

Multilayer High Speed Transient Voltage Surge Suppressor

Pi

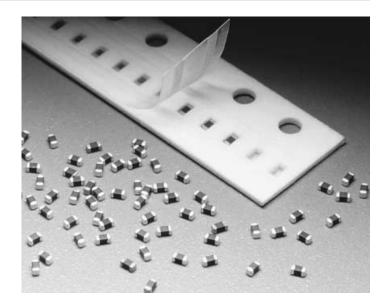
MHS Varistor Series

The Multilayer High-Speed MHS Series is a very-low capacitance extension to the Littelfuse ML family of Transient Voltage Surge Suppression devices available in an 0402 and 0603-size surface mount chip.

The MHS series provides protection from ESD and EFT in high-speed data-line and other high frequency applications. The low capacitance of the MHS Series permits usage in analog or digital circuits where it will not attenuate or distort the desired signal or data.

Their small size is ideal for high-density printed circuit boards, being typically applied to protect intergrated circuits and other sensitive components. They are particularly well suited to suppress ESD events including those specified in IEC 61000-4-2 or other standards used for ElectroMagnetic Compliance (EMC) testing.

The MHS series is manufactured from semiconducting ceramics and is supplied in a leadless, surface mount package. The MHS Series is also compatible with modern reflow and wave soldering processes.


Littelfuse Inc. manufactures other Multilayer Varistor Series products, see the ML, MLE, MLN and AUML series data sheets.

Features

- 3pF, 12pF, and 22pF Capacitance Versions Suitable for High Speed Data-Rate Lines
- ESD Rated to IEC 61000-4-2 (Level 4)
- EFT/B Rated to IEC 61000-4-4 (Level 4)
- Low Leakage Currents
- -55°C to +125°C Operating Temperature Range
- · Inherently Bi-directional
- 100% Lead-Free

Applications

- Data, Diagnostic I/O Ports
- Universal Serial Bus (USB)
- · Video & Audio Ports
- Portable/Hand-Held Products
- Mobile Communications
- Computer/DSP Products
- · Industrial Instruments Including Medical

Size

Metric	EIA
1005	0402
1608	0603

Absolute Maximum Ratings For ratings of individual members of a series, see device ratings and specifications table.	MHS SERIES	UNITS	
Continuous:			
Steady State Applied Voltage: DC Voltage Range (V _{M(DC)}):V0402/0603MHS03	≤ 42	V	
V0402/0603MHS12	≤ 18	V	
V0402/0603MHS22	≤ 9	V	
Operating Ambient Temperature Range (T _A)	55 to + 125	°C	
Storage Temperature Range (T _{STG})	55 to + 150	°C	

Multilayer High Speed Transient Voltage Surge Suppressor

MHS Varistor Series

Device Ratings and Specifications

	MAX RATINGS (125°C)	PERFORMANCE SPECIFICATIONS (25°C)						
	MAXIMUM NON- REPETITIVE SURGE ENERGY (10/1000µS)	MAXIMUM CLAMPING VOLTAGE AT 1A (8X20µs)	ESD C	MUM LAMP TAGE TE 1)	TYPICAL LEAKAGE CURRENT AT SPECIFIED DC VOLTAGE		TYPICAL CAPACITANCE AT 1MHz (1V p-p)	TYPICAL INDUCTANCE (from Impedance Analysis)
PART NUMBER	WTM		(Note 2) 8kV CONTACT	(Note 3) 15kV AIR	3.5V P	5.5V	(NOTE 4) C	L
	(J)	(Vc)	(V)	(V)	(µ A)	(µ A)	(pF)	(nH)
1/0 / 0 0 1 1 1 1 0 0 0		` ′			" '	" '	. ,	` '
V0402MHS03	0.010	135	<300	<400	0.5	1.00	3	<1.0
V0603MHS03	0.010	135	<300	<400	0.5	1.00	3	<1.0
V0402MHS12	0.025	55	<125	<160	0.5	1.00	12	<1.0
V0603MHS12	0.025	55	<125	<160	0.5	1.00	12	<1.0
V0402MHS22	0.020	30	<65	<100	0.5	1.00	22	<1.0
V0603MHS22	0.020	30	<65	<100	0.5	1.00	22	<1.0

NOTES:

- 1. Tested to IEC-61000-4-2 Human Body Model (HBM) discharge test circuit.
- 2. Direct discharge to device terminals (IEC preferred test method).
- 3. Corona discharge through air (represents actual ESD event).
- 4. Capacitance may be customized, contact your Littelfuse Sales Representative.

Temperature De-rating

For applications exceeding 125°C ambient temperature, the peak surge current and energy ratings must be reduced as shown in Figure 1.

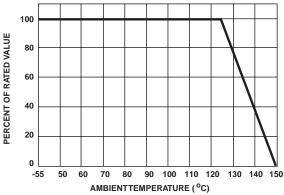


FIGURE 1. PEAK CURRENT AND ENERGY DERATING CURVE

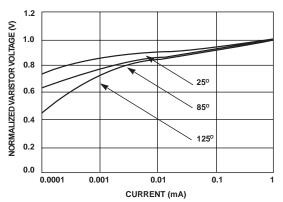


FIGURE 2. STANDBY CURRENT AT NORMALIZED VARISTOR VOLTAGE AND TEMPERATURE

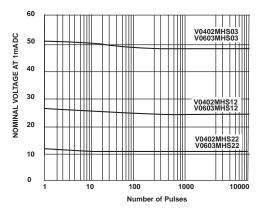


FIGURE 3. NOMINAL VOLTAGE STABILITY TO MULTIPLE ESD IMPULSES (8KV CONTACT DISCHARGES PER IEC 61000-4-2)

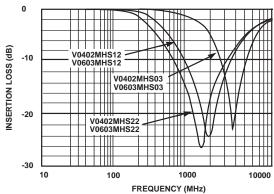


FIGURE 4. INSERTION LOSS (S21) CHARACTERISTICS

Multilayer High Speed Transient Voltage Surge Suppressor

MHS Varistor Series

Soldering Recommendations

The principal techniques used for the soldering of components in surface mount technology are infared (IR) re-flow, vapour phase re-flow and wave soldering. Typical profiles are shown in Figures 5, 6 and 7. When wave soldering, the MHS suppressor is attached to the circuit board by means of an adhesive. The assembly is then placed on a conveyor and run through the soldering process to contact the wave. With IR and vapour phase re-flow, the device is placed in a solder paste on a substrate. As the solder paste is heated, it re-flows and solders the unit to the board.

The recommended solder for the MHS suppressor is a 63/36/2 (Sn/Pb/Ag), 60/40 (Sn/Pb) or 63/37 (Sn/Pb). Littelfuse also recommends an RMA solder flux.

Wave soldering is the most strenuous of the processes. To avoid the possibility of generating stresses due to thermal shock, a preheat stage in the soldering process is recommended, and the peak temperature of the solder process should be rigidly controlled.

When using a re-flow process, care should be taken to ensure that the MHS chip is not subjected to a thermal gradient steeper than 4 degrees per second; the ideal gradient being 2 degrees per second. During the soldering process, preheating within 100 degrees of the solder's peak temperature is essentail to minimize thermal shock. Examples of the soldering conditions for the MHS suppressor are given in the tables below.

Once the soldering process has been completed, it is still necessary to ensure that any further thermal shocks are avoided. One possible cause of thermal shock is hot printed circuit boards being removed from the solder process and subjected to cleaning solvents at room temperature. The boards must be allowed to cool gradually to less than 50°C before cleaning.

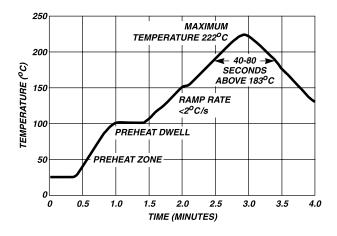


FIGURE 5. REFLOW SOLDER PROFILE

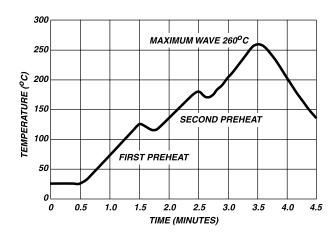


FIGURE 6. WAVE SOLDER PROFILE

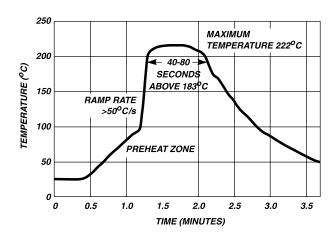


FIGURE 7. VAPOR PHASE SOLDER PROFILE

Recommended Pad Outline

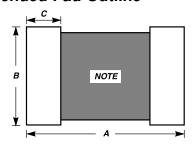
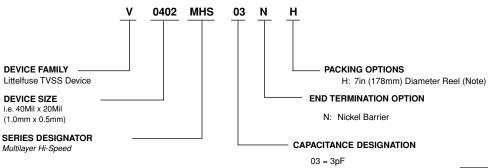


TABLE 1: PAD LAYOUT DIMENSIONS

DIMENSION	A		E	3	С	
	mm	in	mm	in	mm	in
0402	1.70	0.067	0.510	0.020	0.610	0.024
0603	2.54	0.100	0.760	0.030	0.890	0.035



Multilayer High Speed Transient Voltage Surge Suppressor

MHS Varistor Series

Ordering Information

Multilayer High Speed - MHS Series

12 = 12pF22 = 22pF

Mechanical Dimensions

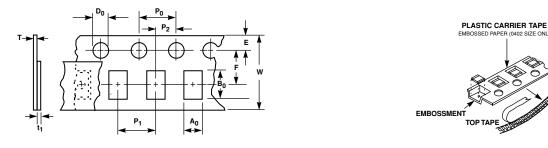
DEVICE DIMENSIONS 0402 SIZE 0603 SIZE DIMENSION INCH MM INCH ММ D Max. 0.024 0.60 0.035 0.9 0.25±0.15 0.015±0.008 Ε 0.10±0.006 0.4±0.2 L 0.039±0.004 1.00±0.10 0.063±0.006 1.6±1.5 0.020±0.004 0.50±0.10 0.032±0.006 0.8±1.5

PRODUCT IDENTIFYING LABEL

178mm

OR 330mm DIA. REEL

8mm NOMINAL


Standard Shipping Quantities

SIZE	7 INCH REEL ("H" OPTION)	13 IN REEL "T" OPTION
0402	10,000	50,000
0603	2,500	10,000

Tape and Reel Specifications

- · Conforms to EIA-481-1, Revision A
- · Can be supplied to IEC publication 286-3

SYMBOL	DESCRIPTION	DIMENSIONS IN MILLIMETERS 0402 Size 0603 Size		
A ₀	Width of Cavity	Dependent on Chip Size to Minimize Rotation.		
B ₀	Length of Cavity	Dependent on Chip Size to Minimize Rotation.		
К ₀	Depth of Cavity	Dependent on Chip Size to Minimize Rotation.		
W	Width of Tape	8±0.2		
F	Distance Between Drive Hole Centers and Cavity Centers	3.5±.05		
Е	Distance Between Drive Hole Centers and Tape Edge	1.75±0.1		
P ₁	Distance Between Cavity Centers	2±0.05 4±0.1		
P ₂	Axial Drive Distance Between Drive Hole Centers & Cavity Centers	2±0.1		
P ₀	Axial Drive Distance Between Drive Hole Centers	4±0.1		
D ₀	Drive Hole Diameter	1.55±0.05		
D ₁	Diameter of Cavity Piercing	N/A 1.05±0.05		
ዣ	Top Tape Thickness	0.1 Max		
Т	Nominal Carrier Tape Thickness	0.61	1.1	

