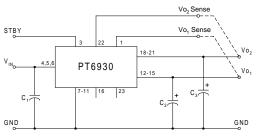

(Revised 7/20/2001)


Features

- Dual Outputs:
 - +3.3V/2.5V
 - +3.3V/1.5V
 - +3.3V/1.8V
- Adjustable Output Voltages
- Remote Sense (both outputs)
- Standby Function
- Over-Temperature Protection
- Soft-Start
- Internal Sequencing
- 23-pin ExcaliburTM Package

Description

The PT6930 Excalibur™ series of 8-A dual-output ISRs are designed to power DSP ICs. Both output voltages are independently adjustable with external resistors. The second output may also be set to an alternate lower bus voltage with a simple pin strap. Internal power sequencing of both outputs, during both power-up and power-down, meets the requirements of most DSP chipsets.

Standard Application

 $\begin{array}{ccc} C_1/C_2 &= Req'd~330 \mu F~electrolytic~(See~table~footnotes) \\ C_3 &= Optional~100 \mu F~electrolytic \end{array}$

Pin-Out Information

Pin_	Function	<u> Pin</u>	Function
1	Vo ₁ Sense	13	Vo_1
2	No Connect	14	Vo ₁
3	STBY	15	Vo ₁
4	V_{IN}	16	Vo ₁ Adjust
5	V_{IN}	17	No Connect
6	$ m V_{IN}$	18	Vo ₂
7	GND	19	Vo ₂
8	GND	20	Vo ₂
9	GND	21	Vo ₂
10	GND	22	Vo ₂ Sense
11	GND	23	Vo ₂ Adjust*
12	Vo_1		

^{*} Note:Vo₁ & Vo₂ Adjust can be pin-strapped to an alternative lower bus voltage. Consult the voltage adjustment application note for more information.

Ordering Information

PT6931□ = +3.3 Volts

+2.5/1.8 Volts **PT6932**□ = +3.3 Volts

+1.5/1.2 Volts

PT6933 \Box = +3.3 Volts

+1.8/1.2 Volts

PT Series Suffix (PT1234X)

Case/Pin

Comiguration	
Vertical Through-Hole	N
Horizontal Through-Hole	Α
Horizontal Surface Mount	C

(For dimensions and PC board layout, see Package Styles 1320 and 1330).

Specifications

Characteristics				PT6930 SERIES				
(T _a = 25°C unless noted)	Symbols	Conditions		Min	Тур	Max	Units	
Output Current	Io ₁ , Io ₂	$T_a = +60$ °C, 200 LFM, pkg N	Vo ₁ =3.3V Vo ₂ =2.5V Vo ₂ =1.8V Vo ₂ =1.5V Vo ₁ =1.2V	0.1 (1) 0 0 0 0	_ _ _ _	5.5 (2) 2.2 (2) 1.75 (2) 1.45 (2) 1.2 (2)	A	
		$T_a = +25$ °C, natural convection	Vo ₁ =3.3V Vo ₂ =2.5V Vo ₂ =1.8V Vo ₂ =1.5V Vo ₁ =1.2V	0.1 (1) 0 0 0 0	_ _ _ _	6.0 (2) 2.2 (2) 1.75 (2) 1.45 (2) 1.2 (2)	A A	
Input Voltage Range	V_{in}	$0.1A \le I_o \le I_{typ}$		4.5	_	5.5	V	
Output Voltage Tolerance	$\Delta { m V}_{ m o}$	V_{in} = +5V, I_{o} = I_{typ} , both outputs $0^{\circ}\text{C} \leq T_{a} \leq$ +65 $^{\circ}\text{C}$		Vo-0.1	_	Vo+0.1	V	
Line Regulation	Reg _{line}	$4.5\mathrm{V} \leq \mathrm{V_{in}} \leq 5.5\mathrm{V}, \mathrm{I_o} = \mathrm{I_{typ}}$	$V_{0_1} \\ V_{0_2}$	_	±7 ±7	±17 ±13	V	
Load Regulation	Reg_{load}	V_{in} = +5V, $0.1 \le I_o \le I_{typ}$	V_{0_1} V_{0_2}	_	±17 ±4	±33 ±10	mV	
V _o Ripple/Noise	V_n	$V_{in} = +5V$, $I_o = I_{typ}$	V_{0_1} V_{0_2}	_	50 25	_	mV	
Transient Response with $C_2 = 330 \mu F$	${ m t_{tr} \over m V_{os}}$	I_o step between $0.5xI_{typ}$ and I_{typ} V_o over/undershoot	V_{o_1} V_{o_2}	_	25 60 60		μSec mV	
Efficiency	η	$V_{\rm in}$ = +5V, $I_{\rm o}$ =4A total		_	75	_	%	
Switching Frequency	f_{0}	$4.5V \le V_{in} \le 5.5V$ $0.1A \le I_0 \le I_{tvD}$		475	600	725	kHz	

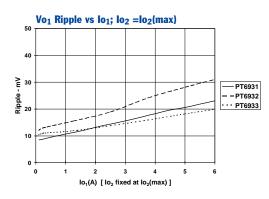
(Continued)

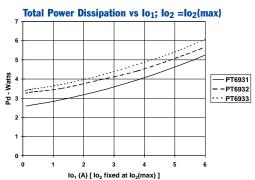
8-A 5V-Input Dual-Output Integrated Switching Regulator

Specifications (From previous page)

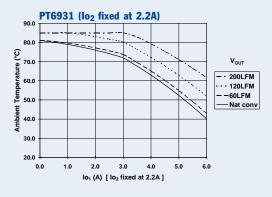
Characteristics			PT6930 SERIES				
(T _a = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units	
Absolute Maximum Operating Temperature Range	T_a	-	-40 (3)	_	+85 (4)	°C	
Storage Temperature	T_s	_	-40	_	+125	°C	
Weight	_	Vertical/Horizontal	_	29	_	grams	

Notes: (1) I_omin current of 0.1A can be divided btween both outputs; Vo₁, or Vo₂. The ISR will operate down to no-load with reduced specifications.


- (2) Iomax listed for each output assumes the maximum current drawn simultaneously on both outputs. Consult the factory for the absolute maximum.
- (3) For operating temperatures below 0°C, use tantalum type capacitors at both the input and output.
- (4) See Safe Operating Area curves for appropriate derating.


Input/Output Capacitors: The PT6930 series requires a minimum capacitance of 330 μ F at both the input and Vo_1 output for proper operation in all applications. In addition, the input capacitor, C_1 , must be rated for a minimum of 1.0Arms ripple current. For transient or dynamic dynamic loads, additional capacitance may be required.

TYPICAL CHARACTERISTICS


Total Efficiency vs lo1; lo2 =lo2(max) 80 80 70 1 2 3 4 5 6 1 lo1 (A) [lo2 fixed at lo2(max)]

PT6930 Series Performance (See Note A)

Safe Operating Area @V_{IN} =5V (See Note B)

Note A: All characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the ISR. **Note B:** SOA curves represent operating conditions at which internal components are at or below the manufactuer's maximum rated operating temperatures.

PT6920/PT6930 Series

Adjusting the Output Voltage of the PT6920 and PT6930 Dual Output Voltage ISRs

Each output voltage from the PT6920 and PT6930 series of ISRs can be independently adjusted higher or lower than the factory trimmed pre-set voltage. Vo_1 or Vo_2 may each be adjusted either up or down using a single external resistor 2 . Table 1 gives the adjustment range for both Vo_1 and Vo_2 for each model in the series as $V_a(\text{min})$ and $V_a(\text{max})$. Note that Vo_2 must always be lower than Vo_1 3 .

Vo₁ Adjust Up: To increase the output, add a resistor R4 between pin 16 (V_1 Adjust) and pins 7-11 (GND) 2.

Vo₁ Adjust Down: Add a resistor (R3), between pin 16 (Vo₁ Adjust) and pin 1 (Vo₁ Sense) 2.

Vo₂ Adjust Up: Add a resistor R2 between pin 23 (Vo₂ Adjust) and pins 7-11 (GND) ².

Vo₂ Adjust Down: Add a resistor (R1) between pin 23 (Vo₂ Adjust) and pin 22 (Vo₂ Sense) 2.

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor.

Notes:

- The output voltages, Vo₁ and Vo₂, may be adjusted independently.
- Use only a single 1% resistor in either the (R3) or R4 location to adjust Vo₁, and in the (R1) or R2 location to adjust Vo₂. Place the resistor as close to the ISR as possible.
- 3. Vo₂ must always be at least 0.2V lower than Vo₁.
- 4. Vo₂ on both the PT6921 and PT6931 models may be adjusted from 2.5V to 1.8V by simply connecting pin 22 (Vo₂ Sense) to pin 23 (Vo₂ Adjust). For more details, consult the data sheet.

- 5. If Vo₁ is increased above 3.3V, the minimum input voltage to the ISR must also be increased. The minimum required input voltage must be (Vo₁ + 1.2)V or 4.5V, whichever is greater. Do not exceed 5.5V
- Never connect capacitors to either the Vo₁ Adjust or Vo₂
 Adjust pins. Any capacitance added to these control pins
 will affect the stability of the respective regulated output.
- 7. Adjusting either voltage (Vo₁ or Vo₂) may increase the power dissipation in the regulator, and correspondingly change the maximum current available at either output. Consult the factory for application assistance.

The adjust up and adjust down resistor values can also be calculated using the following formulas. Be sure to select the correct formula parameter from Table 1 for the output and model being adjusted.

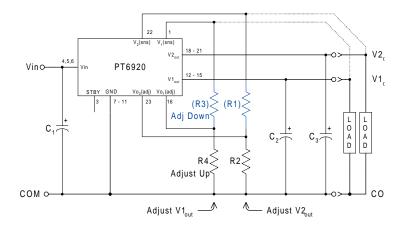
(R1) or (R3) =
$$\frac{R_o(V_a - V_r)}{V_o - V_a} - R_s$$
 k Ω

R2 or R4 =
$$\frac{V_r \cdot R_o}{V_a - V_o} - R_s$$
 $k\Omega$

Where: $V_0 = \text{Original output voltage, } (V_{01} \text{ or } V_{02})$

V_a = Adjusted output voltage

V_r = The reference voltage from Table 1


 R_o = The resistance value from Table 1

 R_s = The series resistance from Table 1

Table 1

PT6920 ADJUSTMENT RANGE AND FORMULA PARAMETERS						
Output Bus	Vo ₁					
Series Pt #						
Standard Case	PT6921/22	PT6921	PT6922			
Excalibur Case	PT6931/32	PT6931	PT6932	PT6933		
Adj. Resistor	(R3)/R4	(R1)/R2	(R1)/R2	(R1)/R2		
V _O (nom)	3.3V	2.5V	1.5V	1.8V		
Va(min)	2.3V	1.8V	1.2V	1.2V		
Va(max)	3.6V	3.0V	3.0V	3.0V		
Vr	1.02V	1.0V	1.0V	1.0V		
R ₀ (kΩ)	12.1	10.0	9.76	10.0		
R _S (kΩ)	12.1	11.5	6.49	3.32		

Figure 1

PT6920/PT6930 Series

Table 2

Table 2						
	930 ADJUSTMENT RES	SISTOR VALU				
Output Bus	Vo ₁		Vo ₂			
Series Pt#	PTC001 /C000	PTCOOL	DTCCCC			
Standard Case Excalibur Case	PT6921/6922 PT6931/6932	PT6921 PT6931	PT6922 PT6932	PT6933		
Adi Resistor	(R3)/R4	(R1)/R2	(R1)/R2	(R1)/R2		
V _o (nom)	3.3Vdc	2.5Vdc	1.5Vdc	1.8Vdc		
V _a (req'd)						
		-	(0.0)I-O	(0,0)1-0		
1.2			(0.0)kΩ	(0.0)kΩ		
1.25			(3.3)kΩ	(1.2)kΩ		
1.3			(8.2)kΩ	(2.7)kΩ		
1.35			(16.3)kΩ	(4.5)kΩ		
1.4			(32.6)kΩ	(6.7)kΩ		
1.45			(81.4)kΩ	(9.5)kΩ		
1.5				(13.3)kΩ		
1.55			189.0kΩ	(18.7) k Ω		
1.6			91.1kΩ	(26.7) k Ω		
1.65			58.6kΩ	(40.0) k Ω		
1.7			42.3kΩ	(66.7) k Ω		
1.75			32.6kΩ	(147.0) k Ω		
1.8		(0.0) k Ω	26.0kΩ			
1.85		(1.6) k Ω	$21.4 \mathrm{k}\Omega$	197.0kΩ		
1.9		(3.5) k Ω	$17.9 \mathrm{k}\Omega$	$96.7 \mathrm{k}\Omega$		
1.95		(5.8)kΩ	15.2kΩ	63.3kΩ		
2.0		(8.5)kΩ	13.0kΩ	46.7kΩ		
2.05		(11.8)kΩ	11.3kΩ	36.7kΩ		
2.1		(16.0)kΩ	9.8kΩ	30.0kΩ		
2.15		(21.4)kΩ	8.5kΩ	25.3kΩ		
2.2		(28.5)kΩ	7.5kΩ	21.7kΩ		
2.25		(38.5)kΩ	6.5kΩ	18.9kΩ		
2.3	(3.4)kΩ	(53.5)kΩ	5.7kΩ	16.7kΩ		
2.35	(4.8)kΩ	(78.5) k Ω	5.0kΩ	14.9kΩ		
2.4	(6.5)kΩ	(70.9) k Ω	4.4kΩ	13.3kΩ		
2.45	(8.3)kΩ	(279.0) k Ω	3.8kΩ	12.1kΩ		
2.5		(277.0)KS2		11.0kΩ		
	(10.3)kΩ	100.01.0	3.3kΩ			
2.55	(12.6)kΩ	189.0kΩ	2.8kΩ	10.0kΩ		
2.6	(15.2)kΩ	88.5kΩ	2.4kΩ	9.2kΩ		
2.65	(18.2)kΩ	55.2kΩ	2.0kΩ	8.4kΩ		
2.7	(21.8)kΩ See Note 3	38.5kΩ	1.6kΩ	7.8kΩ		
2.75	(26.0)kΩ	28.5kΩ	1.3kΩ	7.2kΩ		
2.8	(31.0)kΩ	21.8kΩ	1.0kΩ	6.7kΩ		
2.85	(37.1)kΩ	17.1kΩ	0.7kΩ	6.2kΩ		
2.9	(44.8)kΩ	13.5kΩ	$0.5 k\Omega$	5.8kΩ		
2.95	(54.6)kΩ	10.7kΩ	0.2kΩ	5.4kΩ		
3.0	(67.8)kΩ	8.5kΩ	$0.0 \mathrm{k}\Omega$	5.0kΩ		
3.05	(86.2)kΩ					
3.1	(114.0)kΩ	-				
3.15	(160.0) k Ω					
3.2	(252.0)kΩ					
3.25	(528.0)kΩ					
3.3		_				
3.4	111.0kΩ See Note 5					
3.5	49.6kΩ					
3.6	29.0kΩ					

R1/R3 = (Blue) R2/R4 = Black

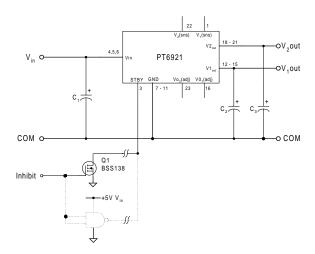
PT6920/PT6930 Series

Using the Standby Function on the PT6920 and PT6930 Dual Output Voltage Converters

Both output voltages of the 23-pin PT6920/6930 dual output converter may be disabled using the regulator's standby function. This function may be used in applications that require power-up/shutdown sequencing, or wherever there is a requirement to control the output voltage On/Off status with external circuitry.

The standby function is provided by the $STBY^*$ control (pin 3). If pin 3 is left open-circuit the regulator operates normally, and provides a regulated output at both Vo_1 (pins 12–15) and Vo_2 (pins 18–21) whenever a valid supply voltage is applied to V_{in} (pins 4, 5, & 6) with respect to GND (pins 7–11). If a low voltage 2 is then applied to pin 3, both regulator outputs will be simultaneously disabled and the input current drawn by the ISR will typically drop to less than 30mA (50mA max). The standby control may also be used to hold-off both regulator outputs during the period that input power is applied.

The standby pin is ideally controlled using an open-collector (or open-drain) discrete transistor (See Figure 1). It may also be driven directly from a dedicated TTL³ compatible gate. Table 1 provides details of the threshold requirements.


Table 1 Inhibit Control Thresholds 2,3

Parameter	Min	Max	
Enable (VIH)	1.8V	Vin	
Disable (VIL)	-0.1V	0.8V	

Notes:

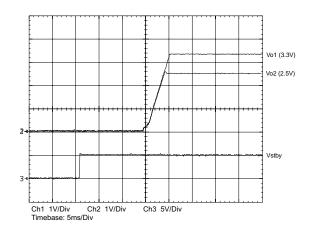

- The Standby/Inhibit control logic is similar for all Power Trends' modules, but the flexibility and threshold tolerances will be different. For specific information on this function for other regulator models, consult the applicable application note.
- 2. The Standby control pin is ideally controlled using an open-collector (or open-drain) discrete transistor and requires no external pull-up resistor. To disable the regulator output, the control pin must be pulled to less than 0.8Vdc with a low-level 0.5mA sink to ground.
- 3. The Standby input on the PT6920/6930 series may be driven by a differential output device, making it directly compatible with TTL logic. The control input has an internal pull-up to the input voltage $V_{\rm in}$. A voltage of 1.8V or greater ensures that the regulator is enabled. <u>Do not</u> use devices that can drive the Standby control input above 5.5V or $V_{\rm in}$.

Figure 1

Turn-On Time: Turning Q_1 in Figure 1 off removes the low-voltage signal at pin 3 and enables both outputs from the PT6920/6930 regulator. Following a delay of about 10–20ms, Vo_1 and Vo_2 rise together until the lower voltage, Vo_2 , reaches its set output. Vo_1 then continues to rise until both outputs reach full regulation voltage. The total power-up time is less than 25ms, and is relatively independant of load, temperature, and output capacitance. Figure 2 shows waveforms of the output voltages Vo_1 and Vo_2 , for a PT6931 (3.3 VV_2 .5 VV_2). The turn-off of VV_3 for a PT6931 (3.3 VV_3). The waveforms were measured with a 5 VV_3 cinput voltage, and with resistive loads of 5A and 2A at the Vo_3 and Vo_3 outputs respectively.

Figure 2

Capacitor Recommendations for the Dual-Output PT6920/30 Regulator Series

Input Capacitors:

The recommended input capacitance is determined by 1.0 ampere minimum ripple current rating and 330µF minimum capacitance (300µF for Oscon® or low ESR tantalum). Ripple current and <100m Ω equivalent series resistance (ESR) values are the major considerations, along with temperature, when designing with different types of capacitors. Tantalum capacitors have a recommended minimum voltage rating of 2 × the maximum DC voltage + AC ripple. This is necessary to insure reliability for input voltage bus applications.

Output Capacitors: C2(Required), C3(Optional)

The ESR of the required capacitor (C_2) must not be greater than 150m Ω . Electrolytic capacitors have poor ripple performance at frequencies greater than 400kHz but excellent low frequency transient response. Above the ripple frequency, ceramic capacitors are necessary to improve the transient response and reduce any high frequency noise components apparent during higher current excursions. Preferred low ESR type capacitor part numbers are identified in Table 1. The optional 100 μ F capacitor (C_3) for V_{02} can have an ESR of up to $200m\Omega$ for optimum performance and ripple reduction. (Note: Vendor part numbers for the optional capacitor, C_3 , are not identified in the table. Use the same series selected for C_2)

Tantalum Capacitors

Tantalum type capacitors can be used for the output but only the AVX TPS series, Sprague 593D/594/595 series or Kemet T495/T510 series. The AVX TPS series, Kemet or Sprague series tantalums are recommended over many other types due to their higher rated surge, power dissipation, and ripple current capability. As a caution the TAJ series by AVX is not recommended. This series has considerably higher ESR, reduced power dissipation and lower ripple current capability. The TAJ Series is a less reliable when compared to the AVX TPS series when determining power dissipation capability. Tantalum types are recommended for applications where ambient temperatures fall below 0°C.

Capacitor Table

Table 1 identifies the characteristics of capacitors from a number of vendors with acceptable ESR and ripple current (rms) ratings. The number of capacitors required at both the input and output buses is identified for each capacitor type.

This is not an extensive capacitor list. Capacitors from other vendors are available with comparable specifications. Those listed are for guidance. The RMS ripple current rating and ESR (Equivalent Series Resistance at 100kHz) are critical parameters necessary to insure both optimum regulator performance and long capacitor life.

Table 1: Input/Output Capacitors

Capacitor Vendor/			Capacitor C	Characteristics		Qua	entity	
Component Series	Working Voltage	Value(μF)	(ESR) Equivalent Series Resistance	85°C Maximum Ripple Current(Irms)	Physical Size(mm)	Input Bus	Output Bus	Vendor Number
Panasonic FC	25V 35V 35V	560μF 390μF 330μF	0.0065W 0.065W 0.117W	1205mA 1205mA 555mA	12.5x15 12.5x15 8x11.5	1 2 (a)	1 1 1	EEUFC1E561S EEUFC1V391S EEUFC1C331
United Chemi -con LXV/FS/ LXZ	16V 35V 10V 20V	330µF 470µF 330µF 150µF	0.120W 0.052W 0.025W 0.030/2W	555mA 1220mA 3500mA 3200mA	8x12 10x20 10x10.5 10x10.5	(a) 1 1 2	1 (N/R) (N/R)	LXZ16VB331M8X12LL LXZ35VB471M10X20LL 10FS330M 20FS150M
Nichicon PL PM	35V 35V 50V	560μF 330μF 470μF	0.048W 0.065/2W 0.046W	1360mA 1020mA 1470mA	16x15 12.5x15 18x15	1 1 1	1 1 1	UPL1V561MHH6 UPL1V331MHH6 UPM1H4711MHH6
Panasonic FC Surface Mtg	10V 35V 16V	1000μF 330μF 330μF	0.043W 0.065W 0.150W	1205mA 1205mA 670mA	12x16.5 12.5x16 10x10.2	1 1 (a)	1 1 1	EEVFC1A102LQ EEVFC1V331LQ EEVFC1C331P
Oscon- SS SV	10V 10V 20V	330µF 330µF 150µF	0.025W 0.025W 0.024/2W	>3500mA >3800mA 3600mA	10.0x10.5 10.3x10.3 10.3x10.3	1 1 2	(N/R) (N/R) (N/R)	10SS330M 10SV300M 20SV150M SV= Surface Mount
AVX Tantalum TPS	10V 10V 10V	330μF 330μF 220μF	0.100/2W 0.100/2W 0.095W	>2500mA >3000mA >2000mA	7.3Lx 4.3Wx 4.1H	2 2 2	1 1 2	TPSV337M010R0100 TPSV337M010R0060 TPSV227M0105R0100
Kemet T510 T495	10V 10V	330μF 220μF	0.033W 0.070W/2=0.035W	1400mA >2000mA	7.3Lx5.7W x 4.0H	2 2	1 2	T510X337M010AS T495X227M010AS
Sprague 594D	10V 10V	330μF 220μF	0.0450W 0.065W	2350mA >2000mA	7.3Lx 6.0Wx 4.1H	2 2	1 2	4D337X0010R2T 594D227X0010D2T

⁽a) -Not recommended. The maximum ripple current rating of these capacitors does not meet the operating limits.
(N/R) -Oscon Type Capcitors are not recommended for this application due to extremely low equivatlent series resistance (ESR)

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products, www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265