

FIGURE 4-16. INT Signal Timing ÀÀÀ87

4

Obs
ole

te

List of Figures (Continued)

FIGURE 4-17. NMI Signal TimingÀÀÀ87

FIGURE 4-18. Power-On Reset ÀÀ87

FIGURE 4-19. Non-Power-On Reset ÀÀ88

FIGURE 4-20. Interrupt OutÀÀ88

List of Tables
TABLE 2-1. NS32FX164 Addressing Modes ÀÀÀ15

TABLE 2-2. NS32FX164 Instruction Set SummaryÀÀ16

TABLE 2-3. ‘op’ and ‘i’ Field Encodings ÀÀÀ23

TABLE 3-1. Floating-Point Instruction Protocols ÀÀ28

TABLE 3-2. Summary of Exception ProcessingÀÀÀ40

TABLE 3-3. External Oscillator Specifications Crystal Characteristics ÀÀÀ57

TABLE 3-4. Interrupt Sequences ÀÀÀ64

TABLE 3-5. Bus Cycle Categories ÀÀ67

TABLE 3-6. Data Access Sequences ÀÀÀ68

TABLE B-1. Basic Instructions ÀÀÀ94

TABLE B-2. Floating-Point Instructions: CPU Portion ÀÀ98

TABLE B-3. Average Instruction Execution Times with No Wait-States ÀÀ99

TABLE B-4. Average Instruction Execution Times with Wait-States ÀÀ100

5

Obs
ole

te

1.0 Product Introduction
The NS32FX164 is a high speed CMOS microprocessor in

the Series 32000/EP family.

It includes two main execution units: the NS32CG16 com-

patible CPU core and the DSP Module. The CPU core is

designed for general purpose computations and system

control functions. The DSP Module is tuned to perform the

DSP primitives needed in Voice Band Modems. The

NS32FX164 also incorporates a 4K-byte RAM Array as a

shared resource for both the CPU core and the DSP Module

(2K-byte in the NS32FV16 and the NS32FX161).

The NS32FX164 is software-compatible with all other CPUs

in the family.

The device incorporates all of the Series 32000 advanced

architectural features, with the exception of the virtual mem-

ory capability.

Brief descriptions of the NS32FX164 features that are

shared with other members of the family are provided be-

low:

Powerful Addressing Modes. Nine addressing modes

available to all instructions are included to access data

structures efficiently.

Data Types. The architecture provides for numerous data

types, such as byte, word, doubleword, and BCD, which may

be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case

instructions that compilers can’t use, the Series 32000 fami-

ly incorporates powerful instructions for control operations,

such as array indexing and external procedure calls, which

save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs

represent two-address machines. This means that each op-

erand can be referenced by any one of the addressing

modes provided.

This powerful memory-to-memory architecture permits

memory locations to be treated as registers for all useful

operations. This is important for temporary operands as well

as for context switching.

Large, Uniform Addressing. The NS32FX164 has 24-bit

address pointers that can address up to 16 megabytes with-

out any segmentation; this addressing scheme provides

flexible memory management without add-on expense.

Modular Software Support. Any software package for the

Series 32000 architecture can be developed independent of

all other packages, without regard to individual addressing.

In addition, ROM code is totally relocatable and easy to

access, which allows a significant reduction in hardware and

software cost.

Software Processor Concept. The Series 32000 architec-

ture allows future expansions of the instruction set that can

be executed by special slave processors, acting as exten-

sions to the CPU. This concept of slave processors is

unique to the Series 32000 architecture. It allows software

compatibility even for future components because the slave

hardware is transparent to the software. With future ad-

vances in semiconductor technology, the slaves can be

physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-

vide three primary performance advantages and character-

istics:

High-Level Language Support

Easy Future Growth Path

Application Flexibility

1.1 NS32FX164 SPECIAL FEATURES

In addition to the above Series 32000 features, the

NS32FX164 provides features that make the device ex-

tremely attractive for a wide range of applications where

graphics support, low chip count, and low power consump-

tion are required.

The most relevant of these features are the enhanced Digi-

tal Signal Processing performance which makes the chip

very attractive for facsimile applications, and the graphics

support capabilities, that can be used in applications such

as printers, CRT terminals, and other varieties of display

systems, where text and graphics are to be handled.

Graphics support is provided by eighteen instructions that

allow operations such as BITBLT, data compression/expan-

sion, fills, and line drawing, to be performed very efficiently.

In addition, the device can be easily interfaced to an exter-

nal BITBLT Processing Unit (BPU) for high BITBLT perform-

ance.

The NS32FX164 allows systems to be built with a relatively

small amount of random logic. The bus is highly optimized

to allow simple interfacing to a large variety of DRAMs and

peripheral devices. All the relevant bus access signals and

clock signals are generated on-chip. The cycle extension

logic is also incorporated on-chip.

The device is fabricated in a low-power, high speed CMOS

technology. It also includes a power-save feature that al-

lows the clock to be slowed down under software control,

thus minimizing the power consumption. This feature can be

used in those applications where power saving during peri-

ods of low performance demand is highly desirable.

The power save feature, the DSP Module and the Bus Char-

acteristics are described in the ‘‘Functional Description’’

section. A general overview of BITBLT operations and a

description of the graphics support instructions is provided

in Section 2.5. Details on all the NS32FX164 graphics in-

structions can be found in the NS32CG16 Printer/Display

Processor Programmer’s Reference Supplement.

6

Obs
ole

te

1.0 Product Introduction (Continued)

Below is a summary of the instructions that are directly ap-

plicable to graphics along with their intended use.

Instruction Application

BBAND The BITBLT group of instructions provide a

BBOR method of quickly imaging characters,

BBFOR creating patterns, windowing and other

BBXOR block oriented effects.

BBSTOD

BITWT

EXTBLT

MOVMP Move Multiple Pattern is a very fast

instruction for clearing memory and drawing

patterns and lines.

TBITS Test Bit String will measure the length of 1’s

or 0’s in an image, supporting many data

compression methods (RLL), TBITS may

also be used to test for boundaries of

images.

SBITS Set Bit String is a very fast instruction for

filling objects, outline characters and

drawing horizontal lines.

The TBITS and SBITS instructions support

Group 3 and Group 4 CCITT standards for

compression and decompression

algorithms.

SBITPS Set Bit Perpendicular String is a very fast

instruction for drawing vertical, horizontal

and 45§ lines.

In printing applications SBITS and SBITPS

may be used to express portrait and

landscape respectively from the same

compressed font data. The size of the

character may be scaled as it is drawn.

SBIT The Bit group of instructions enable single

CBIT pixels anywhere in memory to be set,

TBIT cleared, tested or inverted.

IBIT

INDEX The INDEX instruction combines a multiply-

add sequence into a single instruction. This

provides a fast translation of an X-Y

address to a pixel relative address.

2.0 Architectural Description
2.1 REGISTER SET

The NS32FX164 has 32 internal registers. 17 of these regis-

ters belong to the CPU portion of the device and are ad-

dressed either implicitly by specific instructions or through

the register addressing mode. The other 15 control the op-

eration of the DSP Module, and are memory mapped.Figure
2-1 shows the NS32FX164 internal registers.

CPU Registers

General Purpose

w 32 Bits x
R0–R7

Address

PC

SP0, SP1

FP

SB

INTBASE

MOD

Processor Status

PSR

Configuration

CFG

Peripherals Registers

DSP Module

A

X

Y

Z

EABR

CLPTR

OVF

PARAM

REPEAT

ABORT

EXT

CLSTAT

DSPINT

DSPMASK

NMISTAT

FIGURE 2-1. NS32FX164 Internal Registers

2.1.1 General Purpose Registers

There are eight registers (R0–R7) used for satisfying the

high speed general storage requirements, such as holding

temporary variables and addresses. The general purpose

registers are free for any use by the programmer. They are

32 bits in length. If a general purpose register is specified for

an operand that is 8 or 16 bits long, only the low part of the

register is used; the high part is not referenced or modified.

7

Obs
ole

te

2.0 Architectural Description (Continued)

2.1.2 Address Registers

The seven address registers are used by the processor to

implement specific address functions. Except for the MOD

register that is 16 bits wide, all the others are 32 bits. A

description of the address registers follows.

PCÐProgram Counter. The PC register is a pointer to the

first byte of the instruction currently being executed. The PC

is used to reference memory in the program section.

SP0, SP1ÐStack Pointers. The SP0 register points to the

lowest address of the last item stored on the INTERRUPT

STACK. This stack is normally used only by the operating

system. It is used primarily for storing temporary data, and

holding return information for operating system subroutines

and interrupt and trap service routines. The SP1 register

points to the lowest address of the last item stored on the

USER STACK. This stack is used by normal user programs

to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer

(see PSR S-bit), the terms ‘‘SP Register’’ or ‘‘SP’’ are used.

SP refers to either SP0 or SP1, depending on the setting of

the S bit in the PSR register. If the S bit in the PSR is 0, SP

refers to SP0. If the S bit in the PSR is 1 then SP refers to

SP1.

Stacks in the Series 32000 architecture grow downward in

memory. A Push operation pre-decrements the Stack Point-

er by the operand length. A Pop operation post-increments

the Stack Pointer by the operand length.

FPÐFrame Pointer. The FP register is used by a procedure

to access parameters and local variables on the stack. The

FP register is set up on procedure entry with the ENTER

instruction and restored on procedure termination with the

EXIT instruction.

The frame pointer holds the address in memory occupied by

the old contents of the frame pointer.

SBÐStatic Base. The SB register points to the global vari-

ables of a software module. This register is used to support

relocatable global variables for software modules. The SB

register holds the lowest address in memory occupied by

the global variables of a module.

INTBASEÐInterrupt Base. The INTBASE register holds

the address of the dispatch table for interrupts and traps

(Section 3.2.1).

MODÐModule. The MOD register holds the address of the

module descriptor of the currently executing software mod-

ule. The MOD register is 16 bits long, therefore the module

table must be contained within the first 64 kbytes of memo-

ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa-

tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit

halves. The low order eight bits are accessible to all pro-

grams, but the high order eight bits are accessible only to

programs executing in Supervisor Mode.

15 8 7 0

B I P S U N Z F J K L T C

FIGURE 2-2. Processor Status Register (PSR)

C The C bit indicates that a carry or borrow occurred after

an addition or subtraction instruction. It can be used with

the ADDC and SUBC instructions to perform multiple-

precision integer arithmetic calculations. It may have a

setting of 0 (no carry or borrow) or 1 (carry or borrow).

T The T bit causes program tracing. If this bit is set to 1, a

TRC trap is executed after every instruction (Section

3.3.1).

L The L bit is altered by comparison instructions. In a com-

parison instruction the L bit is set to ‘‘1’’ if the second

operand is less than the first operand, when both oper-

ands are interpreted as unsigned integers. Otherwise, it

is set to ‘‘0’’. In Floating-Point comparisons, this bit is

always cleared.

K Reserved for use by the CPU.

J Reserved for use by the CPU.

F The F bit is a general condition flag, which is altered by

many instructions (e.g., integer arithmetic instructions

use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a com-

parison instruction the Z bit is set to ‘‘1’’ if the second

operand is equal to the first operand; otherwise it is set

to ‘‘0’’.

N The N bit is altered by comparison instructions. In a

comparison instruction the N bit is set to ‘‘1’’ if the sec-

ond operand is less than the first operand, when both

operands are interpreted as signed integers. Otherwise,

it is set to ‘‘0’’.

U If the U bit is ‘‘1’’ no privileged instructions may be exe-

cuted. If the U bit is ‘‘0’’ then all instructions may be

executed. When Ue0 the processor is said to be in Su-

pervisor Mode; when Ue1 the processor is said to be in

User Mode. A User Mode program is restricted from exe-

cuting certain instructions and accessing certain regis-

ters which could interfere with the operating system. For

example, a User Mode program is prevented from

changing the setting of the flag used to indicate its own

privilege mode. A Supervisor Mode program is assumed

to be a trusted part of the operating system, hence it has

no such restrictions.

S The S bit specifies whether the SP0 register or SP1 reg-

ister is used as the Stack Pointer. The bit is automatical-

ly cleared on interrupts and traps. It may have a setting

of 0 (use the SP0 register) or 1 (use the SP1 register).

P The P bit prevents a TRC trap from occurring more than

once for an instruction (Section 3.3.1). It may have a

setting of 0 (no trace pending) or 1 (trace pending).

I If Ie1, then all interrupts will be accepted. If Ie0, only

the NMI interrupt is accepted. Trap enables are not af-

fected by this bit.

8

Obs
ole

te

2.0 Architectural Description (Continued)

B Reserved for use by the CPU. This bit is set to 1 during

the execution of the EXTBLT instruction and causes the

BPU signal to become active. Upon reset, B is set to

zero and the BPU signal is set high.

Note 1: When an interrupt is acknowledged, the B, I, P, S and U bits are set

to zero and the BPU signal is set high. A return from interrupt will

restore the original values from the copy of the PSR register saved

in the interrupt stack.

Note 2: If BITBLT (BB) or EXTBLT instructions are executed in an interrupt

routine, the PSR bits J and K must be cleared first.

2.1.4 Configuration Register

The Configuration Register (CFG) is 32 bits wide, of which 5

bits are implemented. The implemented bits enable various

operating modes for the CPU, including vectoring of inter-

rupts, execution of floating-point instructions, processing of

exceptions and selection of clock scaling factor. The CFG is

programmed by the SETCFG instruction. The format of CFG

is shown in Figure 2-3 . The various control bits are de-

scribed below.

31 8 7 0

Reserved DE Res C M F I

FIGURE 2-3. Configuration Register (CFG)

I Interrupt vectoring. This bit controls whether maskable

interrupts are handled in nonvectored (Ie0) or vec-

tored (Ie1) mode. Refer to Section 3.2.3 for more in-

formation.

F Floating-point instruction set. This bit indicates wheth-

er a floating-point unit (FPU) is present to execute

floating-point instructions. If this bit is 0 when the CPU

executes a floating-point instruction, a Trap (UND) oc-

curs. If this bit is 1, then the CPU transfers the instruc-

tion and any necessary operands to the FPU using the

slave-processor protocol described in Section 3.1.3.1.

M Clock scaling. This bit is used in conjunction with the

C-bit to select the clock scaling factor.

C Clock scaling. Same as the M-bit above. Refer to Sec-

tion 3.5.3 on ‘‘Power Save Mode’’ for details.

DE Direct-Exception mode enable. This bit enables the Di-

rect-Exception mode for processing exceptions. When

this mode is selected, the CPU response time to inter-

rupts and other exceptions is significantly improved.

Refer to Section 3.2 for more information.

2.1.5 DSP Module Registers

The DSP Module (DSPM) contains 15 memory-mapped reg-

isters. All the registers, except OVF, CLSTAT, ABORT,

DSPINT and NMISTAT, are readable and writable. OVF,

CLSTAT, DSPINT and NMISTAT are read-only. ABORT is

write-only.

The DSPM registers are divided into two groups, according

to their function. PARAM, OVF, X, Y, Z, A, REPEAT, CLPTR

and EABR are called DSPM dedicated registers. CLSTAT,

ABORT, DSPINT, DSPMASK, EXT and NMISTAT are called

CPU core interface registers.

Accesses to these registers must be aligned; word and dou-

ble-word accesses must occur on word and double-word

address boundaries respectively. Failing to do so will cause

unpredictable results. Figure 2-4 shows the address map of

the DSP Module registers.

Register Register

Name Address

PARAM FFFF8000

OVF FFFF8004

X FFFF8008

Y FFFF800C

Z FFFF8010

A FFFF8014

REPEAT FFFF8018

CLPTR FFFF8020

EABR FFFF8024

CLSTAT FFFF9000

ABORT FFFF9004

DSPINT FFFF9008

DSPMASK FFFF900C

EXT FFFF9010

NMISTAT FFFF9014

FIGURE 2-4. DSP Module Registers Address Map

AÐAccumulator

The format of the accumulator is shown in Figure 2-5 .

33 0 33 0

Imaginary Real

FIGURE 2-5. Accumulator Format

The A register is a complex accumulator. It has two 34-bit

fields: a real part, and an imaginary part. Bits 15 through 30

of the real and the imaginary parts of the accumulator can

be read or written by the core in one double-word access.

Bits 15 through 30 of the real part are mapped to the oper-

and’s bits 0 through 15, and bits 15 through 30 of the imagi-

nary part are mapped to the operand’s bits 16 through 31.

The accumulator can also be read and written by the com-

mand-list execution unit using the SA, SEA, LA and LEA

instructions (See Section 3.4 for more information).

Note that when a value is stored in the accumulator by the

core, the value of PARAM.RND bit is copied into bit position

14 of both real and imaginary parts of the accumulator. This

technique allows rounding of the accumulator’s value in the

following DSPM instructions (See Section 3.4.5.3 for more

information on rounding).

When the Accumulator is loaded either by the core or by the

LA or LEA instructions, bits 31–33 of the real and the imagi-

nary accumulators are loaded with the values of bit 30 of the

real and the imaginary parts respectively.

When the Accumulator is loaded either by the core or by the

LA instruction, bits 0–13 of the real and the imaginary accu-

mulators are loaded with zeros.

X, Y, ZÐVector Pointers

The format of X, Y, and Z registers is shown in Figure 2-6 .

31 16 15 8 7 4 3 0

ADDRESS Reserved WRAP-AROUND INCREMENT

FIGURE 2-6. X, Y, Z Registers Format

9

Obs
ole

te

2.0 Architectural Description (Continued)

The X, Y, and Z registers are used for addressing up to

three vector operands. They are 32-bit registers, with three

fields: ADDRESS, INCREMENT, and WRAP-AROUND. The

value in the ADDRESS field specifies the address of a word

in the on-chip memory. This field has 16 bits, and can ad-

dress up to 64 Kwords of internal memory. The ADDRESS

fields are initialized with the vector operands’ start-address-

es by commands in the command list. At the beginning of

each vector operation, the contents of the ADDRESS field

are copied to incrementors. Increments can be used by vec-

tor instructions to step through the corresponding vector

operands while executing the appropriate calculations.

There is an address wrap-around for those vector instruc-

tions that require some of their operands to be located in

cyclic buffers. The allowed values for the increment field are

0 through 15. The actual increment will be 2increment words.

The allowed values for the WRAP-AROUND field are 0

through 15. The actual wrap-around will be 2WRAP-AROUND

words. The WRAP-AROUND must be greater or equal to

the INCREMENT.

The X, Y, and Z registers can be read and written by the

core. These registers can be read and written by the com-

mand-list execution unit, as well as by the core, when using

SX, SXL, SXH, SY, SZ, LX, LY and LZ instructions.

EABRÐExternal Address Base Register

The format of the external address base register is shown in

Figure 2-7 .

31 17 16 0

ADDRESS 0

FIGURE 2-7. EABR Register Format

The EABR register is used together with a 16-bit address

field to form a 32-bit external address. External addresses

are specified as the sum of the value in EABR and two times

the value of the 16-bit address pointed by registers X, Y or

Z. The only value allowed to be written into bits 0 through 16

of EABR is ‘‘0’’. The EABR register can be read and written

by the core. It can also be written by the command-list exe-

cution unit by using the LEABR instruction.

EABR can hold any value except for FFFE0000. Accessing

external memory with an FFFE0000 in the EABR will cause

unpredictable results.

CLPTRÐCommand List Pointer

The CLPTR is a 16-bit register that holds the address of the

current command in the internal RAM. Writing into the

CLPTR causes the DSPM command-list execution unit to

begin executing commands, starting from the address in

CLPTR. The CLPTR can be read and written by the core

while the command-list execution is idle.

Whenever the DSPM command-list execution unit reads a

command from the DSPM RAM, the value of CLPTR is up-

dated to contain the address of the next command to be

executed. This implies, for example, that if the last com-

mand in a list is in address N, the CLPTR will hold a value of

N a 1 following the end of command list execution.

OVFÐOverflow Register

The format of the overflow register is shown in Figure 2-8 .

15 2 1 0

Reserved OVF SAT

FIGURE 2-8. OVF Register Format

The OVF register holds the current status of the DSPM

arithmetic unit. It has two fields: OVF and SAT. The OVF bit

is set to ‘‘1’’ whenever an overflow is detected in the DSPM

34-bit ALU (e.g., bits 32 and 33 of the ALU are not equal).

No overflow detection is provided for integers. The SAT bit

is set to ‘‘1’’ whenever a value read from the accumulator

cannot be represented within the limits of its data type (e.g.,

16 bits for real and integer, and 31 bits for extended real). In

this case the value read from the accumulator will either be

the maximum allowed value or the minimal allowed value for

this data type depending on the sign of the accumulator

value. Note that in some cases when the OVF is set, the

SAT will not be set. The reason is that if an OVF occurred,

the value in the accumulator can no longer be used for

proper SAT detection. Upon reset, and whenever the

ABORT register is written, the non reserved bits of the OVF

register is cleared to ‘‘0’’.

The OVF is a read only register. It can be read by the core. It

can also be read by the command-list execution unit using

the SOVF instruction. Reading the OVF by either the core or

the command-list execution unit clears it to ‘‘0’’.

PARAMÐVector Parameter Register

The format of the PARAM register is shown in Figure 2-9.

31 26 25 24 19 18 17 16 15 0

Reserved RND OP SUB CLR COJ LENGTH

FIGURE 2-9. PARAM Register Format

The PARAM register is used to specify the number of itera-

tions and special options for the various instructions. The

options are: RND, OP, SUB, CLR, and COJ. The effect of

each of the bits of the PARAM register is specified in Sec-

tion 3.4.

The PARAM register can be read and written by the core. It

can also be written by the command-list execution unit, by

using the LPARAM instruction. The value written into PAR-

AM.LENGTH must be greater then 0.

The value of PARAM.LENGTH is not changed during com-

mand-list execution, unless it is written into using the

LPARAM instruction.

REPEATÐCommand-List Repeat Register

The format of the repeat register is shown in Figure 2-10.

31 16 15 0

COUNT TARGET

FIGURE 2-10. REPEAT Register Format

The REPEAT register is used, together with appropriate

commands, to implement loops and branches in the com-

mand list. The count is used to specify the number of times

a loop in the command list is to be repeated. The target is

used to specify a jump address within the command list.

The REPEAT register can be read and written by the core. It

can also be read and written by the command-list execution

unit by using SREPEAT and LREPEAT instructions respec-

tively.

The value of REPEAT.COUNT changes during the execu-

tion of the DJNZ command.

ABORTÐAbort Register

The ABORT register is used to force execution of the com-

mand list to halt. Writing any value into this register stops

execution, and clears the contents of OVF, EXT, DSPINT

and DSPMASK. The ABORT register can only be written

and only by the core.

10

Obs
ole

te

2.0 Architectural Description (Continued)

EXTÐExternal Memory Reference Control Register

The format of the external memory reference control regis-

ter is shown in Figure 2-11.

15 1 0

Reserved HOLD

FIGURE 2-11. EXT Register Format

The EXT register controls external references. The com-

mand-list execution unit checks the value of EXT.HOLD be-

fore each external memory reference. When EXT.HOLD is

‘‘0’’, external memory references are allowed. When

EXT.HOLD is ‘‘1’’, and external memory references are re-

quested, the execution of the command list will stop until

EXT.HOLD is ‘‘0’’. Upon reset, and whenever the ABORT

register is written, EXT.HOLD is cleared to ‘‘0’’. The EXT

register can be read or written by the core.

CLSTATÐCommand-List Execution Status Register

The format of the command-list execution status register is

shown in Figure 2-12.

15 1 0

Reserved RUN

FIGURE 2-12. CLSTAT Register Format

The CLSTAT register displays the current status of the exe-

cution of the command list. When the command-list execu-

tion is idle, CLSTAT.RUN is ‘‘0’’, and when it is active,

CLSTAT.RUN is ‘‘1’’. Upon reset, the CLSTAT register is

cleared to ‘‘0’’. It can only be read, and only by the core.

DSPINT, DSPMASK, NMISTATÐInterrupt Control

Registers

The format of DSPINT and DSPMASK is shown in Figure
2-13.

15 1 0

Reserved HALT

FIGURE 2-13. DSPINT and DSPMASK Register Format

The DSPINT register holds the current status of interrupt

requests. Whenever execution of the command list is

stopped, the DSPINT.HALT bit is set to ‘‘1’’. The DSPINT is

a read only register. It is cleared to ‘‘0’’ whenever it is read,

whenever the ABORT register is written, and upon reset.

The DSPMASK register is used to mask the DSPINT. HALT

flag. An interrupt request is transferred to the interrupt logic

of the IOUT output pin whenever the DSPINT.HALT bit is

set to ‘‘1’’, and the DSPMASK.HALT bit is unmasked (set to

‘‘1’’). See Section 4.0 for the functionality of IOUT.

DSPMASK can be read and written by the core. Upon reset,

and whenever the ABORT register is written, all the bits in

DSPMASK are cleared to ‘‘0’’.

The format of the NMISTAT register is shown inFigure 2-14.

15 3 2 1 0

Reserved ERR UND EXT

FIGURE 2-14. NMISTAT Register Format

The NMISTAT holds the status of the current pending Non-

Maskable Interrupt (NMI) requests.

Whenever the core attempts to access the DSPM address

space while the CLSTAT.RUN bit is ‘‘1’’ (except for access-

es to the CLSTAT, EXT, DSPINT, NMISTAT, DSPMASK,

and ABORT registers) NMISTAT.ERR is set to ‘‘1’’.

Whenever there is an attempt to execute a DBPT instruc-

tion, or a reserved DSPM instruction (Section 3.4), the

NMISTAT.UND bit is set to ‘‘1’’.

When a high to low transition is detected on the NMI input

pin, NMISTAT.EXT bit is set to ‘‘1’’.

When one of the bits in NMISTAT is set to ‘‘1’’, an NMI

request to the core is issued.

The NMISTAT register is cleared to 0 upon reset, and each

time its contents are read.

When one of the bits in NMISTAT is set to 1, an NMI occurs.

The NMI handler can read the NMISTAT register to deter-

mine the source of the interrupt. Note that since NMIs may

be nested, it is possible that a second NMI handler (invoked

while the previous handler has not yet exited) will read and

handle more than one set bit in NMISTAT. Since the read

operation clears the register, the interrupted handler may

find that no bits are set.

2.2 MEMORY ORGANIZATION

The main memory of the NS32FX164 is a uniform linear

address space. Memory locations are numbered sequential-

ly starting at zero and ending at 224 b 1. The number speci-

fying a memory location is called an address. The contents

of each memory location is a byte consisting of eight bits.

Unless otherwise noted, diagrams in this document show

data stored in memory with the lowest address on the right

and the highest address on the left. Also, when data is

shown vertically, the lowest address is at the top of a dia-

gram and the highest address at the bottom of the diagram.

When bits are numbered in a diagram, the least significant

bit is given the number zero, and is shown at the right of the

diagram. Bits are numbered in increasing significance and

toward the left.

7 0

A

Byte at Address A

Two contiguous bytes are called a word. Except where not-

ed, the least significant byte of a word is stored at the lower

address, and the most significant byte of the word is stored

at the next higher address. In memory, the address of a

word is the address of its least significant byte, and a word

may start at any address.

15 8 7 0

Aa1 A

MSB LSB
Word at Address A

Two contiguous words are called a double-word. Except

where noted, the least significant word of a double-word is

stored at the lowest address and the most significant word

of the double-word is stored at the address two higher. In

memory, the address of a double-word is the address of its

least significant byte, and a double-word may start at any

address.

31 24 23 16 15 8 7 0

Aa3 Aa2 Aa1 A

MSB LSB
Double Word at Address A

11

Obs
ole

te

2.0 Architectural Description (Continued)

Although memory is addressed as bytes, it is actually orga-

nized as words. Therefore, words and double-words that are

aligned to start at even addresses (multiples of two) are

accessed more quickly than words and double-words that

are not so aligned.

2.2.1 Address Mapping

The NS32FX164 supports the use of memory-mapped pe-

ripheral devices and coprocessors. Such memory-mapped

devices can be located at arbitrary locations within the

16-Mbyte address range available externally.

Addresses marked as Reserved inFigure 2-15 are not avail-

able in the present implementation of the NS32FX164, and

should not be used. The top 8-Mbyte block is reserved by

National Semiconductor Corporation, and only a few loca-

tions within this block are presently used to access the on-

chip RAM array and DSP Module registers. Figure 2-15
shows the NS32FX164 address mapping.

Start Address

(HEX)

00000000 Memory and I/O

00FFFE00 Interrupt Control

01000000 Reserved

FFFE0000 DSPM Internal RAM

FFFE1000 Reserved

FFFF8000 DSPM Dedicated Registers

FFFF8028 Reserved

FFFF9000 DSPM Control/Status Registers

FFFF9014 Reserved

FIGURE 2-15. NS32FX164 Address Mapping

2.3 MODULAR SOFTWARE SUPPORT

The NS32FX164 provides special support for software mod-

ules and modular programs.

Each module in a NS32FX164 software environment con-

sists of three components:

1. Program Code Segment.

This segment contains the module’s code and constant

data.

2. Static Data Segment.

Used to store variables and data that may be accessed

by all procedures within the module.

3. Link Table.

This component contains two types of entries: Absolute

Addresses and Procedure Descriptors.

An Absolute Address is used in the external addressing

mode, in conjunction with a displacement and the current

MOD Register contents to compute the effective address

of an external variable belonging to another module.

The Procedure Descriptor is used in the call external pro-

cedure (CXP) instruction to compute the address of an

external procedure.

Normally, the linker program specifies the locations of the

three components. The Static Data and Link Table typically

reside in RAM; the code component can be either in RAM or

in ROM. The three components can be mapped into non-

contiguous locations in memory, and each can be indepen-

dently relocated. Since the Link Table contains the absolute

addresses of external variables, the linker need not assign

absolute memory addresses for these in the module itself;

they may be assigned at load time.

To handle the transfer of control from one module to anoth-

er, the NS32FX164 uses a module table in memory and two

registers in the CPU.

The Module Table is located within the first 64 kbytes of

memory. This table contains a Module Descriptor (also

called a Module Table Entry) for each module in the ad-

dress space of the program. A Module Descriptor has four

32-bit entries corresponding to each component of a mod-

ule:

The Static Base entry contains the address of the begin-

ning of the module’s static data segment.

The Link Table Base points to the beginning of the mod-

ule’s Link Table.

The Program Base is the address of the beginning of the

code and constant data for the module.

A fourth entry is currently unused but reserved.

The MOD Register in the CPU contains the address of the

Module Descriptor for the currently executing module.

The Static Base Register (SB) contains a copy of the Static

Base entry in the Module Descriptor of the currently execut-

ing module, i.e., it points to the beginning of the current

module’s static data area.

This register is implemented in the CPU for efficiency pur-

poses. By having a copy of the static base entry or chip, the

CPU can avoid reading it from memory each time a data

item in the static data segment is accessed.

In an NS32FX164 software environment modules need not

be linked together prior to loading. As modules are loaded,

a linking loader simply updates the Module Table and fills

the Link Table entries with the appropriate values. No modi-

fication of a module’s code is required. Thus, modules may

be stored in read-only memory and may be added to a sys-

tem independently of each other, without regard to their in-

dividual addressing. Figure 2-16 shows a typical

NS32FX164 run-time environment.

2.4 INSTRUCTION SET

2.4.1 General Instruction Format

Figure 2-17 shows the general format of a Series 32000

instruction. The Basic Instruction is one to three bytes long

and contains the Opcode and up to two 5-bit General Ad-

dressing Mode (‘‘Gen’’) fields. Following the Basic Instruc-

tion field is a set of optional extensions, which may appear

depending on the instruction and the addressing modes se-

lected.

Index Bytes appear when either or both Gen fields specify

Scaled Index. In this case, the Gen field specifies only the

Scale Factor (1, 2, 4 or 8), and the Index Byte specifies

which General Purpose Register to use as the index, and

which addressing mode calculation to perform before index-

ing.

12

Obs
ole

te

2.0 Architectural Description (Continued)

Following Index Bytes come any displacements (addressing

constants) or immediate values associated with the select-

ed addressing modes. Each Disp/lmm field may contain

one of two displacements, or one immediate value. The size

of a Displacement field is encoded within the top bits of that

field, as shown in Figure 2-19, with the remaining bits inter-

preted as a signed (two’s complement) value. The size of an

immediate value is determined from the Opcode field. Both

Displacement and Immediate fields are stored most-signifi-

cant byte first. Note that this is different from the memory

representation of data (Section 2.2).

Some instructions require additional ‘‘implied’’ immediates

and/or displacements, apart from those associated with ad-

dressing modes. Any such extensions appear at the end of

the instruction, in the order that they appear within the list of

operands in the instruction definition (Section 2.4.3).

TL/EE/11267–3

FIGURE 2-18. Index Byte Format

TL/EE/11267–2

Note: Dashed lines indicate information copied to register during transfer of control between modules.

FIGURE 2-16. NS32FX164 Run-Time Environment

TL/EE/11267–4

FIGURE 2-17. General Instruction Format

13

Obs
ole

te

2.0 Architectural Description (Continued)

2.4.2 Addressing Modes

The NS32FX164 CPU generally accesses an operand by

calculating its Effective Address based on information avail-

able when the operand is to be accessed. The method to be

used in performing this calculation is specified by the pro-

grammer as an ‘‘addressing mode’’.

Addressing modes in the NS32FX164 are designed to opti-

mally support high-level language accesses to variables. In

nearly all cases, a variable access requires only one ad-

dressing mode, within the instruction that acts upon that

variable. Extraneous data movement is therefore minimized.

NS32FX164 Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen-

eral Purpose Registers. In certain Slave Processor instruc-

tions, an auxiliary set of eight registers may be referenced

instead.

Register Relative: A General Purpose Register contains an

address to which is added a displacement value from the

instruction, yielding the Effective Address of the operand in

memory.

Memory Space: Identical to Register Relative above, ex-

cept that the register used is one of the dedicated registers

PC, SP, SB or FP. These registers point to data areas gen-

erally needed by high-level languages.

Memory Relative: A pointer variable is found within the

memory space pointed to by the SP, SB or FP register. A

displacement is added to that pointer to generate the Effec-

tive Address of the operand.

Immediate: The operand is encoded within the instruction.

This addressing mode is not allowed if the operand is to be

written.

Absolute: The address of the operand is specified by a

displacement field in the instruction.

External: A pointer value is read from a specified entry of

the current Link Table. To this pointer value is added a dis-

placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SP0 or

SP1) specifies the location of the operand. The operand is

pushed or popped, depending on whether it is written or

read.

Scaled Index: Although encoded as an addressing mode,

Scaled Indexing is an option on any addressing mode ex-

cept Immediate or another Scaled Index. It has the effect of

calculating an Effective Address, then multiplying any Gen-

eral Purpose Register by 1, 2, 4 or 8 and adding into the

total, yielding the final Effective Address of the operand.

Table 2-1 is a brief summary of the addressing modes. For a

complete description of their actions, see the Series 32000

Instruction Set Reference Manual.

In addition to the general modes, Register-Indirect with

auto-increment/decrement and warps or pitch are available

on several of the graphics instructions.

Byte Displacement: Range b64 to a63

Word Displacement: Range b8192 to a8191

Double Word Displacement:

Range (Entire Addressing Space)

TL/EE/11267–5

FIGURE 2-19. Displacement Encodings

14

Obs
ole

te

2.0 Architectural Description (Continued)

TABLE 2-1. NS32FX164 Addressing Modes

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS

Register

00000 Register 0 R0 or F0 None: Operand is in the specified

00001 Register 1 R1 or F1 register.

00010 Register 2 R2 or F2

00011 Register 3 R3 or F3

00100 Register 4 R4 or F4

00101 Register 5 R5 or F5

00110 Register 6 R6 or F6

00111 Register 7 R6 or F7

Register Relative

01000 Register 0 relative disp(R0) Disp a Register.

01001 Register 1 relative disp(R1)

01010 Register 2 relative disp(R2)

01011 Register 3 relative disp(R3)

01100 Register 4 relative disp(R4)

01101 Register 5 relative disp(R5)

01110 Register 6 relative disp(R6)

01111 Register 7 relative disp(R7)

Memory Relative

10000 Frame memory relative disp2(disp1 (FP)) Disp2 a Pointer; Pointer found at

10001 Stack memory relative disp2(disp1 (SP)) address Disp 1 a Register. ‘‘SP’’

10010 Static memory relative disp2(disp1 (SB)) is either SP0 or SP1, as selected

in PSR.

Reserved

10011 (Reserved for Future Use)

Immediate

10100 Immediate value None: Operand is input from

instruction queue.

Absolute

10101 Absolute @disp Disp.

External

10110 External EXT (disp1) a disp2 Disp2 a Pointer; Pointer is found

at Link Table Entry number Disp1.

Top Of Stack

10111 Top of stack TOS Top of current stack, using either

User or Interrupt Stack Pointer,

as selected in PSR. Automatic

Push/Pop included.

Memory Space

11000 Frame memory disp(FP) Disp a Register; ‘‘SP’’ is either

11001 Stack memory disp(SP) SP0 or SP1, as selected in PSR.

11010 Static memory disp(SB)

11011 Program memory *a disp

Scaled Index

11100 Index, bytes mode[Rn:B] EA (mode) a Rn.

11101 Index, words mode[Rn:W] EA (mode) a 2cRn.

11110 Index, double words mode[Rn:D] EA (mode) a 4cRn.

11111 Index, quad words mode[Rn:Q] EA (mode) a 8cRn.

‘‘Mode’’ and ‘‘n’’ are contained

within the Index Byte.

EA (mode) denotes the effective

address generated using mode.

15

Obs
ole

te

2.0 Architectural Description (Continued)

2.4.3 Instruction Set Summary

Table 2-2 presents a brief description of the NS32FX164

instruction set. The Format column refers to the Instruction

Format tables (Appendix A). The Instruction column gives

the instruction as coded in assembly language, and the De-

scription column provides a short description of the function

provided by that instruction. Further details of the exact op-

erations performed by each instruction may be found in the

Series 32000 Instruction Set Reference Manual and the

NS32CG16 Printer/Display Processor Programmer’s Refer-

ence.

Notations:

ieInteger length suffix: B e Byte

We Word

D e Double Word

feFloating Point length suffix: FeStandard Floating

LeLong Floating

geneGeneral operand. Any addressing mode can be speci-

fied.

shorteA 4-bit value encoded within the Basic Instruction

(see Appendix A for encodings).

immeImplied immediate operand. An 8-bit value appended

after any addressing extensions.

dispeDisplacement (addressing constant): 8, 16 or 32 bits.

All three lengths legal.

regeAny General Purpose Register: R0–R7.

aregeAny Processor Register: SP, SB, FP, INTBASE,

MOD, PSR, US (bottom 8 PSR bits).

condeAny condition code, encoded as a 4-bit field within

the Basic Instruction (see Appendix A for encodings).

TABLE 2-2. NS32FX164 Instruction Set Summary

MOVES

Format Operation Operands Description

4 MOVi gen,gen Move a value.

2 MOVQi short,gen Extend and move a signed 4-bit constant.

7 MOVMi gen,gen,disp Move multiple: disp bytes (1 to 16).

7 MOVZBW gen,gen Move with zero extension.

7 MOVZiD gen,gen Move with zero extension.

7 MOVXBW gen,gen Move with sign extension.

7 MOVXiD gen,gen Move with sign extension.

4 ADDR gen,gen Move effective address.

INTEGER ARITHMETIC

Format Operation Operands Description

4 ADDi gen,gen Add.

2 ADDQi short,gen Add signed 4-bit constant.

4 ADDCi gen,gen Add with carry.

4 SUBi gen,gen Subtract.

4 SUBCi gen,gen Subtract with carry (borrow).

6 NEGi gen,gen Negate (2’s complement).

6 ABSi gen,gen Take absolute value.

7 MULi gen,gen Multiply.

7 QUOi gen,gen Divide, rounding toward zero.

7 REMi gen,gen Remainder from QUO.

7 DIVi gen,gen Divide, rounding down.

7 MODi gen,gen Remainder from DIV (Modulus).

7 MEIi gen,gen Multiply to extended integer.

7 DEIi gen,gen Divide extended integer.

PACKED DECIMAL (BCD) ARITHMETIC

Format Operation Operands Description

6 ADDPi gen,gen Add packed.

6 SUBPi gen,gen Subtract packed.

16

Obs
ole

te

2.0 Architectural Description (Continued)

TABLE 2-2. NS32FX164 Instruction Set Summary (Continued)

INTEGER COMPARISON

Format Operation Operands Description

4 CMPi gen,gen Compare.

2 CMPQi short,gen Compare to signed 4-bit constant.

7 CMPMi gen,gen,disp Compare multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN

Format Operation Operands Description

4 ANDi gen,gen Logical AND.

4 ORi gen,gen Logical OR.

4 BICi gen,gen Clear selected bits.

4 XORi gen,gen Logical exclusive OR.

6 COMi gen,gen Complement all bits.

6 NOTi gen,gen Boolean complement: LSB only.

2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

SHIFTS

Format Operation Operands Description

6 LSHi gen,gen Logical shift, left or right.

6 ASHi gen,gen Arithmetic shift, left or right.

6 ROTi gen,gen Rotate, left or right.

BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in

Pascal. ‘‘Extract’’ instructions read and align a bit field. ‘‘Insert’’ instructions write a bit field from an aligned source.

Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).

8 INSi reg,gen,gen,disp Insert bit field (array oriented).

7 EXTSi gen,gen,imm,imm Extract bit field (short form).

7 INSSi gen,gen,imm,imm Insert bit field (short form).

8 CVTP reg,gen,gen Convert to bit field pointer.

ARRAYS

Format Operation Operands Description

8 CHECKi reg,gen,gen Index bounds check.

8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.

STRINGS

String instructions assign specific functions to the General

Purpose Registers:

R4 Ð Comparison Value

R3 Ð Translation Table Pointer

R2 Ð String 2 Pointer

R1 Ð String 1 Pointer

R0 Ð Limit Count

Options on all string instructions are:

B (Backward): Decrement string pointers after each

step rather than incrementing.

U (Until match): End instruction if String 1 entry matches

R4.

W (While match): End instruction if String 1 entry does not

match R4.

All string instructions end when R0 decrements to zero.

17

Obs
ole

te

2.0 Architectural Description (Continued)

TABLE 2-2. NS32FX164 Instruction Set Summary (Continued)

Format Operation Operands Description

5 MOVSi options Move string 1 to string 2.

MOVST options Move string, translating bytes.

5 CMPSi options Compare string 1 to string 2.

CMPST options Compare, translating string 1 bytes.

5 SKPSi options Skip over string 1 entries.

SKPST options Skip, translating bytes for until/while.

JUMPS AND LINKAGE

Format Operation Operands Description

3 JUMP gen Jump.

0 BR disp Branch (PC Relative).

0 Bcond disp Conditional branch.

3 CASEi gen Multiway branch.

2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero.

3 JSR gen Jump to subroutine.

1 BSR disp Branch to subroutine.

1 CXP disp Call external procedure

3 CXPD gen Call external procedure using descriptor.

1 SVC Supervisor call.

1 FLAG Flag trap.

1 BPT Breakpoint trap.

1 ENTER [reg list], disp Save registers and allocate stack frame (Enter Procedure).

1 EXIT [reg list] Restore registers and reclaim stack frame (Exit Procedure).

1 RET disp Return from subroutine.

1 RXP disp Return from external procedure call.

1 RETT disp Return from trap. (Privileged)

1 RETI Return from interrupt. (Privileged)

CPU REGISTER MANIPULATION

Format Operation Operands Description

1 SAVE [reg list] Save general purpose registers.

1 RESTORE [reg list] Restore general purpose registers.

2 LPRi areg,gen Load dedicated register. (Privileged if PSR or INTBASE)

2 SPRi areg,gen Store dedicated register. (Privileged if PSR or INTBASE)

3 ADJSPi gen Adjust stack pointer.

3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length)

3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length)

5 SETCFG [option list] Set configuration register. (Privileged)

18

Obs
ole

te

2.0 Architectural Description (Continued)

TABLE 2-2. NS32FX164 Instruction Set Summary (Continued)

FLOATING POINT

Format Operation Operands Description

11 MOVf gen,gen Move a floating point value.

9 MOVLF gen,gen Move and shorten a long value to standard.

9 MOVFL gen,gen Move and lengthen a standard value to long.

9 MOVif gen,gen Convert any integer to standard or long floating.

9 ROUNDfi gen,gen Convert to integer by rounding.

9 TRUNCfi gen,gen Convert to integer by truncating, toward zero.

9 FLOORfi gen,gen Convert to largest integer less than or equal to value.

11 ADDf gen,gen Add.

11 SUBf gen,gen Subtract.

11 MULf gen,gen Multiply.

11 DIVf gen,gen Divide.

11 CMPf gen,gen Compare.

11 NEGf gen,gen Negate.

11 ABSf gen,gen Take absolute value.

9 LFSR gen Load FSR.

9 SFSR gen Store FSR.

12 POLYf gen,gen Polynomial Step.

12 DOTf gen,gen Dot Product.

12 SCALBf gen,gen Binary Scale.

12 LOGBf gen,gen Binary Log.

MISCELLANEOUS

Format Operation Operands Description

1 NOP No operation.

1 WAIT Wait for interrupt.

1 DIA Diagnose. Single-byte ‘‘Branch to Self’’ for hardware

breakpointing. Not for use in programming.

GRAPHICS

Format Operation Operands Description

5 BBOR options* Bit-aligned block transfer ‘OR’.

5 BBAND options Bit-aligned block transfer ‘AND’.

5 BBFOR Bit-aligned block transfer fast ‘OR’.

5 BBXOR options Bit-aligned block transfer ‘XOR’.

5 BBSTOD options Bit-aligned block source to destination.

5 BITWT Bit-aligned word transfer.

5 EXTBLT options External bit-aligned block transfer.

5 MOVMPi Move multiple pattern.

5 TBITS options Test bit string.

5 SBITS Set bit string.

5 SBITPS Set bit perpendicular string.

BITS

Format Operation Operands Description

4 TBITi gen,gen Test bit.

6 SBITi gen,gen Test and set bit.

6 SBITIi gen,gen Test and set bit, interlocked.

6 CBITi gen,gen Test and clear bit.

6 CBITIi gen,gen Test and clear bit, interlocked.

6 IBITi gen,gen Test and invert bit.

8 FFSi gen,gen Find first set bit.

*Note: Options are controlled by fields of the instruction, PSR status bits, or dedicated register values.

19

Obs
ole

te

2.0 Architectural Description (Continued)

2.5 GRAPHICS SUPPORT

The following sections provide a brief description of the

NS32FX164 graphics support capabilities. Basic discus-

sions on frame buffer addressing and BITBLT operations

are also provided. More detailed information on the

NS32FX164 graphics support instructions can be found in

the NS32CG16 Printer/Display Processor Programmer’s

Reference.

2.5.1 Frame Buffer Addressing

There are two basic addressing schemes for referencing

pixels within the frame buffer: Linear and Cartesian (or x-y).

Linear addressing associates a single number to each pixel

representing the physical address of the corresponding bit

in memory. Cartesian addressing associates two numbers

to each pixel representing the x and y coordinates of the

pixel relative to a point in the Cartesian space taken as the

origin. The Cartesian space is generally defined as having

the origin in the upper left. A movement to the right increas-

es the x coordinate; a movement downward increases the y

coordinate.

The correspondence between the location of a pixel in the

Cartesian space and the physical (BIT) address in memory

is shown in Figure 2-20. The origin of the Cartesian space

(xe0, ye0) corresponds to the bit address ‘ORG’. Incre-

menting the x coordinate increments the bit address by one.

Incrementing the y coordinate increments the bit address by

an amount representing the warp (or pitch) of the Cartesian

space. Thus, the linear address of a pixel at location (x, y) in

the Cartesian space can be found by the following expres-

sion.

ADDR e ORG a y * WARP a x

Warp is the distance (in bits) in the physical memory space

between two vertically adjacent bits in the Cartesian space.

Example 1 below shows two NS32FX164 instruction se-

quences to set a single pixel given the x and y coordinates.

Example 2 shows how to create a fat pixel by setting four

adjacent bits in the Cartesian space.

Example 1: Set pixel at location (x, y)

Setup: R0 x coordinate

R1 y coordinate

Instruction Sequence 1:

MULD WARP, R1 ; Y*WARP

ADDD R0, R1 ; 0 X 4 BIT OFFSET

SBITD R1, ORG ; SET PIXEL

Instruction Sequence 2:

INDEXD R1, (WARP-1), R0 ; Y*WARP 0 X

SBITD R1, ORG ; SET PIXEL

Example 2: Create fat pixel by setting bits at locations

(x, y), (xa1, y), (x, ya1) and (xa1, ya1).

Setup: R0 x coordinate

R1 y coordinate

Instruction Sequence:

INDEXD R1, (WARP-1), R0 ; BIT ADDRESS

SBITD 41, ORG ; SET FIRST PIXEL

ADDQD 1, R1 ; (X01, Y)

SBITD R1, ORG ; SECOND PIXEL

ADDD (WARP-1), R1 ; (X, Y01)

SBITD R1, ORG ; THIRD PIXEL

ADDQD 1, R1 ; (X01, Y01)

SBITD R1, ORG ; LAST PIXEL

TL/EE/11267–6

FIGURE 2-20. Correspondence between

Linear and Cartesian Addressing

2.5.2 BITBLT Fundamentals

BITBLT, BIT-aligned BLock Transfer, is a general operator

that provides a mechanism to move an arbitrary size rectan-

gle of an image from one part of the frame buffer to another.

During the data transfer process a bitwise logical operation

can be performed between the source and the destination

data. BITBLT is also called RasterOp: operations on rasters.

It defines two rectangular areas, source and destination,

and performs a logical operation (e.g., AND, OR, XOR) be-

tween these two areas and stores the result back to the

destination. It can be expressed in simple notation as:

Source op Destination x Destination

op: AND, OR, XOR, etc.

20

Obs
ole

te

2.0 Architectural Description (Continued)

2.5.2.1 Frame Buffer Architecture

There are two basic types of frame buffer architectures:

plane-oriented or pixel-oriented. BITBLT takes advantage of

the plane-oriented frame buffer architecture’s attribute of

multiple, adjacent pixels-per-word, facilitating the movement

of large blocks of data. The source and destination starting

addresses are expressed as pixel addresses. The width and

height of the block to be moved are expressed in terms of

pixels and scan lines. The source block may start and end

at any bit position of any word, and the same applies for the

destination block.

2.5.2.2 Bit Alignment

Before a logical operation can be performed between the

source and the destination data, the source data must first

be bit aligned to the destination data. In Figure 2-21, the

source data needs to be shifted three bits to the right in

order to align the first pixel (i.e., the pixel at the top left

corner) in the source data block to the first pixel in the desti-

nation data block.

2.5.2.3 Block Boundaries and Destination Masks

Each BITBLT destination scan line may start and end at any

bit position in any data word. The neighboring bits (bits shar-

ing the same word address with any words in the destination

data block, but not a part of the BITBLT rectangle) of the

BITBLT destination scan line must remain unchanged after

the BITBLT operation.

Due to the plane-oriented frame buffer architecture, all

memory operations must be word-aligned. In order to pre-

serve the neighboring bits surrounding the BITBLT destina-

tion block, both a left mask and a right mask are needed for

all the leftmost and all the rightmost data words of the desti-

nation block. The left mask and the right mask both remain

the same during a BITBLT operation.

The following example illustrates the bit alignment require-

ments. In this example, the memory data path is 16 bits

wide. Figure 2-21 shows a 32 pixel by 32 scan line frame

buffer which is organized as a long bit stream which wraps

around every two words (32 bits). The origin (top left corner)

of the frame buffer starts from the lowest word in memory

(word address 00 (hex)).

Each word in the memory contains 16 bits, D0–D15. The

least significant bit of a memory word, D0, is defined as the

first displayed pixel in a word. In this example, BITBLT ad-

dresses are expressed as pixel addresses relative to the

origin of the frame buffer. The source block starting address

is 021 (hex) (the second pixel in the third word). The desti-

nation block starting address is 204 (hex) (the fifth pixel in

the 33rd word). The block width is 13 (hex), and the height is

06 (hex) (corresponding to 6 scan lines). The shift value is 3.

TL/EE/11267–7

FIGURE 2-21. 32-Pixel by 32-Scan Line Frame Buffer

21

Obs
ole

te

2.0 Architectural Description (Continued)

2.5.2.4 BITBLT Directions

A BITBLT operation moves a rectangular block of data in a

frame buffer. The operation itself can be considered as a

subroutine with two nested loops. The loops are preceded

by setup operations. In the outer loop the source and desti-

nation starting addresses are calculated, and the test for

completion is performed. In the inner loop the actual data

movement for a single scan line takes place. The length of

the inner loop is the number of (aligned) words spanned by

each scan line. The length of the outer loop is equal to the

height (number of scan lines) of the block to be moved. A

skeleton of the subroutine representing the BITBLT opera-

tion follows.

BITBLT: calculate BITBLT setup parameters;

(once per BITBLT operation).

such as

width, height

bit misalignment (shift number)

left, right masks

horizontal, vertical directions

etc

#
#

OUTERLOOP: calculate source, dest addresses;

(once per scanline).

INNERLOOP: move data, (logical operation) and incre-

ment addresses;

(once per word).

UNTIL done horizontally

UNTIL done vertically

RETURN (from BITBLT).

Note: In the NS32FX164 only the setup operations must be done by the

programmer. The inner and outer loops are automatically executed

by the BITBLT instructions.

Each loop can be executed in one of two directions: the

inner loop from left to right or right to left, the outer loop

from top to bottom (down) or bottom to top (up).

The ability to move data starting from any corner of the

BITBLT rectangle is necessary to avoid destroying the

BITBLT source data as a result of destination writes when

the source and destination are overlapped (i.e., when they

share pixels). This situation is routinely encountered while

panning or scrolling.

A determination of the correct execution directions of the

BITBLT must be performed whenever the source and desti-

nation rectangles overlap. Any overlap will result in the de-

struction of source data (from a destination write) if the cor-

rect vertical direction is not used. Horizontal BITBLT direc-

tion is of concern only in certain cases of overlap, as will be

explained below.

Figures 2-22(a) and (b) illustrate two cases of overlap. Here,

the BITBLT rectangles are three pixels wide by five scan

lines high; they overlap by a single pixel in (a) and a single

column of pixels in (b) . For purposes of illustration, the

BITBLT is assumed to be carried out pixel-by-pixel. This

convention does not affect the conclusions.

InFigure 2-22(a) , if the BITBLT is performed in the UP direc-

tion (bottom-to-top) one of the transfers of the bottom scan

line of the source will write to the circled pixel of the destina-

tion. Due to the overlap, this pixel is also part of the upper-

most scan line of the source rectangle. Thus, data needed

later is destroyed. Therefore, this BITBLT must be per-

formed in the DOWN direction. Another example of this oc-

TL/EE/11267–8

(a)

TL/EE/11267–9

(b)

FIGURE 2-22. Overlapping BITBLT Blocks

The left mask and the right mask are 0000,1111,1111,1111 and 1111,1111,0000,0000 respectively.

Note 1: Zeros in either the left mask or the right mask indicate the destination bits which will not be modified.

Note 2: The BB(function) and EXTBLT instructions use different set up parameters, and techniques.

22

Obs
ole

te

2.0 Architectural Description (Continued)

curs any time the screen is moved in a purely vertical direc-

tion, as in scrolling text. It should be noted that, in both of

these cases, the choice of horizontal BITBLT direction may

be made arbitrarily.

Figure 2-22(b) demonstrates a case in which the horizontal

BITBLT direction may not be chosen arbitrarily. This is an

instance of purely horizontal movement of data (panning).

Because the movement from source to destination involves

data within the same scan line, the incorrect direction of

movement will overwrite data which will be needed later. In

this example, the correct direction is from right to left.

2.5.2.5 BITBLT Variations

The ‘‘classical’’ definition of BITBLT, as described in

‘‘Smalltalk-80 The Language and its Implementation’’, by

Adele Goldberg and David Robson, provides for three oper-

ands: source, destination and mask/texture. This third oper-

and is commonly used in monochrome systems to incorpo-

rate a stipple pattern into an area. These stipple patterns

provide the appearance of multiple shades of gray in single-

bit-per-pixel systems, in a manner similar to the ‘‘halftone’’

process used in printing.

Texture op1 Source op2 Destination x Destination

While the NS32FX164 and the external BPU (if used) are

essentially two-operand devices, three-operand BITBLT op-

erations can be implemented quite flexibly and efficiently by

performing the two operations serially.

2.5.3 GRAPHICS SUPPORT INSTRUCTIONS

The NS32FX164 provides eleven instructions for supporting

graphics oriented applications. These instructions are divid-

ed into three groups according to the operations they per-

form. General descriptions for each of them and the related

formats are provided in the following sections.

2.5.3.1 BITBLT (BIT-aligned BLock Transfer)

This group includes seven instructions. They are used to

move characters and objects into the frame buffer which will

be printed or displayed. One of the instructions works in

conjunction with an external BITBLT Processing Unit (BPU)

to maximize performance. The other six are executed by the

NS32FX164.

BIT-aligned BLock Transfer

Syntax: BB(function) Options

Setup: R0 base address, source data

R1 base address, destination data

R2 shift value

R3 height (in lines)

R4 first mask

R5 second mask

R6 source warp (adjusted)

R7 destination warp (adjusted)

0(SP) width (in words)

Function: AND, OR, XOR, FOR, STOD

Options: IA Increasing Address (default option).

When IA is selected, scan lines are

transferred in the increasing BIT/BYTE

order.

DA Decreasing Address.

S True Source (default option).

bS Inverted Source.

These five instructions perform standard BITBLT operations

between source and destination blocks. The operations

available include the following:

BBAND: src AND dst
bsrc AND dst

BBOR: src OR dst
bsrc OR dst

BBXOR: src XOR dst
bsrc XOR dst

BBFOR: src OR dst

BBSTOD: src TO dst
bsrc TO dst

‘src’ and ‘bsrc’ stand for ‘True Source’ and ‘Inverted

Source’ respectively; ‘dst’ stands for ‘Destination’.

Note 1: For speed reasons, the BB instructions require the masks to be

specified with respect to the source block. In Figure 2-21 masking

was defined relative to the destination block.

Note 2: The options bS and DA are not available for the BBFOR instruc-

tion.

Note 3: BBFOR performs the same operation as BBOR with IA and S op-

tions.

Note 4: IA and DA are mutually exclusive and so are S and bS.

Note 5: The width is defined as the number of words of source data to read.

Note 6: An odd number of bytes can be specified for the source warp.

However, word alignment of source scan lines will result in faster

execution.

The horizontal and vertical directions of the BITBLT opera-

tions performed by the above instructions, with the excep-

tion of BBFOR, are both programmable. The horizontal di-

rection is controlled by the IA and DA options. The vertical

direction is controlled by the sign of the source and destina-

tion warps. Figure 2-23 and Table 2-3 show the format of

the BB instructions and the encodings for the ‘op’ and ‘i’

fields.

23 16 15 8 7 0

0 0 0 0 0 0 D X S 0 op i 0 0 0 0 1 1 1 0

D is set when the DA option is selected

S is set when the bS option is selected

X is set for BBAND, and it is clear for all other BB instructions

FIGURE 2-23. BB Instructions Format

TABLE 2-3. ‘op’ and ‘i’ Field Encodings

Instruction Options ‘op’ Field ‘i’ Field

BBAND Yes 1010 11

BBOR Yes 0110 01

BBXOR Yes 1110 01

BBFOR No 1100 01

BBSTOD Yes 0100 01

BIT-aligned Word Transfer

Syntax: BITWT

Setup: R0 Base address, source word

R1 Base address, destination double word

R2 Shift value

The BITWT instruction performs a fast logical OR operation

between a source word and a destination double word,

stores the result into the destination double word and incre-

ments registers R0 and R1 by two. Before performing the

OR operation, the source word is shifted left (i.e., in the

direction of increasing bit numbers) by the value in register

R2.

23

Obs
ole

te

2.0 Architectural Description (Continued)

This instruction can be used within the inner loop of a block

OR operation. Its use assumes that the source data is

‘clean’ and does not need masking. The BITWT format is

shown in Figure 2-24.

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0

FIGURE 2-24. BITWT Instruction Format

External BITBLT

Syntax: EXTBLT

Setup: R0 base addresses, source data

R1 base address, destination data

R2 width (in bytes)

R3 height (in lines)

R4 horizontal increment/decrement

R5 temporary register (current width)

R6 source warp (adjusted)

R7 destination warp (adjusted)

Note 1: R0 and R1 are updated after execution to point to the last source

and destination addresses plus related warps. R2, R3 and R5 will

be modified. R4, R6, and R7 are returned unchanged.

Note 2: Source and destination pointers should point to word-aligned oper-

ands to maximize speed and minimize external interface logic.

This instruction performs an entire BITBLT operation in con-

junction with an external BITBLT Processing Unit (BPU).

The external BPU Control Register should be loaded by the

software before the instruction is executed (refer to the

DP8510 or DP8511 data sheets for more information on the

BPU). The NS32FX164 generates a series of source read,

destination read and destination write bus cycles until the

entire data block has been transferred. The BITBLT opera-

tion can be performed in either horizontal direction. As con-

trolled by the sign of the contents of register R4.

Depending on the relative alignment of the source and des-

tination blocks, an extra source read may be required at the

beginning of each scan line, to load the pipeline register in

the external BPU. The L bit in the PSR register determines

whether the extra source read is performed. If L is 1, no

extra read is performed. The instructions CMPQB 2,1 or

CMPQB 1,2 could be executed to provide the right setting

for the L bit just before executing EXTBLT. Figure 2-25
shows the EXTBLT format. The bus activity for a simple

BITBLT operation is shown in Figure 2-30.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0

FIGURE 2-25. EXTBLT Instruction Format

2.5.3.2 Pattern Fill

Only one instruction is in this group. It is usually used for

clearing RAM and drawing patterns and lines.

Move Multiple Pattern

Syntax: MOVMPi

Setup: R0 base address of the destination

R1 pointer increment (in bytes)

R2 number of pattern moves

R3 source pattern

Note: R1 and R3 are not modified by the instruction. R2 will always be

returned as zero. R0 is modified to reflect the last address into which

a pattern was written.

This instruction stores the pattern in register R3 into the

destination area whose address is in register R0. The pat-

tern count is specified in register R2. After each store oper-

ation the destination address is changed by the contents of

register R1. This allows the pattern to be stored in rows, in

columns, and in any direction, depending on the value and

sign of R1. The MOVMPi instruction format is shown in Fig-
ure 2-26.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 i 0 0 0 0 1 1 1 0

FIGURE 2-26. MOVMPi Instruction Format

2.5.3.3 Data Compression, Expansion and Magnify

The three instructions in this group can be used to com-

press data and restore data from compression. A com-

pressed character set may require from 30% to 50% less

memory space for its storage.

The compression ratio possible can be 50:1 or higher de-

pending on the data and algorithm used. TBITS can also be

used to find boundaries of an object. As a character is need-

ed, the data is expanded and stored in a RAM buffer. The

expand instructions (SBITS, SBITPS) can also function as

line drawing instructions.

Test Bit String

Syntax: TBITS option

Setup: R0 base address, source (byte address)

R1 starting source bit offset

R2 destination run length limited code

R3 maximum value run length limit

R4 maximum source bit offset

Option: 1 count set bits until a clear bit is found

0 count clear bits until a set bit is found

Note: R0, R3 and R4 are not modified by the instruction execution. R1

reflects the new bit offset. R2 holds the result.

This instruction starts at the base address, adds a bit offset,

and tests the bit for clear if ‘‘option’’ e 0 (and for set if

‘‘option’’ e 1). If clear (or set), the instruction increments to

the next higher bit and tests for clear (or set). This testing

for clear proceeds through memory until a set bit is found or

until the maximum source bit offset or maximum run length

value is reached. The total number of clear bits is stored in

the destination as a run length value.

When TBITS finds a set bit and terminates, the bit offset is

adjusted to reflect the current bit address. Offset is then

ready for the next TBITS instruction with ‘‘option’’ e 0. After

the instruction is executed, the F flag is set to the value of

the bit previous to the bit currently being pointed to (i.e., the

value of the bit on which the instruction completed execu-

tion). In the case of a starting bit offset exceeding the maxi-

mum bit offset (R1 t R4), the F flag is set if the option was

1 and clear if the option was 0. The L flag is set when the

desired bit is found, or if the run length equalled the maxi-

mum run length value and the bit was not found. It is cleared

otherwise. Figure 2-27 shows the TBITS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 S 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0

S is set for ‘TBITS 1’ and clear for ‘TBITS 0’.

FIGURE 2-27. TBITS Instruction Format

24

Obs
ole

te

https://www.application-datasheet.com/

2.0 Architectural Description (Continued)

Set Bit String

Syntax: SBITS

Setup: R0 base address of the destination

R1 starting bit offset (signed)

R2 number of bits to set (unsigned)

R3 address of string look-up table

Note: When the instruction terminates, the registers are returned un-

changed.

SBITS sets a number of contiguous bits in memory to 1, and

is typically used for data expansion operations. The instruc-

tion draws the number of ones specified by the value in R2,

starting at the bit address provided by registers R0 and R1.

In order to maximize speed and allow drawing of patterned

lines, an external 1k byte lookup table is used. The lookup

table is specified in the NS32CG16 Printer/Display Proces-

sor Programmer’s Reference Supplement.

When SBITS begins executing, it compares the value in R2

with 25. If the value in R2 is less than or equal to 25, the F

flag is cleared and the appropriate number of bits are set in

memory. If R2 is greater than 25, the F flag is set and no

other action is performed. This allows the software to use a

faster algorithm to set longer strings of bits. Figure 2-28
shows the SBITS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0

FIGURE 2-28. SBITS Instruction Format

Set BIT Perpendicular String

Syntax: SBITPS

Setup: R0 base address, destination (byte address)

R1 starting bit offset

R2 number of bits to set

R3 destination warp (signed value, in bits)

Note: When the instruction terminates, the R0 and R3 registers are re-

turned unchanged. R1 becomes the final bit offset. R2 is zero.

The SBITPS can be used to set a string of bits in any direc-

tion. This allows a font to be expanded with a 90 or 270

degree rotation, as may be required in a printer application.

SBITPS sets a string of bits starting at the bit address speci-

fied in registers R0 and R1. The number of bits in the string

is specified in R2. After the first bit is set, the destination

warp is added to the bit address and the next bit is set. The

process is repeated until all the bits have been set. A nega-

tive raster warp offset value leads to a 90 degree rotation. A

positive raster warp value leads to a 270 degree rotation. If

the R3 value is e (space warp a1 or b1), then the result is

a 45 degree line. If the R3 value is a1 or b1, a horizontal

line results.

SBITS and SBITPS allow expansion on any 90 degree an-

gle, giving portrait, landscape and mirror images from one

font. Figure 2-29 shows the SBITPS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0

FIGURE 2-29. SBITPS Instruction Format

TL/EE/11267–10

FIGURE 2-30. Bus Activity for a Simple BITBLT Operation
Note 1: This example is for a block 4 words wide and 1 line high.

Note 2: The sequence is common with all logical operations of the DP8510/DP8511 BPU.

Note 3: Mask values, shift values and number of bit planes do not affect the performance.

Note 4: Zero wait states are assumed throughout the BITBLT operation.

Note 5: The extra read is performed when the BPU pipeline register needs to be preloaded.

25

Obs
ole

te

2.0 Architectural Description (Continued)

2.5.3.3.1 Magnifying Compressed Data

Restoring data is just one application of the SBITS and

SBITPS instructions. Multiplying the ‘‘length’’ operand used

by the SBITS and SBITPS instructions causes the resulting

pattern to be wider, or a multiple of ‘‘length’’.

As the pattern of data is expanded, it can be magnified by

2x, 3x, 4x, . . . , 10x and so on. This creates several sizes of

the same style of character, or changes the size of a logo. A

magnify in both dimensions X and Y can be accomplished

by drawing a single line, then using the MOVS (Move String)

or the BB instructions to duplicate the line, maintaining an

equal aspect ratio.

More information on this subject is provided in the

NS32CG16 Printer/Display Processor Programmer’s Refer-

ence Supplement.

3.0 Functional Description
This chapter provides details on the functional characteris-

tics of the NS32FX164 microprocessor.

The chapter is divided into five main sections:

Instruction Execution, Exception Processing, Debugging,

DSP Module and System Interface.

3.1 INSTRUCTION EXECUTION

To execute an instruction, the NS32FX164 performs the fol-

lowing operations:

Fetch the Instruction

Read Source Operands, if Any (1)

Calculate Results

Write Result Operands, if Any

Modify Flags, if Necessary

Update the Program Counter

Under most circumstances, the CPU can be conceived to

execute instructions by completing the operations above in

strict sequence for one instruction and then beginning the

sequence of operations for the next instruction. However,

due to the internal instruction pipelining, as well as the oc-

currence of exceptions, the sequence of operations per-

formed during the execution of an instruction may be al-

tered. Furthermore, exceptions also break the sequentiality

of the instructions executed by the CPU.

Note 1: In this and following sections, memory locations read by the CPU to

calculate effective addresses for Memory-Relative and External ad-

dressing modes are considered like source operands, even if the

effective address is being calculated for an operand with access

class of write.

3.1.1 Operating States

The CPU has four operating states regarding the execution

of instructions and the processing of exceptions: Reset, Ex-

ecuting Instructions, Processing An Exception and Waiting-

For-An-Interrupt. The various states and transitions be-

tween them are shown in Figure 3-1 .

Whenever the RSTI signal is asserted, the CPU enters the

reset state. The CPU remains in the reset state until the

RSTI signal is driven inactive, at which time it enters the

Executing-Instructions state. In the Reset state the contents

of certain registers are initialized. Refer to Section 3.5.4 for

details.

TL/EE/11267–11

FIGURE 3-1. Operating States

In the Executing-Instructions state, the CPU executes in-

structions. It will exit this state when an exception is recog-

nized or a WAIT instruction is encountered. At which time it

enters the Processing-An-Exception state or the Waiting-

For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves

the PC, PSR and MOD register contents on the stack and

reads the new PC and module linkage information to begin

execution of the exception service procedure.

Following the completion of all data references required to

process an exception, the CPU enters the Executing-In-

structions state.

In the Waiting-For-An-Interrupt state, the CPU is idle. A spe-

cial status identifying this state is presented on the system

interface (Section 3.5). When an interrupt is detected, the

CPU enters the Processing-An-Exception State.

3.1.2 Instruction Endings

The NS32FX164 checks for exceptions at various points

while executing instructions. Certain exceptions, like inter-

rupts, are in most cases recognized between instructions.

Other exceptions, like Divide-By-Zero Trap, are recognized

during execution of an instruction. When an exception is

recognized during execution of an instruction, the instruction

ends in one of four possible ways: completed, suspended,

terminated, or partially completed. Each type of exception

causes a particular ending, as specified in Section 3.2.

26

Obs
ole

te

3.0 Functional Description (Continued)

3.1.2.1 Completed Instructions

When an exception is recognized after an instruction is

completed, the CPU has performed all of the operations for

that instruction and for all other instructions executed since

the last exception occurred. Result operands have been

written, flags have been modified, and the PC saved on the

Interrupt Stack contains the address of the next instruction

to execute. The exception service procedure can, at its con-

clusion, execute the RETT instruction (or the RETI instruc-

tion for maskable interrupts), and the CPU will begin execut-

ing the instruction following the completed instruction.

3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi-

tions is detected during execution of the instruction. A sus-

pended instruction has not been completed, but all other

instructions executed since the last exception occurred

have been completed. Result operands and flags due to be

affected by the instruction may have been modified, but only

modifications that allow the instruction to be executed again

and completed can occur. For certain exceptions (Trap

(UND) the CPU clears the P-flag in the PSR before saving

the copy that is pushed on the Interrupt Stack. The PC

saved on the Interrupt Stack contains the address of the

suspended instruction.

To complete a suspended instruction, the exception service

procedure takes either of two actions:

1. The service procedure can simulate the suspended in-

struction’s execution. After calculating and writing the in-

struction’s results, the flags in the PSR copy saved on the

Interrupt Stack should be modified, and the PC saved on

the Interrupt Stack should be updated to point to the next

instruction to execute. The service procedure can then

execute the RETT instruction, and the CPU begins exe-

cuting the instruction following the suspended instruction.

This is the action taken when floating-point instructions

are simulated by software in systems without a hardware

floating-point unit.

2. The suspended instruction can be executed again after

the service procedure has eliminated the trap condition

that caused the instruction to be suspended. The service

procedure should execute the RETT instruction at its con-

clusion; then the CPU begins executing the suspended

instruction again. This is the action taken by a debugger

when it encounters a BPT instruction that was temporarily

placed in another instruction’s location in order to set a

breakpoint.

Note 1: It may be necessary for the exception service procedure to alter the

P-flag in the PSR copy saved on the Interrupt Stack: If the exception

service procedure simulates the suspended instruction and the P-

flag was cleared by the CPU before saving the PSR copy, then the

saved T-flag must be copied to the saved P-flag (like the floating-

point instruction simulation described above). Or if the exception

service procedure executes the suspended instruction again and

the P-flag was not cleared by the CPU before saving the PSR copy,

then the saved P-flag must be cleared (like the breakpoint trap de-

scribed above). Otherwise, no alteration to the saved P-flag is nec-

essary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset oc-

curs. Any result operands and flags due to be affected by

the instruction are undefined, as is the contents of the PC.

3.1.2.4 Partially Completed Instructions

When an interrupt condition is recognized during execution

of a string instruction, the instruction is said to be partially

completed. A partially completed instruction has not com-

pleted, but all other instructions executed since the last ex-

ception occurred have been completed. Result operands

and flags due to be affected by the instruction may have

been modified, but the values stored in the string pointers

and other general-purpose registers used during the instruc-

tion’s execution allow the instruction to be executed again

and completed.

The CPU clears the P-flag in the PSR before saving the

copy that is pushed on the Interrupt Stack. The PC saved on

the Interrupt Stack contains the address of the partially

completed instruction. The exception service procedure

can, at its conclusion, simply execute the RETT instruction

(or the RETI instruction for maskable interrupts), and the

CPU will resume executing the partially completed instruc-

tion.

3.1.3 Slave Processor Instructions

The NS32FX164 supports only one group of instructions,

the floating-point instruction set, as being executable by a

slave processor. The floating-point instruction set is validat-

ed by the F-bit in the CFG register.

If a floating-point instruction is encountered and the F-bit in

the CFG register is not set, a Trap (UND) will result, without

any slave processor communication attempted by the CPU.

This allows software emulation in case an external floating-

point unit (FPU) is not used.

3.1.3.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In-

struction field, consisting of an ID Byte followed by an Oper-

ation Word. The ID Byte has three functions:

1. It identifies the instruction as being a Slave Processor

instruction.

2. It specifies which Slave Processor will execute it.

3. It determines the format of the following Operation Word

of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-

ates the sequence outlined in Figure 3-2 . While applying

Status Code 1111 (Broadcast ID, Section 3.5.5.1), the CPU

transfers the ID Byte on the least-significant half of the Data

Bus (AD0–AD7). All Slave Processors input this byte and

decode it. The Slave Processor selected by the ID Byte is

activated, and from this point the CPU is communicating

only with it. If any other slave protocol was in progress (e.g.,

an aborted Slave instruction), this transfer cancels it.

27

Obs
ole

te

3.0 Functional Description (Continued)

The CPU next sends the Operation Word while applying

Status Code 1101 (Transfer Slave Operand, Section

3.5.5.1). Upon receiving it, the Slave Processor decodes it,

and at this point both the CPU and the Slave Processor are

aware of the number of operands to be transferred and their

sizes. The Operation Word is swapped on the Data Bus;

that is, bits 0–7 appear on pins AD8–AD15 and bits 8–15

appear on pins AD0–AD7.

Using the Address Mode fields within the Operation Word,

the CPU starts fetching operands and issuing them to the

Slave Processor. To do so, it references any Addressing

Mode extensions which may be appended to the Slave

Processor instruction. Since the CPU is solely responsible

for memory accesses, these extensions are not sent to the

Slave Processor. The Status Code applied is 1101 (Transfer

Slave Processor Operand, Section 3.5.5.1).

After the CPU has issued the last operand, the Slave Proc-

essor starts the actual execution of the instruction. Upon

completion, it will signal the CPU by pulsing SPC low.

While the Slave Processor is executing the instruction, the

CPU is free to prefetch instructions into its queue. If it fills

the queue before the Slave Processor finishes, the CPU will

wait, applying Status Code 0011 (Waiting for Slave).

Upon receiving the pulse on SPC, the CPU uses SPC to

read a Status Word from the Slave Processor, applying

Status Code 1110 (Read Slave Status). This word has the

format shown in Figure 3-3 . If the Q-bit (‘‘Quit’’, Bit 0) is set,

this indicates that an error was detected by the Slave Proc-

essor. The CPU will not continue the protocol, but will imme-

Status Combinations:

Send ID (ID): Code 1111

Xfer Operand (OP): Code 1101

Read Status (ST): Code 1110

Step Status Action

1 ID CPU Sends ID Byte

2 OP CPU Sends Operation Word

3 OP CPU Sends Required Operands

4 Ð Slave Starts Execution.

CPU Pre-Fetches.

5 Ð Slave Pulses SPC Low

6 ST CPU Reads Status Word.

(Trap? Alter Flags?)

7 OP CPU Reads Results (If Any).

FIGURE 3-2. Slave Processor Protocol

diately trap through the Slave vector in the Interrupt Table.

Certain Slave Processor instructions cause CPU PSR bits to

be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,

if any, and transfer it to the destination. The Read cycles

from the Slave Processor are performed by the CPU while

applying Status Code 1101 (Transfer Slave Operand).

3.1.3.2 Floating-Point Instructions

Table 3-1 gives the protocols followed for each Floating-

Point instruction. The instructions are referenced by their

mnemonics. For the bit encodings of each instruction, see

Appendix A.

TABLE 3-1. Floating-Point Instruction Protocols

Mnemonic
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Class Class Issued Issued Type and Dest. Affected

ADDf read.f rmw.f f f f to Op.2 none

SUBf read.f rmw.f f f f to Op.2 none

MULf read.f rmw.f f f f to Op.2 none

DIVf read.f rmw.f f f f to Op.2 none

MOVf read.f write.f f N/A f to Op.2 none

ABSf read.f write.f f N/A f to Op.2 none

NEGf read.f write.f f N/A f to Op.2 none

CMPf read.f read.f f f N/A N,Z,L

FLOORfi read.f write.i f N/A i to Op.2 none

TRUNCfi read.f write.i f N/A i to Op.2 none

ROUNDfi read.f write.i f N/A i to Op.2 none

MOVFL read.F write.L F N/A L to Op.2 none

MOVLF read.L write.F L N/A F to Op.2 none

MOVif read.i write.f i N/A f to Op.2 none

LFSR read.D N/A D N/A N/A none

SFSR N/A write.D N/A N/A D to Op. 2 none

POLYf read.f read.f f f f to F0 none

DOTf read.f read.f f f f to F0 none

SCALBf read.f rmw.f f f f to Op. 2 none

LOGBf read.f write.f f N/A f to Op. 2 none

Notes:

D e Double Word

i e Integer size (B, W, D) specified in mnemonic.

f e Floating-Point type (F, L) specified in mnemonic.

N/A e Not Applicable to this instruction.

28

Obs
ole

te

3.0 Functional Description (Continued)

The Operand class columns give the Access Class for each

general operand, defining how the addressing modes are

interpreted (see Series 32000 Instruction Set Reference

Manual).

The Operand Issued columns show the sizes of the oper-

ands issued to the Floating-Point Unit by the CPU. ‘‘D’’ indi-

cates a 32-bit Double Word. ‘‘i’’ indicates that the instruction

specifies an integer size for the operand (B e Byte,

W e Word, D e Double Word). ‘‘f’’ indicates that the in-

struction specifies a Floating-Point size for the operand

(F e 32-bit Standard Floating, L e 64-bit Long Floating).

The Returned Value Type and Destination column gives the

size of any returned value and where the CPU places it. The

PSR Bits Affected column indicates which PSR bits, if any,

are updated from the Slave Processor Status Word (Figure
3-3) .

TL/EE/11267–12

FIGURE 3-3. Slave Processor Status Word

Any operand indicated as being of type ‘‘f’’ will not cause a

transfer if the Register addressing mode is specified. This is

because the Floating-Point Registers are physically on the

Floating-Point Unit and are therefore available without CPU

assistance.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of

instruction execution. The CPU recognizes two basic types

of exceptions: interrupts and traps.

An interrupt occurs in response to an event generated either

internally, by the on-chip DSP Module, or externally, by acti-

vating NMI or INT. External interrupts are typically request-

ed by peripheral devices that require the CPU’s attention.

Traps occur as a result either of exceptional conditions

(e.g., attempted division by zero) or of specific instructions

whose purpose is to cause a trap to occur (e.g., supervisor

call instruction).

When an exception is recognized, the CPU saves the PC,

PSR and optionally the MOD register contents on the inter-

rupt stack and then it transfers control to an exception serv-

ice procedure.

Details on the operations performed in the various cases by

the CPU to enter and exit the exception service procedure

are given in the following sections.

It is to be noted that the reset operation is not treated here

as an exception. Even though, like any exception, it alters

the instruction execution sequence.

The reason being that the CPU handles reset in a signifi-

cantly different way than it does for exceptions.

Refer to Section 3.5.4 for details on the reset operation.

3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through

three major steps:

1. Adjustment of Registers. Depending on the source of the

exception, the CPU may restore and/or adjust the con-

tents of the Program Counter (PC), the Processor Status

Register (PSR) and the currently-selected Stack Pointer

(SP). A copy of the PSR is made, and the PSR is then set

to reflect Supervisor Mode and selection of the Interrupt

Stack. Trap (TRC) always disabled. Maskable interrupts

are also disabled if the exception is caused by an inter-

rupt.

2. Vector Acquisition. A vector is either obtained from an

external interrupt control unit or is supplied internally by

default.

3. Service Call. The CPU performs one of two sequences

common to all exceptions to complete the acknowledge

process and enter the appropriate service procedure.

The selection between the two sequences depends on

whether the Direct-Exception mode is disabled or en-

abled.

Direct-Exception Mode Disabled

The Direct-Exception mode is disabled while the DE bit in

the CFG register is 0 (Section 2.1.4). In this case the CPU

first pushes the saved PSR copy along with the contents of

the MOD and PC registers on the interrupt stack. Then it

reads the double-word entry from the Interrupt Dispatch ta-

ble at address ‘‘INTBASE’’ a vector c 4’’. See Figures 3-4
and 3-5 . The CPU uses this entry to call the exception serv-

ice procedure, interpreting the entry as an external proce-

dure descriptor.

A new module number is loaded into the MOD register from

the least-significant word of the descriptor, and the static-

base pointer for the new module is read from memory and

loaded into the SB register. Then the program-base pointer

for the new module is read from memory and added to the

most-significant word of the module descriptor, which is in-

terpreted as an unsigned value. Finally, the result is loaded

into the PC register.

Direct-Exception Mode Enabled

The Direct-Exception mode is enabled when the DE bit in

the CFG register is set to 1. In this case the CPU first

pushes the saved PSR copy along with the contents of the

PC register on the Interrupt Stack. The word stored on the

Interrupt Stack between the saved PSR and PC register is

reserved for future use; its contents are undefined. The CPU

then reads the double-word entry from the Interrupt Dis-

patch Table at address ‘‘INTBASE a vector c 4’’. The

CPU uses this entry to call the exception service procedure,

interpreting the entry as an absolute address that is simply

loaded into the PC register. Figure 3-6 provides a pictorial of

the acknowledge sequence. It is to be noted that while the

direct-exception mode is enabled, the CPU can respond

more quickly to interrupts and other exceptions because

fewer memory references are required to process an excep-

tion. The MOD and SB registers, however, are not initialized

before the CPU transfers control to the service procedure.

Consequently, the service procedure is restricted from exe-

cuting any instructions, such as CXP, that use the contents

of the MOD or SB registers in effective address calcula-

tions.

29

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–13

FIGURE 3-4. Interrupt Dispatch and Cascade Tables

3.2.2 Returning from an Exception Service Procedure

To return control to an interrupted program, one of two in-

structions can be used: RETT (Return from Trap) and RETI

(Return from Interrupt).

RETT is used to return from any trap or non-maskable inter-

rupt service procedure. Since some traps are often used

deliberately as a call mechanism for supervisor mode proce-

dures, RETT can also adjust the Stack Pointer (SP) to dis-

card a specified number of bytes from the original stack as

surplus parameter space.

RETI is used to return from a maskable interrupt service

procedure. A difference of RETT, RETI also informs the on-

chip ICU as well as any external interrupt control logic that

interrupt service has completed. Since interrupts are gener-

ally asynchronous external events, RETI does not discard

parameters from the stack.

Both of the above instructions always restore the Program

Counter (PC) and the Processor Status Register from the

interrupt stack. If the Direct-Exception mode is disabled,

they also restore the MOD and SB register contents. Fig-
ures 3-7 and 3-8 show the RETT and RETI instruction flows

when the Direct-Exception mode is disabled.

30

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–16

TL/EE/11267–17

FIGURE 3-5. Exception Acknowledge Sequence:

Direct-Exception Mode Disabled

31

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–18

TL/EE/11267–19

FIGURE 3-6. Exception Acknowledge Sequence:

Direct-Exception Mode Enabled

32

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–20

FIGURE 3-7. Return from Trap (RETTn) Instruction Flow:

Direct-Exception Mode Disabled

33

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–21

FIGURE 3-8. Return from Interrupt (RETI) Instruction Flow:

Direct-Exception Mode Disabled

3.2.3 Maskable Interrupts

The INT pin is a level-sensitive input. A continuous low level

is allowed for generating multiple interrupt requests. The in-

put is maskable, and is therefore enabled to generate inter-

rupt requests only while the Processor Status Register I bit

is set. The I bit is automatically cleared during service of an

INT or NMI request, and is restored to its original setting

upon return from the interrupt service routine via the RETT

or RETI instruction.

The INT pin may be configured via the SETCFG instruction

as either Non-Vectored (CFG Register bit I e 0) or Vec-

tored (bit I e 1).

3.2.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT

pin will cause an Interrupt Acknowledge bus cycle, but the

CPU will ignore any value read from the bus and use instead

a default vector of zero. This mode is useful for small sys-

tems in which hardware interrupt prioritization is unneces-

sary.

34

Obs
ole

te

3.0 Functional Description (Continued)

3.2.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control

Unit (ICU) to prioritize up to 16 interrupt requests. Upon re-

ceipt of an interrupt request on the INT pin, the CPU per-

forms an ‘‘Interrupt Acknowledge, Master’’ bus cycle read-

ing a vector value from the low-order byte of the Data Bus.

This vector is then used as an index into the Dispatch Table

in order to find the External Procedure Descriptor for the

proper interrupt service procedure. The service procedure

eventually returns via the Return from Interrupt (RETI) in-

struction, which performs an End of Interrupt bus cycle, in-

forming the ICU that it may re-prioritize any interrupt re-

quests still pending. The ICU provides the vector number

again, which the CPU uses to determine whether it needs

also to inform a Cascaded ICU.

In a system with only one ICU (16 levels of interrupt), the

vectors provided must be in the range of 0 through 127; that

is, they must be positive numbers in eight bits. By providing

a negative vector number, an ICU flags the interrupt source

as being a Cascaded ICU (see below).

Note: During a return from interrupt, the CPU looks at Bit 7 of the vector

number from the master ICU. If Bit 7 is 0, bits 0 through 6 are ignored.

3.2.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is

made both in the CPU and in the NS32202 Interrupt Control

Unit (ICU) to transparently support cascading. Figure 3-10
shows a typical cascaded configuration. Note that the Inter-

rupt output from a Cascaded ICU goes to an Interrupt Re-

quest input of the Master ICU, which is the only ICU which

drives the CPU INT pin.

In a system which uses cascading, two tasks must be per-

formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU

must be informed of the line number (0 to 15) on which it

receives the cascaded requests.

2) A Cascade Table must be established in memory. The

Cascade Table is located in a NEGATIVE direction from

the location indicated by the CPU Interrupt Base (INT-

BASE) Register. Its entries are 32-bit addresses, pointing

to the Vector Registers of each of up to 16 Cascaded

ICUs.

Figure 3-4 illustrates the position of the Cascade Table. To

find the Cascade Table entry for a Cascaded ICU, take its

Master ICU line number (0 to 15) and subtract 16 from it,

giving an index in the range b16 to b1. Multiply this value

by 4, and add the resulting negative number to the contents

of the INTBASE Register. The 32-bit entry at this address

must be set to the address of the Hardware Vector Register

of the Cascaded ICU. This is referred to as the ‘‘Cascade

Address.’’

Upon receipt of an interrupt request from a Cascaded ICU,

the Master ICU interrupts the CPU and provides the nega-

tive Cascade Table index instead of a (positive) vector num-

ber. The CPU, seeing the negative value, uses it as an index

into the Cascade Table and reads the Cascade Address

from the referenced entry. Applying this address, the CPU

performs an ‘‘Interrupt Acknowledge, Cascaded’’ bus cycle,

reading the final vector value. This vector is interpreted by

the CPU as an unsigned byte, and can therefore be in the

range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-

dure executes the Return from Interrupt (RETI) instruction,

as it would for any Maskable Interrupt. The CPU performs

an ‘‘End of Interrupt, Master’’ bus cycle, whereupon the

Master ICU again provides the negative Cascaded Table

index. The CPU, seeing a negative value, uses it to find the

corresponding Cascade Address from the Cascade Table.

Applying this address, it performs an ‘‘End of Interrupt, Cas-

caded’’ bus cycle, informing the Cascaded ICU of the com-

pletion of the service routine. The byte read from the Cas-

caded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the Interrupt Mask Register of the Interrupt Con-

troller. However, if an interrupt is set pending during the CPU instruc-

tion that masks off that interrupt, the CPU may still perform an inter-

rupt acknowledge cycle following that instruction since it might have

sampled the INT line before the ICU deasserted it. This could cause

the ICU to provide an invalid vector. To avoid this problem the above

operation should be performed with the CPU interrupt disabled.

TL/EE/11267–22

FIGURE 3-9. Interrupt Control Unit

Connections (16 Levels)

35

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–23

FIGURE 3-10. Cascaded Interrupt Control Unit Connections

36

Obs
ole

te

3.0 Functional Description (Continued)

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling

edge is detected on the NMI pin. The CPU performs an

‘‘Interrupt Acknowledge’’ bus cycle from Address FFFF0016
when processing of this interrupt actually begins. The vector

value used for the Non-Maskable Interrupt is taken as 1,

regardless of the value read from the bus.

The service procedure returns from the Non-Maskable-In-

terrupt using the Return from Trap (RETT) instruction. No

special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di-

rect results of the execution of an instruction.

The return address saved on the stack by any trap except

Trap (TRC) is the address of the first byte of the instruction

during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis-

abled.

There are 8 trap conditions recognized by the NS32FX164

as described below.

Trap (SLAVE): An exceptional condition was detected by

the Floating-Point Unit during the execution of a Slave In-

struction. This trap is requested via the Status Word re-

turned as part of the Slave Processor Protocol (Section

3.1.3.1).

Trap (ILL): Illegal operation. A privileged operation was at-

tempted while the CPU was in User Mode (PSR bit U e 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe-

cuted.

Trap (DVZ): An attempt was made to divide an integer by

zero. (The FPU trap is used for Floating-Point division by

zero.)

Trap (FLG): The FLAG instruction detected a ‘‘1’’ in the

PSR F-bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-

ed.

Trap (TRC): The instruction just completed is being traced.

Refer to Section 3.3.1 for details.

Trap (UND): An undefined opcode was encountered by the

CPU.

3.2.6 Priority among Exceptions

The CPU checks for specific exceptions at various points

while executing an instruction. It is possible that several ex-

ceptions occur simultaneously. In that event, the CPU re-

sponds to the exception with highest priority.

Figure 3-11 shows an exception processing flowchart.

Before executing an instruction, the CPU checks for pend-

ing interrupts, or Trap (TRC). The CPU responds to any

pending interrupt requests; nonmaskable interrupts are rec-

ognized with higher priority than maskable interrupts. If no

interrupts are pending, then the CPU checks the P-flag in

the PSR to determine whether a Trap (TRC) is pending. If

the P-flag is 1, a Trap (TRC) is processed. If no interrupt or

Trap (TRC) is pending, the CPU begins executing the in-

struction.

While executing an instruction, the CPU may recognize up

to two exceptions:

1. Interrupt, if the instruction is interruptible.

2. One of 7 mutually exclusive traps: SLAVE, ILL, SVC,

DVZ, FLG, BPT, UND

If no exception is detected while the instruction is executing,

then the instruction is completed and the PC is updated to

point to the next instruction.

37

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–24

FIGURE 3-11. Exception Processing Flowchart

38

Obs
ole

te

3.0 Functional Description (Continued)

3.2.7 Exception Acknowledge Sequences:

Detailed Flow

For purposes of the following detailed discussion of excep-

tion acknowledge sequences, a single sequence called

‘‘service’’ is defined in Figure 3-12.

Upon detecting any interrupt request or trap condition, the

CPU first performs a sequence dependent upon the type of

exception. This sequence will include saving a copy of the

Processor Status Register and establishing a vector and a

return address. The CPU then performs the service se-

quence.

3.2.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin

receives a falling edge, or the INT pin becomes active with

the PSR I bit set. The interrupt sequence begins either at

the next instruction boundary or, in the case of the String

instructions, or Graphics instructions which have interior

loops (BBOR, BBXOR, BBAND, BBFOR, EXTBLT, MOVMP,

SBITPS, TBITS), at the next interruptible point during its ex-

ecution. The graphics instructions are interruptible.

1. If a String instruction was interrupted and not yet com-

pleted:

a. Clear the Processor Status Register P bit.

b. Set ‘‘Return Address’’ to the address of the first byte

of the interrupted instruction.

Otherwise, set ‘‘Return Address’’ to the address of the

next instruction.

2. Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF0016, applying Status

Code 0100 (Interrupt Acknowledge, Master: Section

3.4.1). Discard the byte read.

b. Set ‘‘Vector’’ to 1.

c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFE0016, applying Status

Code 0100. Discard the byte read.

b. Set ‘‘Vector’’ to 0.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read ‘‘Byte’’ from ad-

dress FFFE0016, applying Status Code 0100.

6. If ‘‘Byte’’ t 0, then set ‘‘Vector’’ to ‘‘Byte’’ and go to

Step 8.

7. If ‘‘Byte’’ is in the range b16 through b1, then the inter-

rupt source is Cascaded. (More negative values are re-

served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The

address is calculated as INTBASE a 4* Byte.

b. Read ‘‘Vector’’, applying the Cascade Address just

read and Status Code 0101.

8. Perform Service (Vector, Return Address), Figure 3-12.

3.2.7.2 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND

Trap Sequence

1. Restore the currently selected Stack Pointer and the

Processor Status Register to their original values at the

start of the trapped instruction.

2. Set ‘‘Vector’’ to the value corresponding to the trap type.

SLAVE: Vector e 3.

ILL: Vector e 4.

SVC: Vector e 5.

DVZ: Vector e 6.

FLG: Vector e 7.

BPT: Vector e 8.

UND: Vector e 10.

3. If Trap (UND)

a. Clear the Processor Status Register P Bit.

4. Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits T, U, S, and P.

5. Set ‘‘Return Address’’ to the address of the first byte of

the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-12.

3.2.7.3 Trace Trap Sequence

1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR

bits S, U and T.

3. Set ‘‘Vector’’ to 9.

4. Set ‘‘Return Address’’ to the address of the next instruc-

tion.

5. Perform Service (Vector, Return Address), Figure 3-12.

Service (Vector, Return Address):

1. Push the PSR copy onto the Interrupt Stack as a

16-bit value.

2. Read 32-bit Interrupt Dispatch Table (IDT) entry

at address ‘‘INTBASE a vector c 4’’.

3. If Direct-Exception mode is selected, then go to

Step 10.

4. Move the LS word of the IDT entry (Module

Field) into the temporary MOD register.

5. Read the Program Base pointer from memory

address ‘‘MOD a 8’’, and add to it the M.S. word

of the IDT entry (Offset Field), placing the result

in the Program Counter.

6. Read the new Static Base pointer from the

memory address contained in MOD, placing it

into the SB Register.

7. Push MOD Register into the Interrupt Stack as a

16-bit value.

8. Copy temporary MOD Register into MOD Regis-

ter.

9. Go to Step 11.

10. Place IDT entry in the Program Counter.

11. Push the Return Address onto the Interrupt

Stack as a 32-bit quantity.

12. Flush queue: Non-sequentially fetch first in-

struction of Exception Service Routine.

FIGURE 3-12. Service Sequence

Invoked during All Interrupt/Trap Sequences

39

Obs
ole

te

3.0 Functional Description (Continued)

TABLE 3-2. Summary of Exception Processing

Exception
Instruction Cleared before Cleared after

Ending Saving PSR Saving PSR

Interrupt Before Instruction None /P* TUSPI

UND Suspended P TUS

SLAVE, SVC, DVZ, FLG, BPT, ILL Suspended None TUSP

TRC Before Instruction P TUS

3.3 DEBUGGING SUPPORT

The NS32FX164 provides features to assist in program de-

bugging.

Besides the Breakpoint (BPT) instruction that can be used

to generate soft breaks, the CPU also provides the instruc-

tion tracing capability.

3.3.1 Instruction Tracing

Instruction tracing is a very useful feature that can be used

during debugging to single-step through selected portions of

a program. Tracing is enabled by setting the T-bit in the PSR

Register. When enabled, the CPU generates a Trace Trap

(TRC) after the execution of each instruction.

At the beginning of each instruction, the T-bit is copied into

the PSR P (Trace ‘‘Pending’’) bit. If the P-bit is set at the end

of an instruction, then the Trace Trap is activated. If any

other trap or interrupt request is made during a traced in-

struction, its entire service procedure is allowed to complete

before the Trace Trap occurs. Each interrupt and trap se-

quence handles the P-bit for proper tracing, guaranteeing

only one Trace Trap per instruction, and guaranteeing that

the Return Address pushed during a Trace Trap is always

the address of the next instruction to be traced.

The beginning of the execution of a TRAP(UND) is not con-

sidered to be a beginning of an instruction, and hence the

T-bit is not copied into the P-bit.

Due to the fact that some instructions can clear the T- and

P-bits in the PSR, in some cases a Trace Trap may not

occur at the end of the instruction. This happens when one

of the privileged instructions BICPSRW or LPRW PSR is

executed.

In other cases, it is still possible to guarantee that a Trace

Trap occurs at the end of the instruction, provided that spe-

cial care is taken before returning from the Trace Trap Serv-

ice Procedure. In case a BICPSRB instruction has been ex-

ecuted, the service procedure should make sure that the

T-bit in the PSR copy saved on the Interrupt Stack is set

before executing the RETT instruction to return to the pro-

gram being traced. If the RETT or RETI instructions have to

be traced, the Trace Trap Service Procedure should set the

P- and T-bits in the PSR copy on the Interrupt Stack that is

going to be restored in the execution of such instructions.

While debugging the NS32FX164 instructions which have

interior loops (BBOR, BBXOR, BBAND, BBFOR, EXTBLT,

MOVMP, SBITPS, TBITS), special care must be taken with

the single-step trap. If an interrupt occurs during a single-

step of one of the graphics instructions, the interrupt will be

serviced. Upon return from the interrupt service routine, the

new NS32FX164 instruction will not be re-entered, due to a

single-step trap. Both the NMI and INT interrupts will cause

this behavior. Another single-step operation (S command in

DBG16/MONCG) will resume from where the instruction

was interrupted. There are no side effects from this early

termination, and the instruction will complete normally.

For all other Series 32000 instructions, a single-step opera-

tion will complete the entire instruction before traping back

to the debugger. On the instructions mentioned above, serv-

eral single-step commands may be required to complete the

instruction, ONLY when interrupts are occurring.

There are some methods to give the appearance of single-

stepping for these NS32FX164 instructions.

1. MON16/MONCG monitors the return from single-step

trap vector, PC value. If the PC has not changed since

the last single-step command was issued, the single-step

operation is repeated. It is also advisable to ensure that

one of the NS32FX164 instructions is being single-

stepped, by inspecting the first byte of the address point-

ed to by the PC register. If it is 0x0E, then the instruction

is an NS32FX164-specific instruction.

2. A breakpoint following the instruction would also trap af-

ter the instruction had completed.

Note: If instruction tracing is enabled while the WAIT instructioin is execut-

ed, the Trap (TRC) occurs after the next interrupt, when the interrupt

service procedure has returned.

3.4 DSP MODULE

The following sections give full specifications for the

32FX164 on-chip DSP Module.

3.4.1 Programming Model

The DSPM programming model consists of the following el-

ements:

Internal RAM

Dedicated registers

Command-list execution unit

Interface with CPU core

Vector instruction set

The Internal RAM is used by the DSPM for fetching com-

mands to be executed, and for reading or writing data that is

needed in the course of program execution. DSPM Pro-

grams are encoded as command lists and are interpreted by

the command-list execution unit.

Computations are performed by commands selected from

the set of available ones. These commands employ the

DSP-oriented datapath in a pipelined manner, thus maximiz-

ing the utilization of on-chip hardware resources. A set of

dedicated registers is used to specify operands and options

for subsequent vector commands. These dedicated regis-

ters can be loaded and stored by appropriate commands in

between initiations of vector commands. Additional com-

mands are available for controlling the flow of execution of

the command list, as needed for programming loops and

branches (see Section 3.4.5.7).

40

Obs
ole

te

3.0 Functional Description (Continued)

The CPU core interface specifies the mapping of the DSPM

internal RAM as a contiguous block within the CPU core’s

address space, thus making it possible for normal CPU in-

structions to access and manipulate data and commands in

the DSPM internal RAM (see Section 3.4.4.2). In addition,

the CPU core interface contains control and status registers

that are needed to synchronize the execution of CPU core

instructions concurrently with execution of the DSPM com-

mand lists (see Section 3.4.4.1).

3.4.2 RAM Organization and Data Types

The DSPM internal RAM is organized as a word or double-

word addressable, uniform, linear address space. Memory

locations are numbered sequentially, starting at 0 for the

first location, and incremented by 1 for each successive lo-

cation. The content of each memory location is a 16-bit

word. Double-words must be aligned to an even address.

Valid RAM addresses for access by the command-list exe-

cution unit are 0 through 0x7FF. Access to memory loca-

tions out of the DSMP RAM boundary are not allowed.

The organization of the DSPM internal RAM is shown be-

low:

15 0

Location 0

Location 1

. . .

Locationn

. . .

The RAM array is not restricted to use by the DSPM, it can

also be accessed by the core with any type of memory ac-

cess (e.g., byte, word, or double-word accesses aligned to

any byte address).

The internal RAM stores command lists to be executed, and

data to be manipulated during program execution. Com-

mand lists consist of 16-bit commands, so that each individ-

ual command occupies one memory location.

Each data item is represented as having either a 16-bit or a

32-bit value, as follows:

Integer values (16-bit)

Aligned-integer values (32-bit)

Real values (16-bit)

Aligned-real values (32-bit)

Extended-precision real values (32-bit)

Complex values (32-bit)

3.4.2.1 Integer Values

Integer values are represented as signed 16-bit binary num-

bers in 2’s complement format. The range of integer values

is from b215 (b32768) through 215 b 1 (32767). Bit 0 is

the Least Significant Bit (LSB), and bit 15 is the Most Signifi-

cant Bit (MSB).

15 0

Integer Value

Integer values are typically used for addressing vector oper-

ands and for lookup-table index manipulations.

3.4.2.2 Aligned-Integer Values

Aligned-integer values are represented as pairs of integer

values, and must be aligned on a double-word boundary.

The less significant half represents one integer vector ele-

ment, and must be contained in an even-numbered memory

location. The more significant half represents the next vec-

tor element, and must be contained in the next (odd-num-

bered) memory location.

15 0

Integer Value (Low) (Location 2n)

Integer Value (High) (Location 2n a 1)

Aligned-integer values are used for higher throughput in op-

erations where two sequential integer vector elements can

be used in a single iteration. Both elements of an aligned-in-

teger value have the same range and accuracy as specified

for integer values above.

3.4.2.3 Real Values

Real values are represented as 16-bit signed fixed-point

fractional numbers, in 2’s complement format. Bit 15 (MSB)

is the sign bit. Bits 0 (LSB) through 14 represent the frac-

tional part. The binary digit is assumed to lie between bits 14

and 15.

15 0

Real Value

Real values are used to represent samples of analog sig-

nals, coefficients of filters, energy levels, and similar contin-

uous quantities that can be represented using 16-bit accura-

cy. The range of real values is from b1.0 (represented as

0x8000) through 1.0 b 2b15 (represented as 0x7FFF).

3.4.2.4 Aligned-Real Values

Aligned-real values are represented as pairs of real values,

and they must be aligned on a double-word boundary. The

less significant half represents one real vector element, and

must be contained in an even-numbered memory location.

The more significant half represents the next vector ele-

ment, and must be contained in the next (odd-numbered)

memory location.

15 0

Real Value (Low) (Location 2n)

Real Value (High) (Location 2n a 1)

Aligned-real values are used for higher throughput in opera-

tions where two sequential real vector elements can be

used in a single iteration. Both elements of an aligned-real

value have the same range and accuracy as specified for

real values above.

3.4.2.5 Extended-Precision Real Values

Extended-precision real values are represented as 32-bit

signed fixed-point fractional numbers, in 2’s complement

format. Extended-precision real values must be aligned on a

double-word boundary, so that the less significant half is

contained in an even-numbered memory location, and the

more significant half is contained in the next (odd-num-

bered) memory location. Bit 15 (MSB) of the more signifi-

cant part is the sign bit. Bits from 0 (LSB) of the less signifi-

cant part, through 14 of the more significant part, are used

to represent the fractional part. The binary digit is assumed

to lie between bits 14 and 15 of the more significant part.

When extended-precision values are loaded or stored in the

accumulator, bits 1 through 31 of the extended-precision

argument are loaded or stored in bits 0 through 30 of the

41

Obs
ole

te

3.0 Functional Description (Continued)

accumulator. Bit 0 of the extended-precision argument is

not used during calculations. This bit is always set to ‘‘0’’

when stored back in the internal memory.

15 0

Less Significant Part (Location 2n)

More Significant Part (Location 2n a 1)

Extended-precision real values are used to represent vari-

ous continuous quantities that require high accuracy. The

range of extended-precision real values is from b1.0 (repre-

sented as 0x80000000) through 1.0 b2b30 (represented

as 0x7FFFFFFE).

3.4.2.6 Complex Values

Complex values are represented as pairs of real values, and

must be aligned on a double-word boundary. The less signif-

icant half represents the real part, and must be contained in

an even-numbered memory location. The more significant

half represents the imaginary part, and must be contained in

the next (odd-numbered) memory location.

15 0

Real Part (Location 2n)

Imaginary Part (Location 2n a 1)

Complex values are used to represent samples of complex

baseband signals, constellation points in the complex plane,

coefficients of complex filters, and rotation angles as points

on the unit circle, etc. Both the real and imaginary parts

have the same range and accuracy as specified for real

values above.

3.4.3 Command List Format

All commands have the same fixed format, consisting of a

5-bit opcode field and a 11-bit arg field, as shown below:

15 11 10 0

opcode arg

The opcode field specifies an operation to be performed.

The arg field interpretation is determined by the class to

which the command belongs. There are several classes of

commands, as follows:

Load Register Instructions

Store Register Instructions

Adjust Register Instructions

Flow Control Instructions

Internal Memory Move Instructions

External Memory Move Instructions

Arithmetic/Logical Instructions

Multiply-and-Accumulate Instructions

Multiply-and-Add Instructions

Clipping and Min/Max Instructions

Special Instructions

See Section 3.4.5 for detailed information on the DSPM in-

struction set.

3.4.4 CPU Core Interface

The interface between the DSPM and the CPU core con-

sists of the following elements:

Parallel Operation and Synchronization

CPU Core Address Space Map

External Memory References

3.4.4.1 Synchronization of Parallel Operation

Since the DSPM is capable of autonomous operation paral-

lel to the CPU core operation, a mechanism is needed to

synchronize the two threads of execution. The parallel syn-

chronization mechanism consists of several control and

status registers, which are used to synchronize the following

activities:

Initiation of the command list execution

Termination of the command list execution

Check the DSPM status

Access to DSPM internal RAM and registers by CPU

core instructions

Access to external memory by DSPM commands

The following CPU core interface control and status regis-

ters are available:

Register Function

CLPTR Command-List Pointer

CLSTAT Command-List Status Register

ABORT Abort Register

EXT Disable External Memory References

DSPINT Interrupt Register

DSPMASK Mask Register

NMISTAT NMI Status Register

Execution of the command list begins when the CPU core

writes a value into the CLPTR control register. This causes

the DSPM command-list execution unit to begin executing

commands, starting at the address written to the CLPTR

register. If the written value is outside the range of valid

RAM addresses, the result is unpredictable.

Once started, execution of the command list continues until

one of the following occurs: a HALT or a DBPT command is

executed, the CPU core writes any value into the ABORT

control register, an attempt to execute a reserved com-

mand, an attempt to access the DSPM address space while

the CLSTAT.RUN bit is ‘‘1’’ (except for accesses to the

CLSTAT, EXT, DSPINT, DSPMASK, NMISTAT, and ABORT

registers), or reset occurs. In the last case, the contents of

the DSPM internal RAM, REPEAT, and CLPTR registers are

unpredictable when execution terminates.

The CLSTAT status register can be read by CPU core in-

structions to check whether execution of the DSPM com-

mand list is active or idle. A ‘‘0’’ value read from the

CLSTAT.RUN bit indicates that execution is idle, and a ‘‘1’’

value indicates that it is active.

Whenever the execution of the command list terminates,

CLSTAT.RUN changes its value from ‘‘1’’ to ‘‘0’’, and

DSPINT.HALT is set to ‘‘1’’. The value of the DSPINT.HALT

status bit can be used to generate interrupts. If

DSPMASK.HALT is set, a ‘‘1’’ value on the DSPINT.HALT

will cause the IOUT output signal to become active (low).

IOUT can be connected to an external Interrupt Controller

Unit (ICU), or directly to the INT input of the NS32FX164.

The DSPM internal RAM and the dedicated registers, as

well as the interface control and status registers, are

mapped into certain areas of the CPU core address space

(see Section 2.2.1). Whenever execution of the DSPM com-

mand list is idle, CPU core instructions may access these

42

Obs
ole

te

3.0 Functional Description (Continued)

memory areas for any purpose, exactly as they would ac-

cess external off-chip memory locations. However, when

the DSPM command list execution unit is active, any at-

tempt to read or write a location within the above memory

areas, except for accessing the CLSTAT, EXT, DSPMASK,

DSPINT, NMISTAT, or ABORT control registers (see be-

low), will be treated as follows: All read data will have unpre-

dictable values, and any attempt to write data will not

change the DSPM memory and registers. Whenever such

an access occurs, NMISTAT.ERR bit is set to ‘‘1’’, an NMI

request to the core is issued, and the command list execu-

tion terminates. In this case, as the command-list execution

terminates asyncronously, the currently executed command

may be aborted. The DSPM RAM and the A, X, Y, Z, and

REPEAT registers may hold temporary values created in

this aborted instruction.

Some of the vector instructions executable by the DSPM

can access external off-chip memory to transfer data in or

out of the internal RAM, or to reference large lookup tables.

Normally, external memory references initiated by the

DSPM and CPU core are interleaved by the CPU core bus-

arbitration logic. As a result, it is the user’s responsibility, to

make sure that whenever a write operation is involved, the

DSPM and CPU core should not reference the same exter-

nal memory locations, since the order of these transactions

is unpredictable.

Each time the DSPM needs to access the external bus, it

issues an internal HOLD request to the CPU core, and waits

for an internal HOLD acknowledge. External HOLD requests

(when the HOLD signal is asserted) have higher priority than

DSPM HOLD requests.

In order to ensure fast response for time-critical interrupt

requests, the DSPM external referencing mechanism will re-

linquish the core bus for one clock cycle after each memory

transaction. This allows the core to use the bus for one

memory transaction. To further enhance the core speed on

critical interrupt routines, the EXT.HOLD control flag is pro-

vided.

Whenever the core sets EXT.HOLD to ‘‘1’’, the DSPM stops

its external memory references. When the DSPM needs to

perform an external memory reference but is disabled, it

enters a HOLD state until a value of ‘‘0’’ is written to the

EXT.HOLD control register.

3.4.4.2 DSPM RAM Organization

The mapping of these locations to CPU core address space

is shown below, where base corresponds to the start of the

mapped area (address 0xFFFE0000):

15 8 7 0

base a 1 base a 0 (RAM Location 0)

base a 3 base a 2 (RAM Location 1)

.

base a 2n a 1 base a 2n (RAM Locationn)

.

The RAM array is not restricted to use by the DSPM, but can

also be used by the core as a fast, zero wait-state, on-chip

memory for instructions and data storage. The core can ac-

cess each byte, word, or double-word of the RAM, with no

restrictions on alignment.

3.4.5 DSPM Instruction Set

3.4.5.1 Conventions

The formal description below of DSPM command-list in-

structions is based on the ‘‘C’’ programming language, us-

ing the following conventions:

low Bits 0 through 15 of a 32 bits entity.

high Bits 16 through 31 of a 32 bits entity.

LENG Value of PARAM.LENGTH.

A Accumulator.

alignedÐaddr An even number in the range [0, 216], used

for specifying a double word-aligned address

in internal memory.

mem[k] A value in internal memory whose first word

address is k , where 0 s k k 216.

extÐmem[k] A value in external memory whose first byte

address is k , where 0 s k k 232.

X Vector in internal memory whose first ad-

dress is pointed to by X.ADDR.

Y Vector in internal memory whose first ad-

dress is pointed to by Y.ADDR.

Z Vector in internal memory whose first ad-

dress is pointed to by Z.ADDR.

X[n] A value in internal memory whose address is

formed by adding an offset to a cyclic buffer

base address. The base address is formed

by clearing the (X.WRAP b 1) less-signifi-

cant bits of X.ADDR. The offset within the

buffer is calculated by: (X.ADDR a

n c 2X.INCR) modulo 2X.WRAP.

Y[n] A value in internal memory whose address is

formed by adding an offset to a cyclic buffer

base address. The base address is formed

by clearing the (Y.WRAP b 1) less-signifi-

cant bits of Y.ADDR. The offset within the

buffer is calculated by: (Y.ADDR a

n c 2Y.INCR) modulo 2Y.WRAP.

Z[n] A value in internal memory whose address is

formed by adding an offset to a cyclic buffer

base address. The base address is formed

by clearing the (Z.WRAP b 1) less-signifi-

cant bits of Z.ADDR. The offset within the

buffer is calculated by: (Z.ADDR a

n c 2Z.INCR) modulo 2Z.WRAP.

&X[n] The word address of X[n].
&Y[n] The word address of Y[n].
&Z[n] The word address of Z[n].
3.4.5.2 Type Casting

The following data type definitions are used in DSPM in-

struction description:

integer An integer value, as described in Section

3.4.2.1.

alignedÐinteger An aligned integer value, as described in

Section 3.4.2.2.

real A real value, as described in Section

3.4.2.3.

43

Obs
ole

te

3.0 Functional Description (Continued)

alignedÐreal An aligned real value, as described in Sec-

tion 3.4.2.4.

extended An extended-precision real value, as de-

scribed in Section 3.4.2.5.

complex A complex value, as described in Section

3.4.2.6.

vectorÐptr A valid value for X, Y, and Z registers.

repeatÐreg A valid value for REPEAT register.

paramÐreg A valid value for PARAM register.

eabrÐreg A valid value for EABR register.

realÐacc A 34-bit value inside either the real part or

the imaginary part of the accumulator.

complexÐacc A 68-bit value inside the complex accumu-

lator.

3.4.5.3 General Notes

The values of the EABR, PARAM, X, Y, and Z registers are

not changed by the execution of the command list.

Some instructions use the accumulator as a temporary reg-

ister and therefore destroy its contents. In general, the user

should assume that the contents of the accumulator are

unpredictable after an instruction terminates, unless stated

otherwise in the notes section following that instruction’s

formal specification.

Non-complex instructions that use the accumulator, can use

either the real or the imaginary parts, or both. In general,

when an integer or real data type is to be read, it is taken

from the real part. An extended-precision real data type is

taken from the imaginary part. When a non-complex data

type is loaded into the accumulator (by the LEA instruction

or within other instructions prior to saving it into memory), it

is written to both real and imaginary parts.

Rounding is implemented by copying PARAM.RND into bit

position 14 of both the real and the imaginary part of the

accumulator, performing the requested operation, and trun-

cating the contents of the accumulator upon storing results

to memory. In Multiply-and-Add instructions and some of the

special instructions, this is done transparently on each vec-

tor element iteration. In Multiply-and-Accumulate instruc-

tions, when PARAM.CLR is ‘‘0’’, the previous content of the

accumulator is used, so that rounding control is actually per-

formed when the accumulator is first loaded and not when

the multiply operations is executed. On the other hand, if

PARAM.CLR is ‘‘1’’, the PARAM.RND value is copied into

bit 14 of the cleared accumulator, so that rounding control is

done at the same time that the multiply operation is execut-

ed.

Rounding is performed only for real, aligned-real and com-

plex data types. In operations on complex operands, the

order of accumulation is as follows: the result of the multipli-

cation with the real part of the X operand is added first to

the accumulator, and only then the result of the multiplica-

tion with the imaginary part of the X operand is added.

In general, the X, Y, and Z vectors can overlap. However,

because of the pipelined structure of the DSPM datapath,

the user must verify that a value written into the DSPM inter-

nal memory will not be used in the same vector instruction

as a source operand for the next 8 iterations, in all instruc-

tions except VCPOLY. In VCPOLY, Y[0] cannot be over-rid-

den at all.

The description below specifies the encoding of each DSPM

instruction. All other values are reserved for future use. Any

attempt to execute any reserved instructions will terminate

execution of the command list, issue an NMI request, and

set NMISTAT.UND to ‘‘1’’. In this case the contents of the

EXT and DSPMASK remain unchanged, but the contents of

the Accumulator and OVF may change.

3.4.5.4 Load Register Instructions

LXÐLoad X Vector Pointer

The LX instruction loads the double-word at alignedÐaddr
into the X register.

Syntax:

LX alignedÐaddr

15 11 10 0

00010 alignedÐaddr

Operation:

À

X 4 (vector ptr) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr] should conform to vector pointer

specification format.

Accumulator is not affected.

LYÐLoad Y Vector Pointer

The LY instruction loads the double-word at alignedÐaddr
into the Y register.

Syntax:

LY alignedÐaddr

15 11 10 0

00011 alignedÐaddr

Operation:

À

Y 4 (vector ptr) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr] should conform to vector pointer

specification format.

Accumulator is not affected.

LZÐLoad Z Vector Pointer

The LZ instruction loads the double-word at alignedÐaddr
into the Z register.

Syntax:

LZ alignedÐaddr

15 11 10 0

00100 alignedÐaddr

Operation:

À

Z 4 (vector ptr) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr] should conform to vector pointer

specification format.

Accumulator is not affected.

44

Obs
ole

te

3.0 Functional Description (Continued)

LAÐLoad Accumulator

The LA instruction loads the complex value at alignedÐ
addr into the A accumulator as a complex value.

Syntax:

LA alignedÐaddr

15 11 10 0

00101 alignedÐaddr

Operation:

À

(complex) A 4 (complex) mem[aligned addr];
Ó

Notes: The real and imaginary parts are placed in bits 15 through 30 of the

real and imaginary parts of the accumulator.

When PARAM.RND is set to ‘‘1’’, bit 14 of the real and imaginary

parts is set to ‘‘1’’, in order to implement rounding upon subsequent

additions into the accumulator. Otherwise, it is cleared to ‘‘0’’.

LEAÐLoad Extended Accumulator

The LEA instruction loads the accumulator with the extend-

ed value specified by X[0].
Both the real and the imaginary parts of the accumulator are

loaded.

Syntax:

EXEC LEA

15 11 10 0

10000 101 0011 0011

Operation:

À

extended X;

A 4 (extended) X[0];
Ó

Note: Bits 1 through 31 of the memory location are read into bit positions 0

through 30 of the accumulator.

LPARAMÐLoad Parameters Register

The LPARAM instruction loads the double-word at

alignedÐaddr into the PARAM register.

Syntax:

LPARAM alignedÐaddr

15 11 10 0

00000 alignedÐaddr

Operation:

À

PARAM 4 (param reg) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr] should conform to this register

format. The value written into PARAM.LENGTH must be greater

then 0.

Accumulator is not affected.

LREPEATÐLoad Repeat Register

The LREPEAT instruction loads the double-word at

alignedÐaddr into the REPEAT register.

Syntax:

LREPEAT alignedÐaddr

15 11 10 0

00110 alignedÐaddr

Operation:

À

REPEAT 4 (repeat reg) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr] should conform to the REPEAT

register format.

Accumulator is not affected.

LEABRÐLoad External Address Base Register

The LEABR instruction loads the double-word at

mem[alignedÐaddr] into the EABR register.

Syntax:

LEABR alignedÐaddr

15 11 10 0

00111 alignedÐaddr

Operation:

À

EABR 4 (eabr reg) mem[aligned addr];
Ó

Notes: The value at mem[alignedÐaddr] should conform to vector pointer

specification format, that is, bit positions 0 through 16 must be speci-

fied as ‘‘0’.

Accumulator is not affected.

3.4.5.5 Store Register Instructions

SXÐStore X Vector Pointer

The SX instruction stores the contents of the X register into

the double-word at alignedÐaddr .

Syntax:

SX alignedÐaddr

15 11 10 0

01010 alignedÐaddr

Operation:

À

(vector ptr) mem[aligned addr] 4 X;

Ó

Note: Accumulator is not affected.

SXLÐStore X Vector Pointer Lower Half

The SXL instruction stores the contents of the lower-half of

the X register into the word at mem[addr].
Syntax:

SXL addr

15 11 10 0

11100 addr

Operation:

À

mem[aligned addr] 4 X.low;
Ó

Note: Accumulator is not affected.

45

Obs
ole

te

3.0 Functional Description (Continued)

SXHÐStore X Vector Pointer Higher Half

The SXH instruction stores the contents of the higher-half of

the X register into the word at mem[addr].
Syntax:

SXH addr

15 11 10 0

11101 addr

Operation:

À

mem[aligned addr] 4 X.high;
Ó

Note: Accumulator is not affected.

SYÐStore Y Vector Pointer

The SY instruction stores the contents of the Y register into

the double-word at alignedÐaddr.

Syntax:

SY alignedÐaddr

15 11 10 0

01011 alignedÐaddr

Operation:

À

(vector ptr) mem[aligned addr] 4 Y;
Ó

Note: Accumulator is not affected.

SZÐStore Z Vector Pointer

The SZ instruction stores the contents of the Z register into

the double-word at alignedÐaddr .

Syntax:

SZ alignedÐaddr

15 11 10 0

01100 alignedÐaddr

Operation:

À

(vector pointer mem[aligned addr] 4 Z;
Ó

Note: Accumulator is not affected.

SAÐStore Accumulator

The SA instruction stores the contents of the A accumulator

as a complex value into mem[alignedÐaddr].
Syntax:

SA alignedÐaddr

15 11 10 0

01101 alignedÐaddr

Operation:

À

(complex mem[aligned addr] 4 (complex) A;
Ó

Notes: Bits 15 through 30 of the real and imaginary parts of the accumulator

are placed in the real and imaginary parts of the complex value at

mem[alignedÐaddr].

Accumulator is not affected.

SEAÐStore Extended Accumulator

The SEA stores the contents of bits 0–30 of the imaginary

accumulator as an extended value into a DSPM memory

location specified by Z[0].
Bit 0 of this memory location is loaded with ‘‘0’’.

Syntax:

EXEC SEA

15 11 10 0

10000 101 0011 0110

Operation:

À

extended Z;

Z[0] 4 (extended) A;
Ó

Note: Accumulator is not affected.

SREPEATÐStore Repeat Register

The SREPEAT instruction stores the contents of the

REPEAT register in the double-word at mem[alignedÐ
addr].
Syntax:

SREPEAT alignedÐaddr

15 11 10 0

01110 alignedÐaddr

Operation:

À

(repeat reg) mem[aligned addr] 4 REPEAT;
Ó

Note: Accumulator is not affected.

SOVFÐStore and Clear OVF Register

The SOVF instruction stores the contents of the OVF regis-

ter in the word at mem[addr]. The OVF register is then

cleared to ‘‘0’’.

Syntax:

SOVF addr

15 11 10 0

01001 addr

Operation:

À

(ovf reg) mem[aligned addr] 4 OVF;
Ó

Note: Accumulator is not affected.

3.4.5.6 Adjust Register Instructions

INCXÐIncrement X Vector Pointer

The INCX instruction increments the X vector pointer by one

element, according to the increment and the wrap.

Syntax:

EXEC INCX

15 11 10 0

10000 100 0101 1001

46

Obs
ole

te

3.0 Functional Description (Continued)

Operation:

À

X.ADDR 4 &X[1];
Ó

Note: Accumulator is not affected.

INCYÐIncrement Y Vector Pointer

The INCY instruction increments the Y vector pointer by one

element, according to the increment and the wrap.

Syntax:

EXEC INCY

15 11 10 0

10000 100 0101 1011

Operation:

À

Y.ADDR 4 &Y[1];
Ó

Note: Accumulator is not affected.

INCZÐIncrement Z Vector Pointer

The INCZ instruction increments the Z vector pointer by one

element, according to the increment and the wrap.

Syntax:

EXEC INCZ

15 11 10 0

10000 100 0101 1101

Operation:

À

Z.ADDR 4 &Z[1];
Ó

Note: Accumulator is not affected.

DECXÐDecrement X Vector Pointer

The DECX instruction decrements the X vector pointer by

one element, according to the increment and the wrap.

Syntax:

EXEC DECX

15 11 10 0

10000 101 0010 1101

Operation:

À

X.ADDR 4 &X[b1]
Ó

Note: Accumulator is not affected.

DECYÐDecrement Y Vector Pointer

The DECY instruction decrements the Y vector pointer by

one element, according to the increment and the wrap.

Syntax:

EXEC DECY

15 11 10 0

10000 101 0010 1111

Operation:

DECY
À

Y.ADDR 4 &Y[11];
Ó

Note: Accumlator is not affected.

DECZÐDecrement Z Vector Pointer

The DECZ instruction decrements the Z vector by one ele-

ment, according to the increment and the wrap.

Syntax:

EXEC DECZ

15 11 10 0

10000 101 0011 0001

Operation:

À

Z.ADDR 4 &Z[11];
Ó

Note: Accumulator is not affected.

3.4.5.7 Flow Control Instructions

NOPRÐNo Operation

The NOPR command passes control to the next command

in the command list. No operation is performed.

Syntax:

NOPR

15 11 10 0

11010 00000000

Note: Accumulator is not affected.

HALTÐTerminate Command-List Execution

The HALT command terminates execution of the command

list. No further commands are executed. This event is made

visible to the CPU core, as specified in Section 3.6.

Syntax:

HALT

15 11 10 0

11001 00000000000

Note: Accumulator is not affected.

DJNZÐDecrement and Jump If Not Zero

The DJNZ command is used to implement loops and

branches in the command list. The value of the REPE-

AT.COUNT field is decremented by 1 and compared to 0. If

it is not equal to 0, then execution of the command list con-

tinues with the command located in the RAM address speci-

fied by the REPEAT.TARGET field. When the

REPEAT.COUNT field is equal to 0, then execution contin-

ues with the next command in the command list.

The DSPM has only one REPEAT register. To nest loops,

user must save the contents of the REPEAT register before

starting an inner loop, and restore it at the end of the inner

loop.

47

Obs
ole

te

3.0 Functional Description (Continued)

Syntax:

EXEC DJNZ

15 11 10 0

10000 101 0110 1100

Note: Accumulator is not affected.

DBPTÐDebug Breakpoint

The DBPT instruction is used for implementing software de-

bug breakpoint in the DSPM command-list. Whenever there

is an attempt to execute a DBPT instruction, the NMIS-

TAT.UND bit is set to ‘‘1’’.

Syntax:

EXEC DBPT

15 11 10 0

10000 111 1111 1110

Note: Accumulator is not affected.

3.4.5.8 Internal Memory Move Instructions

VRMOVÐVector Real Move

The VRMOV instruction copies the real X vector to the real

Z vector.

Syntax:

EXEC VRMOV

15 11 10 0

10000 101 0010 1011

Operation:

À

real X, Z;

for (n 4 0; n k LENG; n00)
À

Z[n] 4 X[n];
Ó

Ó

VARMOVÐVector Aligned Real Move

The VARMOV instruction copies the aligned real X vector to

the aligned real Z vector.

Syntax:

EXEC VARMOV

15 11 10 0

10000 100 0011 1000

Operation:

À

aligned real X, Z;

for (n 4 0; n k LENG; n00)
À

Z[n].low 4 X[n].low;

Z[n].high 4 X[n].high;
Ó

Ó

VRGATHÐVector Real Gather

The VRGATH instruction gathers non-contiguous elements

of the X real vector, as specified by the Y integer vector, and

places them in contiguous locations in the Z real vector.

Syntax:

EXEC VRGATH

15 11 10 0

10000 100 0011 1010

Operation:

À

real X, Z;

integer X.ADDR, Y;

for (n 4 0; n k LENG; n00)
À

Z[n] 4 mem[(X.ADDR0Y[n]) & 0xFFFF];
Ó

Ó

VRSCATÐVector Real Scatter

The VRSCAT instruction scatters contiguous elements of

the X real vector, and places them in non-contiguous loca-

tions in the Z real vector, as specified by the Y integer vec-

tor.

Syntax:

EXEC VRSCAT

15 11 10 0

10000 100 0100 0000

Operation:

À

real X, Z;

integer Z.ADDR, Y;

for (n40; n k LENG; n00)
À

mem[Z.ADDR0Y[n]) & 0xFFFF] 4 X[n];
Ó

Ó

3.4.5.9 External Memory Move Instructions

VXLOADÐVector External Load

The VXLOAD instruction loads a vector from external mem-

ory into the Z vector. The external memory address is speci-

fied in the EABR and X registers.

Syntax:

EXEC VXLOAD

15 11 10 0

10000 100 0100 1111

Operation:

VXLOAD
À

real X, Z;

ext address EABR;

for (n40; nkLENG; n00)
À

Z[n] 4 ext mem[EABR 0 (ext address)

2*&X[n]]
Ó

Ó

VXSTOREÐVector External Store

The VXSTORE instruction stores the Z vector into an exter-

nal memory vector. The external memory address is speci-

fied in the EABR and X registers.

48

Obs
ole

te

3.0 Functional Description (Continued)

Syntax:

EXEC VXSTORE

15 11 10 0

10000 100 0101 0101

Operation:

À

real X, Z;

ext address EABR;

for (n40; n k LENG; n00)
À

ext mem[EABR 0 (ext address) 2*&Z[n]] 4
X[n];

Ó

Ó

VXGATHÐVector External Gather

The VXGATH instruction gathers non-contiguous elements

of the external memory vector, as specified by the Y integer

vector, and places them in contiguous locations in the Z real

vector. The external memory address is specified in the

EABR and X registers.

Syntax:

EXEC VXGATH

15 11 10 0

10000 100 0100 0110

Operation:

À

real X, Z;

ext address EABR;

integer Y, X.ADDR;

for (n40; n k LENG; n00)
À

Z[n]4ext mem

[EABR0(ext address)2*((X.ADDR0(integer)Y[n])

& 0xFFFF)];
Ó

Ó

3.4.5.10 Arithmetic/Logical Instructions

VROPÐVector Real Op

The VROP instruction performs one of 7 operations be-

tween corresponding elements of the X and Y real vectors,

and writes the result in the corresponding place in the Z

output vector. The operation to be performed is specified in

PARAM.OP field.

Syntax:

EXEC VROP

15 11 10 0

10000 101 0110 1000

Operation:

À

real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n] 4 (real) (X[n] kopl Y[n]);
Ó

Ó

The allowed values in PARAM.OP are:

kopl Operation

011010 ADD Z e X a Y

100111 SUB Z e X b Y

001000 BIC Z e X & Y

100000 AND Z e X & Y

111000 OR Z e X l Y

011000 XOR Z e X Z Y

001100 INV Z e Y

VAROPÐVector Aligned Real Op

The VAROP instruction performs one of 7 operations be-

tween corresponding elements of the X and Y aligned vec-

tors, and writes the result in the coresponding place in the Z

output vector. The operation to be performed is specified in

PARAM.OP field.

Syntax:

EXEC VAROP

15 11 10 0

10000 100 0001 1010

Operation:

À

aligned real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n].low 4 (real) (X[n].low kopl

Y[n].low);

Z[n].high 4 (real) (X[n].high kopl

Y[n].high);
Ó

Ó

Note: The allowed values in PARAM.OP are the same as those in VROP.

3.4.5.11 Multiply-and-Accumulate Instructions

VRMACÐVector Real Multiply and Accumulate

The VRMAC instruction performs a convolution sum of the

X and Y real vectors. The previous value of the accumulator

is used and the result stored in Z[0].

Syntax:

EXEC VRMAC

15 11 10 0

10000 100 0000 0111

Operation:

À

real X,Y,Z;

real acc A;

for (n40; n k LENG; n00)
À

A 4 A 0 X[n] * Y[n];
Ó

Z[0] 4 (real) A;
Ó

Note: When PARAM.CLR is set to ‘‘1’’, A is cleared to ‘‘0’’ prior to the first

addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is replaced

by a ‘‘b’’ sign.

49

Obs
ole

te

3.0 Functional Description (Continued)

VARMACÐVector Aligned Real Multiply

and Accumulate

The VARMAC instruction performs a convolution sum of the

X and Y real vectors. The previous value of the accumulator

is used and the result is stored in Z[0].

Syntax:

EXEC VARMAC

15 11 10 0

10000 100 0000 0000

Operation:

À

aligned real X,Y;

real Z;

real acc A;

for (n40; n k LENG; n00)
À

A 4 A 0 X[n].low * Y[n].low 0
X[n].high * Y[n].high ;

Ó

Z[0] 4 (real) A;
Ó

Note: When PARAM.CLR is set to ‘‘1’’, A is cleared to ‘‘0’’ prior to the first

addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is replaced

by a ‘‘b’’ sign.

VCMACÐVector Complex Multiply and Accumulate

The VCMAC instruction performs a convolution sum of the

X and Y complex vectors. The previous value of the accu-

mulator is used, and the result is stored in Z[0].
Syntax:

EXEC VCMAC

15 11 10 0

10000 100 0111 0101

Operation:

À

complex X,Y,Z;

complex acc A;

for (n40; n k LENG; n00)
À

A 4 A 0 X[n] * Y[n];
Ó

Z[0] 4 (complex) A;
Ó

Note: When PARAM.COJ is set to ‘‘1’’, X[n] is multiplexed by the conjugate

of Y[n]. When PARAM.CLR is set to ‘‘1’’, A is cleared to ‘‘0’’ prior to

the first addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is

replaced by a ‘‘b’’ sign.

VRLATPÐVector Real Lattice Propagate

The VRLATP instruction is used for implementing lattice and

inverse lattice filter operations. This instruction is used to

update the propagating values of vector Z.

Syntax:

EXEC VRLATP

15 11 10 0

10000 100 0010 1100

Operation:

À

real X,Y,Z;

real acc A;

A 4 (real acc) Z[0];

for (n41; n k LENG; n00)
À

A 4 A 0 X[n 1 1] * Y[n 1 1];

Z[n] 4 (real) A;

A 4 (real acc) Z[n];
Ó

Ó

Note: When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is replaced by a ‘‘b’’

sign. The LENG parameter for this operation must be greater than 1.

VCLATPÐVector Complex Lattice Propagate

The VCLATP instruction is used for implementing lattice and

inverse lattice filter operations. This instruction is used to

update the propagating values of vector Z.

Syntax:

EXEC VCLATP

15 11 10 0

10000 100 1110 1000

Operation:

À

complex X,Y,Z;

complex acc A;

A 4 (complex acc) Z[0];

for (n41; n k LENG; n00)
À

A 4 A 0 X[n11] * Y[n11];

Z[n] 4 (complex) A;
Ó

Ó

Note: When PARAM.COJ is set to ‘‘1’’, X[n] is multiplied by the conjugate of

Y[n]. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is replaced by a

‘‘b’’ sign. The LENG parameter for this operation must be greater

than 1.

3.4.5.12 Multiply-and-Add Instructions

VAIMADÐVector Aligned Integer Multiply and Add

The VAIMAD instruction multiplies corresponding elements

of the X and Y integer vectors, and adds or subtracts the

result, as an integer value, to the integer vector Z. This re-

sult is placed in the Z output vector.

Syntax:

EXEC VAIMAD

15 11 10 0

10000 100 0001 0100

50

Obs
ole

te

3.0 Functional Description (Continued)

Operation:

À

aligned integer X,Y;

integer Z;

for (n40; n k LENG; n00)
À

Z[2n] 4 (integer) (Z[2n] 0 X[n].low *

Y[n].low);

Z[2n01] 4 (integer) (Z[2n01] 0 X[n].high

* Y[n].high);
Ó

Ó

Note: When PARAM.CLR is set to ‘‘1’’, only multiplication is done without

addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is replaced

by a ‘‘b’’ sign.

VAIMADSÐVector Aligned Integer Multiply and Add

Saturated

The VAIMADS instruction multiplies corresponding ele-

ments of the X and Y integer vectors, and adds or subtracts

the result, as an integer value, to the integer vector Z. This

result is placed in the Z output vector. The saturation logic

provides clamping of the accumulator results before writing

the result back to the Z vector whenever the result cannot

be represented correctly within the limits of the integer data

type.

Syntax:

EXEC VAIMADS

15 11 10 0

10000 101 0101 1100

Operation:

À

aligned integer X,Y;

integer Z;

for (n40; n k LENG; n00)
À

Z[2n] 4 (integer) (Z[2n] 0 X[n].low *

Y[n].low);

Z[2n01] 4 (integer) (Z[2n01] 0 X[n].high *

Y[n].high);
Ó

Ó

VRMADÐVector Real Multiply and Add

The VRMAD instruction multiplies corresponding elements

of the X and Y real vectors and adds or subtracts the result

to the real vector Z. This result is placed in the Z output

vector.

Syntax:

EXEC VRMAD

15 11 10 0

10000 100 0011 0011

Operation:

À

real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n] 4 (real) (Z[n] 0 X[n] * Y[n]);
Ó

Ó

Note: When PARAM.CLR is set to ‘‘1’’, only multiplication is performed,

without addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is

replaced by a ‘‘b’’ sign.

VARMADÐVector Aligned Real Multiply and Add

The VARMAD instruction multiplies corresponding elements

of the X and Y real vectors and adds or subtracts the result

to the real vector Z. This result is placed in the Z output

vector.

Syntax:

EXEC VARMAD

15 11 10 0

10000 100 0000 1110

Operation:

À

aligned real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n].low 4 (real) (Z[n].low 0 X[n].low *

Y[n].low);

Z[n].high 4 (real) (Z[n].high 0 X[n].high

* Y[n].high);
Ó

Ó

Note: When PARAM.CLR is set to ‘‘1’’, only multiplication is performed,

without addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is

replaced by a ‘‘b’’ sign.

VEMADÐVector Extended Multiply and Add

The VEMAD instruction multiplies corresponding elements

of the X and Y real vectors and adds or subtracts the result,

as an extended-precision value, to the extended-precision

vector Z. This result is placed in the Z output vector.

Syntax:

EXEC VEMAD

15 11 10 0

10000 101 0001 0010

51

Obs
ole

te

3.0 Functional Description (Continued)

Operation:

À

aligned real X,Y;

extended Z;

for (n40; n k LENG; n00)
À

Z[2n] 4 (extended) (Z[2n] 0 X[n].low *

Y[n].low) ;

Z[2n01] 4 (extended) (Z[2n01] 0 X[n].high

* Y[n].high) ;
Ó

Ó

Note: When PARAM.CLR is set to ‘‘1’’, only multiplication is performed,

without addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’ sign is

replaced by a ‘‘b’’ sign.

VCMADÐVector Complex Multiply and Add

The VCMAD instruction multiplies the corresponding ele-

ments of the X and Y complex vectors and adds or sub-

tracts the result to the complex vector Z. This result is

placed in the Z output vector.

Syntax:

EXEC VCMAD

15 11 10 0

10000 100 1110 0000

Operation:

À

complex X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n] 4 (complex) (Z[n] 0 X[n] * Y[n]);
Ó

Ó

Note: When PARAM.COJ is set to ‘‘1’’, X[n] is multiplied by the conjugate

of Y[n]. When PARAM.CLR is set to ‘‘1’’, only multiplication is per-

formed, without addition. When PARAM.SUB is set to ‘‘1’’, the ‘‘a’’

sign is replaced by a ‘‘b’’ sign.

3.4.5.13 Clipping and Min/Max Instructions

VARABSÐVector Aligned Real Absolute Value

The VARABS instruction computes the absolute value of

each element in the real vector X and places the result in

the corresponding place in the Y output vector.

Syntax:

EXEC VARABS

15 11 10 0

10000 100 0001 1111

Operation:

À

aligned real X,Z;

for (n40; n k LENG; n00)
À

Z[n].low 4 abs (X[n].low);

Z[n].high 4 abs (X[n].high);
Ó

Ó

Note: There is no representation for the absolute value of 0x8000. Whenev-

er an absolute value of 0x8000 is needed, OVF.SAT is set to ‘‘1’’, and

the maximum positive number 0x7FFF is returned.

VARMINÐVector Aligned Real Minimum

The VARMIN instruction compares corresponding elements

of the X and Y real vectors, and writes the smaller of the two

in the corresponding place in the Z integer vector.

Syntax:

EXEC VARMIN

15 11 10 0

10000 100 0101 1111

Operation:

À

aligned real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n].low 4 min (X[n].low ,Y[n].low);

Z[n].high 4 min (X[n].high ,Y[n].high);
Ó

Ó

VARMAXÐVector Aligned Real Maximum

The VARMAX instruction compares corresponding ele-

ments of the X and Y real vectors, and writes the larger of

the two in the corresponding place in the Z integer vector.

Syntax:

EXEC VARMAX

15 11 10 0

10000 100 0110 0110

Operation:

À

aligned real X,Y,Z;

for (n40; n k LENG; n00)
À

Z[n].low 4 max (X[n].low , Y[n].low);

Z[n].high 4 max (X[n].high , Y[n].high);
Ó

Ó

VRFMINÐVector Real Find Minimum

The VRFMIN instruction scans the X real vector and returns

the address of the element with the smallest value. The

resulting address is placed in Z[0].
Syntax:

EXEC VRFMIN

15 11 10 0

10000 100 0110 1101

52

Obs
ole

te

3.0 Functional Description (Continued)

Operation:

À

real X ;

integer Z ;

internal register real tempX;

internal register integer tempA;

tempX 4 X[0];

tempA 4 &X[0];

for (n41; n k LENG; n00)
À

if (X[n] k tempX)
À

tempX 4 X[n];

tempA 4 &X[n];
Ó

Ó

ZÀ0Ó 4 tempA;
Ó

Note: The LENG parameter for this operation must be greater than 1.

VRFMAXÐVector Real Find Maximum

The VRFMAX instruction scans the X real vector and re-

turns the address of the element with maximum value. The

resulting address is placed in Z[0].
Syntax:

EXEC VRFMAX

15 11 10 0

10000 100 0010 0100

Operation:

À

real X;

integer Z;

internal register real tempX;

internal register integer tempA;

tempX 4 X[0];

tempA 4 &X[0];

for (n41; n k LENG; n00)
À

if (X[n] l tempX)
À

tempX 4 X[n];

tempA 4 &X[n];
Ó

Ó

Z[0] 4 tempA;
Ó

Note: The LENG parameter for this operation must be greater than 1.

EFMAXÐExtended Find Maximum

This instruction is not supported by the NS32FX161.

The EFMAX instruction implements a single iteration of

maximum search loop. The extended value in the accumula-

tor is compared with the first element of the extended Z

vector. The large value is stored back into the Z vector. In

case the larger value was the accumulator, then ss is stored

in the second location of the Z-vector (as an integer).

Syntax:

EXEC EFMAX

15 11 10 0

10000 101 0100 1011

Operation:

À

integer Y, Z[1];
extended temp, Z[0];

real X;

real acc A;

A 4 (real acc) ((extended)A);

temp 4 Z[0];

if (A l temp)
À

temp 4 (extended) A;

Z[1] 4 &X[0];
Ó

Z[0] 4 temp;
Ó

Note: The Y vector must hold the following values: Y[0] must be 0x7fff, Y[1]
must be 0x0001, and Y[2] must be 0x4000.

3.4.5.14 Special Instructions

ESHLÐExtended Shift Left

This instruction is not supported by the NS32FX161.

The ESHL instruction performs a shift-left operation on ex-

tended-precision data in the accumulator, and stores the

more significant half of the result as a real value into the first

element of the real Z vector.

Syntax:

EXEC ESHL

15 11 10 0

10000 101 0110 0100

Operation:

À

real acc A;

A 4 (real acc) ((extended)A);

if (LENG l 1) for (n41; nkLENG; n00)
À

A 4 A 0 A;
Ó

Z[0] 4 (real) A;
Ó

Note: The LENG parameter for this operation must be greater than 0. When

LENG equals 1, only the real part of the accumulator is updated.

When LENG is greater than 1, both the real and the imaginary parts of

the accumulator are updated to the same value.

VCPOLYÐVector Complex Polynomial

The VCPOLY instruction performs one iteration of evaluat-

ing a polynomial with real coefficients, for a vector of com-

plex-valued arguments, including down-scaling of the coeffi-

cients to avoid overflow. In addition, the instruction accumu-

lates the scaled-down energy, with a decay factor, of the

polynomial’s real coefficients.

53

Obs
ole

te

3.0 Functional Description (Continued)

Syntax:

EXEC VCPOLY

15 11 10 0

10000 101 0001 1000

Operation:

À

complex X,Z;

real Y;

complex temp;

temp.re 4 (real) Y[0] * X[0].re;

temp.im 4 0;

for (n40; n k LENG; n00)
À

Z[n] 4 (complex) Z[n] * X[n01] 0 temp;
Ó

Z[LENG].re 4 (real) (Z[LENG].re *

X[LENG01].re 0 Y[0] * temp.re);

Y.ADDR 4 &Y[1];
Ó

Note: The LENG parameter for this operation must be greater than 1.

VDECIDEÐVector Nearest Neighbor Decision Logic

The VDECIDE instruction is used to implement nearest

neighbor decision in Quadrature Amplitude Modulation

(QAM) modem applications. The input is the X complex vec-

tor. The output is placed in the Z integer vector, which can

be used as an index vector to extract information from look-

up tables. The indicated constant values are taken from the

Y vector.

Syntax:

EXEC VDECIDE

15 11 10 0

10000 100 1111 0000

Operation:

À

complex X;

aligned real Y;

real Z;

internal register complex temp;

for (n40; n k LENG; n00)
À

temp.re 4 min (X[n].re, Y[0].low);

temp.im 4 min (X[n].im, Y[0].high);

temp.re 4 max (temp.re, Y[1].low);

temp.im 4 max (temp.im, Y[1].high);

X[n] 4 temp;

Z[n] 4 (real) ((temp.re * Y[2].low) &

(extended) Y[3].low) l
((temp.im * Y[2].high) & (extended)

Y[3].high) ;
Ó

Ó

Note: Y.INCR must be specified as 1, and Y.WRAP must be specified as 3.

VDISTÐVector Euclidean Distance

The VDIST instruction calculates the square of the Euclide-

an distance between corresponding elements of the X and

Y complex vectors, and places the result in the Z real vec-

tor.

Syntax:

EXEC VDIST

15 11 10 0

10000 100 1111 1110

Operation:

À

complex X,Y;

real Z;

for (n40; n k LENG; n00)
À

Z[n] 4 (real) (X[n].re 1 Y[n].re)** 2a

(X[n].im 1 Y[n].im) **2 ;
Ó

Ó

VFFTÐVector Fast Fourier Transform

The VFFT instruction implements one pass of in-place FFT

vector update, according to the radix-2 FFT method.

Syntax:

EXEC VFFT

15 11 10 0

10000 101 0000 0110

Operation:

À

complex X,Y,Z;

complex temp;

for (n40; n k LENG; n00)
À

temp 4 (complex) (Z[n] 0 X[n] * Y[n]);

Y[n] 4 (complex) (Z[n] 1 X[n] * Y[n]);

Z[n] 4 temp
Ó

Ó

VESIIRÐVector Extended Single-Pole IIR

This instruction is not supported by the NS32FX161.

The VESIIR instruction performs a special form of an Infi-

nite-Impulse Response (IIR) filter. The samples and coeffi-

cient are given as real values, as well as the output result.

However, the accumulation is performed using extended-

precision arithmetic.

Syntax:

EXEC VESIIR

15 11 10 0

10000 101 0011 0111

54

Obs
ole

te

3.0 Functional Description (Continued)

Operation:

À

real X,Y,Z;

real acc A;

for (n40; n k LENG; n00)
À

A 4 (real acc) ((extended)A);

A 4 (real acc) (A * X[n])) 0 Y[n02];

Z[n] 4 (real) A;
Ó

Ó

Note: The term (A * X [n]) is a 32-bit by 16-bit multiplication. During the

conversion of this product to a realÐaccumulator data type, rounding

is done if PARAM.RND is ‘‘1’’. During the conversion of A to a real

data type, the result is rounded if Y[0] e 0x0080, or truncated if Y[0]
e 0x0. The result with other values of Y[0] are unpredictable. Y[1]
must be specified as 0x7fff.

3.5 SYSTEM INTERFACE

This section provides general information on the

NS32FX164 interface to the external world. Descriptions of

the CPU requirements as well as the various bus character-

istics are provided here. Details on other device characteris-

tics including timing are given in Sections 4.2–4.4.2.

3.5.1 Power and Grounding

The NS32FX164 requires a single 5V power supply, applied

on the VCC pins. These pins should be connected together

by a power (VCC) plane on the printed circuit board.

The grounding connections are made on the GND pins.

These pins should be connected together by a ground

(GND) plane on the printed circuit board.

Both power and ground connections are shown in Figure
3-14.

TL/EE/11267–25

FIGURE 3-13. DSP Module Block Diagram

55

Obs
ole

te

3.0 Functional Description (Continued)

For optimal noise immunity, the power and ground pins

should be connected to VCC and ground planes respective-

ly. If VCC and ground planes are not used, single conductors

should be run directly from each VCC pin to a power point,

and from each GND pin to a ground point. Daisy-chained

connections should be avoided.

Decoupling capacitors should also be used to keep the

noise level to a minimum. Standard 0.1 mF ceramic capaci-

tors can be used for this purpose. They should attach to

VCC, GND pins as close as possible to the NS32FX164.

During prototype using wire-wrap or similar methods, the

capacitors should be soldered directly to the power pins of

the NS32FX164 socket, or as close as possible, with very

short leads.

Design Notes

When constructing a board using high frequency clocks with

multiple lines switching, special care should be taken to

avoid resonances on signal lines. A separate power and

ground layer is recommended. This is true when designing

boards for the NS32FX164. Switching times of under 5 ns

on some lines are possible. Resonant frequencies should

be maintained well above the 200 MHz frequency range on

signal paths by keeping traces short and inductance low.

Loading capacitance at the end of a transmission line con-

tributes to the resonant frequency and should be minimized

if possible. Capacitors should be located as close as

possible across each power and ground pair near the

NS32FX164.

Power and ground connections are shown in Figure 3-14.

TL/EE/11267–26

FIGURE 3-14. Power and Ground Connections

3.5.2 Clocking

The NS32FX164 provides an internal oscillator that inter-

acts with an external clock source through two signals;

OSCIN and OSCOUT.

Either an external single-phase clock signal or a crystal can

be used as the clock source. If a single-phase clock source

is used, only the connection on OSCIN is required; OSC-

OUT should be left unconnected or loaded with no more

than 5 pF of stray capacitance. The voltage level require-

ments specified in Section 4.3 must also be met for proper

operation.

When operation with a crystal is desired, special care

should be taken to minimize stray capacitances and induc-

tances. The crystal, as well as the external components,

should be placed in close proximity to the OSCIN and OSC-

OUT pins to keep the printed circuit trace lengths to an

absolute minimum.Figures 3-15 and3-16 show the external

crystal interconnections. Table 3-3 provides the crystal

characteristics and the values of the R, C, and L compo-

nents, including stray capacitance, required for various fre-

quencies.

TL/EE/11267–27

FIGURE 3-15. Crystal InterconnectionsÐ30 MHz

TL/EE/11267–28

FIGURE 3-16. Crystal InterconnectionsÐ

40 MHz, 50 MHz

TL/EE/11267–29

FIGURE 3-17. Recommended Reset Connections

56

Obs
ole

te

3.0 Functional Description (Continued)

TABLE 3-3. External Oscillator

Specifications Crystal Characteristics

Type AT-Cut

Tolerance 0.005% at a25§C
Stability 0.01% from 0§C to a70§C
Resonance

30 MHz: Fundamental (Parallel)

40 MHz or 50 MHz: Third Overtone (Parallel)

Maximum Series Resistance 50X

Maximum Shunt Capacitance 7 pF

R, C and L Values

Frequency R1 R2 C1 C2 C3 L

(MHz) (kX) (X) (pF) (pF) (pF) (mH)

30 180 51 20 20

30 180 51 20 20 800–1300 3.3

40 150 51 20 20 800–1300 1.8

50 150 51 20 20 800–1300 1.1

3.5.3 Power Save Mode

The NS32FX164 provides a power save feature that can be

used to significantly reduce the power consumption at times

when the computational demand decreases. The device

uses the clock signal at the OSCIN pin to derive the internal

clock as well as the external signals CTTL and FCLK. The

frequency of these clock signals is affected by the clock

scaling factor. Scaling factors of 1, 2, 4, or 8 can be select-

ed by properly setting the C- and M-bits in the CFG register.

The power save mode should not be used to reduce the

clock frequency below the minimum frequency required by

the CPU.

Upon reset, both C and M are set to zero, thus maximum

clock rate is selected.

Due to the fact that the C- and M-bits are programmed by

the SETCFG instruction, the power save feature can only be

controlled by programs running in supervisor mode.

The following table shows the C- and M-bit settings for the

various scaling factors, and the resulting supply current for a

crystal frequency of 50 MHz.

Clock Scaling Factor vs Supply Current

C M
Scaling CPU Clock Typical ICC

Factor Frequency at a5V

0 0 1 25 MHz 200 mA

0 1 2 12.5 MHz 120 mA

1 0 4 6.25 MHz 80 mA

1 1 8 3.13 MHz 55 mA

3.5.4 Resetting

The RSTI input pin is used to reset the NS32FX164. The

CPU samples RSTI on the falling edge of CTTL.

Whenever a low level is detected, the CPU responds imme-

diately. Any instruction being executed is terminated; any

results that have not yet been written to memory are dis-

carded; and any pending interrupts and traps are eliminated.

The internal latch for the edge-sensitive NMI signal is

cleared. The DSP module ST register is set to 0.

On application of power, RSTI must be held low for at least

50 ms after VCC is stable. This is to ensure that all on-chip

voltages are completely stable before operation. Whenever

a Reset is applied, it must also remain active for not less

than 64 CTTL cycles. See Figures 3-18 and 3-19.

TL/EE/11267–30

FIGURE 3-18. Power-On Reset Requirements

TL/EE/11267–31

FIGURE 3-19. General Reset Timing

While in the Reset state, the CPU drives the signals ADS,

IAS, RD, WR, DBE, TSO, BPU, IOUT and DDIN inactive.

AD0–AD15, A16–A23 and SPC are floated, ALE is HIGH

and the state of all other output signals is undefined.

The internal CPU clock and CTTL run at half the frequency

of the signal on the OSCIN pin.

The HOLD signal must be kept inactive. After the RSTI sig-

nal is driven high, the CPU will stay in the reset condition for

approximately 8 clock cycles and then it will begin execution

at address 0.

The PSR is reset to 0. The CFG C- and M-bits are reset to 0.

FCLK runs at the same frequency as OSCIN. NMI is en-

abled to allow Non-Maskable Interrupts. The following con-

ditions are present after reset due to the PSR being reset to

0:

Tracing is disabled.

Supervisor mode is enabled.

Supervisor stack space is used when the TOS addressing

mode is indicated.

No trace traps are pending.

Only NMI is enabled. Maskable interrupts are disabled.

BPU is inactive high.

The Clock Scaling Factor is set to 1, refer to Section 3.5.3.

Note that vector/non-vectored interrupts have not been se-

lected. While interrupts are disabled, a SETCFG [I] instruc-

tion must be executed to enable vectored interrupts. If non-

vectored interrupts are required, a SETCFG without the [I]
must be executed.

The presence/absence of the NS32081, NS32181, or

NS32381 has also not been declared. If there is a Floating-

Point Unit, a SETCFG [F] instruction must be executed. If

there is no floating-point unit, a SETCFG without the [F]
must be executed.

57

Obs
ole

te

3.0 Functional Description (Continued)

In general, a SETCFG instruction must be executed in the

reset routine, in order to properly configure the CPU. The

options should be combined, and executed in a single in-

struction. For example, to declare vectored interrupts, a

Floating-Point unit installed, and full CPU clock rate, exe-

cute a SETCFG [F, I] instruction. To declare non-vectored

interrupts, no FPU, and full CPU clock rate, execute a

SETCFG [] instruction.

3.5.5 Bus Cycles

The NS32FX164 will perform bus cycles for one of the fol-

lowing reasons:

1. To fetch instructions from memory.

2. To write or read data to or from memory or external pe-

ripheral devices.

3. To acknowledge an interrupt, or to acknowledge comple-

tion of an interrupt service routine.

4. To notify external logic of any accesses to the on-chip

peripheral device registers or internal RAM.

5. To transfer information to or from a Slave Processor.

3.5.5.1 Bus Status

The NS32FX164 CPU presents four bits of Bus Status infor-

mation on pins ST0–ST3. The various combinations on

these pins indicate why the CPU is performing a bus cycle,

or, if it is idle on the bus, they why it is idle.

The Bus Status pins are interpreted as a 4-bit value, with

ST0 the least significant bit. Their values decode as follows:

0000 Ð The bus is idle because the CPU does not need to

perform a bus access.

0001 Ð The bus is idle because the CPU is executing the

WAIT instruction.

0010 Ð DSP Module Data Transfer.

0011 Ð The bus is idle because the CPU is waiting for a

Slave Processor to complete an instruction.

0100 Ð Interrupt Acknowledge, Master

The CPU is performing a Read cycle to acknowl-

edge an interrupt request. See Section 3.2.3.

0101 Ð Interrupt Acknowledge, Cascaded.

The CPU is reading an interrupt vector to acknowl-

edge a maskable interrupt request from a Cascad-

ed Interrupt Control Unit.

0110 Ð End of Interrupt, Master.

The CPU is performing a Read cycle to indicate

that it is executing a Return from Interrupt (RETI)

instruction at the completion of an interrupt’s serv-

ice procedure.

0111 Ð End of Interrupt, Cascaded.

The CPU is performing a read cycle from a Cas-

caded Interrupt Control Unit to indicate that it is

executing a Return from Interrupt (RETI) instruc-

tion at the completion of an interrupt’s service pro-

cedure.

1000 Ð Sequential Instruction Fetch.

The CPU is reading the next sequential word from

the instruction stream into the Instruction Queue. It

will do so whenever the bus would otherwise be

idle and the queue is not already full.

1001 Ð Non-Sequential Instruction Fetch

The CPU is performing the first fetch of instruction

code after the Instruction Queue is purged. This

will occur as a result of any jump or branch, any

interrupt or trap, or execution of certain instruc-

tions.

1010 Ð Data Transfer.

The CPU is reading or writing an operand of an

instruction.

1011 Ð Read RMW Operand.

The CPU is reading an operand which will subse-

quently be modified and rewritten. The write cycle

of RMW will have a ‘‘write’’ status.

1100 Ð Read for Effective Address Calculation.

The CPU is reading information from memory in

order to determine the Effective Address of an op-

erand. This will occur whenever an instruction uses

the Memory Relative or External addressing mode.

1101 Ð Transfer Slave Processor Operand.

The CPU is either transferring an instruction oper-

and to or from a Slave Processor, or it is issuing

the Operation Word of a Slave Processor instruc-

tion.

1110 Ð Read Slave Processor Status.

The CPU is reading a Status Word from a Slave

Processor after the Slave Processor has signalled

completion of an instruction.

1111 Ð Broadcast Slave ID.

The CPU is initiating the execution of a Slave Proc-

essor instruction by transferring the first byte of the

instruction, which represents the slave processor

indentification.

3.5.5.2 Basic Read and Write Cycles

The sequence of events occurring during a CPU access to

either memory or peripheral device is shown in Figure 3-21
for a read cycle, and Figure 3-22 for a write cycle.

The cases shown assume that the selected memory or pe-

ripheral device is capable of communicating with the CPU at

full speed. If not, then cycle extension may be requested

through CWAIT.

A full-speed bus cycle is performed in four cycles of the

CTTL clock signal, labeled T1 through T4. Clock cycles not

associated with a bus cycle are designated Ti (for ‘‘idle’’).

During T1, the CPU applies an address on pins AD0–AD15

and A16–A23 and provides a low-going pulse on the ADS

pin, which serves the dual purpose of informing external

circuitry that a bus cycle is starting and of providing control

to an external latch for demultiplexing Address bits 0–15

from the AD0–AD15 pins. It also deasserts the ALE signal,

which eliminates the need to invert ADS to generate the

strobe for the address latches. See Figure 3-20. During this

time also the status signals DDIN, indicating the direction of

the transfer, and HBE, indicating whether the high byte

(AD8–AD15) is to be referenced, become valid.

During T2 the CPU switches the Data Bus, AD0–AD15, to

either accept or present data. Note that the signals A16–

A23 remain valid, and need not be latched.

58

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–32

FIGURE 3-20. Bus Connections

59

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–33

FIGURE 3-21. Read Cycle Timing

60

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–34

FIGURE 3-22. Write Cycle Timing

61

Obs
ole

te

3.0 Functional Description (Continued)

At this time the signals TSO (Timing State Output), DBE

(Data Buffer Enable) and either RD (Read Strobe) or WR

(Write Strobe) will also be activated.

The T3 state provides for access time requirements, and it

occurs at least once in a bus cycle. At the end of T2, on the

rising edge of CTTL, the CWAIT signal is sampled to deter-

mine whether the bus cycle will be extended. See Section

3.5.5.3.

If the CPU is performing a read cycle, the data bus (AD0–

AD15) is sampled at the beginning of T4 on the rising edge

of CTTL. Data must, however, be held a little longer to meet

the data hold time requirements. The RD signal is guaran-

teed not to go inactive before this time, so its rising edge

can be safely used to disable the device providing the input

data.

The T4 state finishes the bus cycle. At the beginning of T4,

the RD or WR, and TSO signals go inactive, and on the

falling edge of CTTL, DBE goes inactive, having provided for

necessary data hold times. Data during Write cycles re-

mains valid from the CPU throughout T4. Note that the Bus

Status lines (ST0–ST3) change at the beginning of T4, an-

ticipating the following bus cycle (if any).

3.5.5.3 Cycle Extension

To allow sufficient access time for any speed of memory or

peripheral device, the NS32FX164 provides for extension of

a bus cycle. Any type of bus cycle except a Slave Processor

cycle and a special bus cycle can be extended.

In Figures 3-21 and 3-22, note that during T3 all bus control

signals from the CPU are flat. Therefore, a bus cycle can be

cleanly extended by causing the T3 state to be repeated.

This is the purpose of the CWAIT input signal.

At the end of state T2, on the rising edge of CTTL, CWAIT is

sampled.

CWAIT causes wait states to be inserted continuously as

long as it is sampled active. It is normally used when the

number of wait states to be inserted in the CPU bus cycle is

not known in advance.

The following sequence shows the CPU response to the

WAIT1–2 and CWAIT inputs.

1. Start bus cycle.

2. Sample CWAIT at the end of state T2.

3. If CWAIT is not active, then go to step 6.

4. Insert one wait state.

5. Sample CWAIT again, then go to step 3.

6. Complete bus cycle.

Figure 3-23 shows a bus cycle extended by three wait

states due to CWAIT.

62

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–35

FIGURE 3-23. Cycle Extension of a Read Cycle

3.5.5.4 Instruction Fetch Cycles

Instructions for the NS32FX164 CPU are ‘‘prefetched’’; that

is, they are input before being needed into the next available

entry of the eight-byte instruction Queue. The CPU performs

two types of instruction Fetch cycles: Sequential and Non-

Sequential. These can be distinguished from each other by

their differing status combinations on pins ST0–ST3 (Sec-

tion 3.5.5.1).

A Sequential Fetch will be performed by the CPU whenever

the Data Bus would otherwise be idle and the Instruction

Queue is not currently full. Sequential Fetches are always

Even Word Read cycles (Table 3-5).

A Non-Sequential Fetch occurs as a result of any break in

the normally sequential flow of a program. Any jump or

branch instruction, a trap or an interrupt will cause the next

Instruction Fetch cycle to be Non-Sequential. In addition,

certain instructions flush the instruction queue, causing the

next instruction fetch to display Non-Sequential status. Only

the first bus cycle after a break displays Non-Sequential

status, and that cycle is either an Even Word Read or an

Odd Byte Read, depending on whether the distination ad-

dress is even or odd.

63

Obs
ole

te

3.0 Functional Description (Continued)

3.5.5.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or

more bus cycles whose purpose in interrupt control rather

than the tranfer of instructions or data. Execution of the

Return from Interrupt Instruction (RETI) will also cause In-

terrupt Control bus cycles. These differ from instruction or

data transfers only in the status presented on pins ST0–

ST3. All Interrupt Control cycles are single-byte Read cy-

cles.

Table 3-4 shows the Interrupt Control sequences associat-

ed with each interrupt and with the return from its service

routine. For full details of the NS32FX164 interrupt struc-

ture, see Section 3.2.

TABLE 3-4. Interrupt Sequences

Cycle Status Address DDIN HBE A0 High Bus Low Bus

A. Non-Maskable Interrupt Control Sequence

Interrupt Acknowledge

1 0100 FFFF0016 0 1 0 Don’t Care Don’t Care

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequence

Interrupt Acknowledge

1 0100 FFFE0016 0 1 0 Don’t Care Don’t Care

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

C. Vectored Interrupt Sequence: Non-Cascaded

Interrupt Acknowledge

1 0100 FFFE0016 0 1 0 Don’t Care Vector:

Range: 0–127

Interrupt Return

1 0110 FFFE0016 0 1 0 Don’t Care Vector: Same as

in Previous Int.

Ack. Cycle

D. Vectored Interrupt Sequence: Cascaded

Interrupt Acknowledge

1 0100 FFFE0016 0 1 0 Don’t Care Cascade Index:

range b16 to b1

(The CPU here uses the Cascade Index to find the Cascade Address.)

2 0101 Cascade 0 1 or 0 or Vector, range 0–255; on appropriate

Address 0* 1* half or Data Bus for even/odd

address

Interrupt Return

1 0110 FFFE0016 0 1 0 Don’t Care Cascade Index:

same as in

previous Int.

Ack. Cycle

(The CPU here uses the Cascade Index to find the Cascade Address.)

2 0111 Cascade 0 1 or 0 or Don’t Care Don’t Care

Address 0* 1*

* If the Cascaded ICU Address is Even (A0 is low), then the CPU applies HBE high and reads the vector number from bits 0–7 of the Data Bus.

If the address is Odd (A0 is high), then the CPU applies HBE low and reads the vector number from bits 8–15 of the Data Bus. The vector number may be in the

range 0–225.

64

Obs
ole

te

3.0 Functional Description (Continued)

3.5.5.6 Special Bus Cycles

Special bus cycles are performed during CPU accesses to

the DSP Module (DSPM) registers or internal RAM. These

cycles may be used by external logic to track CPU activities

involving on-chip bus transactions.

A special bus cycle starts with the assertion of the special

output signal IAS. The ALE signal stays high during the en-

tire cycle, and the signals ADS, TSO, DBE, RD and WR are

not activated. CWAIT is ignored.

A CPU access to a DSP Module register or internal RAM

occurring while a vector operation is being executed, is de-

layed until the end of the vector operation. This delay can-

not be observed externally.

The CPU drives the data bus with the same data that is

being written into the on-chip register or RAM during a spe-

cial write cycle, and ignores the data placed on the data bus

during a special read cycle. The 24 least significant address

bits of the DSPM register being accessed are output on the

AD0–AD15 and A16–A23 signals. Figure 3-24. shows the

timing for special read and write cycles.

3.5.5.7 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock

cycles, labeled T1 and T4 (see Figures 3-25 and 3-26).

During a Read cycle SPC is active from the beginning of T1

to the beginning of T4, and the data is sampled at the end of

T1. The Cycle Status pins lead the cycle by one clock peri-

od, and are sampled on the leading edge of SPC. During a

Write cycle, the CPU applies data and activates SPC at T1,

removing SPC at T4. The Slave Processor latches the

status on the leading edge of SPC and latches data on the

trailing edge.

TL/EE/11267–36

FIGURE 3-24. Special Bus Cycle Timing

65

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–37

Note: CPU samples Data Bus here.

FIGURE 3-25. Slave Processor Read Cycle

The CPU does not pulse the Address Strobe (ADS), and no

bus signals are generated. The direction of a transfer is de-

termined by the sequence (‘‘protocol’’) established by the

instruction under execution; but the CPU indicates the direc-

tion on the DDIN pin for hardware debugging purposes.

A Slave Processor operand is transferred in one or more

Slave bus cycles. A Byte operand is transferred on the

least-significant byte of the Data Bus (AD0–AD7), and a

Word operand is transferred on the entire bus. A Double

Word is transferred in a consecutive pair of bus cycles,

least-significant word first. A Quad Word is transferred in

two pairs of Slave cycles, with other bus cycles possibly

occurring between them. The word order is from least-signif-

icant word to most-significant.

Figure 3-27 shows the NS32FX164 and FPU connection di-

agram.

66

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–38

*Note: Slave Processor samples Data Bus here.

FIGURE 3-26. Slave Processor Write Cycle

3.5.5.8 Data Access Sequences

The 24-bit address provided by the NS32FX164 is a byte

address; that is, it uniquely identifies one of up to

16,777,216 8-bit memory locations. An important feature of

the NS32FX164 is that the presence of a 16-bit data bus

imposes no restrictions on data alignment; any data item,

regardless of size, may be placed starting at any memory

address. The NS32FX164 provides a special control signal,

High Byte Enable (HBE), which facilitates individual byte ad-

dressing on a 16-bit bus.

Memory is organized as two 8-bit banks, each bank receiv-

ing the word address (A1–A23) in parallel. One bank, con-

nected to Data Bus pins AD0–AD7, is enabled to respond

to even byte addresses; i.e., when the least significant ad-

dress bit (A0) is low. The other bank, connected to Data Bus

pins AD8–AD15, is enabled when HBE is low. See Figure
3-28.

Any bus cycle falls into one of three categories: Even Byte

Access, Odd Byte Access, and Even Word Access. All ac-

cesses to any data type are made up of sequences of these

cycles. Table 3-5 gives the state of A0 and HBE for each

category.

TL/EE/11267–39

FIGURE 3-27. NS32FX164 and FPU Interconnections

TL/EE/11267–40

FIGURE 3-28. Memory Interface

TABLE 3-5. Bus Cycle Categories

Category HBE A0

Even Byte 1 0

Odd Byte 0 1

Even Word 0 0

Accesses of operands requiring more than one bus cycle

are performed sequentially, with no idle T-states separating

them. The number of bus cycles required to transfer an op-

erand depends on its size and its alignment (i.e., whether it

starts on an even byte address or an odd byte address).

Table 3-6 lists the bus cycles performed for each situation.

For the timing of A0 and HBE, see Section 3.5.5.2.

67

Obs
ole

te

3.0 Functional Description (Continued)

TABLE 3-6. Data Access Sequences

Cycle Type Address HBE A0 High Bus Low Bus

A. Odd Word Access Sequence

Byte 1 Byte 0 wA

1 Odd Byte A 0 1 Byte 0 Don’t Care

2 Even Byte A a 1 1 0 Don’t Care Byte 1

B. Even Double-Word Access Sequence

Byte 3 Byte 2 Byte 1 Byte 0 wA

1 Even Word A 0 0 Byte 1 Byte 0

1 Even Word A a 2 0 0 Byte 3 Byte 2

C. Odd Double-Word Access Sequence

Byte 3 Byte 2 Byte 1 Byte 0 wA

1 Odd Byte A 0 1 Byte 0 Don’t Care

2 Even Word A a 1 0 0 Byte 2 Byte 1

3 Even Byte A a 3 1 0 Don’t Care Byte 3

D. Even Quad-Word Access Sequence

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 wA

1 Even Word A 0 0 Byte 1 Byte 0

2 Even Word A a 2 0 0 Byte 3 Byte 2

Other Bus Cycles (Instruction Prefetch or Slave) can occur here.

3 Even Word A a 4 0 0 Byte 5 Byte 4

4 Even Word A a 6 0 0 Byte 7 Byte 6

E. Odd Quad-Word Access Sequence

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 wA

1 Odd Byte A 0 1 Byte 0 Don’t Care

2 Even Word A a 1 0 0 Byte 2 Byte 1

3 Even Byte A a 3 1 0 Don’t Care Byte 3

Other Bus Cycles (Instruction Prefetch or Slave) can occur here.

4 Odd Byte A a 4 0 1 Byte 4 Don’t Care

5 Even Word A a 5 0 0 Byte 6 Byte 5

6 Even Byte A a 7 1 0 Don’t Care Byte 7

3.5.5.9 Bus Access Control

The NS32FX164 CPU has the capability of relinquishing its

control of the bus upon request from a DMA controller or

another CPU. This capability is implemented by means of

the HOLD (Hold Request) and HLDA (Hold Acknowledge)

pins. By asserting HOLD low, an external device requests

access to the bus. On receipt of HLDA from the CPU, the

device may perform bus cycles, as the CPU at this point has

set AD0–AD15, A16–A23 and HBE to the TRI-STATEÉ
condition and has switched ADS and DDIN to the input

mode. ALE is asserted in T4, and stays high during the time

the bus is granted. The CPU now monitors ADS and DDIN

from the external device to generate the relevant strobe

signals (i.e., TSO, DBE, RD or WR). To return control of the

bus to the CPU, the device sets HOLD inactive, and the

CPU acknowledges it by setting HLDA inactive.

68

Obs
ole

te

3.0 Functional Description (Continued)

How quickly the CPU releases the bus depends on whether

it is idle on the bus at the time the HOLD request is made,

as the CPU must always complete the current bus cycle.

Figure 3-29 shows the timing sequence when the CPU is

idle. In this case, the CPU grants the bus during the immedi-

ately following clock cycle. Figure 3-30 shows the sequence

when the CPU is using the bus at the time the HOLD re-

quest is made. If the request is made during or before the

clock cycle shown (two clock cycles before T4), the CPU

will release the bus during the clock cycle following T4. If

the request occurs closer to T4, the CPU may already have

decided to initiate another bus cycle. In that case it will not

grant the bus until after the next T4 state. Note that this

situation will also occur if the CPU is idle on the bus but has

initiated a bus cycle internally.

Note 1: The logic value of the status pins, ST0–3, is undefined during DMA

activity.

TL/EE/11267–41

FIGURE 3-29. HOLD Timing (Bus Initially Idle)

69

Obs
ole

te

3.0 Functional Description (Continued)

TL/EE/11267–42

FIGURE 3-30. HOLD Timing (Bus Initially Not Idle)

70

Obs
ole

te

3.0 Functional Description (Continued)

3.5.5.10 Instruction Status

In addition to the four bits of Bus Cycle status (ST0–3), the

NS32FX164 CPU also presents Instruction Status informa-

tion on three separate pins. These pins differ from

ST0–3 in that they are synchronous to the CPU’s internal

instruction execution section rather than to its bus interface

section.

PFS (Program Flow Status) is pulsed low as each instruction

begins execution. It is intended for debugging purposes.

U/S originates from the U-bit of the Processor Status Regis-

ter, and indicates whether the CPU is currently running in

User or Supervisor mode. Although it is not synchronous to

bus cycles, there are guarantees on its validity during any

given bus cycle. See the Timing Specifications in Section

4.4.2.

ILO (Interlocked Operation) is activated during an SBITI (Set

Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.

It is made available to external bus arbitration circuitry in

order to allow these instructions to implement the sema-

phore primitive operations for multi-processor communica-

tion and resource sharing. ILO is guaranteed to be active

during the operand accesses performed by the interlocked

instructions.

Note: The acknowledge of HOLD is on a cycle by cycle basis. Therefore, it

is possible to have HLDA active when an interlock operation is in

progress. In this case, ILO remains low and the interlocked instruction

continues only after HOLD is de-asserted.

4.0 Device Specifications
4.1 NS32FX164 PIN DESCRIPTIONS

The following is a brief description of all NS32FX164 pins.

The descriptions reference portions of the Functional De-

scription, Section 3.0.

Note: An asterisk next to the signal name indicates a TRI-STATE condition

for that signal during HOLD acknowledge.

4.1.1 Supplies

VCC Power.

a5V positive supply.

GND Ground.

Ground reference for both on-chip logic and

output drivers.

4.1.2 Input Signals

RSTI Reset Input.

Schmitt triggered, asynchronous signal used to

generate a CPU reset. See Section 3.5.4.

Note: The reset signal is a true asynchronous input. Therefore,

no external synchronizing circuit is needed.

HOLD Hold Request.

When active, causes the CPU to release the bus

for DMA or multiprocessing purposes. See Sec-

tion 3.5.5.9.

Note: If the HOLD signal is generated asynchronously, its set

up and hold times may be violated. In this case, it is

recommended to synchronize it with CTTL to minimize

the possibility of metastable states.

The CPU provides only one synchronization stage to

minimize the HLDA latency. This is to avoid speed deg-

radations in cases of heavy HOLD activity (i.e., DMA

controller cycles interleaved with CPU cycles).

INT Interrupt.

A low level on this pin requests a maskable inter-

rupt. INT must be kept asserted until the interrupt

is acknowledged.

NMI Non-Maskable Interrupt.

A High-to-Low transition on this signal requests a

non-maskable interrupt.

Note: INT and NMI are true asynchronous inputs. Therefore,

no external synchronizing circuit is needed.

CWAIT Continuous Wait.

Causes the CPU to insert continuous wait states

if sampled low at the end of T2 and each follow-

ing T-State. See Section 3.5.5.3.

OSCIN Crystal/External Clock Input.

Input from a crystal or an external clock source.

See Section 3.5.2.

4.1.3 Output Signals

A16–A23 *High-Order Address Bits.

These are the most significant 8 bits of the mem-

ory address bus.

HBE *High Byte Enable.

Status signal used to enable data transfers on

the most significant byte of the data bus.

ST0–3 Status.

Bus cycle status code; ST0 is the least signifi-

cant. Encodings are:

0000Ð Idle: CPU Inactive on Bus.

0001Ð Idle: WAIT Instruction.

0010Ð DSP Module Data Transfer.

0011Ð Idle: Waiting for Slave.

0100Ð Interrupt Acknowledge, Master.

0101Ð Interrupt Acknowledge, Cascaded.

0110Ð End of Interrupt, Master.

0111Ð End of Interrupt, Cascaded.

1000Ð Sequential Instruction Fetch.

1001Ð Non-Sequential Instruction Fetch.

1010Ð Data Transfer.

1011Ð Read Read-Modify-Write Operand.

1100Ð Read for Effective Address.

1101Ð Transfer Slave Operand.

1110Ð Read Slave Status Word.

1111Ð Broadcast Slave ID.

U/S User/Supervisor.

User or Supervisor Mode status. High indicates

User Mode; low indicates Supervisor Mode.

ILO Interlocked Operation.

When active, indicates that an interlocked opera-

tion is being executed.

HLDA Hold Acknowledge.

Activated by the CPU in response to the HOLD

input to indicate that the CPU has released the

bus.

PFS Program Flow Status.

A pulse on this signal indicates the beginning of

execution of an instruction.

71

Obs
ole

te

4.0 Device Specifications (Continued)

BPU BPU Cycle.

This signal is activated during a bus cycle to en-

able an external BITBLT processing unit. The

EXTBLT instruction activates this signal.

Note: BPU is low (Active) only during bus cycles involving pre-

fetching instructions and execution of EXTBLT oper-

ands. It is recommended that BPU, ADS and status lines

(ST0–ST3) be used to qualify BPU bus cycles. If a DMA

circuit exists in the system, the HLDA signal should be

used to further qualify BPU cycles. BPU may become

active during T4 of a non-BPU bus cycle, and may be-

come inactive during T4 of a BPU bus cycle. BPU must

be qualified by ADS and status lines (ST0–ST3) to be

used as an external gating signal.

RSTO Reset Output.

This signal becomes active when RSTI is low,

initiating a system reset.

RD Read Strobe.

Activated during CPU or DMA read cycles to en-

able reading of data from memory or peripherals.

See Section 3.5.5.2.

WR Write Strobe.

Activated during CPU or DMA write cycles to en-

able writing of data to memory or peripherals.

TSO Timing State Output.

The falling edge of TSO identifies the beginning

of state T2 of a bus cycle. The rising edge identi-

fies the beginning of state T4.

DBE Data Buffers Enable.

Used to control external data buffers. It is active

when the data buffers are to be enabled.

OSCOUT Crystal Output.

This line is used as the return path for the crystal

(if used). When an external clock source is used,

OSCOUT should be left unconnected or loaded

with no more than 5 pF of stray capacitance.

IAS Special Cycle Address Strobe.

Signals the beginning of a special bus cycle.

CTTL1–2 System Clock.

Output clock for bus timing. CTTL1 and CTTL2

must be externally connected together.

FCLK Fast Clock.

This clock is derived from the clock waveform on

OSCIN. Its frequency is either the same as

OSCIN or is lower, depending upon the scale fac-

tor programmed into the CFG register.

ALE Address Latch Enable.

Active high signal that can be used to control

external address latches.

IOUT Interrupt Output

Activated when the execution of a command list

stops and the associated interrupt is enabled.

4.1.4 Input-Output Signals

AD0–15 *Address/Data Bus.

Multiplexed Address/Data Information. Bit 0 is

the least significant bit of each.

SPC Slave Processor Control.

Used by the CPU as the data strobe output for

slave processor transfers; used by a slave proc-

essor to acknowledge completion of a slave in-

struction. See Section 3.5.5.7.

DDIN *Data Direction.

Status signal indicating the directon of the data

transfer during a bus cycle. During HOLD ac-

knowledge this signal becomes an input and de-

termines the activation of RD or WR.

ADS *Address Strobe

Controls address latches; signals the beginning

of a bus cycle. During HOLD acknowledge this

signal becomes an input and the CPU monitors it

to detect the beginning of a DMA cycle and gen-

erate the relevant strobe signals. When a DMA is

used, ADS should be pulled up to VCC through a

10 kX resistor.

72

Obs
ole

te

4.0 Device Specifications (Continued)

68-Pin PCC Package

TL/EE/11267–43

Bottom View

Order Number NS32FX164V-20, NS32FX164V-25, NS32FV16-20,

NS32FV16-25, NS32FX161V-15 or NS32FX161-20

NS Package Number V68A

FIGURE 4-1. Connection Diagram

Note: Pins 65 and 66 must be connected to GND or VCC

73

Obs
ole

te

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,

please contact the National Semiconductor Sales

Office/Distributors for availability and specifications.

Temperature under Bias 0§C to a70§C
Storage Temperature b65§C to a150§C

All Input or Output Voltages

with Respect to GND b0.5V to a6.5V

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS TA e 0§C to a70§C, VCC e 5V g10%, GND e 0V

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 VCC a 0.5 V

VIL Low Level Input Voltage b0.5 0.8 V

VXL OSCIN Input Low Voltage 0.5 V

VXH OSCIN Input High Voltage 3.8 V

VRIH RSTI High Level Input Voltage Max
VCC a 0.5 V

(3.5, VCC b 1.5)

VRIL RSTI Low Level Input Voltage b0.5 0.7 V

VRHYS RSTI Hysteresis Loop Width (Note 3) 0.5 V

VHYS INT, NMI Hysteresis Loop Width (Note 3) 0.2 V

VOH High Level Output Voltage IOH e b400 mA 2.4 V

VOL Low Level Output Voltage IOL e 4 mA 0.45 V

IILS SPC Input Current (Low) VIN e 0.4V, SPC in Input Mode 1.0 mA

II Input Load Current 0 s VIN s VCC,
b20 20 mA

All Inputs except SPC

IL Leakage Current 0.4 s VOUT s VCC
Output and I/O Pins in b20 20 mA

TRI-STATE or Input Mode

ICC Active Supply Current IOUT e 0, TA e 25§C
200 mA

(Note 2)

Note 1: Care should be taken by designers to provide a minimum inductance path between the GND pins and system ground in order to minimize noise.

Note 2: ICC is affected by the clock scaling factor selected by the C- and M-bits in the CFG register, see Section 3.5.3.

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to

0.8V or 2.0V on the rising or falling edges of all the signals

as illustrated in Figures 4-2 and 4-3 unless specifically stat-

ed otherwise. The capacitive load is assumed to be 100 pF

on CTTL and 50 pF on all the other output signals.

TL/EE/11267–44

FIGURE 4-2. Output Signals Specification Standard

Abbreviations:

L.E.Ð Leading Edge R.E.Ð Rising Edge

T.E.Ð Traling Edge F.E.Ð Falling Edge

TL/EE/11267–45

FIGURE 4-3a. Input Signals Specification Standard

TL/EE/11267–71

FIGURE 4-3b. RSTI, INT, NMI Hysteresis

74

Obs
ole

te

4.0 Device Specifications (Continued)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32FX161-15, NS32FX164-20, NS32FX164-25

The output to input timings (e.g., address to data-in) are at least 2 ns better than the worst case values calculated from the

output valid and input setup times relative to CTTL.

Symbol Figure Description
Reference/
Conditions

NS32FX161-15 NS32FX164-20 NS32FX164-25
Units

Min Max Min Max Min Max

tCTp 4-15 CTTL Clock Period R.E., CTTL to Next
66 1000 50 1000 40 1000 ns

R.E., CTTL

tCTh 4-15 CTTL High Time At 2.0V (Both Edges) 0.5 tCTp 0.5 tCTp 0.5 tCTp
b 6 ns b 5 ns b 5 ns

tCTI 4-15 CTTL Low Time At 0.8V (Both Edges) 0.5 tCTp 0.5 tCTp 0.5 tCTp
b 6 ns b 5 ns b 4 ns

tCTr 4-15 CTTL Rise Time 0.8V to 2.0V
6 5 4 ns

on R.E., CTTL

tCTf 4-15 CTTL Fall Time 2.0V to 0.8V
6 5 4 ns

on F.E., CTTL

tXCTd 4-15 OSCIN to CTTL Delay 4.2V on R.E.,
29 29 25 ns

OSCIN to R.E., CTTL

tXFr 4-15 OSCIN to FCLK 4.2V on R.E., OSCIN
25 20 15 ns

R.E. Delay to R.E., FCLK

tFCr 4-15 FCLK to CTTL R.E., FCLK to R.E., CTTL
10 10 10 ns

R.E. Delay

tFCf 4-15 FCLK to CTTL R.E., FCLK to F.E., CTTL
10 10 10 ns

F.E. Delay

tALv 4-4 AD0–AD15 Valid After R.E., CTTL T1
14 13 12 ns

(Note 5)

tALh 4-4 AD0–AD15 Hold After R.E., CTTL T2 0 0 0 ns

tAHv 4-4 A16–A23 Valid After R.E., CTTL T1
14 13 12 ns

(Note 5)

tAHh 4-4 A16–A23 Hold After R.E., CTTL
0 0 0 ns

Next T1 or Ti

tALfr 4-4 AD0–AD15 Floating After R.E., CTTL T2
14 13 12 ns

(during Read)

tALf 4-7 AD0–AD15 Floating After R.E., CTTL Ti 14 13 12 ns

tAHf 4-7 A16–A23 Floating After R.E., CTTL Ti 14 13 12 ns

tDv 4-5 Data Valid (Write Cycle) After R.E., CTTL
14 13 12 ns

T2 or T1

tDh 4-5 Data Hold After R.E., CTTL
0 0 0 ns

Next T1 or Ti

tADSa 4-4 ADS Signal Active After R.E., CTTL T1 14 13 12 ns

tADSia 4-4 ADS Signal Inactive After R.E., CTTL T1 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp
(Note 4) b6 ns a16 ns b6 ns a15 ns b6 ns a14 ns

tADSw 4-5 ADS Pulse Width At 0.8V (Both Edges) 20 15 10 ns

tADSf 4-7 ADS Floating After R.E., CTTL Ti 14 13 12 ns

tALADSs 4-4 AD0–AD15 Setup Before ADS T.E. 10 10 10 ns

tHBEv 4-4 HBE Signal Valid After R.E., CTTL T1 14 13 12 ns

tHBEh 4-4 HBE Signal Hold After R.E., CTTL
0 0 0 ns

Next T1 or Ti

tHBEf 4-7 HBE Signal Floating After R.E., CTTL Ti 14 13 12 ns

75

Obs
ole

te

4.0 Device Specifications (Continued)

4.4.2 Timing Tables (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32FX161-15, NS32FX164-20, NS32FX164-25

Symbol Figure Description
Reference/

Conditions

NS32FX161-15 NS32FX164-20 NS32FX164-25
Units

Min Max Min Max Min Max

tDDINv 4-4 DDIN Signal Valid After R.E., CTTL T1 14 13 12 ns

tDDINh 4-4 DDIN Signal Hold After R.E., CTTL
0 0 0 ns

Next T1 or Ti

tDDINf 4-7 DDIN Floating After R.E., CTTL Ti 14 13 12 ns

tSPCa 4-10 SPC Output Active After R.E., CTTL T1 14 13 12 ns

tSPCia 4-10 SPC Output Inactive After R.E., CTTL T4 14 13 12 ns

tHLDAa 4-7 HLDA Signal Active After R.E., CTTL Ti 14 13 12 ns

tHLDAia 4-8 HLDA Signal Inactive After R.E., CTTL Ti 14 13 12 ns

tSTv 4-4 Status ST0–ST3 Valid After R.E., CTTL T4
14 13 12 ns

(Before T1, see Note 1)

tSTh 4-4 Status ST0–ST3 Hold After R.E., CTTL T4 0 0 0 ns

tBPUv 4-4 BPU Signal Valid After R.E., CTTL T4 or Ti 14 13 12 ns

tBPUh 4-4 BPU Signal Hold After R.E., CTTL T4 or Ti 0 0 0 ns

tTSOa 4-4 TSO Signal Active After R.E., CTTL T2 14 13 12 ns

tTSOia 4-4 TSO Signal Inactive After R.E., CTTL T4 14 13 12 ns

tRDa 4-4 RD Signal Active After R.E., CTTL T2 14 13 12 ns

tRDia 4-4 RD Signal Inactive After R.E., CTTL T4 14 13 12 ns

tWRa 4-5 WR Signal Active After R.E., CTTL T2 14 13 12 ns

tWRia 4-5 WR Signal Inactive After R.E., CTTL T4 14 13 12 ns

tDBEa(R) 4-4 DBE Active (Read Cycle) After R.E., CTTL T2 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp

(Note 4) b6 ns a16 ns b6 ns a15 ns b6 ns a14 ns

tDBEa(W) 4-5 DBE Active (Write Cycle) After R.E., CTTL T2 14 13 12 ns

tDBEia 4-5, 4-6 DBE Inactive After R.E., CTTL T4 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp

(Note 4) b6 ns a16 ns b6 ns a15 ns b6 ns a14 ns

tUSv 4-4 U/S Signal Valid After R.E., CTTL T4 14 13 12 ns

tUSh 4-4 U/S Signal Hold After R.E., CTTL T4 0 0 0 ns

tPFSa 4-13 PFS Signal Active After R.E., CTTL 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp

(Note 4) b6 ns a16 ns b6 ns a15 ns b6 ns a14 ns

tPFSia 4-13 PFS Signal Inactive After R.E., CTTL 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp

(Note 4) b6 ns a16 ns b6 ns a15 ns b3 ns a14 ns

tALEa 4-5 ALE Signal Active After R.E., CTTL T4 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp

(Note 4) b6 ns a16 ns b6 ns a15 ns b6 ns a14 ns

tALEia 4-5 ALE Signal Inactive After R.E., CTTL T1 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp

(Note 4) b6 ns a16 ns b6 ns a15 ns b6 ns a14 ns

TALALEs 4-5 AD0–AD15 Setup Before ALE T.E. 10 10 10 ns

76

Obs
ole

te

4.0 Device Specifications (Continued)

4.4.2 Timing Tables (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32FX161-15, NS32FX164-20, NS32FX164-25

Symbol Figure Description
Reference/

Conditions

NS32FX161-15 NS32FX164-20 NS32FX164-25
Units

Min Max Min Max Min Max

tIASa 4-6 IAS Signal Active After R.E., CTTL T1 14 13 12 ns

tIASia 4-6 IAS Signal Inactive After R.E., CTTL T1 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp 0.5 tCTp

(Note 4) b6 ns a16 ns b6 ns a15 ns b6 ns a14 ns

tIASw 4-6 IAS Pulse Width At 0.8V (Both Edges) 20 15 10 ns

tAIASs 4-6 AD0–AD15 Setup Before IAS T.E. 10 10 10 ns

tILOa 4-14 ILO Signal Active After R.E., CTTL 14 13 12 ns

tILOia 4-14 ILO Signal Inactive After R.E., CTTL 14 13 12 ns

tRSTOa 4-19 RSTO Signal Active After R.E., CTTL 14 13 12 ns

tRSTOia 4-19 RSTO Signal Inactive After R.E., CTTL 14 13 12 ns

tRTOI 4-19 Reset to Idle After F.E. of RSTO
10 10 10 tCTp(Note 3)

tIOUTv 4-20 IOUT Signal Valid After R.E. CTTL 14 13 12 ns

tIOUTh 4-20 IOUT Signal Hold After R.E. CTTL 0 0 0 ns

Note 1: Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be ‘‘ . . . Ti, T4, T1 . . . ’’. If the CPU was

not idling, the sequence will be ‘‘ . . . T4, T1 . . . ’’.

Note 2: The parameters related to the ‘‘floating/not floating’’ conditions are guaranteed by characterization. Due to tester conditions, these parameters are not

100% tested.

Note 3: Not tested, guaranteed by design.

Note 4: Minimum values not tested, guaranteed by design.

Note 5: When the load on AD0–15 is increased to 90 pF the value of tALv is increased by no more than 5 ns. When the load on A16–23 is increased to 90 pF the

value of tAHv is increased by no more than 5 ns.

4.4.2.2 Input Signal Requirements: NS32FX164-15, NS32FX164-20 and NS32FX164-25

Symbol Figure Description
Reference/ NS32FX164-15 NS32FX164-20 NS32FX164-25

Units
Conditions

Min Max Min Max Min Max

tXp 4-15 OSCIN Clock Period R.E., OSCIN
33 500 25 500 20 500 ns

to Next R.E, OSCIN

tXh 4-15 OSCIN High Time At 3.5V (Both Edges) 0.5 tXp 0.5 tXp 0.5 tXp

(External Clock) b 5 ns b 4 ns b 3 ns

tXI 4-15 OSCIN Low Time At 1.0V (Both Edges) 0.5 tXp 0.5 tXp 0.5 tXp
b 5 ns b 4 ns b 3 ns

tDIs 4-4, 4-11 Data In Setup Before R.E., CTTL T4 15 14 10 ns

tDIh 4-4, 4-11 Data In Hold After R.E., CTTL T4
0 0 0 ns

(Note 1)

tCWs 4-4, 4-5 CWAIT Signal Setup Before R.E., CTTL
18 13 10 ns

T3 or T3(w)

tCWh 4-4, 4-5 CWAIT Signal Hold After R.E., CTTL
0 0 0 ns

T3 or T3(w)

tHLDs 4-7, 4-8 HOLD Setup Time Before R.E., CTTL
16 15 14 ns

T2 or Ti

tHLDh 4-7, 4-8 HOLD Hold Time After R.E., CTTL Ti 0 0 0 ns

77

Obs
ole

te

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32FX161-15, NS32FX164-20 and NS32FX164-25 (Continued)

Symbol Figure Description
Reference/ NS32FX161-15 NS32FX164-20 NS32FX164-25

Units
Conditions

Min Max Min Max Min Max

tPWR 4-18 Power Stable to After VCC Reaches 4.5V

RSTI R.E. 50 40 30 ms

(Note 2)

tRSTw 4-19 RSTI Pulse Width At 0.8V (Both Edges) 64 64 64 tCTp

tINTh 4-16 INT Signal Hold After R.E., CTTL T2 of 0 0 0 ns

Interrupt Acknowledge Cycle

tNMIs 4-17 NMI Setup Time Before F.E., CTTL 15 14 12 ns

tNMIh 4-17 NMI Hold Time After F.E., CTTL 0 0 0 ns

tSPCd 4-12 SPC Pulse Delay After F.E., CTTL T4

from Slave 2 2 2 tCTp

(Note 2)

tSPCs 4-12 SPC Input Setup Before R.E., CTTL 22 21 20 ns

tSPCh 4-12 SPC Hold Time After R.E., CTTL 0 0 0 ns

tADSs 4-9 ADS Input Setup Before F.E., CTTL 15 tCTpb3 14 tCTpb3 12 tCTpb3 ns

tADSh 4-9 ADS Input Hold After F.E., CTTL T1
0 0 0 ns

(Note 3)

tDDINs 4-9 DDIN Input Setup Before F.E., CTTL 15 14 12 ns

tDDINih 4-9 DDIN Input Hold After R.E., CTTL T4 0 0 0 ns

Note 1: tDih is always less than or equal to tRDia.

Note 2: Not tested, guaranteed by design.

Note 3: ADS must be deasserted before state T4 of the DMA controller cycle.

78

Obs
ole

te

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

TL/EE/11267–46

FIGURE 4-4. Read Cycle

79

Obs
ole

te

4.0 Device Specifications (Continued)

TL/EE/11267–47

FIGURE 4-5. Write Cycle

80

Obs
ole

te

4.0 Device Specifications (Continued)

TL/EE/11267–48

FIGURE 4-6. Special Bus Cycle

81

Obs
ole

te

4.0 Device Specifications (Continued)

TL/EE/11267–49

Note: When the bus is not idle, HOLD must be asserted before the rising edge of CTTL of the timing state that precedes state T4 in order for the request to be

acknowledged.

FIGURE 4-7. HOLD Acknowledge Timing (Bus Initially Not Idle)

82

Obs
ole

te

4.0 Device Specifications (Continued)

TL/EE/11267–50

FIGURE 4-8. HOLD Timing (Bus Initially Idle)

83

Obs
ole

te

4.0 Device Specifications (Continued)

TL/EE/11267–51

Note 1: ADS must be deactivated before state T4 of the external DMA controller cycle.

Note 2: During an external DMA cycle WAIT1–2 must be kept inactive unless they are monitored by the DMA Controller. An external DMA cycle is similar to a CPU

cycle. The NS32FX164 generates TSO, RD, WR, ALE and DBE. The external DMA controller drives the address/data lines HBE, ADS and DDIN.

Note 3: During an external DMA cycle, if the ADS signal is pulsed in order to initiate a bus cycle, the HOLD signal must remain asserted until state T4 of the DMA

cycle.

FIGURE 4-9. External DMA Controller Bus Cycle

84

Obs
ole

te

4.0 Device Specifications (Continued)

TL/EE/11267–52

FIGURE 4-10. Slave Processor Write Timing
TL/EE/11267–53

FIGURE 4-11. Slave Processor Read Timing

TL/EE/11267–54

After transferring the last operand to the FPU, the CPU turns OFF the output driver and holds SPC high with an internal 5 kX pullup.

FIGURE 4-12. SPC Timing

85

Obs
ole

te

4.0 Device Specifications (Continued)

TL/EE/11267–55

FIGURE 4-13. PFS Signal Timing

TL/EE/11267–56

Note: ILO may be asserted more than one clock cycle before the beginning of an interlocked access.

FIGURE 4-14. ILO Signal Timing

TL/EE/11267–57

FIGURE 4-15. Clock Waveforms

86

Obs
ole

te

4.0 Device Specifications (Continued)

TL/EE/11267–58

FIGURE 4-16. INT Signal Timing

Note 1: Once INT is asserted, it must remain asserted until it is acknowledged.

Note 2: INTA is the Interrupt Acknowledge bus cycle (not a CPU signal). Refer to Section 3.2.1.

TL/EE/11267–59

FIGURE 4-17. NMI Signal Timing

TL/EE/11267–60

FIGURE 4-18. Power-On Reset

87

Obs
ole

te

4.0 Device Specifications (Continued)

TL/EE/11267–61

Note 1: During Reset the HOLD signal must be kept high.

Note 2: After RSTI is deasserted the first bus cycle will be an instruction fetch at address zero.

FIGURE 4-19. Non-Power-On Reset

TL/EE/11267–72

FIGURE 4-20. Interrupt Out

88

Obs
ole

te

Appendix A: Instruction Formats
NOTATIONS

i e Integer Type Field

B e 00 (Byte)

W e 01 (Word)

D e 11 (Double Word)

f e Floating-Point Type Field

F e 1 (Std. Floating: 32 bits)

L e 0 (Long Floating: 64 bits)

op e Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2 e General Addressing Mode Field

See Section 2.4.2 for encodings.

reg e General Purpose Register Number

cond e Condition Code Field

0000 e EQual: Z e 1

0001 e Not Equal: Z e 0

0010 e Carry Set: C e 1

0011 e Carry Clear: C e 0

0100 e Higher: L e 1

0101 e Lower or Same: L e 0

0110 e Greater Than: N e 1

0111 e Less or Equal: N e 0

1000 e Flag Set: F e 1

1001 e Flag Clear: F e 0

1010 e LOwer: L e 0 and Z e 0

1011 e Higher or Same: L e 1 or Z e 1

1100 e Less Than: N e 0 and Z e 0

1101 e Greater or Equal: N e 1 or Z e 1

1110 e (Unconditionally True)

1111 e (Unconditionally False)

short e Short Immediate Value. May contain

quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ, ACB

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPR

0000 e UPSR

0001–0111 e (Reserved)

1000 e FP

1001 e SP

1010 e SB

1011 e (Reserved)

1100 e (Reserved)

1101 e PSR

1110 e INTBASE

1111 e MOD

Options: in String Instructions

U/W B T

T e Translated

B e Backward

U/W e 00: None

01: While Match

11: Until Match

Configuration bits in SETCFG instruction:

C M F I

7 0

cond 1 0 1 0

Format 0

Bcond (BR)

7 0

op 0 0 1 0

Format 1

BSR Ð0000 ENTER Ð1000

RET Ð0001 EXIT Ð1001

CXP Ð0010 NOP Ð1010

RXP Ð0011 WAIT Ð1011

RETT Ð0100 DIA Ð1100

RETI Ð0101 FLAG Ð1101

SAVE Ð0110 SVC Ð1110

RESTORE Ð0111 BPT Ð1111

15 87 0

gen short op 1 1 i

Format 2

ADDQ Ð000 ACB Ð100

CMPQ Ð001 MOVQ Ð101

SPR Ð010 LPR Ð110

Scond Ð011

15 87 0

gen op 1 1 1 1 1 i

Format 3

CXPD Ð0000 ADJSP Ð1010

BICPSR Ð0010 JSR Ð1100

JUMP Ð0100 CASE Ð1110

BISPSR Ð0110

Trap (UND) on XXX1, 1000

15 87 0

gen 1 gen 2 op i

Format 4

ADD Ð0000 SUB Ð1000

CMP Ð0001 ADDR Ð1001

BIC Ð0010 AND Ð1010

ADDC Ð0100 SUBC Ð1100

MOV Ð0101 TBIT Ð1101

OR Ð0110 XOR Ð1110

23 16 15 8 7 0

0 0 0 0 0 short 0 op i 0 0 0 0 1 1 1 0

89

Obs
ole

te

Appendix A: Instruction Formats (Continued)

Format 5

MOVS b0000 BITWT b1000

CMPS b0001 TBITS b1001

SETCFG b0010 BBAND b1010

SKPS b0011 SBITPS b1011

BBSTOD b0100 BBFOR b1100

EXTBLT b0101 SBITS b1101

BBOR b0110 BBXOR b1110

MOVMP b0111

No Operation on 1111

23 16 15 8 7 0

gen 1 gen 2 op i 0 1 0 0 1 1 1 0

Format 6

ROT b0000 NEG b1000

ASH b0001 NOT b1001

CBIT b0010 Trap (UND) b1010

CBITI b0011 SUBP b1011

Trap (UND) b0100 ABS b1100

LSH b0101 COM b1101

SBIT b0110 IBIT b1110

SBITI b0111 ADDP b1111

23 16 15 8 7 0

gen 1 gen 2 op i 1 1 0 0 1 1 1 0

Format 7

MOVM b0000 MUL b1000

CMPM b0001 MEI b1001

INSS b0010 Trap (UND) b1010

EXTS b0011 DEI b1011

MOVXBW b0100 QUO b1100

MOVZBW b0101 REM b1101

MOVZiD b0110 MOD b1110

MOVXiD b0111 DIV b1111

TL/EE/11267–62

Format 8

EXT b0 00 INDEX b1 00

CVTP b0 01 FFS b1 01

INS b0 10

CHECK b0 11

Trap (UND) on b1 10 and b1 11

23 16 15 8 7 0

gen 1 gen 2 op f i 0 0 1 1 1 1 1 0

Format 9

MOVif b000 ROUND b100

LFSR b001 TRUNC b101

MOVLF b010 SFSR b110

MOVFL b011 FLOOR b111

TL/EE/11267–63

Format 10

Trap (UND) Always

23 16 15 8 7 0

gen 1 gen 2 op 0 f 1 0 1 1 1 1 1 0

Format 11

ADDf b0000 DIVf b1000

MOVf b0001 (Note 1) b1001

CMPf b0010 Trap (UND) b1010

(Note 3) b0011 Trap (UND) b1011

SUBf b0100 MULf b1100

NEGf b0101 ABSf b1101

Trap (UND) b0110 Trap (UND) b1110

Trap (UND) b0111 Trap (UND) b1111

23 16 15 8 7 0

gen 1 gen 2 op 0 f 1 1 1 1 1 1 1 0

Format 12

(Note 2) b0000 (Note 2) b1000

(Note 1) b0001 (Note 1) b1001

POLYf b0010 Trap (UND) b1010

DOTf b0011 Trap (UND) b1011

SCALBf b0100 (Note 2) b1100

LOGBf b0101 (Note 1) b1101

Trap (UND) b0110 Trap (UND) b1110

Trap (UND) b0111 Trap (UND) b1111

*Instructions with Format 12 are available only when the NS32381 is used.

TL/EE/11267–64

Format 13

Trap (UND) Always

TL/EE/11267–65

90

Obs
ole

te

Appendix A: Instruction Formats (Continued)

Format 14

Trap (UND) Always

TL/EE/11267–66

Format 15

Trap (UND) Always

TL/EE/11267–67

Format 16

Trap (UND) Always

TL/EE/11267–68

Format 17

Trap (UND) Always

TL/EE/11267–69

Format 18

Trap (UND) Always

TL/EE/11267–70

Format 19

Trap (UND) Always

Implied Immediate Encodings:

7 0

r7 r6 r5 r4 r3 r2 r1 r0

Register Mask, appended to SAVE, ENTER

7 0

ro r1 r2 r3 r4 r5 r6 r7

Register Mask, appended to RESTORE, EXIT

7 0

offset lengthb1

Offset/Length Modifier appended to INSS, EXTS

Note 1: Opcode not defined; CPU treats like MOVf. First operand has access class of read; second operand has access class of write; f-field selects 32-bit or

64-bit data.

Note 2: Opcode not defined; CPU treats like ADDf. First operand has access class of read; second operand has access class of read-modify-write. f-field selects

32-bit or 64-bit data.

Note 3: Reserved opcode; execution of this opcode will generate an undefined result.

91

Obs
ole

te

Appendix B: Instruction Execution Times
This section provides the necessary information to calculate

the instruction execution times for the NS32FX164.

The following assumptions are made:
Y The entire instruction, with all displacements and imme-

diate operands, is assumed to be present in the instruc-

tion queue when needed.
Y Interference from instruction prefetches, which is very

dependent upon the preceding instruction(s), is ignored.

This assumption will tend to affect the timing estimate

in an optimistic direction.
Y It is assumed that all memory operand transfers are

completed before the next instruction begins execution.

In the case of an operand of access class rmw in

memory, this is pessimistic, as the Write transfer occurs

in parallel with the execution of the next instruction.
Y It is assumed that there is no overlap between the

fetch of an operand and the following sequences of mi-

crocode. This is pessimistic, as the fetch of Operand 1

will generally occur in parallel with the effective address

calculation of Operand 2, and the fetch of Operand 2

will occur in parallel with the execution phase of the in-

struction.
Y Where possible, the values of operands are taken into

consideration when they affect instruction timing, and a

range of times is given. Where this is not done, the

worst case is assumed.

B.1 BASIC AND FLOATING-POINT INSTRUCTIONS

Execution times for basic and floating-point instructions are

given in Tables B-1 and B-2. The parameters needed for the

various calculations are defined below.

TEAÐ The time required to calculate an operand’s Effec-

tive Address. For a Register or Immediate oper-

and, this includes the fetch of that operand.

TEA1Ð TEA value for the GEN or GEN1 operand.

TEA2Ð TEA value for the GEN2 operand.

TOPBÐ The time needed to read or write a memory byte.

TOPWÐ The time needed to read or write a memory word.

TOPDÐ The time needed to read or write a memory dou-

ble-word.

TOPiÐ The time needed to read or write a memory oper-

and, where the operand size is given by the opera-

tion length of the instruction. It is always equiva-

lent to either TOPB, TOPW or TOPD.

TCYÐ Internal processing overhead, in clock cycles.

LÐ Internal processing whose duration depends on

the operation length. The number of clock cycles

is derived by multiplying this value by the number

of bytes in the operation length.

NCYCÐ Number of bus cycles performed by the CPU to

fetch or store an operand. NCYC depends on the

operand size and alignment.

TPRÐ CPU processing (in clock cycles) performed in par-

allel with the FPU.

TFPUÐ Processing time required by the FPU to execute

the instruction. This is the time from the last data

sent to the FPU, until done is issued. TFPU can be

found in the FPU data sheets.

fÐ This parameter is related to the floating-point op-

erand size.

TfÐ The time required to transfer 32 bits of floating

point value to or from the FPU.

TiÐ The time required to transfer an integer value to or

from the FPU.

B.1.1 Equations

The following equations assume that:

Memory accesses occur at full speed.

Any wait states should be reflected in the calculations of

TOPB, TOPW and TOPD.

Note: When multiple writes are performed during the execution of an in-

struction, wait states occurring during intermediate write transactions

may be partially hidden by the internal execution. Therefore, a certain

number of wait states can be inserted with no effect on the execution

time. For example, in the case of the MOVSi instructions each wait

state on write operations subtracts 1 clock cycle per write bus access,

from the TCY of the instruction, since updating the pointers occurs in

parallel with the write operation. This means that wait states can be

added to write cycles without changing the execution time of the in-

struction, up to a maximum of 13 wait states on writes for MOVSB and

MOVSW, and 4 wait states on writes for MOVSD.

TEAÐ TEA values for the various addressing modes are

provided in the following table.

TEA TABLE

Addressing TEA
Notes

Mode Value

IMMEDIATE,
4

ABSOLUTE

EXTERNAL 11 a 2 * TOPD

MEMORY RELATIVE 7 a TOPD

REGISTER 2

REGISTER RELATIVE,
5

MEMORY SPACE

TOP OF STACK 4 Access Class Write

2 Access Class Read

3 Access Class RMW

SCALED INDEXED TI1 a TI2

TI1 e TEA of the basemode except:

if basemode is REGISTER then TI1 e 5

if basemode is TOP OF STACK then TI1 e 4

TI2 depends on the scale factor:

if byte indexing TI1 e 5

if word indexing TI2 e 7

if double-word indexing TI2 e 8

if quad-word indexing TI2 e 10

TOPBÐ If operand is in a register or is immediate then

TOPB e 0

else TOPB e 3

TOPWÐ If operand is in a register or is immediate then

TOPW e 0

else TOPW e 4 # NCYC b 1

TOPDÐ If operand is in a register or is immediate then

TOPD e 0

else TOPD e 4 # NCYC b 1

92

Obs
ole

te

https://www.application-datasheet.com/

Appendix B: Instruction Execution Times (Continued)

TOPiÐ If operand is in a register or is immediate then

TOPi e 0

else if i e byte then TOPi e TOPB

else if i e word then TOPi e TOPW

else (i e double-word) then TOPi e TOPD

LÐ If i (operation length) e byte then L e 1

else if i e word then L e 2

else (i e double-word) L e 4

fÐ If standard floating (32 bits): f e 1

If long floating (64 bits): f e 2

TfÐ Tf e 4

TiÐ If integer e byte or word, then Ti e 2

If integer e double-word, then Ti e 4

B.1.2 Notes on Table Use

Values in the ÝTEA1 and ÝTEA2 columns indicate whether

effective addresses need to be calculated.

A value of 1 indicates that address calculation time is re-

quired for the corresponding operand. A 0 indicates that the

operand is either missing, or it is in a register and the in-

struction has an optimized form which eliminates the TEA

calculation for it.

In the L column, multiply the entry by the operation length in

bytes (1, 2 or 4).

In the TCY column, special notations sometimes appear:

n1 x n2 means n1 minimum, n2 maximum

n1%n2 means that the instruction flushes the instruction

queue after n1 clock cycles and nonsequentially fetches the

next instruction. The value n2 indicates the number of clock

cycles for the internal execution of the instruction (including

n1).

The effective number of cycles (TCY) must take into ac-

count the time (Tfetch) required to fetch the portion of the

next instruction including the basic encoding and the index

bytes. This time depends on the size and the alignment of

this portion.

If only one memory cycle is required, then:

TCY e n1 a 6 a Tfetch

If more than one memory cycle is required, then:

TCY e n1 a 5 a Tfetch

In the notes column, notations held within angle brackets
k l indicate alternatives in the operand addressing modes

which affect the execution time. A table entry which is af-

fected by the operand addressing may have multiple values,

corresponding to the alternatives. These addressing nota-

tions are:

kIl Immediate

kRl CPU Register

kMl Memory

kFl FPU Register, either 32 or 64 Bits

kxl Any Addressing Mode

kabl a and b represent the addressing modes of operand

1 and 2 respectively. Both a and b can be any ad-

dressing mode (e.g., kMRl means memory to CPU

register).

Note: Unless otherwise specified the TCY value for immediate addressing is

the same as for CPU register addressing.

B.1.3. Calculation of the Execution Time TEX for

Basic Instructions

The execution time for a basic instruction is obtained by

performing the following steps:

1. Find the desired instruction in Table B-1.

2. Calculate the values of TEA, TOPB, etc. using the num-

bers in the table and the equations given in the previous

sections.

3. The result derived by adding together these values is the

execution time TEX in clock cycles.

EXAMPLE

Calculate TEX for the instruction CMPW R0, TOS.

Operand 1 is in a register; Operand 2 is in memory. This

means that we must use the table values corresponding to

the kxMl case as given in the Notes column.

Only the ÝTEA1, ÝTEA2, ÝTOPi and TCY columns have

values assigned for the CMPi instruction. Therefore, they

are they only ones that need to be calculated to find TEX.

The blank columns are irrelevant to this instruction.

Both ÝTEA1 and ÝTEA2 columns contain 1 for the kxMl

case. This means that effective address times have to be

calculated for both operands. (For the kMRl case, the

Register operand would have required no TEA time, there-

fore only the Memory operand TEA would have been neces-

sary.) From the equations:

TEA1 (Register mode) e 2.

TEA2 (Top of Stack mode, access class read) e 2.

The ÝTOPi column represents potential operand transfers

to or from memory. For a Compare instruction, each oper-

and is read once, for a total of two operand transfers.

TOPi (Word, Register) e 0,

TOPi (Word, TOS) e 3 (assuming the operand aligned)

Total TOPi e 3

TCY is the time required for internal operation within the

CPU. The TCY value for this case is 3.

TEX e TEA1 a TEA2 a TOPi a TCY e 2 a 2 a 3 a 3
e 10 machine cycles.

If the CPU is running at 20 MHz then a machine cycle (clock

cycle) is 50 ns. Therefore, this instruction would take 10 c

50 ns, or 0.5 ms, to execute.

B.1.4 Calculation of the Execution Time TEX for

Floating-Point Instructions

The execution time for a floating-point instruction is ob-

tained by performing the following steps:

1. Find the desired instruction in Table B-2.

2. Calculate the values of TEA1, TEA2, TOPB, etc., using

the numbers in the table, and the equations given in the

previous sections.

3. Get the floating-point instruction execution time TFPU

from the appropriate FPU data sheet.

4. Choose the higher value between TPR and TFPU a 3.

5. The result derived by adding together these values is the

execution time TEX in clock cycles.

EXAMPLE 1

Calculate TEX for the instruction MOVLF F0,@hÊ3000.

Assumptions:

The FPU being used is the NS32181.

Write cycles are performed with no wait states.

93

Obs
ole

te

https://www.application-datasheet.com/

Appendix B: Instruction Execution Times (Continued)

TEX Calculation:

Operand 1 is in a register, operand 2 is in memory. This

means that we have to use the table values for the kFMl

case.

The following parameter values are obtained from Table B-2

and the equations in the previous sections.

TEA2 (Absolute Mode) e 4

TOPD (Memory Write) e 7 (Operand aligned, no waits)

Tf e 4

TCY e 32

TPR e TEA2 a 6 e 4 a 6 e 10

From the FPU Execution Timing table in the NS32181 data

sheet we get a TFPU for MOVLF of 19 clock cycles.

The higher value between TPR and TFPU a 3 is 22. The

total execution time in clock cycles is:

TEX e TEA2 a TOPD a TF a TCY a 22 e 65

EXAMPLE 2

Calculate TEX for the instruction MULF 20(R0), 4(10(FP))

Assumptions:

The FPU being used is the NS32181.

20(R0) is an aligned read with one wait state.

10(FP) is an aligned read with no wait states.

4(10 (FP)) is an unaligned rmw with two wait states.

TEX Calculation:

Operand 1 and operand 2 are both in memory. Therefore,

the table values for the kMMl case must be used.

The parameter values obtained from Table B-2 and the

equations in the previous sections are as follows:

TEA1 (Register Relative Mode) e 5

TEA2 (Memory Relative Mode) e 8 a TOPD e 15

(TOPD e 7 (Operand Aligned, No Wait))

TOPD1 (Read from GEN1) e 7 a 2 e 9 (Operand

Aligned, One Wait)

TOPD2 (RMW from GEN2) e 11 a 6 e 17 (Operand Una-

ligned, Two Waits)

Tf e 4

TCY e 22 x 28

TPR e 0

From the FPU Execution Timing Table in the NS32181 data

sheet we get a TFPU for MULF of 33 clock cycles.

The higher value between TPR and TFPU a 3 is 36. The

total execution time in clock cycles is:

TEX e TEA1aTEA2aTOPD1aTOPD2a3#TfaTCYa

36e5a15a9a17a(22x28)a36e133x140

TABLE B-1. Basic Instructions

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

ABSi 1 1 Ð Ð Ð 2 Ð 9 SCR k 0

1 1 Ð Ð Ð 2 Ð 8 SCR l 0

ACBi 1 Ð Ð Ð Ð 2 Ð 16 kMl no branch

1 Ð Ð Ð Ð 2 Ð 15%20 kMl branch

Ð Ð Ð Ð Ð Ð Ð 18 kRl no branch

Ð Ð Ð Ð Ð Ð Ð 17%22 kRl branch

ADDi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

ADDCi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

ADDPi 1 1 Ð Ð Ð 3 Ð 16 No Carry

1 1 Ð Ð Ð 3 Ð 18 Carry

ADDQi Ð 1 Ð Ð Ð 2 Ð 6 kMl

Ð Ð Ð Ð Ð Ð Ð 4 kRl

ADDR 1 1 Ð Ð 1 Ð Ð 2 kxMl

1 Ð Ð Ð Ð Ð Ð 3 kxRl

ADJSPi 1 Ð Ð Ð Ð 1 Ð 6

ANDi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

ASHi 1 1 1 Ð Ð 2 Ð 14 x 45

Bcond Ð Ð Ð Ð Ð Ð Ð 7 no branch

Ð Ð Ð Ð Ð Ð Ð 6%10 branch

BICi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

94

Obs
ole

te

Appendix B: Instruction Execution Times (Continued)

TABLE B-1. Basic Instructions (Continued)

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

BICPSRB 1 Ð 1 Ð Ð Ð Ð 18%22

BICPSRW 1 Ð Ð 1 Ð Ð Ð 30%34

BISPSRB 1 Ð 1 Ð Ð Ð Ð 18%22

BISPSRW 1 Ð Ð 1 Ð Ð Ð 30%34

BPT Ð Ð Ð 2 4 Ð Ð 40

BR Ð Ð Ð Ð Ð Ð Ð 4%10

BSR Ð Ð Ð Ð 1 Ð Ð 6%16

CASEi 1 Ð Ð Ð Ð 1 Ð 4%9

CBITi 1 1 2 Ð Ð 1 Ð 15 kxMl

1 Ð Ð Ð Ð 1 Ð 7 kxRl

CBITIi 1 1 2 Ð Ð 1 Ð 15 kxMl

1 Ð Ð Ð Ð 1 Ð 7 kxRl

CHECKi 1 1 Ð Ð Ð 3 Ð 7 high

1 1 Ð Ð Ð 3 Ð 10 low

1 1 Ð Ð Ð 3 Ð 11 ok

CMPi 1 1 Ð Ð Ð 2 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 3 kMRl

Ð Ð Ð Ð Ð Ð Ð 3 kRRl

CMPMi
1 1 Ð Ð Ð 2 * n Ð 9 * n a 24

n e Ý of elements

in block

CMPQi 1 Ð Ð Ð Ð 1 Ð 3 kMl

Ð Ð Ð Ð Ð Ð Ð 3 kRl

CMPSi
Ð Ð Ð Ð Ð 2 * n Ð 35 * n a 53

n e Ý of elements,

not Translated

CMPST Ð Ð n Ð Ð 2 * n Ð 38 * n a 53 Translated

COMi 1 1 Ð Ð Ð 2 Ð 7

CVTP 1 1 Ð Ð 1 Ð Ð 7

CXP Ð Ð Ð 3 4 Ð Ð 16%21

CXPD 1 Ð Ð 3 3 Ð Ð 13%18

DEIi 1 1 Ð Ð Ð 5 16 38 kxMl

1 Ð Ð Ð Ð 1 16 31 kxRl

DIA Ð Ð Ð Ð Ð Ð Ð 3%7

DIVi 1 1 Ð Ð Ð 3 16 58 x 68

ENTER
Ð Ð Ð Ð n a 1 Ð Ð 4 * n a 18

n e Ý of general

registers saved

EXIT
Ð Ð Ð Ð n a 1 Ð Ð 5 * n a 17

n e Ý of general

registers restored

EXTi 1 1 Ð Ð 1 1 Ð 19 x 29 field in memory

1 1 Ð Ð Ð 1 Ð 17 x 51 field in register

EXTSi 1 1 Ð Ð 1 1 Ð 26 x 36

FFSi 1 1 2 Ð Ð 1 24 24 x 28

FLAG Ð Ð Ð Ð Ð Ð Ð 6 no trap

Ð Ð Ð 4 3 Ð Ð 44 trap

IBITi 1 1 2 Ð Ð 1 Ð 17 kxMl

1 Ð Ð Ð Ð Ð Ð 9 kxRl

95

Obs
ole

te

Appendix B: Instruction Execution Times (Continued)

TABLE B-1. Basic Instructions (Continued)

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

INDEXi 1 1 Ð Ð Ð 2 16 25

INSi 1 1 Ð Ð 2 1 Ð 29 x 39 field in memory

1 Ð Ð Ð Ð 1 Ð 28 x 96 field in register

INSSi 1 1 Ð Ð 2 1 Ð 39 x 49

JSR 1 Ð Ð Ð 1 1 Ð 5%15

JUMP 1 Ð Ð Ð Ð Ð Ð 2%6

LPRi 1 Ð Ð Ð Ð 1 Ð 19 x 33

LSHi 1 1 1 Ð Ð 2 Ð 14 x 45

MEIi 1 1 Ð Ð Ð 4 16 23

MODi 1 1 Ð Ð Ð 3 16 54 x 73

MOVi 1 1 Ð Ð Ð 2 Ð 1 kxMl

1 Ð Ð Ð Ð 1 Ð 3 kMRl

Ð Ð Ð Ð Ð Ð Ð 3 kRRl

MOVMi
1 1 Ð Ð Ð 2 * n Ð 3 * n a 20

n e Ý of elements

in block

MOVQi 1 Ð Ð Ð Ð 1 Ð 2 kMl

Ð Ð Ð Ð Ð Ð Ð 3 kRl

MOVSB, W n e Ý elements

Ð Ð Ð Ð Ð 2 * n Ð 14 * n a 59 no options

Ð Ð Ð Ð Ð 2 * n Ð 24 * n a 54 B, W and/or U

option in effect

MOVSD n e Ý of elements

Ð Ð Ð Ð Ð 2 * n Ð 10 * n a 59 no options

Ð Ð Ð Ð Ð 2 * n Ð 24 * n a 54 B, W and/or U

option in effect

MOVST Ð Ð n Ð Ð 2 * n Ð 27 * n a 54 Translated

MOVXBD 1 1 1 Ð 1 Ð Ð 6

MOVXBW 1 1 1 1 Ð Ð Ð 6

MOVXWD 1 1 Ð 1 1 Ð Ð 6

MOVZBD 1 1 1 Ð 1 Ð Ð 5

MOVZBW 1 1 1 1 Ð Ð Ð 5

MOVZWD 1 1 Ð 1 1 Ð Ð 5

MULi 1 1 Ð Ð Ð 3 16 15

NEGi 1 1 Ð Ð Ð 2 Ð 5

NOP Ð Ð Ð Ð Ð Ð Ð 3

NOTi 1 1 Ð Ð Ð 2 Ð 5

ORi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

QUOi 1 1 Ð Ð Ð 3 16 49 x 55

96

Obs
ole

te

Appendix B: Instruction Execution Times (Continued)

TABLE B-1. Basic Instructions (Continued)

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

REMi 1 1 Ð Ð Ð 3 16 57 x 62

RESTORE
Ð Ð Ð Ð n Ð Ð 5 * n a 12

n e Ý of general

registers restored

RET Ð Ð Ð Ð 1 Ð Ð 2%8

RETI Ð Ð 1 2 2 Ð Ð 60 Non-Cascaded

Ð Ð 2 2 3 Ð Ð 60 Cascaded

RETT Ð Ð Ð 2 2 Ð Ð 45

ROTi 1 1 1 Ð Ð 2 Ð 14 x 45

RXP Ð Ð Ð 1 2 Ð Ð 2%6

Scondi 1 Ð Ð Ð Ð 1 Ð 9 False

1 Ð Ð Ð Ð 1 Ð 10 True

SAVE
Ð Ð Ð Ð n Ð Ð 4 * n a 13

n e Ý of general

registers saved

SBITi 1 1 2 Ð Ð 1 Ð 15 kxMl

1 Ð Ð Ð Ð 1 Ð 7 kxRl

SBITIi 1 1 2 Ð Ð 1 Ð 15 kxMl

1 Ð Ð Ð Ð 1 Ð 7 kxRl

SETCFG Ð Ð Ð Ð Ð Ð Ð 15

SKPSi
Ð Ð Ð Ð Ð n Ð 27 * n a 51

n e Ý of elements,

not Translated

SKPST Ð Ð n Ð Ð n Ð 30 * n a 51 Translated

SPRi 1 Ð Ð Ð Ð 1 Ð 21 x 27

SUBi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

SUBCi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

SUBPi 1 1 Ð Ð Ð 3 Ð 16 no carry

1 1 Ð Ð Ð 3 Ð 18 carry

SVC Ð Ð Ð 2 4 Ð Ð 40

TBIti 1 1 1 Ð Ð 1 Ð 14 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kxRl

WAIT
Ð Ð Ð Ð Ð Ð Ð 6 x ?

? e until an

interrupt/reset

XORi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

97

Obs
ole

te

Appendix B: Instruction Execution Times (Continued)

TABLE B-2. Floating-Point Instructions: CPU Portion

Mnemonic ÝTEA1 ÝTEA2 ÝTOPD ÝTOPi ÝTi ÝTf TCY TPR Notes

ADDf, Ð Ð Ð Ð Ð Ð 17 8 kFFl

SUBf, 1 Ð f Ð Ð f (14 x 17) a3f 0 kMFl

MULf, Ð Ð Ð Ð Ð f 24 a f 0 kIFl

DIVf Ð 1 2f Ð Ð 2f (25 x 29) a6f 0 kFMl

Ð 1 2f Ð Ð 3f (27 x 30) a3f 0 kIMl

1 1 3f Ð Ð 3f (13 x 19) a9f 0 kMMl

MOVf, Ð Ð Ð Ð Ð Ð 17 6 kFFl

ABSf, 1 Ð f Ð Ð f (14 x 17) a 3f 0 kMFl

NEGf Ð Ð Ð Ð Ð f 24 a f 0 kIFl

Ð Ð f Ð Ð f 23 a 3f 6 a TEA2 kFMl

Ð Ð f Ð Ð 2f 33 a f TEA2 b 2 b f kIMl

1 Ð 2f Ð Ð 2f (20 x 23) a6f TEA2b3 kMMl

MOVFL Ð Ð Ð Ð Ð Ð 17 8 kFFl

1 Ð 1 Ð Ð 1 17 x 20 0 kMFl

Ð Ð Ð Ð Ð 1 25 0 kIFl

Ð Ð 2 Ð Ð 2 35 6 a TEA2 kFMl

Ð Ð 2 Ð Ð 3 43 TEA2 b 3 kIMl

1 Ð 3 Ð Ð 3 35 x 38 TEA2 b 3 kMMl

MOVLF Ð Ð Ð Ð Ð Ð 16 8 kFFl

1 Ð 2 Ð Ð 2 20 x 23 0 kMFl

Ð Ð Ð Ð Ð 2 26 0 kIFl

Ð Ð 1 Ð Ð 1 32 TEA2 a 6 kFMl

Ð Ð 1 Ð Ð 3 42 TEA2 b 4 kIMl

1 Ð 3 Ð Ð 3 35 x 38 TEA2 b 3 kMMl

TRUNCfi, Ð Ð Ð Ð 1 Ð 20 9 kFRl

FLOORfi, 1 Ð f Ð 1 f (17 x 20) a 3f 0 kMRl

ROUNDfi Ð Ð Ð Ð 1 f 25 a f 0 kIRl

Ð Ð Ð 1 1 Ð 20 TEA2 a 6 kFMl

Ð Ð Ð 1 1 f 26 a f TEA2 b 2 kIMl

1 Ð f 1 1 f (16 x 19) a4f TEA2 b 2 b f kMMl

MOVif Ð Ð Ð Ð 1 Ð 25 b f 0 kRFl

1 Ð Ð 1 1 Ð 18 0 kMFl

Ð Ð Ð Ð 1 Ð 26 0 kIFl

Ð 1 f Ð 1 f 20 a 4f 0 kRMl

Ð 1 f Ð 1 f 22 a 5f 0 kIMl

1 1 f 1 1 f (10 x 13) a 5f 0 kMMl

CMPf Ð Ð Ð Ð Ð Ð 23 13 kFFl

1 Ð f Ð Ð f (20 x 23) a 3f 7 kMFl

Ð Ð Ð Ð Ð f 31 a f 7 kIFl

Ð 1 f Ð Ð f (27 x 30) a 3f 0 kFMl

Ð 1 f Ð Ð 2f 29 0 kIMl

1 1 2f Ð Ð 2f (15 x 21) a 6f 0 kMMl

Ð Ð Ð Ð Ð f 37 a f 0 kFIl

1 Ð f Ð Ð 2f (21 x 29) a 8f 0 kMIl

Ð Ð Ð Ð Ð 2f 35 a 2f 0 kIIl

SFSR Ð Ð Ð Ð Ð 1 19 7 kRl

1 Ð 1 Ð Ð 1 20 TEA1 a 4 kMl

LFSR Ð Ð Ð Ð Ð 1 23 0 kRl

1 Ð 1 Ð Ð 1 18 x 21 0 kMl

98

Obs
ole

te

Appendix B: Instruction Execution Times (Continued)

B.2 SPECIAL GRAPHICS INSTRUCTIONS

This section provides the execution times for the special

graphics instructions. Table B-3 lists the average instruction

execution times for different shift values and for a no-wait-

state system design. The ‘‘No Option’’ of each instruction is

used. The effect of wait states on the execution time is rath-

er difficult to evaluate due to the pipelined nature of the read

and write operations.

Instructions that have shift amounts, such as BBOR,

BBXOR, BBAND, BBFOR and BITWT, make use of the par-

allel nature of the Series 32000É/EP processors by doing

the actual shift during the reading of the double-word desti-

nation data. This means that if there are wait states on read

operations, these instructions are able to shift further, with-

out impacting the overall execution time. For example, the

total execution time for a BBFOR operation, shifting 8 bits,

with 2 wait states on read operations, is the same as for a

BBFOR operation shifting by 12 bits. This is because a des-

tination read takes 4 clock cycles longer than a no-wait-

state double-word read does. Note that this effect is not

valid for more than 4 wait states because at 4 wait states, all

possible shift values (0–15) are ‘‘hidden’’ during the desti-

nation read.

Table B-4 shows the average execution times with wait

states, assuming a shift value of eight unless stated other-

wise. The parameters used in the execution time equations

are defined below.

Twaitrd The number of wait states applied for a Read

operation.

Twaitr The number of wait states applied for a Write op-

eration.

Twaitrds The number of wait states applied for a Read

operation on source data. This also refers to the

number of wait states applied for a table memory

access (in the SBITS instruction, for example).

Twaitrdd The number of wait states applied for a Read

operation on destination data.

Twaitwrd The number of wait states applied for a Write op-

eration on destination data.

Twaitbt Twaitrds a Twaitrdd * 2 a Twaitwrd * 2, the

value used for BITBLT timing.

width The width of a BITBLT operation, in words.

height The height of a BITBLT operation, in scan lines.

shift The number of bits of shift applied.

B.2.1 Execution Time Calculation for Special Graphics

Instructions

The execution time for a special graphics instruction is ob-

tained by inserting the appropriate parameters to the equa-

tion for that instruction and evaluating it.

For example, to calculate the execution time of the BBOR

instruction applied to a 10-word wide and 5-line high data

block, assuming a shift count of 15 and a no-wait-state sys-

tem, the following equation from Table B-3 is used.

42 a (107 a 44 * (width b 2)) * height a ((shift b 8) *
width * height)

Substituting the appropriate values to the shift, width and

height parameters yields:

45 a (107 a 44 * (10 b 2)) * 50 a ((15 b 8) * 10 * 50)

or

42 a (107 a 352) * 50 a (7 * 500) e 26,492 clocks or

1.77 ms @ 15 MHz

This represents the ‘‘worst case’’ time for this instruction,

since a shift of greater than 15 bits can be handled by mov-

ing the source and destination pointers by 2 bytes and ad-

justing the shift amount.

The ‘‘best case’’ and ‘‘average case’’ times for most in-

structions are the same, due to reading the destination data

during the shifting of the source data.

TABLE B-3. Average Instruction Execution Times with No Wait-States

Instruction Number of Clock Cycles Notes

BBOR 42 a (107 a 44 * (width b 2)) *height Shift e 0 x 8

42 a (107 a 44 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height)

BBXOR 44 a (107 a 44 * (width b 2)) *height Shift e 0 x 8

44 a (107 a 44 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height)

BBAND 45 a (111 a 44 * (width b 2)) *height Shift e 0 x 8

45 a (111 a 44 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height)

BBFOR 48 a (61 a 25 * (width b 2)) *height Shift e 0

48 a (74 a 32 * (width b 2)) *height Shift e 1 x 8

48 a (74 a 32 * (width b 2))*height a Shift l 8

((shift b 8) *width *height)

BBSTOD 66 a (170 a 60 * (width b 2)) *height Shift e 0 x 8

66 a (170 a 60 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height)

99

Obs
ole

te

Appendix B: Instruction Execution Times (Continued)

TABLE B-3. Average Instruction Execution Times with No Wait-States (Continued)

Instruction Number of Clock Cycles Notes

BITWT 16 Shift e 0

28 Shift e 1 x 8

28 a (shift b 8) Shift l 8

EXTBLT 35 a (19 a 12 *width) *height Shift e 0 x 8, Pre-Read

35 a (13 a 12 *width) *height Shift e 0 x 8, No Pre-Read

35 a (17 a 13 *width) *height Shift l 8, Pre-Read

35 a (11 a 13 *width) *height Shift l 8, No Pre-Read

MOVMPB,W 16 a 7 * R2

MOVMPD,W 16 a 8 * R2

SBITS 39 R2 s 25

42 R2 l 25

SBITP 8 a (34 * R2)

TABLE B-4. Average Instruction Execution Times with Wait-States

Instruction Number of Clock Cycles Notes

BBOR 42 a ((107 a 2 * Twaitblt) a (44 a Twaitblt) * (width b 2)) *height

BBXOR 44 a ((107 a 2 * Twaitblt) a (44 a Twaitblt) * (width b 2)) *height

BBAND 45 a ((111 a 2 * Twaitblt) a (44 a Twaitblt) * (width b 2)) *height

BBFOR 48 a ((74 a 2 * Twaitblt) a (32 a Twaitblt) * (width b 2)) *height

BBSTOD 66 a ((170 a 2 * Twaitblt) a (60 a Twaitblt) * (width b 2)) *height

BITWIT 16 a Twaitrds a Twaitrdd a Twaitwrd Shift e 0

28 a Twaitblt Shift e 1 x 8

EXTBLT 35 a (19 a (12 a (Twaitrds a Twaitrdd a Twaitwrd))*width) *height Pre-Read

35 a (13 a (12 a (Twaitrds a Twaitrdd a Twaitwrd)) *width) *height No Pre-Read

MOVMPB,W 16 a 7 * R2 a (Twaitwr b 1) * R2 Twaitwr l 1

16 a 7 * R2 Twaitwr s 1

MOVMPD 16 a 8 * R2 a Twaitwr * R2

SBITS 39 a (2 * Twaitrdd a 2 * Twaitwrd a 2 * Twaitrds) R2 s 25

42 a (2 * Twaitrdd a 2 * Twaitrds) R2 l 25

SBITP 8 a (34 * R2) a ((Twaitrdd a Twaitwrd) * R2)

B.3 DSPM INSTRUCTIONS

The performance of the command list operations is given in

the following tables:

Load Register Instructions

Instruction Cycles

LX 3

LY 3

LZ 3

LA 3

LEA 5

LPARAM 3

LREPEAT 3

LEABR 3

Store Register Instructions

Instruction Cycles

SX 3

SXL 3

SXH 4

SY 3

SZ 3

SA 3

SEA 3

SREPEAT 3

SOVF 3

100

Obs
ole

te

Appendix B: Instruction Execution Times (Continued)

Adjust Register Instructions

Instruction Cycles

INCX 4

INCY 4

INCZ 4

DECX 4

DECY 4

DECZ 4

Flow Control Instructions

Instruction Cycles

NOPR 2

HALT 1

DJNZ 5

DBPT 3

Internal Memory Move Instructions

Instruction Cycles

VRMOV 2 c leng a 2

VARMOV 2 c leng a 2

VRGATH 4 c leng a 4

VRSCAT 4 c leng a 4

External Memory Move Instructions

Assuming EXT.HOLD e 0:

Instruction Cycles

VXLOAD (5 a w) * leng a k a 2

VXSTORE (5 a w) * leng a k a 2

VXGATH (5 a w) * leng a k a 2

w e Number of wait states in external memory access.

k e Number of cycles until HLDA is received, in external memory instruc-

tions.

Arithmetic/Logical Instructions

Instruction Cycles

VROP 3 c leng a 3

VAROP 3 c leng a 4

Multiply-and-Accumulate Instructions

Instruction Cycles

VRMAC 2 c leng a 7

VARMAC 2 c leng a 7

VCMAC 4 c leng a 7

VRLATP 4 c leng a 5

VCLATP 4 c leng a 2

Multiply-and-Add Instructions

Instruction Cycles

VAIMAD 6 * leng a 2

VAIMADS 6 * leng a 4

VRMAD 4 * leng a 3

VARMAD 4 * leng a 4

VEMAD 6 * leng a 2

VCMAD 4 * leng a 6

Clipping and Min/Max Instructions

Instruction Cycles

VARABS 2 c leng a 5

VARMIN 7 c leng a 2

VARMAX 7 c leng a 2

VRFMIN 4 c leng a 6

VRFMAX 4 c leng a 6

EFMAX 17

Special Instructions

Instruction Cycles

ESHL 1 c leng a 4

VCPOLY 4 c leng a 16

VDECIDE 12 c leng a 4

VDIST 5 c leng a 5

VFFT 8 c leng a 6

VESIIR 16 c leng a 6

If leng e 1 in ESHL instruction, then the timing is 4 cycles.

101

Obs
ole

te

N
S
3
2
F
X

1
6
1
-1

5
/
N

S
3
2
F
X

1
6
1
-2

0
/
N

S
3
2
F
X

1
6
4
-2

0
/
N

S
3
2
F
X

1
6
4
-2

5
/
N

S
3
2
F
V

1
6
-2

0
/
N

S
3
2
F
V

1
6
-2

5
A

d
v
a
n
c
e
d

Im
a
g
in

g
/
C

o
m

m
u
n
ic

a
ti
o
n

S
ig

n
a
l
P
ro

c
e
s
s
o
rs

Physical Dimensions inches (millimeters)

68-Pin Plastic Leaded Chip Carrier (V)

Order Number NS32FX164V-15, NS32FX164V-20 or NS32FX164V-25

NS Package Number V68A

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Obs
ole

te

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com
https://www.application-datasheet.com/

