

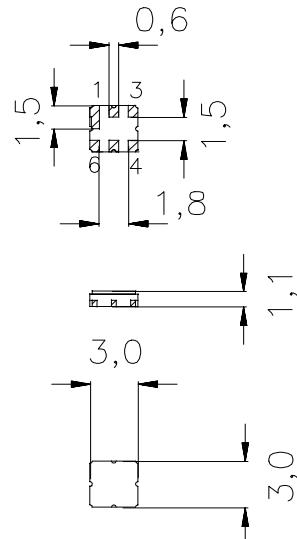
SAW filters for mobile communications

Series/Type: B4141

The following products presented in this data sheet are being withdrawn.

Ordering Code	Substitute Product	Date of Withdrawal	Deadline Last Orders	Last Shipments
B39941B4141U510		2009-04-30	2009-10-31	2010-01-31

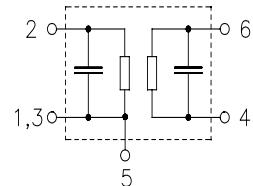
For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.


SAW Components
B4141
Low-Loss Filter for Mobile Communication
942,50 MHz
Data Sheet

Ceramic package DCC6D
Features

- Low-loss RF filter for mobile telephone EGSM systems, receive path
- Low amplitude ripple
- Usable passband 35 MHz
- Unbalanced to balanced Operation
- Impedance transformation from 50Ω to 200Ω
- Ceramic package for **Surface Mounted Technology (SMT)**

Terminals


- Ni, gold-plated

Dimensions in mm, approx. weight 0,037 g

Pin configuration

2	Input, unbalanced
1, 3	Input ground
4, 6	Output, balanced
5	To be grounded
1, 3, 5	Case ground

Type	Ordering code	Marking and Package according to	Packing according to
B4141	B39941-B4141-U510	C61157-A7-A68	F61074-V8089-Z000

Electrostatic Sensitive Device (ESD)
Maximum ratings

Operable temperature range	T	$-10 / +80$	$^{\circ}\text{C}$	source impedance 50Ω , load impedance 200Ω , peak power of GSM signal, duty cycle 2 : 8
Storage temperature range	T_{stg}	$-40 / +85$	$^{\circ}\text{C}$	
DC voltage	V_{DC}	0	V	
Input power max. 880 ... 915 MHz	P_{IN}	3,5	dBm	

Characteristics

Operating temperature range: $T = 25 \pm 2 \text{ }^{\circ}\text{C}$
 Terminating source impedance: $Z_S = 50 \Omega$
 Terminating load impedance: $Z_L = 200 \Omega \parallel 47\text{nH}$
 (L simulated with Q factor 20)

			min.	typ.	max.	
Center frequency		f_C	—	942,5	—	MHz
Maximum insertion attenuation		α_{\max}	—	2,5	3,2	dB
	925,0 ... 960,0	MHz				
Amplitude ripple (p-p)		$\Delta\alpha$	—	0,9	1,4	dB
	925,0 ... 960,0	MHz				
Input VSWR			—	1,8	2,3	
	925,0 ... 960,0	MHz				
Output VSWR			—	1,8	2,1	
	925,0 ... 960,0	MHz				
Attenuation		α				
	0,0 ... 600,0	MHz	60	78	—	dB
	600,0 ... 880,0	MHz	50	66	—	dB
	880,0 ... 905,0	MHz	30	47	—	dB
	905,0 ... 915,0	MHz	20	28	—	dB
	980,0 ... 1025,0	MHz	22	25	—	dB
	1025,0 ... 1050,0	MHz	35	45	—	dB
	1050,0 ... 1920,0	MHz	50	70	—	dB
	1920,0 ... 2880,0	MHz	30	60	—	dB
	2880,0 ... 3840,0	MHz	23	49	—	dB
	3840,0 ... 5000,0	MHz	18	36	—	dB
	5000,0 ... 6000,0	MHz	10	35	—	dB
Symmetry in band						
(referenced to the matched operating condition)						
$ \mathbf{S}_{31} / \mathbf{S}_{21} $	925,0 ... 960,0	MHz	-1,0	0	1,0	dB
$\arg(\mathbf{S}_{31}/\mathbf{S}_{21})$	925,0 ... 960,0	MHz	170	180	190	°

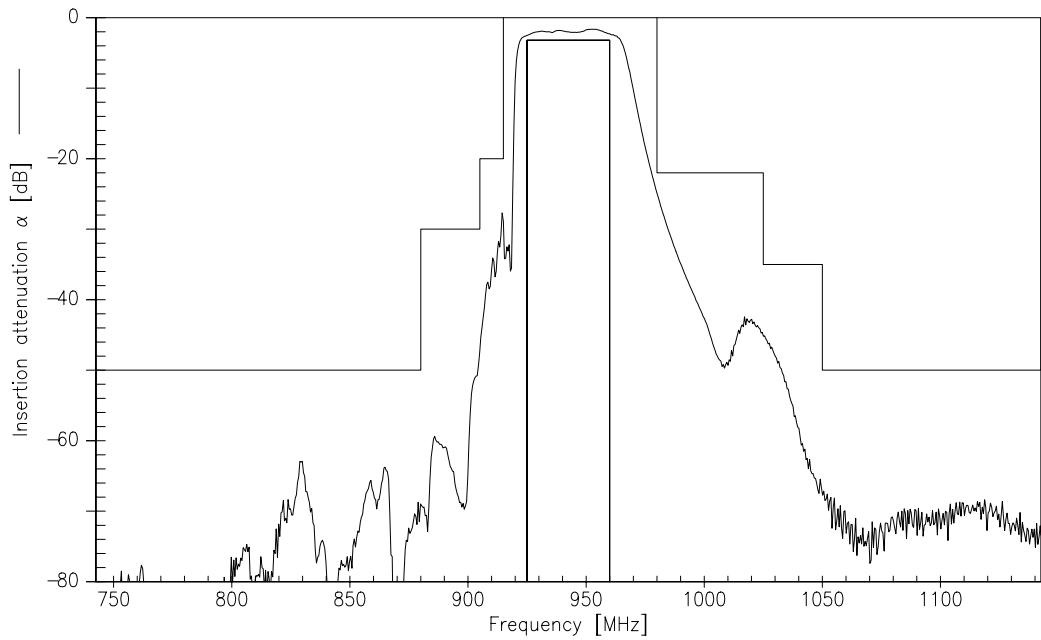
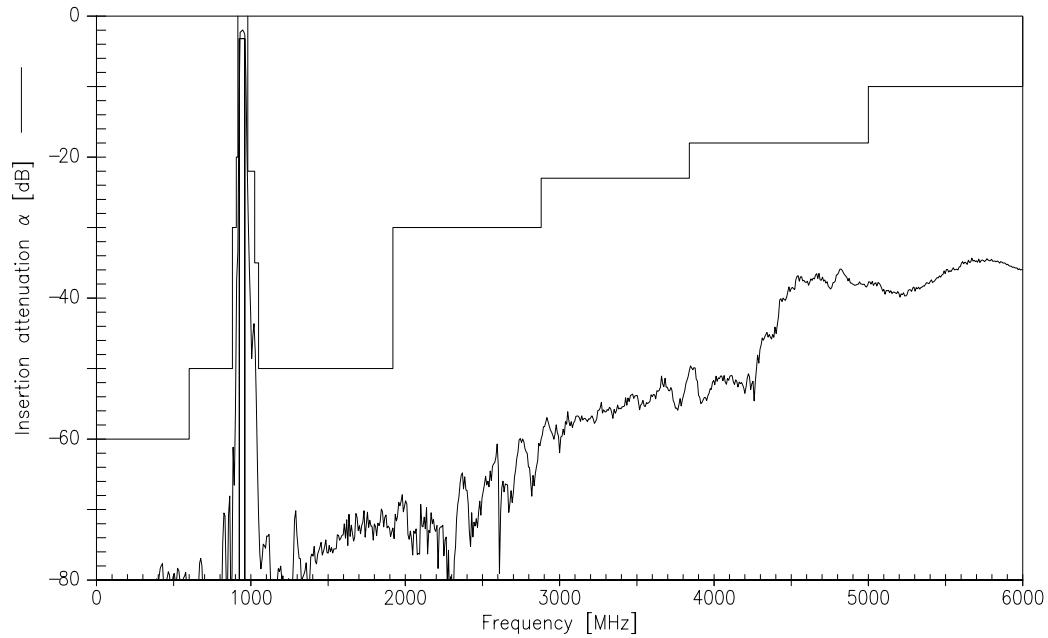
Characteristics

Operating temperature range: $T = +20$ to $+40$ °C
 Terminating source impedance: $Z_S = 50 \Omega$
 Terminating load impedance: $Z_L = 200 \Omega \parallel 47 \text{ nH}$
 (L simulated with Q factor 20)

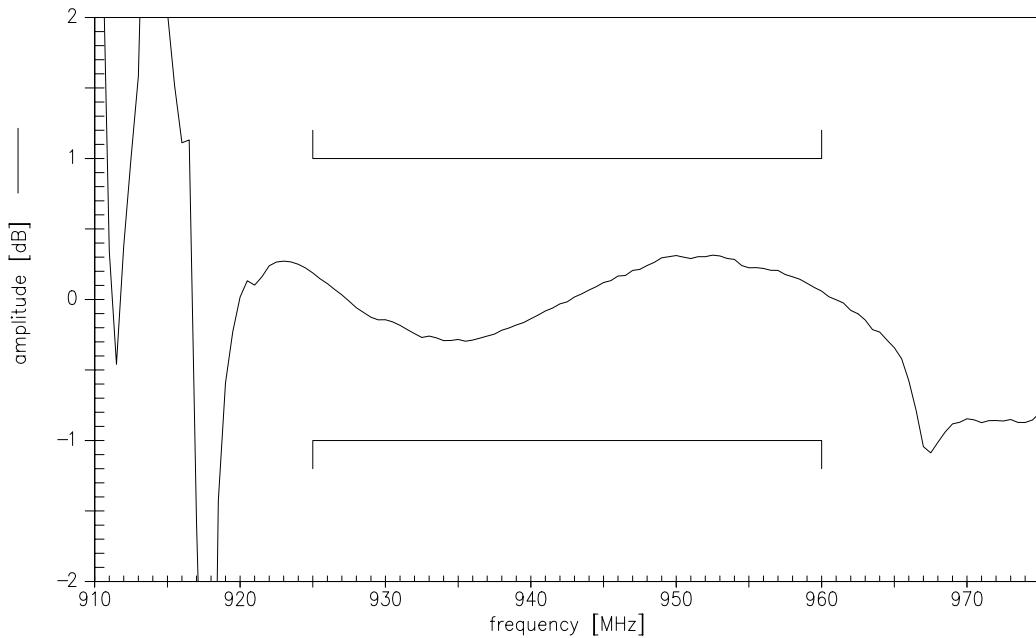
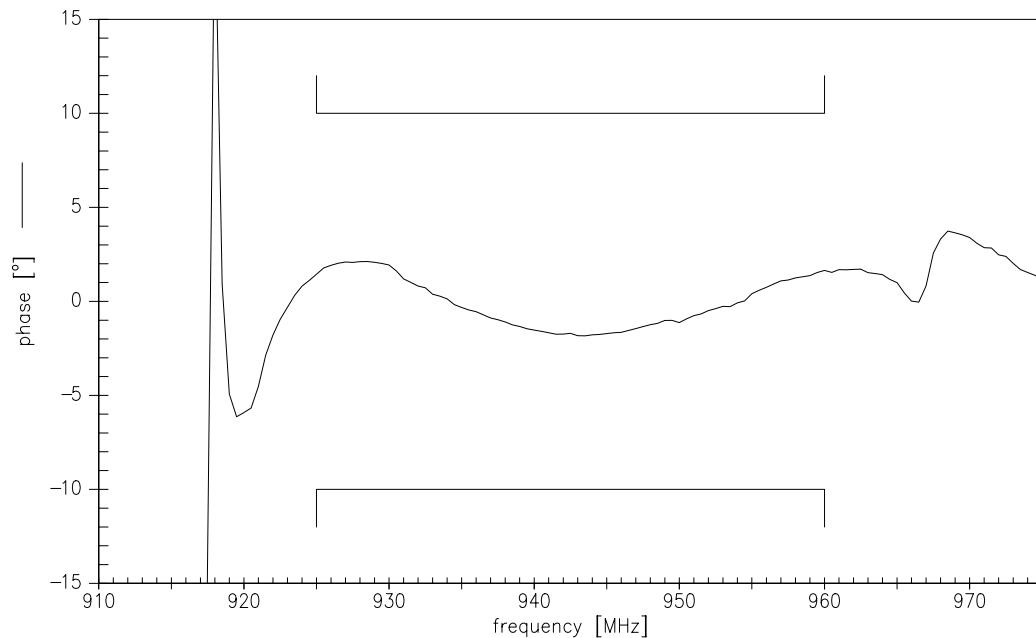
			min.	typ.	max.	
Center frequency		f_C	—	942,5	—	MHz
Maximum insertion attenuation		α_{\max}	—	2,6	3,4	dB
	925,0 ... 960,0	MHz				
Amplitude ripple (p-p)		$\Delta\alpha$	—	1,0	1,6	dB
	925,0 ... 960,0	MHz				
Input VSWR			—	1,8	2,3	
	925,0 ... 960,0	MHz				
Output VSWR			—	1,8	2,1	
	925,0 ... 960,0	MHz				
Attenuation		α				
	0,0 ... 600,0	MHz	60	78	—	dB
	600,0 ... 880,0	MHz	50	66	—	dB
	880,0 ... 905,0	MHz	30	44	—	dB
	905,0 ... 915,0	MHz	20	28	—	dB
	980,0 ... 1025,0	MHz	22	25	—	dB
	1025,0 ... 1050,0	MHz	35	45	—	dB
	1050,0 ... 1920,0	MHz	50	70	—	dB
	1920,0 ... 2880,0	MHz	30	60	—	dB
	2880,0 ... 3840,0	MHz	23	48	—	dB
	3840,0 ... 5000,0	MHz	18	36	—	dB
	5000,0 ... 6000,0	MHz	10	35	—	dB
Symmetry in band						
(referenced to the matched operating condition)						
$ S_{31} / S_{21} $	925,0 ... 960,0	MHz	-1,0	0	1,0	dB
$\arg(S_{31}/S_{21})$	925,0 ... 960,0	MHz	170	180	190	°

Characteristics

Operating temperature range: $T = +10$ to $+60$ °C
 Terminating source impedance: $Z_S = 50$ Ω
 Terminating load impedance: $Z_L = 200$ Ω || 47 nH
 (L simulated with Q factor 20)



			min.	typ.	max.	
Center frequency		f_C	—	942,5	—	MHz
Maximum insertion attenuation		α_{\max}	—	2,6	3,6	dB
	925,0 ... 960,0	MHz	—	—	—	
Amplitude ripple (p-p)		$\Delta\alpha$	—	1,0	1,8	dB
	925,0 ... 960,0	MHz	—	—	—	
Input VSWR			—	1,8	2,3	
	925,0 ... 960,0	MHz	—	—	—	
Output VSWR			—	1,8	2,1	
Attenuation		α				
	0,0 ... 600,0	MHz	60	78	—	dB
	600,0 ... 880,0	MHz	50	66	—	dB
	880,0 ... 905,0	MHz	30	43	—	dB
	905,0 ... 915,0	MHz	20	28	—	dB
	980,0 ... 1025,0	MHz	21	25	—	dB
	1025,0 ... 1050,0	MHz	35	44	—	dB
	1050,0 ... 1920,0	MHz	50	70	—	dB
	1920,0 ... 2880,0	MHz	30	60	—	dB
	2880,0 ... 3840,0	MHz	23	49	—	dB
	3840,0 ... 5000,0	MHz	18	36	—	dB
	5000,0 ... 6000,0	MHz	10	35	—	dB
Symmetry in band						
(referenced to the matched operating condition)						
$ S_{31} / S_{21} $	925,0 ... 960,0	MHz	-1,0	0	1,0	dB
$\arg(S_{31}/S_{21})$	925,0 ... 960,0	MHz	170	180	190	°

Characteristics



Operating temperature range: $T = -10$ to $+80$ °C
 Terminating source impedance: $Z_S = 50$ Ω
 Terminating load impedance: $Z_L = 200$ Ω || 47 nH
 (L simulated with Q factor 20)

			min.	typ.	max.	
Center frequency		f_C	—	942,5	—	MHz
Maximum insertion attenuation		α_{\max}	—	2,7	3,8	dB
	925,0 ... 960,0	MHz	—	—	—	
Amplitude ripple (p-p)		$\Delta\alpha$	—	1,1	2,0	dB
	925,0 ... 960,0	MHz	—	—	—	
Input VSWR			—	1,8	2,3	
	925,0 ... 960,0	MHz	—	—	—	
Output VSWR			—	1,8	2,1	
Attenuation		α				
	0,0 ... 600,0	MHz	60	78	—	dB
	600,0 ... 880,0	MHz	50	66	—	dB
	880,0 ... 905,0	MHz	30	40	—	dB
	905,0 ... 915,0	MHz	20	28	—	dB
	980,0 ... 1025,0	MHz	20	23	—	dB
	1025,0 ... 1050,0	MHz	35	44	—	dB
	1050,0 ... 1920,0	MHz	50	70	—	dB
	1920,0 ... 2880,0	MHz	30	60	—	dB
	2880,0 ... 3840,0	MHz	23	49	—	dB
	3840,0 ... 5000,0	MHz	18	36	—	dB
	5000,0 ... 6000,0	MHz	10	35	—	dB
Symmetry in band						
(referenced to the matched operating condition)						
$ S_{31} / S_{21} $	925,0 ... 960,0	MHz	-1,0	0	1,0	dB
$\arg(S_{31}/S_{21})$	925,0 ... 960,0	MHz	170	180	190	°

SAW Components
B4141
Low-Loss Filter for Mobile Communication
942,50 MHz
Data Sheet

Transfer function (spec at 25 °C)

Transfer function (wideband)

SAW Components
B4141
Low-Loss Filter for Mobile Communication
942,50 MHz
Data Sheet

Amplitude Symmetry $|S_{31}|/|S_{21}|$ (referenced to the matched operating condition)

Phase Symmetry $\arg(S_{31}/S_{21}) - 180^\circ$ (referenced to the matched operating condition)

SAW Components

B4141

Low-Loss Filter for Mobile Communication

942,50 MHz

Data Sheet

Published by EPCOS AG

Surface Acoustic Wave Components Division, OFW E MF

P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.