

AN-2250 LM3533 Evaluation Kit

1 Introduction

The LM3533 Evaluation Module (LM3533EVM) is designed to fully evaluate the LM3533 Dual String backlight driver + 5 indicator LED driver. The LM3533EVM consists of the USB Interface Board and the LM3533 Evaluation Board. The USB Interface Board Rev 1.1 provides the hardware link between a PC and LM3533 Evaluation Board. On the PC side, the LM3533.exe software communicates to the LM3533EVM to provide an easy control over all the features of the LM3533. Both the USB Interface Board and the LM3533 Evaluation Board plug together at the USBL and USBR connectors and are keyed so the boards can only fit together one way.

2 LM3533 Evaluation Board Schematics

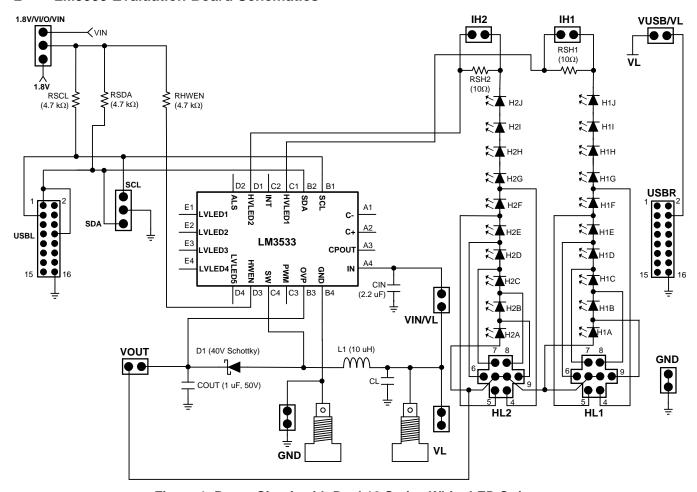


Figure 1. Boost Circuit with Dual 10 Series White LED Strings

All trademarks are the property of their respective owners.

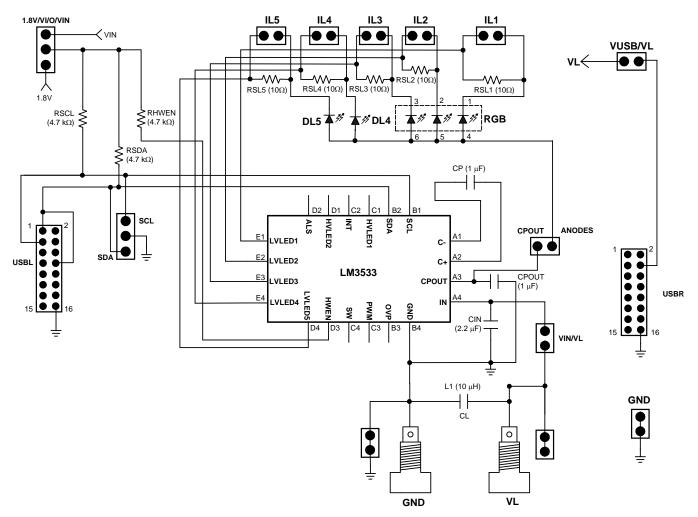


Figure 2. Charge Pump and Low Voltage Indicator LEDs

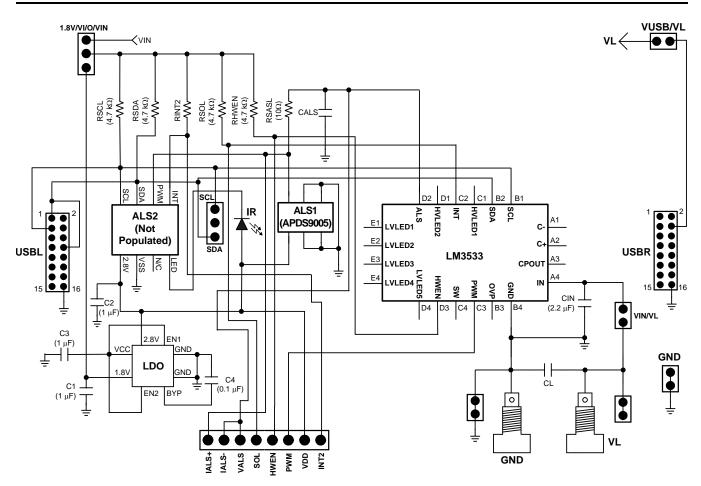


Figure 3. Ambient Light Sensor and Logic Pull-ups

Bill of Materials www.ti.com

3 Bill of Materials

Component Symbol	Value	Manufacturer	Part #	Size/Package (L x W x H)
LM3533	LED Driver	Texas Instruments	LM3533	(2.015mm × 1.755mm x 0.6mm)
LDO	1.8V/2.8V dual linear regulator	Texas Instruments	LP3986	(1.55mm x 1.55mm x 0.6mm)
RGB	RGB Indicator LEDs	Kingbright	APF3236SURKZGQBDC	(3.6mm x 3.2mm x 1.1mm)
DL4, DL5	Red Indicator LED	Rohm	SML-310VTT86	0603
L1	10 μ H, I _{SAT} = 1A, R _L = 0.22 Ω	TDK	VLF4014ST-100M1R0	(3.8mm x 3.6mmx 1.4mm)
CIN	2.2µF, 10V, X5R	TDK	C1005X5R1A225M	0402
COUT	1μF, 50V, X7R	TDK	C3216X7R1H105M	0805
CPOUT	1μF, 10V, X5R	TDK	C1005X5R1A105K	0402
СР	1μF, 10V, X5R	TDK	C1005X5R1A105K	0402
CL	10μF, 10V	TDK	C1608X5R1A106K	0603
C1 - C4	1μF, 10V, X5R	TDK	C1005X5R1A105K	0402
D1	Schottky, 40V, 250mA	On-Semi	NSR0240V2T1GOSCT-ND	SOD-523
H1A - H1J	White LED	Rohm	SML312WBCW1	0603
H2A - H2J	White LED	Rohm	SML312WBCW1	0603
ALS1	Ambient Light Sensor	Avago	APDS-9005-020	(1.6mm x 1.5mm x 0.55mm)
ALS2	Ambient Light Sensor	N/A	N/A	N/A
RHWEN	4.7kΩ	Vishay	CRCW06034K70JNEA	0603
RSDA	4.7kΩ	Vishay	CRCW06034K70JNEA	0603
RSCL	44.7kΩ	Vishay	CRCW06034K70JNEA	0603
RSOL	4.7kΩ	Vishay	CRCW06034K70JNEA	0603
RSASL	10Ω, 1%	Panasonic	ERJ-3EKF10R0V	0603
RSH1, RSH2	10Ω, 0.01%	Bourns	CRT0805-BY-10R0ELF	0805
RSL1 - RSL5	10Ω, 0.01%	Bourns	CRT0805-BY-10R0ELF	0805

www.ti.com Board Layout

4 Board Layout

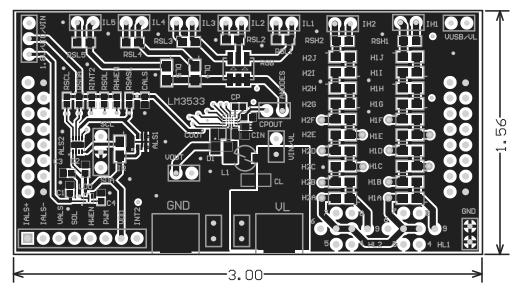


Figure 4. Top Layer

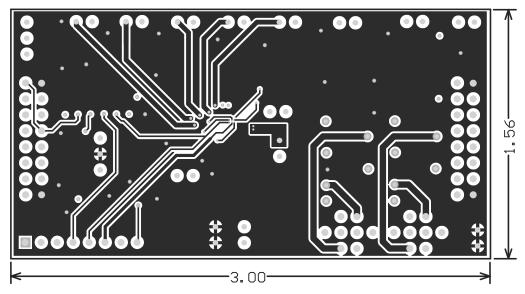


Figure 5. Mid Layer 1

Board Layout www.ti.com

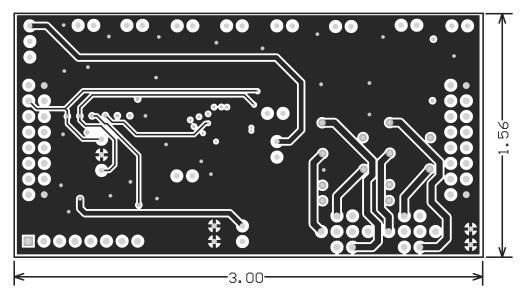


Figure 6. Mid Layer 2

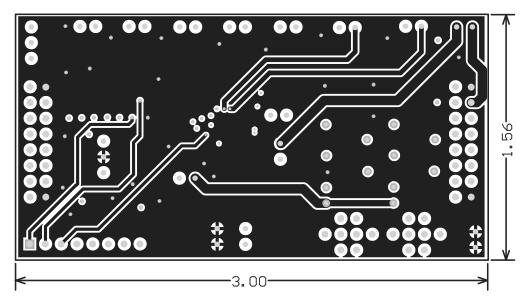


Figure 7. Bottom Layer

www.ti.com Board Set-Up

5 Board Set-Up

The LM3533EVM requires jumpers installed at the following headers for proper operation:

- 1.8V/VIO/VIN: The center pin (VIO) of this three position header connects to the top side of the pull-up resistors (RSCL, RSDA, RSOL, and RHWEN). Jumper this pin to either the 1.8V output from the on board LDO or to VIN.
- 2. **VOUT:** The VOUT header connects the LM3533's boost output to the top side of the high voltage LED strings (HL1 and HL2)
- 3. VIN/VL: This header jumpers the voltage at VL to the LM3533's IN bump (VIN)
- 4. **ANODES:** This header jumpers the LM3533's charge pump output to the top side of the low voltage indicator LEDs (RGB, DL4, and DL5)

Once the jumpers are installed, connect a 2.5V to 5.5V power supply to the banana plug inputs (VL) and (GND).

6 USB Interface Board

The LM3533 Evaluation Board can be controlled via an I²C master by connecting directly to the I²C header (SCL SDA) or it can be controlled with the USB Interface Board. The USB Interface Board requires the use of the LM3533.exe software that operates from a PC.

To operate the LM3533 Evaluation Board with the USB Interface Board, ensure the LM3533 Evaluation Board is connected to the USB Interface Board. The boards are keyed so they will only fit together one way. Next, follow the jumper settings in Section 5. After this, apply power to the board and open the LM3533.exe program. The LM3533.exe software is grouped into tabs, see the following sections for each tab description.

7 LM3533 Graphical User Interface

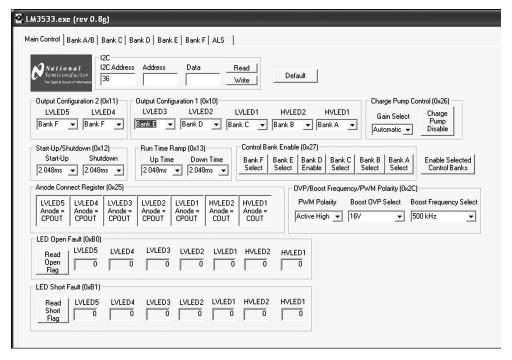


Figure 8. Main Control Tab

7.1 Main Control Tab

The Main Control tab (Figure 8) contains the pulldown menu's and buttons for configuring the LM3533's global registers. The main tab is separated into different sections, where each section represents a specific register within the LM3533. When any of the pulldown menus or buttons are selected the specific data will get written to the LM3533. The exception is for the Control Bank Enable Buttons. These must first be selected and then the Enable Selected Control Banks button must be pressed to write the data. A button that is pushed indicates a 1 is written to the register. A button un-pushed indicates a 0. Table 1 through Table 10 show the break down of each register in the Main Control Tab.

Table 1. Output Configuration 1 (0x10)

Bit [7:6] LVLED3	Bits [5:4] LVLED2	Bits [3:2] LVLED1	Bit [1] HVLED2	Bit 0 HVLED1
00 = LVLED3 is controlled by Control Bank C	00 = LVLED2 is controlled by Control Bank C	00 = LVLED1 is controlled by Control Bank C (Default)	0 = HVLED2 is controlled by Control Bank A	0 = HVLED1 is controlled by Control Bank A (Default)
01 = LVLED3 is controlled by Control Bank D	01 = LVLED2 is controlled by Control Bank D (Default)	01 = LVLED1 is controlled by Control Bank D	1 = HVLED2 is controlled by Control Bank B (Default)	1 = HVLED1 is controlled by Control Bank B
10 = LVLED3 is controlled by Control Bank E (Default)	10 = LVLED2 is controlled by Control Bank E	10 = LVLED1 is controlled by Control Bank E		
11 = LVLED3 is controlled by Control Bank F	11 = LVLED2 is controlled by Control Bank F	11 = LVLED1 is controlled by Control Bank F		

Table 2. Output Configuration 2 (0x11)

Bits [3:2] LVLED5	Bits [1:0] LVLED4
00 = LVLED5 is controlled by Control Bank C	00 = LVLED4 is controlled by Control Bank C
01 = LVLED5 is controlled by Control Bank D	01 = LVLED4 is controlled by Control Bank D
10 = LVLED5 is controlled by Control Bank E	10 = LVLED4 is controlled by Control Bank E
11 = LVLED5 is controlled by Control Bank F (Default)	11 = LVLED4 is controlled by Control Bank F (Default)

Table 3. Charge Pump Control (0x26)

Bits [2:1]	Bit 0
Gain Select	Charge Pump Disable
0X = Automatic gain select (Default) 10 = Gain set at 1x 11 = Gain set at 2x	0 = Charge pump enabled (Default) 1 = Charge pump disabled (high impedance from IN to CPOUT)

Table 4. Start-Up/Shutdown (0x12)

Bits [5:3] Start-up Transition Time	Bits [2:0] Shutdown Transition Time
000 = 2.048ms (Default)	000 = 2.048ms (Default)
001 = 262ms	001 = 262ms
010 = 524ms	010 = 524ms
011 = 1.049s	011 = 1.049s
100 = 2.097s	100 = 2.097s
101 = 4.194s	101 = 4.194s
110 = 8.389s	110 = 8.389s
111 = 16.78s	111 = 16.78s
Startup time is from when the device is enabled via I ² C to when	Shutdown ramp time is from when the device is shutdown via
the initial target current is reached.	I ² C until the current sink ramps to 0.

Table 5. Run Time Ramp (0x13)

Bits [5:3] Transition Time Ramp Up	Bits [2:0] Transition Time Ramp Down
000 = 2048μs (Default)	000 = 2048μs (Default)
001 = 262ms	001 = 262ms
010 = 524ms	010 = 524ms
011 = 1.049s	011 = 1.049s
100 =2.097s	100 =2.097s
101 = 4.194s	101 = 4.194s
110 = 8.389s	110 = 8.389s
111 = 16.78s	111 = 16.78s

Table 6. Control Bank Enable (0x27)

Bit 5 Control F Select	Bit 4 Control E Select	Bit 3 Control D Select	Bit 2 Control C Select	Bit 1 Control B Select	Bit 0 Control A Select
0 = Control Bank F is disabled (Default)	0 = Control Bank E is disabled (Default)	0 = Control Bank D is disabled (Default)	0 = Control Bank C is disabled (Default)	0 = Control Bank B is disabled (Default)	0 = Control Bank A is disabled (Default)
1 = Control Bank F is enabled	1 = Control Bank E is enabled	1 = Control Bank D is enabled	1 = Control Bank C is enabled	1 = Control Bank B is enabled	1 = Control Bank A is enabled

Table 7. Anode Connect (0x25)

Bit 6 LVLED5 Anode Connect	Bit 5 LVLED4 Anode Connect	Bit 4 LVLED3 Anode Connect	Bit 3 LVLED2 Anode Connect	Bit 2 LVLED1 Anode Connect	Bit 1 HVLED2 Anode Connect	Bit 0 HVLED1 Anode Connect
0 = LVLED5 LED anode is not connected to CPOUT	0 = LVLED4 LED anode is not connected to CPOUT	0 = LVLED3 LED anode is not connected to CPOUT	0 = LVLED2 LED anode is not connected to CPOUT	0 = LVLED1 LED anode is not connected to CPOUT	0 = HVLED2 LED string anode is not connected to COUT	0 = HVLED1 LED string anode is not connected to COUT
1 = LVLED5 LED anode is connected to CPOUT (Default)	1 = LVLED4 LED anode is connected to CPOUT (Default)	1 = LVLED3 LED anode is connected to CPOUT (Default)	1 = LVLED2 LED anode is connected to CPOUT (Default)	1 = LVLED1 LED anode is connected to CPOUT (Default)	1 = HVLED2 LED string anode is connected to COUT (Default)	1 = HVLED1 LED string anode is connected to COUT (Default)

Table 8. OVP/Boost Frequency/PWM Polarity (0x2C)

Bit 3	Bit [2:1]	Bit 1
PWM Polarity	Boost OVP Select	Boost Frequency Select
0 = Active Low Polarity 1 = Active High Polarity (Default)	00 = 16V (Default) 01 = 24V 10 = 32V 11 = 40V	0 = 500 kHz (Default) 1 = 1MHz

Table 9. LED Open Fault (0xB0)

Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
(LVLED5)	(LVLED4)	(LVLED3)	(LVLED2)	(LVLED1)	(HVLED2)	(HVLED1)
0 = Normal						
Operation						
1 = Open						

Table 10. LED Short Fault (0xB1)

Bit 6 (LVLED5)	Bit 5 (LVLED4)	Bit 4 (LVLED3)	Bit 3 (LVLED2)	Bit 2 (LVLED1)	Bit 1 (HVLED2)	Bit 0 (HVLED1)
0 = Normal	0 = Normal	0 = Normal				
Operation	Operation	Operation	Operation	Operation	Operation	Operation
1 = Short	1 = Short	1 = Short				

7.2 Bank A/B Control Tab

The Bank A/B Control Tab (Figure 9) contains all the register options that are unique to the High Voltage Control Banks (A and B). Table 11 through Table 15 describe these registers.

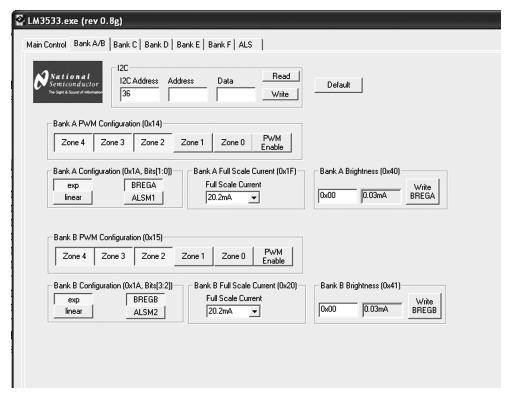


Figure 9. Bank A/B Control Tab

Table 11. Bank A or Bank B PWM Configuration (0x14, 0x15)

Bit 5 Zone 4 PWM Enabled	Bit 4 Zone 3 PWM Enabled	Bit 3 Zone 2 PWM Enabled	Bit 2 Zone 1 PWM Enabled	Bit 1 Zone 0 PWM Enabled	Bit 0 PWM Enabled
0 = PWM input is disabled in Zone 4	0 = PWM input is disabled in Zone 3	0 = PWM input is disabled in Zone 2	0 = PWM input is disabled in Zone 1 (Default)	0 = PWM input is disabled in Zone 0 (Default)	0 = PWM Input is disabled (Default)
1 = PWM input is enabled in Zone 4 (Default)	1 = PWM input is enabled in Zone 3 (Default)	1 = PWM input is enabled in Zone 2 (Default)	1 = PWM input is enabled in Zone 1	1 = PWM input is enabled in Zone 0	1 = PWM Input is enabled

Table 12. Bank A Configuration (0x1A, Bits[1:0])

Bit 1 Control Bank A Mapping Mode	Bit 0 BREGA/ALSM1 Control	
0 = Exponential Mapping (Default)	0 = Control Bank A is configured for Brightness Register Current Control (Default)	
1 = Linear Mapping	1 = Control Bank A is configured for ALS current control via the ALSM1 Zone Target Registers	

Table 13. Bank A or Bank B Full Scale Current (0x1F, 0x20)

Bits [4:0] Full-Scale Current (800μA per setting)			
00000 = 5mA			
:			
:			
10011 = 20.2mA (Default)			
:			
:			
11111 = 29.8mA			

Table 14. Bank B Configuration (0x1A, Bits[3:2])

Bit 3 Control Bank B Mapping Mode	Bit 2 BREGB/ALSM2 Control	
0 = Exponential Mapping (Default)	0 = Control Bank B is configured for Brightness Register Current Control (Default)	
1 = Linear Mapping	1 = Control Bank B is configured for ALS current control via the ALSM2 Zone Target Registers	

Table 15. Bank A and Bank B Brightness (0x40, 0x41)

Brightness Code Bits[7:0}

When the Mapping Mode is set for exponential mapping (Control Bank X Brightness Configuration Register, Bit [2] = 0), the current approximates the equation:

$$I_{LED} = I_{LED_FULLSCALE} \times \frac{1}{255} \times Code$$
 (1)

When the Mapping Mode is set for linear mapping (Control Bank X Brightness Configuration Register, Bit [2] = 1), the current approximates the equation:

$$I_{LED} = I_{LED_FULLSCALE} \times 0.85^{\left[40 \cdot \left(\frac{\text{Code} + 1}{6.4}\right)\right]}$$
(2)

7.3 Bank C, D, E, and F Tab

Each low voltage Control Bank (C, D, E, and F) has its own tab. Each tab has all the register options that are unique to each of the low voltage control banks and the pattern generators. Table 16 through Table 24 describe these registers.

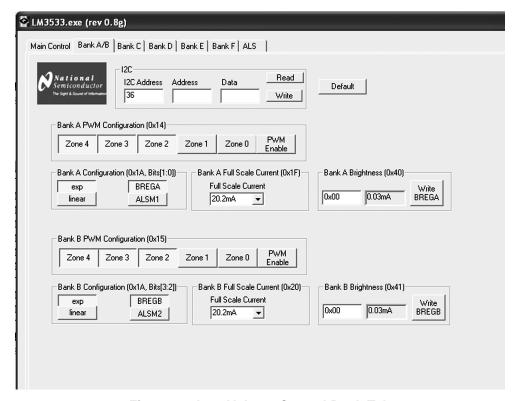


Figure 10. Low Voltage Control Bank Tab

Table 16. Bank (C/D/E/F) Configuration (0x1B, 0x1C, 0x1D, 0x1E), Bits[2:0]

Bit 2 Mapping Mode	Bits [1:0] Current Control
0 = Exponential Mapping (Default)	0X = Control Bank_ is configured for Brightness Register Current Control via the respective Brightness Register (Default)
1 = Linear Mapping	10 = Control Bank_ is configured for ALS current control via the ALSM2 Zone Target Registers
	11 = Control Bank_ is configured for ALS current control via the ALSM3 Zone Target Registers

Table 17. Bank C/D/E/F High Brightness (0x42, 0x43, 0x44, 0x45)

Brightness Code Bits[7:0]

When the Mapping Mode is set for exponential mapping (Control Bank_Brightness Configuration Register Bit [2] = 0), the current approximates the equation:

$$I_{LED} = I_{LED_FULLSCALE} \times \frac{1}{255} \times Code$$
 (3)

When the Mapping Mode is set for linear mapping (Control Bank_Brightness Configuration Register Bit [2] = 1), the current approximates the equation:

$$I_{LED} = I_{LED_FULLSCALE} \times 0.85^{\left[40 \cdot \left(\frac{\text{Code + 1}}{6.4}\right)\right]}$$
(4)

Table 18. Bank (C/D/E/F) Full Scale Current (0x21, 0x22, 0x23, 0x24)

Bits [4:0] Full-Scale Current (800μA per setting)		
00000 = 5mA		
:		
:		
10011 = 20.2mA (Default)		
:		
:		
11111 = 29.8mA		

Table 19. Bank (C/D/E/F) PWM Configuration (0x16, 0x17, 0x18, 0x19)

Bit 5 Zone 4	Bit 4 Zone 3	Bit 3 Zone 2	Bit 2 Zone 1	Bit 1 Zone 0	Bit 0 PWM Enabled
0 = PWM input is disabled in Zone 4	0 = PWM input is disabled in Zone 3	0 = PWM input is disabled in Zone 2	0 = PWM input is disabled in Zone 1 (Default)	0 = PWM input is disabled in Zone 0 (Default)	0 = PWM Input is disabled (Default)
1 = PWM input is enabled in Zone 4 (Default)	1 = PWM input is enabled in Zone 3 (Default)	1 = PWM input is enabled in Zone 2 (Default)	1 = PWM input is enabled in Zone 1	1 = PWM input is enabled in Zone 0	1 = PWM Input is enabled

The PGEN Enable field in the low voltage control bank tabs is mirrored for each tab. Once a check box is selected, the Enable Selected Patterns button must be pushed to write the specific bit to register 0x28. A checked box means a 1 is being written and an empty box means a 0 is bing written.

Table 20. PGEN Enable (0X28, Bits[0, 2, 4, 6])

Bit 6 Pattern 4 Enable	Bit 4 Pattern 3 Enable	Bit 2 Pattern 2 Enable	Bit 0 Pattern 1 Enable
0 = Pattern 4 Disabled (Default)	0 = Pattern 3 Disabled (Default)	0 = Pattern 2 Disabled (Default)	0 = Pattern 1 Disabled (Default)
1 = Pattern 4 Enabled	1 = Pattern 3 Enabled	1 = Pattern 2 Enabled	1 = Pattern 1 Enabled

Each low voltage control bank has its own pattern generator control. Bank C has Pattern Generator 1, Bank D has Pattern Generator 2, Bank E has Pattern Generator 3, and Bank F has Pattern Generator 4. Each pattern generator has registers that control the pulse high time, pulse low time, pulse rise time, pulse fall time, pulse delay from when the pattern is enabled, and the pulse low brightness. The pulse high brightness is the same as the high brightness register for the particular Control Bank.

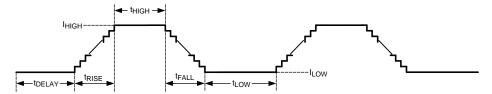


Figure 11. Pattern Generator Timing

Table 21. Low Time(s) (0x71, 0x81, 0x91, 0xA1)

Bit [7:0] t _{Low} times
0x00 = 16.384ms (16.384ms/step) (Default)
0x01 = 32.768ms
:
0x3B = 983.05ms
0x3C = 999.424ms
0x3D = 1130.496ms (131.072ms/step)
0x3E = 1261.568ms
:
0x7F = 9781.248ms
0x80 = 10.305536s (524.288ms/step)
:
0xFF = 76.890112s

Table 22. High Time(s) (0x72, 0x82, 0x92, 0xA2)

Bit [6:0] t _{HIGH} times
0x00 = 16.384ms (16.384ms/step) (Default)
0x01 = 32.768ms
:
0x3B = 983.05ms
0x3C = 999.424ms
0x3D = 1130.496ms (131.072ms/step)
0x3E = 1261.568ms
:
0x7F = 9781.248ms

For Exponential Mapping Mode the low-level current becomes:

$$I_{LED} = I_{LED_FULLSCALE} \times \frac{1}{255} \times Code$$
 (5)

For Linear Mapping Mode the low-level current becomes:

$$I_{LED} = I_{LED_FULLSCALE} \times 0.85^{\left[40 - \left(\frac{\text{Code } + 1}{6.4}\right)\right]}$$
(6)

7.4 LOW BRIGHTNESS (0x73, 0x83, 0x93, 0xA3)

Table 23. Rise Time (0x74, 0x84, 0x94, 0xA4)

Bits [2:0] t _{RISE} (from I _{LOW} to I _{HIGH})			
000 = 2048μs (Default)			
001 = 262ms			
010 = 524ms			
011 = 1.049s			
100 = 2.097s			
101 = 4.194s			
110 = 8.389s			
111 = 16.78s			

Table 24. Fall Time (0x75, 0x85, 0x95, 0xA5)

Bits [2:0] t _{FALL} (from I _{HIGH} to I _{LOW})			
000 = 2048μs (Default)			
001 = 262ms			
010 = 524ms			
011 = 1.049s			
100 = 2.097s			
101 = 4.194s			
110 = 8.389s			
111 = 16.78s			

7.5 ALS TAB

The Ambient Light Sensor (ALS) tab (Figure 12) contains all the registers that are applicable to the LM3533's ALS interface. Table 25 through Table 34 describe these registers.

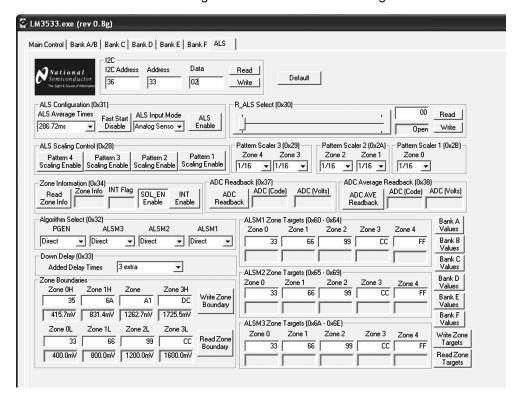


Figure 12. ALS Tab

Table 25. ALS Configuration (0x31)

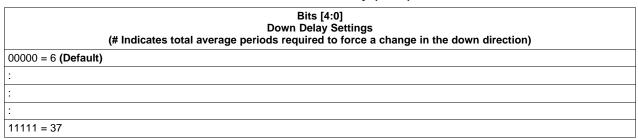

Bits [5:3]	Bit 2	Bit 1	Bit 0
ALS Average Times	Fast startup Enable/Disable	ALS Input Mode	ALS Enable/Disable
000 = 17.92 ms 001 = 35.84ms 010 = 71.68ms 011 = 143.36ms 100 = 286.72ms (Default) 101 = 573.44ms 110 = 1146.88ms 111 = 2293.76ms	0 = ALS fast startup is enabled (Default) 1 = ALS fast startup is disabled	0 = ALS is set for Analog Sensor Input Mode (Default) 1 = ALS is set for PWM Sensor Input Mode	0 = ALS is disabled (Default) 1 = ALS is enabled

Table 26. Algorithm Select (0X32)

Bits [7:6] PGEN	Bits [5:4] ALSM3	Bits [3:2] ALSM2	Bits [1:0] ALSM1	
00 = Direct Control (Default)				
01 = Up Only Control	01 = Up Only Control	01 = Up Only	01 = Up Only	
1X = Down Delay Control	1X = Down Delay Control	1X = Down Delay	1X = Down Delay	

Table 27. Down Delay (0x33)

Table 28. Zone Information (0x34)

Bits [4:2]	Bit 1	Bit 0
Average Zone Information Bits	Zone Change Bit	Interrupt Enable Bit
000 = Zone 0 (Default) 001 = Zone 1 010 = Zone 2 011 = Zone 3 1XX = Zone 4	0 = no change in the ALS zone since the last read back of this register (Default) 1 = the ALS zone has changed. A read back of this	0 = INT Mode Disabled (Default) 1 = INT Mode Enabled

Table 29. ADC Readback (0x37)

Bit 7 MSB	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 LSB
Data	Data	Data	Data	Data	Data	Data	Data

Table 30. Read-Average ADC Register (ADDRESS 0x38)

Bit 7 MSB	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 LSB
Data	Data	Data	Data	Data	Data	Data	Data

Table 31. Zone Boundaries

Name	Address	Function
Zone 0H	0x50	ALS Zone Boundary 0 High
Zone 0L	0x51	ALS Zone Boundary 0 Low
Zone 1H	0x52	ALS Zone Boundary 1 High
Zone 1L	0x53	ALS Zone Boundary 1 Low
Zone 2H	0x54	ALS Zone Boundary 2 High
Zone 2L	0x55	ALS Zone Boundary 2 Low
Zone 3H	0x56	ALS Zone Boundary 3 High
Zone 3L	0x57	ALS Zone Boundary 3 Low

Note: Each Zone Boundary register is 8 bits with a maximum voltage of 2V. This gives a step size for each Zone Boundary Register bit of:

ZoneBoundaryLSB =
$$\frac{2V}{255}$$
 = 7.8 mV

(7)

Table 32. ALSM1 Zone Target Registers (ADDRESS 0x60 - 0x64)

Address	Function
0x60	ALSM1 Zone Target 0
0x61	ALSM1 Zone Target 1
0x62	ALSM1 Zone Target 2
0x63	ALSM1 Zone Target 3
0x64	ALSM1 Zone Target 4

Table 33. ALSM2 Zone Target Registers (ADDRESS 0x65 - 0x69)

Address	Function
0x65	ALSM2 Zone Target 0
0x66	ALSM2 Zone Target 1
0x67	ALSM2 Zone Target 2
0x68	ALSM2 Zone Target 3
0x69	ALSM2 Zone Target 4

Table 34. ALSM3 Zone Target Registers (ADDRESS 0x6A - 0x6E)

Address	Function
0x6A	ALSM3 Zone Target 0
0x6B	ALSM3 Zone Target 1
0x6C	ALSM3 Zone Target 2
0x6D	ALSM3 Zone Target 3
0x6E	ALSM3 Zone Target 4

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>