TOSHIBA

TOSHIBA Original CMOS 32-Bit Microcontroller

TLCS-900/H1 Series

TMP92CD54IFG Tentative

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making us Before use this LSI, refer the section,	se of Toshiba microcomputer LSIs. "Points of Note and Restrictions".

CMOS 32-bit Micro-controller

TMP92CD54IFG

1. Outline and Device Characteristics

The TMP92CD54I is a high-performance 32-bit microcontroller incorporating a Toshiba-proprietary CPU, the TLCS-900/H1 core. The TMP92CD54I is developed for various automotive equipments which require high-speed data processing.

Housed in a 100-pin mini-flat package, the TMP92CD54I is best suited for high-density implementation of user systems.

The characteristics of the TMP92CD54I are listed below:

(1) Toshiba-proprietary high-speed 32-bit CPU (TLCS-900/H1 CPU)

Fully-compatible with the instruction codes of the TLCS-900, TLCS-900/L, ELCS-900/L1,

TLCS-900/H and TLCS-900/H2

16 Mbytes of linear address space

General-purpose registers and register banks

Micro DMA: 8 channels (250 ns/4 bytes at fc = 20 MHz)

Minimum instruction execution time: 50 ns (at fc = 20 MHz)

Internal data bus: 32-bit wide

(2) Internal memory

Internal RAM : 32K-byte (32 bit/one clock access time, can be used for instructions.

Internal ROM : 512K-byte Mask ROM

(3) External memory expansion

Expandable up to 16-Mbyte (for code and data)

External data bus: 8-bit wide (The upper address bus is not available when the built-in I/Os are selected.)

(4) Memory controller (MEMC)

Chip select output: 1 channel

(5) 8-bit timer: 8 channels

8-bit interval timer mode (8 channels)

16-bit interval timer mode (4 channels)

8-bit programmable pulse generation (PPG) output mode (4 channels)

8-bit pulse width modulation (PWM) output mode (4 channels)

(6) 16-bit timer: 2 channels

16-bit interval timer mode (2 channels)

16-bit event counter mode (2 channels)

16-bit programmable pulse generation (PPG) output mode (2 channels)

Frequency measurement mode

Pulse width measurement mode

Time difference measurement mode

(7) Serial interface (SIO): 2 channels

I/O interface mode

Universal asynchronous receiver transmitter (UART) mode

(8) Serial expansion interface (SEI): 1 channel

Baud rate 4M / 2M / 500Kbps at fc = 20MHz.

(9) Serial bus interface (SBI): 3 channels

Clock-synchronous 8-bit serial interface mode

I²C bus mode

92CD54I-1 2009-12-26

(10) CAN controller: 1 channel

Supports CAN version 2.0B.

16 mailboxes

(11) 10-bit A/D converter (ADC): 12 channels

A/D conversion time: $8 \mu sec$ (at fc = 20 MHz)

Total tolerance: ± 3 LSB (excluding quantization error)

Scan mode for all 12 channels

- (12) Watch dog timer (WDT)
- (13) Timer for real-time clock (RTC)

Can operate with low-frequency oscillator only.

(14) Interrupt controller (INTC): 60 interrupt sources

9 interrupts from CPU (Software interrupts and undefined instruction interrupt)

42 internal interrupt vectors

9 external interrupt vectors (INT0 to INT7, NMI)

- (15) I/O Port: 68 pins
- (16) Standby mode

Four modes: IDLE3, IDLE2, IDLE1 and STOP

STOP mode can be released by 9 external inputs.

- (17) Internal voltage detection flag (RAMSTB)
- (18) Power supply voltage

 $V_{CC5} = 4.5 \text{ V to } 5.25 \text{ V}$

V_{CC3} = 3.3 V (Connect REGOUT (built-in voltage regulator output) to DVCC3.)

- (19) Operating temperature: -40 to 85 degree C
- (20) Package: LQFP100-P-1414-0.50F

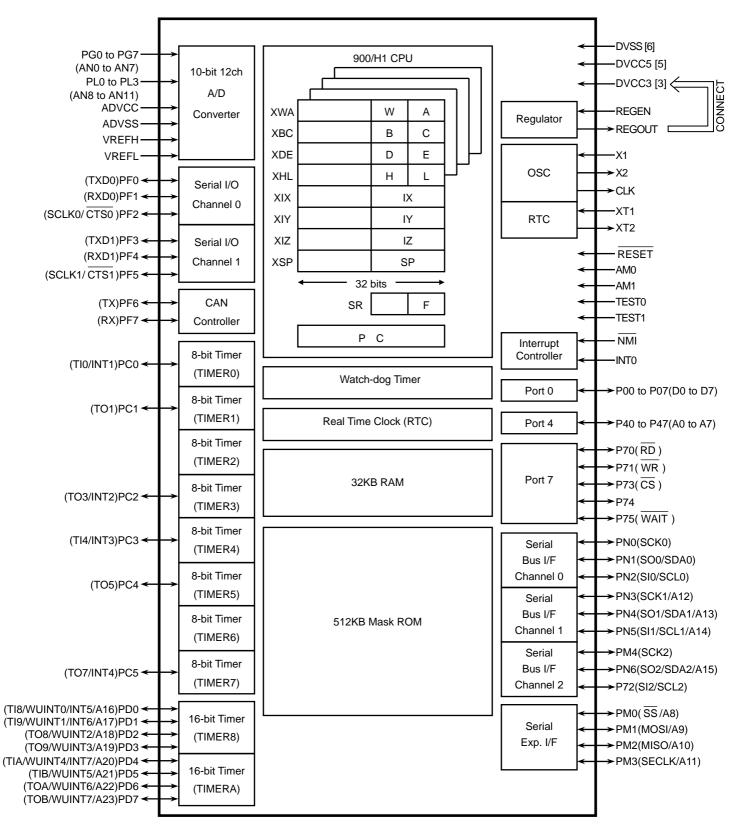


Figure 1.1 TMP92CD54I block diagram

2. Pin Assignment and Functions

2.1 Pin Assignment

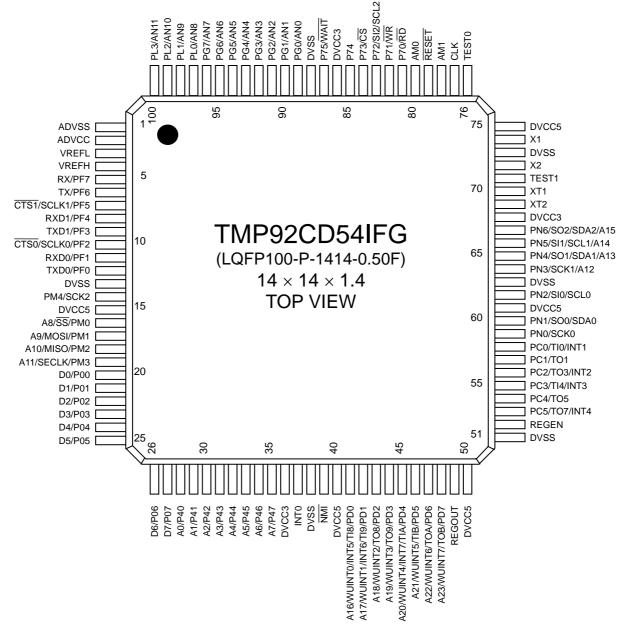


Figure 2.1 TMP92CD54I Pin Assignment

2.2 Pin names and functions

The names and functions of the input/output pins are described in are described in the Tables 2.2.1 to 2.2.4.

Table 2.2.1 Input/output pins (1/4)

Pin name	Pin number	Number of pins	In/Out	Function				
P00 to P07	20 to 27	8 (CMOS)	in/out	Port 0: I/O port. Input or output specifiable in units of bits.				
D0 to D7	20 10 21	(TTL)	in/out	Data: Data bus 0 to 7.				
P40 to P47	28 to 35	8	in/out	Port4: I/O port. Input or output specifiable in units of bits.				
A0 to A7	20 10 33	0	out	Address: Address bus 0 to 7.				
P70	04	,	in/out	Port70: I/O port.				
RD	81	1	out	Read: Outputs strobe signal to read external memory.				
P71	00	,	in/out	Port 71: I/O port.				
\overline{WR}	82	1	out	Write: Output strobe signal to write external memory.				
P72				Port 72: I/O port.				
SI2	83	1	in/out	SBI channel 2: Input data at SIO mode				
SCL2				SBI channel 2: Clock input/output at I ² C mode				
P73	0.4		in/out	Port 73: I/O port.				
<u>P73</u> CS	84	1	out	Chip select: Outputs "low" if address is within specified address area.				
P74	85	1	in/out	Port 74: I/O port.				
	00	ļ •		·				
P75	87	1	in/out	Port 75: I/O port.				
WAIT			in	Wait: Signal used to request CPU bus wait.				
PC0			in/out	Port C0: I/O port.				
TI0	58	1	in	Timer input 0: Input pin for timer 0.				
INT1			in	Interrupt request pin 1: Rising-edge interrupt request pin.				
PC1	57	1	in/out	Port C1: I/O port.				
TO1			out	Timer output 1: Output pin for timer 1.				
PC2			in/out	Port C2: I/O port.				
TO3	56	1	out	Timer output 3: Output pin for timer 3.				
INT2			in	Interrupt request pin 2: Rising-edge interrupt request pin.				
PC3			in/out	Port C3: I/O port.				
TI4	55	1	in	Timer input 4: Input pin for timer 4.				
INT3			in	Interrupt request pin 3: Rising-edge interrupt request pin.				
PC4	54	1	in/out	Port C4: I/O port.				
TO5			out	Timer output 5: Output pin for timer 5.				
PC5			in/out	Port C5: I/O port.				
TO7	53	1	out	Timer output 7: Output pin for timer 7.				
INT4			in	Interrupt request pin 4: Rising-edge interrupt request pin.				
PD0			in/out	Port D0: I/O port.				
TI8			in	Timer input 8: Input pin for timer 8.				
INT5	41	1	in	Interrupt request pin 5: Interrupt request pin with programmable rising/falling edge.				
A16	'		out	Address: Address bus 16.				
WUINT0			in	Wake up input 0: Wake up request pin with'				
PD1			in/out	Port D1: I/O port.				
TI9			in	Timer input 9: Input pin for timer 9.				
INT6	42	1	in	Interrupt request pin 6: Rising-edge interrupt request pin.				
A17	74	'	out	Address: Address bus 17.				
WUINT1	in		in	Wake up input 1: Wake up request pin with				
PD2			in/out	Port D2: I/O port.				
TO8			out	Timer output 8: Output pin for timer 8				
A18	43	1	out	Address: Address bus 18.				
WUINT2			in	Wake up input 2: Wake up request pin with				
				programmable rising, falling or both falling and rising edge.				

Table 2.2.2 Input/output pins (2/4)

	Pin	Number		Table 2.2.2 Input/output pins (2/4)			
Pin name	number	of pins	In/Out	Function			
PD3			in/out	Port D3: I/O port.			
TO9			out	Timer output 9: Output pin for timer 9			
A19	44	1	out	Address: Address bus 19. WUINT3			
WUINT3			in	Wake up input 3: Wake up request pin with			
PD4			in/out	Port D4: I/O port.			
TIA			in	Timer input A: Input pin for timer A			
INT7	45	1	in	Interrupt request pin 7: Interrupt request pin with programmable rising/falling edge.			
A20			out	Address: Address bus 20.			
WUINT4			in	Wake up input 4: Wake up request pin with'			
PD5			in/out	Port D5: I/O port.			
TIB			in	Timer input B: Input pin for timer B.			
A21	46	1	out	Address: Address bus 21. WUINT5			
WUINT5			in	Wake up input 5: Wake up request pin with			
PD6			in/out	Port D6: I/O port.			
TOA			out	Timer output A: Output pin for timer A.			
A22	47	1	out	Address: Address bus 22.			
WUINT6			in	Wake up input 6: Wake up request pin with			
PD7			in/out	Port D7: I/O port.			
ТОВ			out	Timer output B: Output pin for timer B.			
A23	48	1	out	Address: Address bus 23.			
WUINT7		in	Wake up input 7: Wake up request pin with				
PF0			in/out	Port F0: I/O port.			
TXD0	12	1	out	Serial interface channel 0: Transmission data.			
PF1		in/out		Port F1: I/O port.			
RXD0	11	1	in	Serial interface channel 0: Receive data.			
PF2			in/out	Port F2: I/O port.			
SCLK0	10	1	in/out	Serial interface channel 0: Clock input/output.			
CTS0			in	Serial interface channel 0: Data ready to send. (Clear-to-send)			
PF3		4	in/out	Port F3: I/O port.			
TXD1	9	1	out	Serial interface channel 1: Transmission data.			
PF4	0	1	in/out	Port F4: I/O port.			
RXD1	8	1	in	Serial interface channel 1: Receive data.			
PF5			in/out	Port F5: I/O port.			
SCLK1	7	1	in/out	Serial interface channel 1: Clock input/output.			
CTS1			in	Serial interface channel 1: Data ready to send. (Clear-to-send)			
PF6	6	1	in/out	Port F6: I/O port.			
TX			out	CAN: Transmission data.			
PF7	5	5 1 in/out		Port F7: I/O port.			
RX			in	CAN: Receive data.			
PG0 to PG7	89 to 96	8	in	Port G: Input-only port.			
AN0 to AN7	_		in	Analog input 0 to 7: AD converter input pins.			
PL0 to PL3	97 to 100	4	in	Port L0 to L3: Input-only port.			
AN8 to AN11		in		Analog input 8 to 11: AD converter input pins.			
PM0	in/out			Port M0: I/O port.			
SS	16	1	in	SEI: Slave select input.			
A8			out	Address: Address bus 8.			
PM1	4.7		in/out	Port M1: I/O port.			
MOSI	17	1	in/out	SEI: Master output, slave input.			
A9			out	Address: Address bus 9.			

Table 2.2.3 Input/output pins (3/4)

Pin name	Pin number	Number of pins	In/Out	Function				
PM2			in/out	Port M2: I/O port.				
MISO	18	1	in/out	SEI: Master input, slave output.				
A10			out	Address: Address bus 10.				
PM3			in/out	Port M3: I/O port.				
SECLK	19	1	in/out	SEI: Clock input/output.				
A11			out	Address: Address bus 11.				
PM4	14	1	in/out	Port M4: I/O port.				
SCK2	17		in/out	SBI channel 2: Clock input/output at SIO mode.				
PN0	59	1	in/out	Port N0: I/O port.				
SCK0	00		in/out	SBI channel 0: Clock input/output at SIO mode.				
PN1			in/out	Port N1: I/O port.				
SO0	60	1	out	SBI channel 0: Output data input/output at SIO mode				
SDA0			in/out	SBI channel 0: Data input/output at I ² C mode				
PN2			in/out	Port N2: I/O port.				
SI0	62	1	in	SBI channel 0: Input data at SIO mode				
SCL0			in/out	SBI channel 0: Clock input/output at I ² C mode				
PN3			in/out	Port N3: I/O port.				
SCK1	64	1	in/out	SBI channel 1: Clock input/output at SIO mode				
A12			out	Address: Address bus 12.				
PN4			in/out	Port N4: I/O port.				
SO1	65	1	out	SBI channel 1: Output data at SIO mode				
SDA1	05		in/out	SBI channel 1: Data input/output at I ² C mode				
A13			out	Address: Address bus 13.				
PN5			in/out	Port N5: I/O port.				
SI1	66 1		in	SBI channel 1: Input data at SIO mode				
SCL1			in/out	SBI channel 1: Clock input/output at I ² C mode				
A14			out	Address: Address bus 14				
PN6				Port N6: I/O port.				
SO2	67	in/ou		SBI channel 2: Output data at SIO mode				
SDA2			out	SBI channel 2: data input output at I2C mode				
A15				Address: Address bus 15.				
NMI	39	1	in	Non-maskable interrupt: Interrupt request pin with programmable falling or both falling and rising edge.				
INT0	37	1	in	Interrupt request pin 0: Interrupt request pin with programmable level or rising-edge.				
AM0,1	80, 78	2	in	Address Mode selection: Connect AM0 pin to L and AM1 pin to H for Single Chip mode.				
TEST0,1	76, 71	2	in	Test mode pins: Should be tied to GND.				
CLK	77	1	out	Programmable clock output (with pull-up resistor)				
X1/X2	74, 72	2	in/out	High-frequency oscillator connecting pins: To drive these pins with an external clock, apply clock signals of 3.3 V.				
XT1/XT2	70, 69	2	in/out	Low-frequency oscillator connecting pins: To drive these pins with an external clock, apply clock signals of 3.3 V.				
RESET	79	1	in	Reset: Initializes LSI (with pull-up resistor).				
VREFH	4	1	in	AD reference voltage high				
VREFL	3	1	in	AD reference voltage low				
ADVCC	2	1	-	Power supply pin for AD converter (+5V): Connect the ADVCC pin to 5-V power supply.				
ADVSS	1	1	-	GND pin for AD converter: Connect the ADVSS pin to GND (0V).				

Table 2.2.4 Input/output pins (4/4)

Pin name	Pin number	Number of pins	In/Out	Function
DVCC5	15, 40, 50, 61, 75	5	-	Power supply pins (+5V): Connect all the DVCC5 pins to 5-V power supply.
DVCC3	36, 68, 86		=	Power supply pins (+3.3V): Connect all the DVCC3 pins to REGOUT pin.
DVSS	13, 38, 51, 63, 73, 88	6	-	GND: Connect all DVSS pins to GND (0V).
REGOUT	49	1	out	Regulator output 3.3V: Connect capacitor to stabilize the regulator output.
REGEN	52	1	in	Regulator enable pin: Should be set to H or OPEN (with pull-up resistor).

3. Operation

This section describes the basic functions and operations of the TMP92CD54I for each functional block.

3.1 CPU

The TMP92CD54I incorporates a high-performance, high-speed 32-bit CPU, the TLCS-900/H1.

3.1.1 CPU Overview

The TLCS-900/H1 is a high-performance, high-speed CPU based on the TLCS-900/L1 and has a built-in data bus extended to 32 bits to enable faster processing.

Table 3.1.1 shows an overview of the CPU built into the TMP92CD54I.:

Table 3.1.1 CPU Overview

Properties	TLCS-900/H1			
Width of CPU Address Bus	24 bit			
Width of CPU Data Bus	32 bit			
Internal Operating Frequency	16 to 20MHz (f _{OSC} = 8 to 10MH	z)		
Minimum Bus Cycle (Internal RAM)	1 clock access (50ns @ f _{OSC} =	10MHz)		
Internal RAM	32 bit 1 clock access			
Internal ROM	32 bit interleave 2-1-1-1 clock a	ccess		
Internal I/O	8/16 bit 2 clock access	PORT, INTC, MEMC		
	8/16 bit 5 to 6 clock access	SEI, SIO, WDT, 8 bit Timer, 16 bit Timer, RTC, 10-bit ADC, SBI, CAN		
External Device	8 bit 2 clock access (can insert	wait cycles)		
Minimum Instruction Execution Cycle	1 clock (50ns at f _{OSC} = 10MHz)			
Conditional Jump	2 clock (100ns at f _{OSC} = 10MH	z)		
Instruction Queue Buffer	12 byte	12 byte		
Instruction Set	Compatible with TLCS-900, 900/H, 900/L,			
	900/L1 and 900/H2 (NORMAL, MIN, MAX and LDX instructions are not supported)			
Micro DMA	8 channels			

3.1.2 Reset

To apply a reset to the TMP92CD54I, drive the \overline{RESET} input pin Low for at least 4 μs (when fosc = 10 MHz) when the internal oscillator and clock multiplier are operating stably with the supply voltage in the normal operating range.

The clock multiplier is bypassed during the reset period so that the system clock frequency, f_c , becomes 5 MHz (when $f_{OSC} = 10$ MHz).

When a reset is accepted, the CPU operates as follows:

• Sets the Program Counter (PC) as follows in accordance with the Reset Vector stored at address FFFF00H to FFFF02H:

```
PC<0 to 7> ← data in location FFFF00H
PC<8 to 15> ← data in location FFFF01H
PC<16 to 23> ← data in location FFFF02H
```

- Sets the Stack Pointer (XSP) to 00000000H.
- Sets bits <IFF0 to IFF2> of the Status Register (SR) to 111 (thereby setting the Interrupt Level Mask Register to level 7).
- Clears bits <RFP0 to RFP1> of the Status Register to 00 (thereby selecting Register Bank 0).

When a reset is released, the CPU starts fetching and executing instructions according to the program counter (PC). The registers within the CPU other than those shown above remain unchanged.

A reset being accepted also causes the built-in I/O, input/output port and other pins to be initialized as follows:

- Initializes the internal I/O registers as table of "Special Function Register" in Section 5.
- Sets the port pins, including the pins that also act as internal I/O, to General-Purpose Input or Output Port Mode.

When the RESET input pin is driven High, the built-in clock multiplier starts operating and the internal reset is released after the setting time for the circuit (1.6384 ms when fosc = 10MHz) elapses.

Upon a power-on reset, the control signals for the memory controller are unstable, possibly resulting in backup data being rewritten in external RAM connected to the TMP92CD54I.

When the RESET input pin goes Low, the input/output ports are initialized to input mode and the CLKOUT pin output setting is initialized to High-Z output. The CLKOUT pin outputs High because it is pulled up within the device. Since the pull-up circuit operates on the DVCC3 supply, however, the internal transistor on/off operation is not stable while the DVCC3 supply is rising, resulting in either a High-Z or High (pulled up) output.

3.1.3 Selecting a Startup Mode

Set TEST0 and TEST1 to GND, AM0 to Low and AM1 to High to select single-chip mode.

Table 3.1.2 Operation Mode Setup

On a ration Made		Mode Setup input pin						
Operation Mode	RESET	AM1	AM0	TEST1	TEST0			
Single-chip Mode		Н	L	L	L			

3.2 Memory Map

Figure 3.2.1 shows a memory map of the TMP92CD541I.

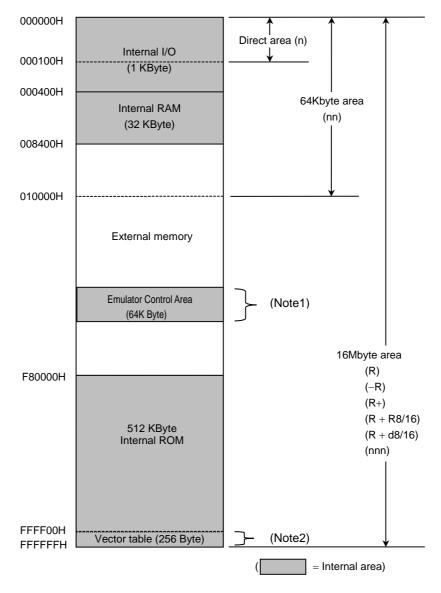


Figure 3.2.1 Memory Map

- Note 1: When an emulator is used, 64 Kbytes of the 16-Mbyte space are used to control the emulator and not available to the user.
- Note 2: Accessing the emulator control space causes the \overline{WR} and \overline{RD} signals to be output. This should be taken into account when using expanded memory.
- Note 3: The last 16 bytes (addresses FFFFF0H to FFFFFH) in the vector table are reserved as internal space and cannot be used.
- Note 4: If memory devices having different bus widths are located at contiguous addresses, any access spanning those devices should not be executed with a single instruction. Such an attempt may prevent data from being read or written normally.

3.3 Clock Function and Standby Functions

3.3.1 System Clock Block Diagram

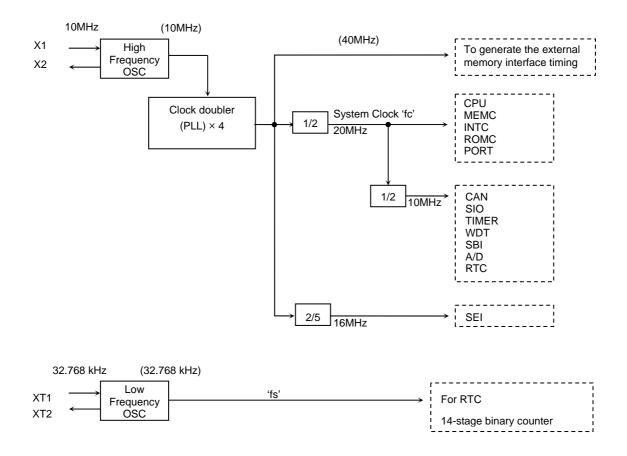


Figure 3.3.1 Block Diagram of System clock

3.3.2 Standby Controller

(1) Halt Mode

Executing the HALT instruction (stop instruction) sets the operating mode to any of IDLE2, IDLE1, IDLE3 and STOP depending on the setting of CLKMOD<HALTM1:0>.

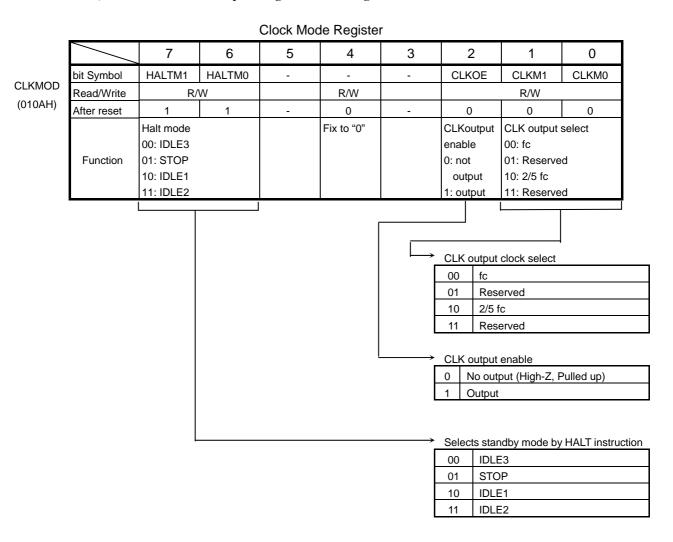


Figure 3.3.2 Clock Mode Register

The following shows whether individual blocks operate or stop in each mode:

1. IDLE2 mode: Only the CPU is stopped.

Each built-in I/O block has a bit that controls whether it operates or stops in IDLE2 mode. The bits shown in Table 3.3.1 are used to control the operation of built-in I/O blocks.

Table 3.3.1 the registers to control operation during Idle2 Mode

Internal I/O	SFR Registers
TIMER0,TIMER1	TRUN01 <i2t01></i2t01>
TIMER2,TIMER3	TRUN23 <i2t23></i2t23>
TIMER4,TIMER5	TRUN45 <i2t45></i2t45>
TIMER6,TIMER7	TRUN67 <i2t67></i2t67>
TIMER8	TRUN8 <i2t8></i2t8>
TIMERA	TRUNA <i2ta></i2ta>
SIO0	SC0MOD1 <i2s0></i2s0>
SIO1	SC1MOD1 <i2s1></i2s1>
SBI0	SBI0BR0 <i2sbi0></i2sbi0>
SBI1	SBI1BR0 <i2sbi1></i2sbi1>
SBI2	SBI2BR0 <i2sbi2></i2sbi2>
A/D converter	ADMOD1 <i2ad></i2ad>
WDT	WDMOD <i2wdt></i2wdt>

- 2. IDLE1 mode: Only the low-speed oscillator and high-speed oscillator operate.
- 3. IDLE3 mode: Only the low-speed oscillator and RTC operate.
- 4. STOP mode: All internal circuits are stopped.

Table 3.3.2 shows which blocks operate and stop during halt mode.

Table 3.3.2 I/O operation during Halt Modes

	Halt Mode	IDLE2 IDLE1		IDLE3	STOP		
	CLKMOD <halt1:0></halt1:0>	11	10	00	01		
	CPU		Halt				
	I/O ports	Hold the sam the HALT instructi	ne state since ion was executed.	See table 3.3.5			
	8-bit TMR, 16-bit TMR						
쑹	SIO, SBI	Selectable	Stop				
Block	A/D converter	See table 3.3.1					
	WDT						
	RTC, XT1						
	CAN, SEI	Operational					
	Interrupt controller						

(2) Releasing a halt mode

A halt mode can be released with a reset or an interrupt request. Available halt release sources depend on the state of the interrupt mask register <IFF2:0> and the halt mode.

Table 3.3.3 shows details.

Release using an interrupt request

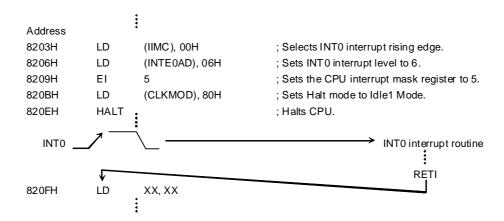
Whether a halt state is released with an interrupt request depends on the interrupt enable status. If the interrupt request level set before the execution of the HALT instruction is greater than or equal to the value stored in the interrupt mask register, the halt mode is released, followed by interrupt handling for that interrupt source, after which processing is started from the instruction next to the HALT instruction. If the interrupt request level is lower than the value in the interrupt mask register, the halt mode is not released (a nonmaskable interrupt, however, always causes the halt mode to be released and the interrupt to be handled, regardless of the mask register value).

Only an INT0 interrupt, however, releases the halt mode even if the interrupt request level is lower than the value in the interrupt mask register. In that case, interrupt handling is not performed and processing is started from the instruction next to the HALT instruction (the INT0 interrupt request flag maintains the value of "1").

Release with a reset

A reset causes all halt modes to be released.

To release STOP or IDLE3 mode, however, it requires a sufficient reset time (10 ms or longer when fosc = 10 MHz) for the internal oscillator to operate stably.


When a halt mode is released with a reset, the data in built-in RAM can hold the values it had immediately before entering the halt state but other settings are initialized (a release with an interrupt allows both RAM data and other settings to maintain their pre-halt values).

Status of Received Interrupt		Interrupt Enabled (interrupt level) ≥ (interrupt mask)			Interrupt Disabled (interrupt level) < (interrupt mask)					
		Halt mode	Idle2	ldle1	Idle3	Stop	ldle2	ldle1	ldle3	Stop
		NMI	0	0	⊚ ^{*1}	⊚ ^{*1}	=	=	=	=
		INTWDT	0	×	×	×	-	ı	-	-
		INT0	0	0	⊚ ^{*1 *2}	⊚ ^{*1 *2}	0	0	O*1 *2	O*1 *2
99		INT0 [MASK]	0	0	O*1 *2	O*1 *2	0	0	O*1 *2	O*1 *2
clearance		INT1 to 7	0	×	×	×	×	×	×	×
eal	ource	INTT0 to 7	0	×	×	×	×	×	×	×
	ınc	INTTR8 to B	0	×	×	×	×	×	×	×
state	ဟ	INTTO8, INTTOA	0	×	×	×	×	×	×	×
t st	ldn	INTRX0 to 1, TX0 to 1	0	×	×	×	×	×	×	×
Halt	nterrupt	INTCR0, INTCT0, INTCG0	0	×	×	×	×	×	×	×
of F	<u>l</u>	INTSEM0, E0, R0, T0	0	×	×	×	×	×	×	×
		INTSBE0, S0, E1, S1, E2, S2	0	×	×	×	×	×	×	×
Source		INTAD	0	×	×	×	×	×	×	×
So		All the above-mentioned interrupts [MASK]	×	×	×	×	×	×	×	×
		INTRTC	0	0	⊚ ^{*1}	×	0	0	O*1	×
		INTRTC [MASK]	0	0	O*1	×	0	0	O*1	×
		RESET	0	0	0	0	0	0	0	0

- Upon release from a halt, the CPU starts handling the interrupt (RESET causes the device to be initialized).
- O: Upon release from a halt, the CPU starts processing from the instruction next to the HALT instruction.
- × : Cannot be used to release a halt.
- : These combinations are not available because the interrupt priority level (interrupt request level) for nonmaskable interrupts is fixed to 7 (top priority).
- *1: A halt is released after a warm-up time elapses.
- *2: Any WUINT interrupt (WUINT0 to 7) causes an INT0 interrupt to occur.
- Note 1: To release a halt using a level-mode INT0 interrupt in the interrupt-enabled state, hold it High until interrupt handling starts. If it is driven Low before interrupt handling starts, the interrupt cannot be handled normally.
- Note 2: When using an INT5 to INT7 external interrupt in IDLE2 mode, set TRUN8<I2T8> and TRUNA<I2TA> to 1.

(Example - clearing IDLE1 Mode)

An INT0 interrupt in edge mode is used to release a halt in IDLE1 mode.

(3) Operation in each mode

1. IDLE2 Mode

In IDLE2 mode, the system clock is supplied only to the built-in I/O blocks specified with the built-in I/O operation control bits and the CPU stops executing instructions.

Figure 3.3.3 shows an example timing for releasing a halt state using an interrup.

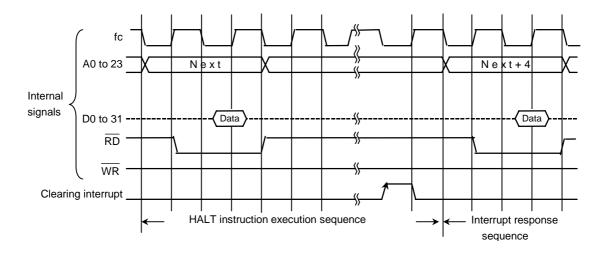


Figure 3.3.3 Timing chart for Idle2 Mode Halt state cleared by interrupt

2. IDLE1 mode

In IDLE1 mode, only the internal oscillator operates with the system clock for the CPU stopped.

In the halt state, interrupt request sampling is performed asynchronously to the system clock. The halt state is, however, released in sync with the system clock.

Figure 3.3.4 shows an example timing for releasing a halt state using an interrupt.

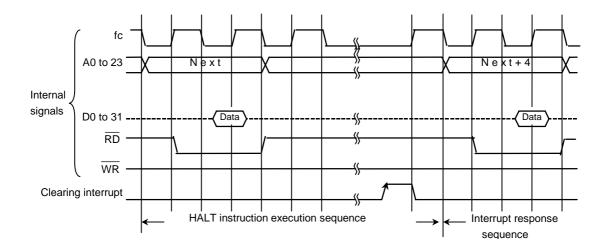
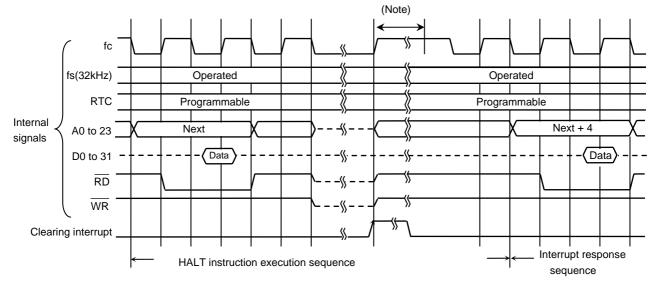


Figure 3.3.4 Timing chart for Idle1 Mode Halt state cleared by interrupt

3. IDLE3 mode

In IDLE3 mode, all internal circuits other than the low-speed oscillator and RTC, including the high-speed oscillator, are stopped. The pin states in IDLE3 mode depends on the setting of WDMOD<DRVE>. Table 3.3.5 shows the states of pins in IDLE3 mode.


The halt state in IDLE3 mode can be released with an external interrupt using the $\overline{\text{NMI}}$, INT0, or WUINT0 to 7 pin (INT0 interrupt), an internal interrupt using INTRTC, or a reset.

Upon released from the halt state, the system clock output starts after the high-speed oscillator warm-up time and clock multiplier settling time elapse.

The warm-up time for the high-speed oscillator is counted using the warm-up counter within the TMP92CD54I. Once that counting ends, the device starts counting the settling time for the clock multiplier. This mechanism results in the high-speed oscillator warm-up time (1.6 ms) being included in the time required between the halt release signal being input and the system clock being output even in a system using an external oscillator that does not need oscillation settling time.

When using a reset to release a halt, ensure that the reset signal is held Low until the high-speed oscillator operates stably.

(Note); Once the halt state is released, interrupt handling starts after the oscillator startup time (tsta), warm-up time (approx. 1.6 ms) and clock multiplier settling time (approx. 1.6 ms) elapse. For details of the startup time (tsta), contact the oscillator manufacturer.

Figure 3.3.5 Timing chart for Idle3 Mode Halt state cleared by interrupt

4. STOP mode

In STOP mode, all internal circuits are stopped. The pin states in STOP mode depends on the setting of WDMOD<DRVE>. Table 3.3.5 shows the states of pins in STOP mode.

The halt state in STOP mode can be released with an external interrupt using the $\overline{\text{NMI}}$, INTO, or WUINTO to 7 pin (INTO interrupt) or a reset.


Upon released from the halt state, the system clock output starts after the high-speed oscillator warm-up time and clock multiplier settling time elapse.

The warm-up time for the high-speed oscillator is counted using the warm-up counter within the TMP92CD54I. Once that counting ends, the device starts counting the settling time for the clock multiplier. This mechanism results in the high-speed oscillator warm-up time (1.6 ms) being included in the time required between the halt release signal being input and the system clock being output even in a system using an external oscillator that does not need oscillation settling time.

When using a reset to release a halt, ensure that the reset signal is held Low until the high-speed oscillator operates stably.

In STOP mode, the value of the RTCFC register is initialized even if the halt is released with an interrupt. It is, therefore, necessary to re-set RTCFC after releasing the halt.

.

(Note); Once the halt state is released, interrupt handling starts after the oscillator startup time (tsta), warm-up time (approx. 1.6 ms) and clock multiplier settling time (approx. 1.6 ms) elapse. For details of the startup time (tsta), contact the oscillator manufacturer.

Figure 3.3.6 Timing chart for Stop Mode Halt state cleared by interrupt

Table 3.3.4 Warming-up time and clock doubler stable time after clearance of Stop Mode and Idle3 Mode (@ fc=20MHz)

Warm-up time	1.6 ms (2 ¹⁴ /f _{OSC})
Clock doubler stable time	1.6 ms (2 ¹⁴ /f _{OSC})
	$fc = 2 \times f_{osc}$

Table 3.3.5 Pin states in IDLE3 and STOP Mode

Pin Names	I/O	<drve> = 0</drve>	<drve> = 1</drve>				
P00 to 07	Input Mode	Inv	alid				
	Output Mode	Ou	tput				
	D0 to D7	High-Z					
P40 to 47/A0 to 7	Input Mode	Inv	alid				
	Output Mode	High-Z	Output				
P70,P71,P73 to 75/	Input Mode	Inv	alid				
\overline{RD} , \overline{WR} , \overline{CS} to \overline{WAIT}	Output Mode	High-Z	Output				
P72/SI2/SCL2	Input Mode	Inp	out				
	Output Mode	Input	Output				
PC0 to PC5/TI0 to TO7	Input Mode	Inv	alid				
	Output Mode	High-Z	Output				
PD0 to PD7/TI8 to TOB	Input Mode	Inp	put				
	Output Mode	High-Z	Output				
	WUINT0 to 7	Input					
PF0 to PF7/TXD0 to RX	Input Mode	Inv	alid				
	Output Mode	High-Z	Output				
PG0 to PG7/AN0 to AN7	Input Mode	Invalid					
PL0 to PL3/AN8 to AN11	Input Mode	Inv	alid				
PM0 to PM4	Input Mode	Inv	alid				
/SS to SCK2	Output Mode	High-Z	Output				
PN0 to PN6	Input Mode	Inv	alid				
/SCK0 to SO2&SDA2	Output Mode	High-Z	Output				
NMI	Input	Inț	out				
INT0	Input	Inp	out				
RESET	Input	Inp	out				
AM0, AM1	Input	Inp	out				
TEST0, TEST1	Input	Inp	out				
X1	Input	Inv	alid				
X2	Output		Output				
XT1	Input	Invalid (STOP) Operate (IDLE3, RTCFC <xten>=1)</xten>					
XT2	Output	Operate (IDLE3, R	tput (STOP) RTCFC <xten>=1)</xten>				
CLK	Output	H level output (CLK	(MOD <clkoe>=0)</clkoe>				
		L level output (CLKMOD <clkm1:0>=00) H or L level Output (CLKMOD<clkm1:0>=10)</clkm1:0></clkm1:0>					
		H or L level Output (CL	KWOD <ulkw1:0>=10)</ulkw1:0>				

Input : The input gate is functioning. Apply a Low or High level to prevent the input pin from floating

Output: Placed in the output state

Invalid: The input is invalid.

High-Z: High impedance.

Note) when RTCFC<XTEN>=1.

3.4 Interrupts

Interrupts for the TLCS-900/H1 are controlled using the CPU interrupt mask flip-flop (SR<IFF2:0>) and the interrupt controller.

The TMP92CD54I supports the following 60 interrupt sources:

Interrupts generated by CPU: 9 sources

- Software interrupts: 8 sources
- Illegal Instruction interrupt: 1 source

Internal interrupts: 42 sources

- Internal I/O interrupts: 34 sources
- Micro DMA Transfer End interrupts: 8 sources

External interrupts: 9 sources

• Interrupts on external pins (NMI, INT0 to INT7)

Each interrupt source is assigned a unique interrupt vector number (fixed) and each maskable interrupt can be assigned one of six priority levels (variable). Nonmaskable interrupts have a fixed priority level of 7 (top priority).

When an interrupt occurs, the interrupt controller sends the priority level of that interrupt source to the CPU. When more than one interrupt occurs simultaneously, it sends the highest priority level to the CPU (the highest possible level is 7 for nonmaskable interrupts).

The CPU compares the sent priority level with the value in the CPU interrupt mask register (IFF2:0) and, if the priority level is higher than the interrupt mask register setting, accepts the interrupt.

Software interrupts and undefined instruction execution interrupts, however, occur independently of the IFF2:0 setting.

The value of the interrupt mask register SR<IFF2:0> can be modified using the EI instruction (EI num, where num specifies the contents of SR<IFF2:0>). For example, programming "EI 3" enables maskable interrupts having a priority level of 3 or higher, as specified with the interrupt controller, and nonmaskable interrupts to be accepted. Executing the EI or "EI 0" instruction enables all nonmaskable interrupts and maskable interrupts having a priority level of 1 or higher to be accepted. (Therefore, they are equivalent to "EI 1".)

The DI instruction (specifying 7 for SR<IFF2:0>) is functionally equivalent to "EI 7" and used to disable the acceptance of maskable interrupts because they have priority levels of 0 to 6. The EI instruction is effective immediately after it is executed.

Interrupts for the TLCS-900/H1 also supports micro DMA handling mode in addition to the general-purpose interrupt handling mode described above. In micro DMA mode, the CPU automatically transfers data (1, 2, or 4 bytes). It enables fast data transfer to internal/external memory and built-in I/O.

Moreover, the TMP92CD54I supports a soft start function, which enables software to issue a micro DMA request, rather than given from an interrupt source.

Figure 3.4.1 shows the entire interrupt handling flow.

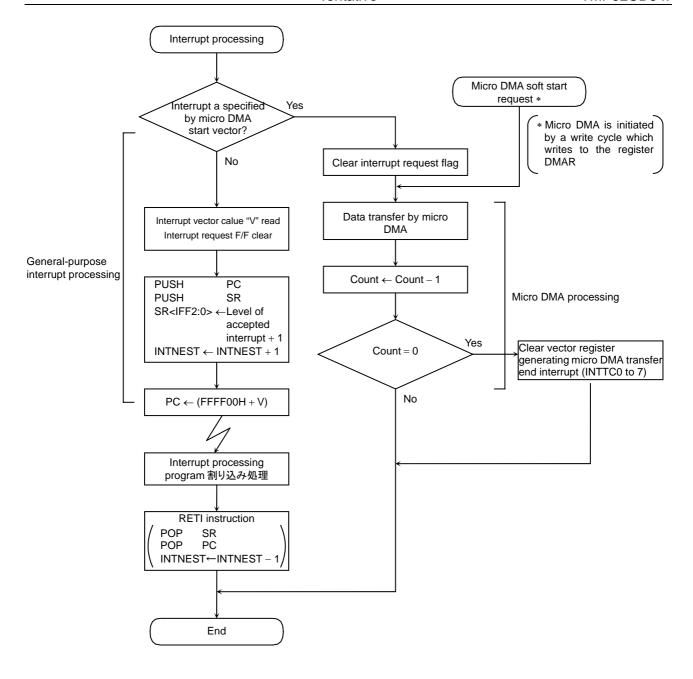


Figure 3.4.1 Interrupt and Micro DMA Processing Sequence

3.4.1 General-purpose interrupt handling

When the CPU accepts an interrupt, it performs the following operation. For software interrupts issued by the CPU and undefined instruction execution interrupts, the CPU only performs steps (2), (4), and (5) without executing steps (1) and (3). The following steps are similar to those for the TLCS-900/L, TLCS-900/H, TLCS-900/L1, and TLCS-900/H2.

- (1) The CPU reads an interrupt vector from the interrupt controller.

 If two or more interrupts having the same priority level occur simultaneously, the CPU issues an interrupt vector according to the default priorities (fixed: smaller vector values have higher priority) and clears the interrupt request.
- (2) The CPU pushes the program counter (PC) and status register (SR) into the stack area (pointed to by XSP).
- (3) Set the CPU interrupt mask register SR<IFF2:0> to the value of the accepted interrupt level plus one. If the value is 7, however, the value of 7 is set without being incremented.
- (4) Increment the interrupt nesting counter INTNEST by one.
- (5) The CPU jumps to the address indicated with the data at address (FFFF00H + interrupt vector) and then starts the interrupt handling routine.

Upon the completion of interrupt handling, usually use the RETI instruction to return to the main routine. This instruction restores the values of the program counter (PC) and status register (SR) from the stack and then decrement the interrupt nesting counter (INTNEST) by one.

The acceptance of nonmaskable interrupts cannot be disabled programmatically. On the other hand, maskable interrupts can be enabled or disabled programmatically and can be assigned priorities for each interrupt source (an interrupt level of 0 or 7 disables the interrupt request). The CPU accepts an interrupt if the priority level of the interrupt request is higher than the value of its interrupt mask register SR<IFF2:0>. It then sets the mask register <IFF2:0> to the value of the accepted priority plus one. Therefore, if any interrupt having a priority higher than the interrupt currently being handled occurs, the CPU accepts that interrupt request, resulting in interrupt handling being nested.

If another interrupt request is issued while the CPU is performing steps (1) to (5) above for an interrupt it has accepted, the new interrupt request is sampled immediately after the first instruction of the interrupt handling routine is executed. The DI instruction can be used as the first instruction to prohibit the nesting of maskable interrupts.

Upon a reset, the CPU mask register SR<IFF2:0> is initialized to 7, which disables maskable interrupts.

In the TMP92CD54I, memory addresses FFFF00H to FFFFEFH (240 bytes) are assigned to the interrupt vector area. Table 3.4.1 shows the interrupt table.

Table 3.4.1 TMP92CD54I Interrupt Vectors and Micro DMA Start Vectors

Default Priority	Туре	Interrupt Source and Source of Micro DMA Request	Vector Value	Address refer to Vector	Micro DMA Start Vector
1		Reset or [SWI0] instruction	0000H	FFFF00H	
2		[SWI1] instruction	0004H	FFFF04H	
3		Illegal instruction or [SWI2] instruction	0008H	FFFF08H	
4		[SWI3] instruction	000CH	FFFF0CH	
5	Non	[SWI4] instruction	0010H	FFFF10H	
6	Maskable	[SWI5] instruction	0014H	FFFF14H	
7		[SWI6] instruction	0018H	FFFF18H	
8		[SWI7] instruction	001CH	FFFF1CH	
9		NMI: pin input	0020H	FFFF20H	
10		INTWD: Watchdog Timer	0024H	FFFF24H	
-		Micro DMA	-	=	-
11		INT0: INT0 pin input (Note2)	0028H	FFFF28H	0AH
12		INT1: INT1 pin input	002CH	FFFF2CH	0BH
13		INT2: INT2 pin input	0030H	FFFF30H	0CH
14		INT3: INT3 pin input	0034H	FFFF34H	0DH
15		INT4: INT4 pin input	0038H	FFFF38H	0EH
16		INT5: INT5 pin input	003CH	FFFF3CH	0FH
17		INT6: INT6 pin input	0040H	FFFF40H	10H
18		INT7: INT7 pin input	0044H	FFFF44H	11H
19		INTT0: 8-bit timer 0	0048H	FFFF48H	12H
20		INTT1: 8-bit timer 1	004CH	FFFF4CH	13H
21		INTT2: 8-bit timer 2	0050H	FFFF50H	14H
22		INTT3: 8-bit timer 3	0054H	FFFF54H	15H
23		INTT4: 8-bit timer 4	0058H	FFFF58H	16H
24		INTT5: 8-bit timer 5	005CH	FFFF5CH	17H
25		INTT6: 8-bit timer 6	0060H	FFFF60H	18H
26		INTT7: 8-bit timer 7	0064H	FFFF64H	19H
27		INTTR8: 16-bit timer 8	0068H	FFFF68H	1AH
28		INTTR9: 16-bit timer 8	006CH	FFFF6CH	1BH
29		INTTRA: 16-bit timer A	0070H	FFFF70H	1CH
30	Maskable	INTTRB: 16-bit timer A	0074H	FFFF74H	1DH
31		INTTO8: 16-bit timer 8 (overflow)	0078H	FFFF78H	1EH
32		INTTOA: 16-bit timer A (overflow)	007CH	FFFF7CH	1FH
33		INTRX0: Serial receive (Channel 0)	0080H	FFFF80H	20H (Note3)
34		INTTX0: Serial transmission (Channel 0)	0084H	FFFF84H	21H
35		INTRX1: Serial receive (Channel 1)	0088H	FFFF88H	22H (Note3)
36		INTTX1: Serial transmission (Channel 1)	008CH	FFFF8CH	23H
37		INTCR: CAN receive	0090H	FFFF90H	24H (Note3)
38		INTCT: CAN transmission	0094H	FFFF94H	25H (Note3)
39		INTCG: CAN global	0098H	FFFF98H	26H (Note3)
40		INTSEM: SEI mode fault error	009CH	FFFF9CH	27H (Note3)
41		INTSEE: SEI transfer end / slave error	00A0H	FFFFA0H	28H (Note3)
42		INTSER: SEI receive	00A4H	FFFFA4H	29H
43		INTSET: SEI transmission	00A8H	FFFFA8H	2AH
44		INTRTC: Read Time Counter	00ACH	FFFFACH	2BH
45		(reserved)	00B0H	FFFFB0H	-
46		INTSBE2: SBI I2CBUS transfer end (Channel 2)	00B4H	FFFFB4H	2DH
47		INTSBS2: SBI I2CBUS stop condition (Channel 2)	00B8H	FFFFB8H	2EH
48		INTSBE0: SBI I2CBUS transfer end (Channel 0)	00BCH	FFFFBCH	2FH
49		INTSBS0: SBI I2CBUS stop condition (Channel 0)	00C0H	FFFFC0H	30H
50		INTSBE1: SBI I2CBUS transfer end (Channel 1)	00C4H	FFFFC4H	31H
อบ		IIV I SOE IT SBI IZCBUS transfer end (Channel 1)	UUC4H	FFFFU4H	31H

Default Priority	Туре	Interrupt Source and Source of Micro DMA Request	Vector Value	Address refer to Vector	Micro DMA Start Vector
51		INTSBS1: SBI I2CBUS stop condition (Channel 1)	00C8H	FFFFC8H	32H
52		INTAD: AD conversion end	00CCH	FFFFCCH	33H
53		INTTC0: Micro DMA end (Channel 0)	00D0H	FFFFD0H	34H
54		INTTC1: Micro DMA end (Channel 1)	00D4H	FFFFD4H	35H
55		INTTC2: Micro DMA end (Channel 2)	00D8H	FFFFD8H	36H
56		INTTC3: Micro DMA end (Channel 3)	00DCH	FFFFDCH	37H
57	Maskable	INTTC4: Micro DMA end (Channel 4)	00E0H	FFFFE0H	38H
58		INTTC5: Micro DMA end (Channel 5)	00E4H	FFFFE4H	39H
59		INTTC6: Micro DMA end (Channel 6)	00E8H	FFFFE8H	3AH
60		INTTC7: Micro DMA end (Channel 7)	00ECH	FFFFECH	3ВН
=			00F0H	FFFFF0H	-
to -		(reserved)	to 00FCH	to FFFFFCH	to _

Note1: To start micro DMA, select edge detection mode.

Note2: Micro DMA processing cannot be assigned.

Note3: If an interrupt occurs with an interrupt source specified for micro DMA, it is given the highest priority among maskable interrupts (independently of the default priority assigned to each channel).

Note4: The above table lists only start addresses. Each vector consists of four bytes.

3.4.2 Micro DMA

The TMP92CD54I supports the micro DMA function. Interrupt requests specified for the micro DMA function are handled with the highest priority among maskable interrupts regardless of the set interrupt level.

Eight channels are provided for micro DMA and support continuous transfer using a burst specification, described later.

(1) Micro DMA operation

When an interrupt request specified with the micro DMA start vector register is issued, the micro DMA function transfers data to the CPU with the highest priority among maskable interrupts regardless of the interrupt level assigned to the interrupt source. If SR<IFF2:0> = 7, micro DMA requests are not accepted.

The micro DMA function supports eight channels; micro DMA can be specified for up to eight types of interrupt source simultaneously.

When micro DMA is accepted, the function clears the interrupt request flag assigned to that channel, performs a single data transfer (1, 2, or 4 bytes) from the source address to the destination address, as set in the control register, and then decrements the transferred data counter. If the counter becomes 0 after being decremented, the following operation is performed:

- The CPU notifies the interrupt controller of the completion of micro DMA transfer.
- The interrupt controller issues a micro DMA transfer completion interrupt (INTTCn).
- The micro DMA start vector register, DMAnV, is cleared to 0, thus disabling the start of subsequent micro DMA.
- Micro DMA processing is completed.

If the counter is not 0 after being decremented, micro DMA processing is terminated unless a burst is specified as described later. In that case, a transfer completion interrupt (INTTCn) does not occur.

If an interrupt source is used only to start micro DMA, the interrupt level for that source should be set to 0. This is because, if that interrupt request is issued before the micro DMA start vector is set, the CPU performs general-purpose interrupt handling if the interrupt level is 1 to 6.

If micro DMA interrupts are shared with general-purpose interrupts, interrupt sources used to start micro DMA should have an interrupt level lower than those for all other interrupt sources

The priority of a micro DMA transfer completion interrupt is determined according to the interrupt level and default priority, in the same way as with other maskable interrupts.

If micro DMA requests for two or more channels are issued simultaneously, requests for lower channel numbers are given higher priorities (CH0 is the highest and CH7 is the lowest), regardless of their interrupt levels.

The registers that specify the transfer source and destination addresses are 32-bit control registers. The micro DMA function, however, handles 16 Mbytes of space because there are only 24 address output lines.

Three transfer modes, 1, 2 and 4 bytes, are supported. For each transfer mode, the transfer source and destination addresses can be incremented, decremented or fixed after transfer. This facilitates data transfer from memory to memory, from I/O to memory, from memory to I/O, and from I/O to I/O. For details of transfer modes, see "(4) Details of transfer mode registers."

The transferred data counter consists of 16 bits so that up to 65536 micro DMA transfers can be performed for a single interrupt source (the maximum number is allowed when the initial value of the counter is 0000H).

Micro DMA supports 44 types of interrupt sources: 43 sources listed in Table 3.4.1 with micro DMA start vectors, plus soft start.

Figure 3.4.2 shows micro DMA cycles in transfer address INC mode (similar in other modes, except counter mode) (with an 8-bit external bus, 0 waits, and even-numbered source and destination addresses).

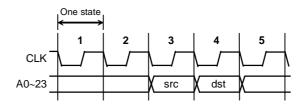


Figure 3.4.2 Timing for Micro DMA Cycle

1st and 2nd states: Instruction fetch cycle (prefetch the next instruction code)

If the instruction queue buffer is full, this cycle becomes a dummy cycle.

3rd state: Micro DMA read cycle
4th state: Micro DMA write cycle

5th state: (Same as 1st and 2nd states)

(2) Soft start function

The TMP92CD54I supports a micro DMA soft start function, which starts micro DMA when a DMAR register write cycle occurs rather than when an interrupt request is issued.

Specifically, a write of 1 to a bit in the DMAR register can start a single micro DMA transfer. Upon the completion of transfer, the DMAR register bit corresponding to the transferred channel is automatically cleared to 0.

Rewriting a 1 to the DMAR register can perform a soft start again unless the micro DMA transfer counter is 0.

If a burst is specified with the DMAR register, once micro DMA is started, data is transferred continuously until the micro DMA transfer counter becomes 0.

Symbol	NAME	Address	7	6	5	4	3	2	1	0
DMAR Req	DMA	DMA 4001	DREQ7	DREQ6	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1	DREQ0
		109h				R/	W			
	Request	(no RMW)	0	0	0	0	0	0	0	0

RMW prohibited: A read-modify-write operation cannot be performed.

Figure 3.4.3 Micro DMA Request Register

(3) Transfer control registers

The following registers specify the transfer source and destination addresses. The LDC cr,r instruction is used to set data in these registers.

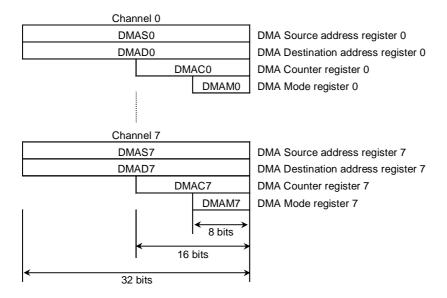
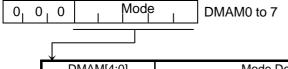



Figure 3.4.4 Micro DMA Transfer Register

(4) Details of transfer mode registers

DMAM[4:0]	Mode Description	Execution time
0 0 0 z z	Destination INC mode	
	$(DMADn +) \leftarrow (DMASn)$	5states
	DMACn ← DMACn - 1	osiales
	if DMACn = 0 then INTTCn	
0 0 1 z z	Destination DEC mode	
	$(DMADn -) \leftarrow (DMASn)$	5states
	DMACn ← DMACn - 1	JSIAICS
	if DMACn = 0 then INTTCn	
0 1 0 z z	Source INC mode	
	$(DMADn) \leftarrow (DMASn +)$	5states
	DMACn ← DMACn - 1	Joiales
	if DMACn = 0 then INTTCn	
0 1 1 z z	Source DEC mode	
	$(DMADn) \leftarrow (DMASn -)$	5states
	DMACn ← DMACn – 1	oolaloo
	if DMACn = 0 then INTTCn	
1 0 0 z z	Source and Destination INC mode	
	$(DMADn +) \leftarrow (DMASn +)$	6states
	DMACn ← DMACn – 1	ootatoo
	If DMACn = 0 then INTTCn	
101zz	Source and Destination DEC mode	
	(DMADn -) ← (DMASn -)	6states
	DMACn ← DMACn – 1	0010100
	If DMACn = 0 then INTTCn	
1 1 0 z z	Destination and Fixed mode	
	(DMADn) ← (DMASn)	5states
	DMACn ← DMACn – 1	
	If DMACn = 0 then INTTCn	
1 1 1 z z	Counter mode	
	DMASn ← DMASn + 1	5states
	DMACn ← DMACn – 1	
	If DMACn = 0 then INTTCn	

ZZ: 00 = 1-byte transfer

01 = 2-byte transfer

10 = 4-byte transfer

11 = (reserved)

Note1: The execution times shown above are best-case values (assuming that memory access is completed in a single clock cycle).

1 state = 50 ns (when fc = 20 MHz)

Note2: n indicates the micro DMA channel number (0 to 7).

DMADn+/DMASn+: Post-increment (register value is incremented after transfer) DMADn-/DMASn-: Post-decrement (register value is decremented after transfer)

Figure 3.4.5 Details of Transfer Mode Registers

3.4.3 Control by the interrupt controller

Figure 3.4.16 shows a block diagram of the interrupt circuit. The left half of the figure represents the interrupt controller while the right half represents the CPU interrupt request signal circuit and halt release circuit.

The interrupt controller has an interrupt request flag, interrupt priority setup register and micro DMA start vector setup register for each interrupt channel (51 channels in total). The interrupt request flag is used to latch an interrupt request from a peripheral device.

This flag is cleared under the following conditions:

- Upon a reset
- When the CPU accepts the interrupt and reads the vector for that interrupt.
- When the instruction that clears the interrupt is executed (the micro DMA start vector for the interrupt source to be cleared is written to the INTCLR register).
- The CPU accepts a micro DMA request for that interrupt.
- The micro DMA burst transfer for that interrupt is completed.

Interrupt priorities can be set by writing them to the interrupt priority setup registers (INTE0AD, INTE12, and so on) that are provided for each interrupt source. One of six interrupt levels, 1 to 6, can be set. Writing a priority level of 0 (or 7) causes the corresponding interrupt request to be disabled. Nonmaskable interrupts (NMI pin) have a fixed priority level of 7.

If more than one interrupt request having the same priority level occurs simultaneously, the CPU accepts an interrupt according to the default priorities (lower priority value = smaller vector). Reading bits 3 and 7 in the interrupt priority setup register returns the state of the interrupt request flag, which indicates whether an interrupt request has been issued for each channel.

Among the interrupts that have occurred simultaneously, the interrupt controller sends the highest interrupt priority level and its vector address to the CPU. The CPU compares the sent interrupt level with the interrupt mask register value <IFF2:0> in the status register and, if the sent level is higher, accepts the interrupt. The CPU then sets the accepted interrupt level + 1 in its SR<IFF2:0> so that only interrupt requests having a priority higher than that can be accepted in a nested manner. Upon the completion of interrupt handling (execution of the RETI instruction), the CPU restores the value of the interrupt mask register existing before the interrupt occurred in SR<IFF2:0>.

The interrupt controller has registers (eight channels) that store micro DMA start vectors. Writing a start vector (see Table 3.4.1) in this register enables micro DMA to start when the corresponding interrupt request is issued. It is necessary to set values in the micro DMA parameter registers (such as DMAS and DMAD) before enabling micro DMA processing.

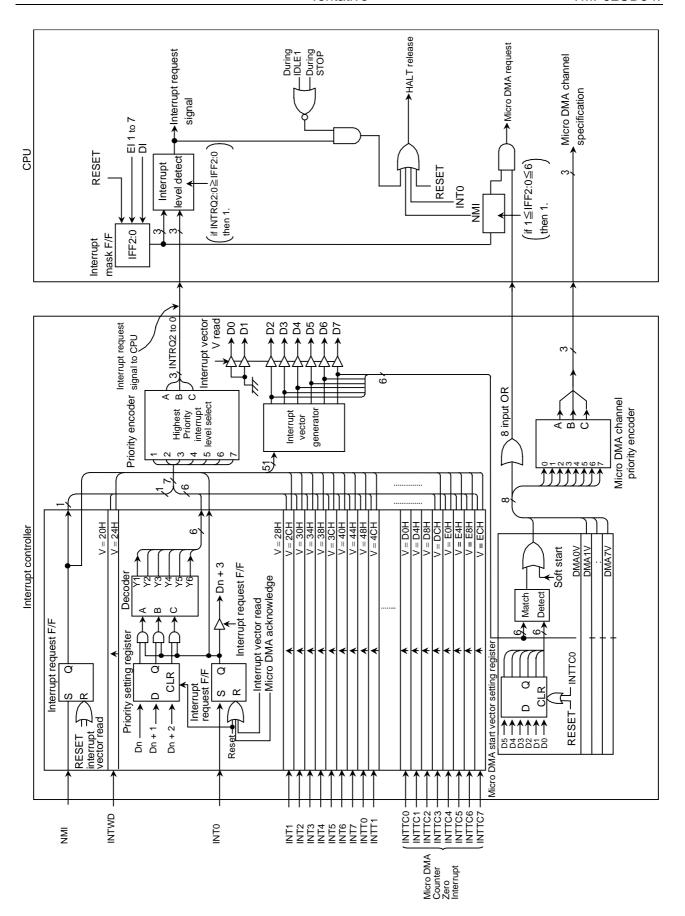
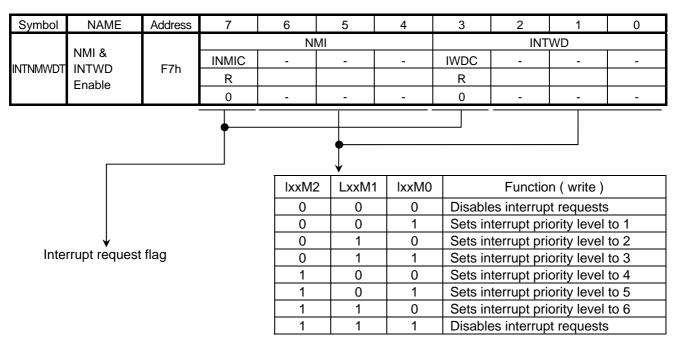


Figure 3.4.6 Block Diagram of Interrupt Controller

(1) Interrupt priority setup registers


Symbol	NAME	Address	7	6	5	4	3	2	1	0	
			INTAD				INTO (Note)				
INTEGAR	INT0 & INTAD Enable	F0h	IADC	IADM2	IADM1	IADM0	I0C	I0M2	I0M1	IOMO	
INTE0AD			R		R/W		R		R/W	u e	
			0	0	0	0	0	0	0	0	
					T2				T1		
	INT1 & INT2		I2C	I2M2	I2M1	I2M0	I1C	I1M2	I1M1	I1M0	
INTE12	Enable	D0h	R		R/W		R		R/W		
			0	0	0	0	0	0	0	0	
					T4				T3		
	INT3 & INT4		I4C	I4M2	I4M1	I4M0	I3C	I3M2	I3M1	I3M0	
INTE34	Enable	D1h	R		R/W		R		R/W		
			0	0	0	0	0	0	0	0	
				I	T6			IN			
	INT5 & INT6		I6C	I6M2	I6M1	I6M0	I5C	I5M2	I5M1	I5M0	
INTE56	Enable	D2h	R		R/W		R	-	R/W		
			0	0	0	0	0	0	0	0	
									T7		
	INT7 Enable		-	-	-	-	I7C	17M2	I7M1	17M0	
INTE7		D7h					R		R/W		
			-	-	-	-	0	0	0	0	
	INTTO & INTT1 Enable			INTT1(Timer1)				Timer0)		
			IT1C	IT1M2	IT1M1	IT1M0	IT0C		IT0M1	IT0M0	
INTET01		D4h	R		R/W		R	_	R/W		
			0	0	0	0	0	0	0	0	
				I	Timer3)				Timer2)		
	INTT2 & INTT3		IT3C	IT3M2	IT3M1	IT3M0	IT2C	IT2M2	IT2M1	IT2M0	
INTET23	Enable	D5h	R		R/W		R		R/W		
			0	0	0	0	0	0	0	0	
				INTT5(INTT4(Timer4)		
	INTT4 & INTT5		IT5C	IT5M2	IT5M1	IT5M0	IT4C	IT4M2		IT4M0	
INTET45	Enable	D6h	R		R/W		R		R/W		
			0	0	0	0	0	0	0	0	
				INTT7(INTT6(Timer6)		
INITETAT	INTT6 & INTT7	D	IT7C		IT7M1	IT7M0	IT6C	1	IT6M1	IT6M0	
INTET67	Enable	D7h	R		R/W	•	R		R/W	•	
			0	0	0	0	0	0	0	0	
				INTTR9	(Timer8)	•		INTTR8	(Timer8)	•	
INITETOS	INTTR8	DO	IT9C	IT9M2	IT9M1	IT9M0	IT8C	IT8M2	IT8M1	IT8M0	
INTET89	& INTTR9	D8h	R		R/W	•	R		R/W	•	
	Enable		0	0	0	0	0	0	0	0	
	11.1775.4			INTTRB		•		INTTRA	(TimerA)		
INTETAB	INTTRA & INTTRB Enable	DO!	ITBC	ITBM2	ITBM1	ITBM0	ITAC	ITAM2	ITAM1	ITAM0	
		D9h	R		R/W	•	R		R/W	•	
			0	0	0	0	0	0	0	0	
	INTTO8			INT				INT	TO8	•	
INITETOO	& INTTOA	D 4 :	ITOAC	ITOAM2	ITOAM1	ITOAM0	ITO8C	ITO8M2	ITO8M1	ITO8M0	
INTETO8A	(Overflow) Enable	DAh	R		R/W		R		R/W		
			0	0	0	0	0	0	0	0	

Note 1: If any bit of WUPMASK<WMK7:0> is set to 1, the input signal from the external INT0 pin is disabled. To use the external INT0 pin, write 00H to WUPMASK<WMK7:0> to disable the wakeup interrupt function.

Figure 3.4.7 Interrupt Priority Setup Registers (1/3)

O	NIANAT	A -1-1	7			4	_		4	
Symbol	NAME	Address	7	6 INT	5	4	3	2 INT	1	0
	INTRX0 & INTTX0 Enable	DBh	INTTX0			151/20			153/6146	
INTES0			ITX0C	ITX0M2		ITX0M0	IRX0C	IKXUM2	IRX0M1	IRX0M0
	LIIADIE		R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
	INITOVA O INITTVA		ITV40	INT		ITV4N40	IDV40	INT		IDV4N40
INTES1	INTRX1 & INTTX1 Enable	DCh	ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
	LIIANIC		R 0	0	R/W 0	0	R 0	0	R/W 0	0
			U	I U INT	_	l 0	U	INT		l U
	INTCR & INTCT		ICTC	ICTM2	ICTM1	ICTM0	ICRC	ICRM2	ICRM1	ICRM0
INTECRT	Enable	DDh	R	TOTIVIZ	R/W	1011110	R	TOTAWE	R/W	TOTAINO
			0	0	0	0	0	0	0	0
								INT	CG	
INITEGO	INTCG	הר:	-	-	-	_	ICGC	ICGM2	ICGM1	ICGM0
INTECG	Enable	DEh					R		R/W	
			-	-	-	-	0	0	0	0*
				INTS	SEE0			INTS	EM ₀	
INTESEE0	INTSEM0 &	DFh	ISEE0C	ISEE0M2	ISEE0M1	ISEE0M0	ISEM0C	ISEM0M2	ISEM0M1	ISEM0M0
INIESEEU	INTSEE0 Enable	טרוו	R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
				INTS	SET0			INTS	ER0	
INTESED0	INTSER0 &	E0h	ISET0C	ISET0M2		ISET0M0	ISER0C	ISER0M2		ISER0M0
	INTSET0 Enable	_011	R		R/W	1	R		R/W	ı
			0	0	0	0	0	0	0	0
	INTRTC Enable			Γ	<u> </u>	1		INTI		ı
INTERTC		E1h	-	-	-	-	IRTCC	IRTCM2	IRTCM1	IRTCM0
					ı	ı	R		R/W	
			-	-	-	-	0	0	0	0
	INITEDEO & INITEDOO		ICDCCC		BS2	10000140	ICDECC	INTS		IODEON40
INTESB2	INTSBE2 & INTSBS2 Enable	E2h	ISBS2C R	ISBS2M2	ISBS2M1 R/W	ISBS2M0	ISBE2C R	ISBE2M2	ISBE2M1 R/W	ISBE2M0
	LIIANIC		0	0	0	0	0	0	0	0
			U	_	BBS0		U	INTS		
	INTSBE0 & INTSBS0	_	ISBS0C	ı	ISBS0M1	ISBS0M0	ISBE0C	ISBE0M2		ISBE0M0
INTESB0	Enable	E3h	R	IODOOIVIZ	R/W	LODOGIVIO	R	IODEOIVIZ	R/W	LICDEDIVIO
	LIIADIC		0	0	0	0	0	0	0	0
			INTSBS1				INTS		<u>. </u>	
INITEOD	INTSBE1 & INTSBS1	F 41	ISBS1C	ISBS1M2		ISBS1M0	ISBE1C	ISBE1M2	ISBE1M1	ISBE1M0
INTESB1	Enable	E4h	R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
				INTTC1	(DMA1)			INTTC0	(DMA0)	
INITET CO4	INTTC0 & INTTC1	F1h	ITC1C	ITC1M2		ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
INTETC01	Enable	LIII	R		R/W		R		R/W	
	LIUDIO		0	0	0	0	0	0	0	0
					(DMA3)			INTTC2		
INTETC23	INTTC2 & INTTC3	F2h	ITC3C	ITC3M2		ITC3M0	ITC2C	ITC2M2	ITC2M1	ITC2M0
	Enable	1-711	R		R/W	1	R		R/W	ı
			0	0	0	0	0	0	0	0
				INTTC5		1		INTTC4	· /	1
INTETC45	INTTC4 & INTTC5	F3h	ITC5C	ITC5M2		ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0
	Enable	. 511	R		R/W	Ι .	R		R/W	
			0	0	0	0	0	0	0	0
	WITTO 6 2 11 : 5		ITOTO	INTTC7	r	ITO7: :-	ITOSS	INTTC6	·	ITCS: ::
INTETC67	INTTC6 & INTTC7 Enable	F4h	ITC7C	ITC7M2	ITC7M1	ITC7M0	ITC6C	ITC6M2	ITC6M1	ITC6M0
			R	_	R/W	1 -	R		R/W	
			0	0	0	0	0	0	0	0

Figure 3.4.8 Interrupt Priority Setup Registers (2/3)

Note: To modify an interrupt priority setup register, first execute the DI instruction to disable the acceptance of interrupts.

Figure 3.4.9 Interrupt Priority Setup Registers (3/3)

(2) Controlling external interrupts

Symbol	NAME	Address	7	6	5	4	3	2	1	0
			-	-	-	-	-	-	IOLE	NMIREE
									R/	W
			-	-	-	-	-	-	0	0
	Interrupt	F6H							INT0 mode	NMI mode
IIMC	Input Mode	(no RMW)							0:edge	0:Falling
	Control	Ì							mode	edge
									1:level	1:Falling &
									mode	rising
										edges
INT0 Lev	el Enable									
0	Rising edg	e detect II	NT T							
1	"H" level IN	IT.				—				
NMI risin	ig edge Enab	ole	·	·		_				
0	INT reques	st generati	on at fallin	ig edge						
1	INT reques	st generati	on at risin	g and falli					_	

Note 1: To switch the INTO pin mode from level to edge (IIMC<I0LE> from 1 to 0), first disable INTO. In that case, execute EI instruction after three cycles (after three NOP instructions are executed).

Example settings: The following shows an example of settings for switching the INT0 interrupt from level to edge mode.

DI ; Disable interrupt
LD (IIMC), XXXXXX0-B ; Switch from level to edge
LD (INTCLR), 0AH ; Clear interrupt request flag
NOP
NOP
NOP

; Enable interrupt X = Don't care "-" = No change.

Note 2: The input pulse width for an external interrupt must satisfy the specification. For details, see "4. Electrical Characteristics."

Figure 3.4.10 Controlling External Interrupts

Table 3.4.2 Settings of External Interrupt Pin Function

NMI	Interrupt	Pin name	1	Mode	Setting method
INTO					IIMC <nmiree> = 0</nmiree>
INTO INTO J	NMI	NMI	\		IIMC <nmiree> = 1</nmiree>
Migh Level Mick-clotEs = 1 Mick-clotEs = 1	INTO	INITO		Rising Edge	IIMC <i0le> = 0</i0le>
INT2	INTO	INTO	J • \[\tag{\tau} \]	High Level	IIMC <i0le> = 1</i0le>
INT3	INT1	PC0		Rising Edge	-
INT4	INT2	PC2		Rising Edge	-
No. No.	INT3	PC3		Rising Edge	-
NT5	INT4	PC5		Rising Edge	•
Falling Edge	INT5	PD0			
NTT	11410	1 00		Falling Edge	TMOD8 <cap89m1:0> = 1,0</cap89m1:0>
Falling Edge	INT6	PD1		Rising Edge	-
Falling Edge	INIT7	PD4		Rising Edge	TMODA <capabm1:0> = 0,0 or 0,1 or 1,1</capabm1:0>
Rising Edges WUPMOD Falling Edge WUPMOD Falling Edge WUPMOD Falling Edge WUPMOD WUPMOD Falling Edge WUPMOD WUPMOD WUPMOD Falling Edge WUPMOD WUPMOD Falling Edge WUPMOD WUPMOD WUPMOD Falling Edge WUPMOD WUPMOD WUPMOD Falling Edge WUPMOD 	11117	1 04			TMODA <capabm1:0> = 1,0</capabm1:0>
			\neg		WUPMOD <wmd0> = 0</wmd0>
WUINT1 PD1	WUINT0	PD0	_	Falling Edge	WUPMOD <wmd0> = 1 and WUPEDGE<wed0> = 0</wed0></wmd0>
WUINT1 PD1				Rising Edge	WUPMOD <wmd0> = 1 and WUPEDGE<wed0> = 1</wed0></wmd0>
WUINT2 PD2 Rising Edge WUPMOD Falling and Rising Edges WUPMOD WUPMOD WUPMOD Falling and Rising Edges WUPMOD WUPM			7		WUPMOD <wmd1> = 0</wmd1>
WUINT2 PD2 Falling and Rising Edges WUPMOD	WUINT1	PD1		Falling Edge	WUPMOD <wmd1> = 1 and WUPEDGE<wed1> = 0</wed1></wmd1>
WUINT2 PD2 Falling Edge WUPMOD				Rising Edge	WUPMOD <wmd1> = 1 and WUPEDGE<wed1> = 1</wed1></wmd1>
WUINT3 PD3 Rising Edge WUPMOD <wmd2> = 1 and WUPEDGE<wed2> = 1 </wed2></wmd2>			7		WUPMOD <wmd2> = 0</wmd2>
WUINT3 PD3 Falling and Rising Edges WUPMOD WUINT4 PD4 Falling Edge WUPMOD WUINT5 PD5 Falling Edge WUPMOD WUINT6 PD6 Falling Edge WUPMOD WUINT7 PD7 Falling Edge WUPMOD WUINT7 PD7 Falling Edge WUPMOD WUINT5 PD7 Falling Edge WUPMOD WUINT6 PD7 Falling Edge WUPMOD WUINT7 PD7 Falling Edge WUPMOD	WUINT2	PD2		Falling Edge	WUPMOD <wmd2> = 1 and WUPEDGE<wed2> = 0</wed2></wmd2>
WUINT3 PD3 Rising Edges WUPMOD Falling Edge WUPMOD <td></td> <td></td> <td></td> <td>Rising Edge</td> <td>WUPMOD<wmd2> = 1 and WUPEDGE<wed2> = 1</wed2></wmd2></td>				Rising Edge	WUPMOD <wmd2> = 1 and WUPEDGE<wed2> = 1</wed2></wmd2>
Rising Edge WUPMOD <wmd3> = 1 and WUPEDGE<wed3> = 1 WUINT4 PD4 Falling and Rising Edges WUPMOD<wmd4> = 0 WUPMOD<wmd4> = 1 and WUPEDGE<wed4> = 0 Rising Edge WUPMOD<wmd4> = 1 and WUPEDGE<wed4> = 1 Rising Edge WUPMOD<wmd4> = 1 and WUPEDGE<wed4> = 1 Falling and Rising Edges WUPMOD<wmd5> = 0 Falling Edge WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 0 Rising Edge WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 1 Rising Edge WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 1 WUINT6 PD6 Falling and Rising Edges WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 0 Falling Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 0 Falling Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 0 Falling and Rising Edges WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 1 Falling and Rising Edges WUPMOD<wmd7> = 0 WUNMOD<wmd7> = 0</wmd7></wmd7></wed6></wmd6></wed6></wmd6></wed6></wmd6></wed6></wmd6></wed5></wmd5></wed5></wmd5></wed5></wmd5></wmd5></wed4></wmd4></wed4></wmd4></wed4></wmd4></wmd4></wed3></wmd3>			7		WUPMOD <wmd3> = 0</wmd3>
WUINT4 PD4 Falling and Rising Edges WUPMOD WUINT5 PD5 Falling Edge WUPMOD WUINT6 PD6 Falling Edge WUPMOD WUINT7 PD7 Falling Edge WUPMOD WUINT7 PD7 Falling Edge WUPMOD	WUINT3	PD3	_	Falling Edge	WUPMOD <wmd3> = 1 and WUPEDGE<wed3> = 0</wed3></wmd3>
WUINT4 PD4 Rising Edges WUPMOD <wmd4> = 1 and WUPEDGE<wed4> = 0 Rising Edge WUPMOD<wmd4> = 1 and WUPEDGE<wed4> = 1 WUPMOD<wmd5> = 0 WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 0 Rising Edge WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 0 Rising Edge WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 1 Rising Edge WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 1 WUPMOD<wmd6> = 0 WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 0 Rising Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 0 Rising Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 1 WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 1 WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 1 Falling and Rising Edges WUPMOD<wmd7> = 0 WUPMOD<wmd7> = 0 WUPMOD<wmd7> = 1 and WUPEDGE<wed7> = 0</wed7></wmd7></wmd7></wmd7></wed6></wmd6></wed6></wmd6></wed6></wmd6></wed6></wmd6></wed6></wmd6></wmd6></wed5></wmd5></wed5></wmd5></wed5></wmd5></wed5></wmd5></wmd5></wed4></wmd4></wed4></wmd4>				Rising Edge	WUPMOD <wmd3> = 1 and WUPEDGE<wed3> = 1</wed3></wmd3>
Rising Edge WUPMOD <wmd4> = 1 and WUPEDGE<wed4> = 1 WUPMOD<wmd5> = 0 Falling Edge WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 0 Falling Edge WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 0 Rising Edge WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 1 WUPMOD<wmd6> = 1 and WUPEDGE<wed5> = 1 WUPMOD<wmd6> = 0 Falling Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 0 Falling Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 0 Rising Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 1 WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 1 WUPMOD<wmd7> = 0 Falling Edge WUPMOD<wmd7> = 1 and WUPEDGE<wed7> = 0</wed7></wmd7></wmd7></wed6></wmd6></wed6></wmd6></wed6></wmd6></wed6></wmd6></wmd6></wed5></wmd6></wed5></wmd5></wed5></wmd5></wed5></wmd5></wmd5></wed4></wmd4>			$\neg \downarrow \neg$		WUPMOD <wmd4> = 0</wmd4>
WUINT5 PD5 Falling and Rising Edges WUPMOD <wmd5> = 1 and WUPEDGE<wed5> = 0 WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 1 WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 1 WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 1 WUPMOD<wmd6> = 0 Falling Edges WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 0 Falling Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 0 WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 1 Falling and Rising Edges WUPMOD<wmd7> = 0 WUPMOD<wmd7> = 0 WUPMOD<wmd7> = 1 and WUPEDGE<wed7> = 0</wed7></wmd7></wmd7></wmd7></wed6></wmd6></wed6></wmd6></wed6></wmd6></wmd6></wed6></wmd6></wed5></wmd5></wed5></wmd5></wed5></wmd5>	WUINT4	PD4		Falling Edge	WUPMOD <wmd4> = 1 and WUPEDGE<wed4> = 0</wed4></wmd4>
WUINT5 PD5 Rising Edges WUPMOD <wmd5> = 1 and WUPEDGE<wed5> = 0 Rising Edge WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 1 WUPMOD<wmd6> = 1 and WUPEDGE<wed5> = 1 WUPMOD<wmd6> = 0 Falling Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 0 Rising Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 0 Rising Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 1 Falling and Rising Edges WUPMOD<wmd7> = 0 WUPMOD<wmd7> = 0 WUPMOD<wmd7> = 1 and WUPEDGE<wed7> = 0</wed7></wmd7></wmd7></wmd7></wed6></wmd6></wed6></wmd6></wed6></wmd6></wmd6></wed5></wmd6></wed5></wmd5></wed5></wmd5>					WUPMOD <wmd4> = 1 and WUPEDGE<wed4> = 1</wed4></wmd4>
Rising Edge WUPMOD WUINT6 PD6 Rising Edge WUPMOD WUINT6 PD6 Rising Edge WUPMOD WUNT6 PD7 Rising Edge WUPMOD <td></td> <td></td> <td></td> <td></td> <td>WUPMOD<wmd5> = 0</wmd5></td>					WUPMOD <wmd5> = 0</wmd5>
WUINT6 PD6 Falling and Rising Edges WUPMOD <wmd6> = 0 WUPMOD<wed6> = 1 and WUPEDGE<wed6> = 0 Rising Edge WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 1 WUPMOD<wmd6> = 1 and WUPEDGE<wed6> = 1 WUPMOD<wmd7> = 0 Falling and Rising Edges WUPMOD<wmd7> = 1 and WUPEDGE<wed7> = 0</wed7></wmd7></wmd7></wed6></wmd6></wed6></wmd6></wed6></wed6></wmd6>	WUINT5	PD5	\neg	Falling Edge	WUPMOD <wmd5> = 1 and WUPEDGE<wed5> = 0</wed5></wmd5>
WUINT6 PD6 Rising Edges WUPMOD WUINT6 PD6 Falling Edge WUPMOD WUPMOD <td></td> <td></td> <td></td> <td>Rising Edge</td> <td>WUPMOD<wmd5> = 1 and WUPEDGE<wed5> = 1</wed5></wmd5></td>				Rising Edge	WUPMOD <wmd5> = 1 and WUPEDGE<wed5> = 1</wed5></wmd5>
Rising Edge WUPMOD <wmd6> = 1 and WUPEDGE<wed6> = 1 WUPMOD<wmd7> = 0 Falling Edge WUPMOD<wmd7> = 1 and WUPEDGE<wed7> = 0 Falling Edge WUPMOD<wmd7> = 1 and WUPEDGE<wed7> = 0</wed7></wmd7></wed7></wmd7></wmd7></wed6></wmd6>					WUPMOD <wmd6> = 0</wmd6>
WUINT7 PD7 Falling Edges WUPMOD <wmd7> = 0 Falling Edge WUPMOD<wmd7> = 1 and WUPEDGE<wed7> = 0</wed7></wmd7></wmd7>	WUINT6	PD6		Falling Edge	WUPMOD <wmd6> = 1 and WUPEDGE<wed6> = 0</wed6></wmd6>
WUINT7 PD7 Rising Edges WUPMOD <wmd7> = 0 Falling Edge WUPMOD<wmd7> = 1 and WUPEDGE<wed7> = 0</wed7></wmd7></wmd7>				Rising Edge	WUPMOD <wmd6> = 1 and WUPEDGE<wed6> = 1</wed6></wmd6>
WUINT7 PD7 Falling Edge WUPMOD <wmd7> = 1 and WUPEDGE<wed7> = 0</wed7></wmd7>			\		WUPMOD <wmd7> = 0</wmd7>
	WUINT7	PD7			WUPMOD <wmd7> = 1 and WUPEDGE<wed7> = 0</wed7></wmd7>
				Rising Edge	WUPMOD <wmd7> = 1 and WUPEDGE<wed7> = 1</wed7></wmd7>

(3) Interrupt request flag register

The interrupt request flag can be cleared by writing a micro DMA start vector, listed in Table 3.4.1, to the INTCLR register.

To clear the INTO interrupt flag, for example, perform the following register operation after the DI instruction:

INTCLR ← 0AH; Clear INT0 interrupt request flag

Symbol	NAME	Address	7	6	5	4	3	2	1	0		
			-	_	_	_	_	_	_	-		
INITCI D	Interrupt INTCLR Clear	F8H	W									
INTOLIX	control	(no RMW)	0	0	0	0	0	0	0	0		
	COTTATO		Interrupt Vector									

Figure 3.4.11 Interrupt Request Flag Register

(4) Micro DMA start vector registers

The micro DMA start vector registers are used to select the interrupt sources to which micro DMA processing is assigned. Interrupt sources having micro DMA start vectors that match the vector values in the registers are assigned as micro DMA start sources.

When the micro DMA transfer counter becomes 0, the interrupt controller is notified of a micro DMA transfer completion interrupt for that channel and the corresponding micro DMA start vector register is cleared, causing the micro DMA start source for the channel to be cleared. To continue micro DMA processing, therefore, it is necessary to set the micro DMA start vector register again while the micro DMA transfer completion interrupt is handled.

If the same vector is set in micro DMA start vector registers for more than one channel, smaller channels take precedence.

If the same vector is set in micro DMA start vector register for two channels, therefore, micro DMA for the channel having the smaller number is performed until the micro DMA transfer completion interrupt is issued, after which micro DMA is started for the larger-number channel unless the micro DMA start vector for the smaller-number channel is set again.

Symbol	NAME	Address	7	6	5	4	3	2	1	0
	DIAAA						DMA0 Sta	art Vector		
DMAOV	DMA0	100h	-	-	DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	Start Vector	(no RMW)					R/	W		
	Vector		-	-	0	0	0	0	0	0
	DMAA						DMA1 Sta	art Vector		
DMA1V	DMA1 Start	101h	-	-	DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DIVIATV	Vector	(no RMW)					R/	W		
	VCCtO		-	ı	0	0	0	0	0	0
	DMA2						DMA2 Sta	art Vector		
DMAOV/	Start	102h	-	-	DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	Vector	(no RMW)					R/	W		
	VCOLOI		-	ı	0	0	0	0	0	0
	DMAG						DMA3 Sta	art Vector		
DMA3V	DMA3 Start	103h	-	-	DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DIVIASV	Vector	(no RMW)					R/	W		
	VCOLOI		-	-	0	0	0	0	0	0
	DMAA						DMA4 Sta	art Vector		
DMA4V	DMA4 Start	104h	-	-	DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0
DIVIA	Vector	(no RMW)					R/	W		
	700101		-	-	0	0	0	0	0	0
	DMA5						DMA5 Sta	art Vector		
DMA5V	Start	105h	-	-	DMA5V5	DMA5V4	DMA5V3	DMA5V2	DMA5V1	DMA5V0
DIVIASV	Vector	(no RMW)					R/	W		
	700101		-	-	0	0	0	0	0	0
	DMA6						DMA6 Sta	art Vector		
DMA6V	Start	106h	-	-	DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0
DIVIAOV	Vector	(no RMW)					R/	W		
	700.01		-	-	0	0	0	0	0	0
	DMAZ	407					DMA7 Sta	art Vector		
DMA7\/	DMA7	107h	-	-	DMA7V5	DMA7V4	DMA7V3	DMA7V2	DMA7V1	DMA7V0
DMA7V Start	Vector	(no RMW)					R/	W		
	. 00.0.		-	-	0	0	0	0	0	0

Figure 3.4.12 Micro DMA Start Vector Registers

(5) Micro DMA burst specification

A burst specification allows data to be transferred continuously with a single micro DMA start until the transfer count register becomes zero. A burst can be specified by writing a 1 to the bit corresponding to the micro DMA channel in the DMAB register.

Symbol	NAME	Address	7	6	5	4	3	2	1	0
	DMA	400h	DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0
DMAB	DMA Burst	108h				R/	W			
	Duist	(no RMW)	0	0	0	0	0	0	0	0

Figure 3.4.13 Micro DMA Burst Specification

(6) Precautions

This CPU consists of an instruction execution unit and a bus interface unit. If an instruction that clears the interrupt request flag for the interrupt controller is executed immediately before a corresponding interrupt occurs, the CPU may execute the instruction clearing the interrupt request flag(Note) before it reads the interrupt vector after accepting the interrupt. In such a case, the CPU reads the source lost vector "0004H" (shared with SWI1) and then reads the interrupt vector at address FFFF04H.

To avoid the above situation, any instruction that clears an interrupt request flag should be placed after the DI instruction. To change the interrupt request level to 0, first clear the corresponding interrupt request using the INTCLR instruction before setting the interrupt request level to 0.

In addition, note that the following two interrupts are different from other interrupt circuits:

INTO Level Mode	In Level Mode INT0 is not an edge-triggered interrupt. Hence, in Level Mode the interrupt request flip-flop for INT0 does not function. The peripheral interrupt request passes through the S input of the flip-flop and becomes the Q output. If the interrupt input mode is changed from Edge Mode to Level Mode, the interrupt request flag is cleared automatically. If the CPU enters the interrupt response sequence as a result of INT0 going from 0 to 1, INT0 must then be held at 1 until the interrupt response sequence has been completed. If INT0 is set to Level Mode so as to release a Halt state, INT0 must be held at 1 from the time INT0 changes from 0 to 1 until the Halt state is released. (Hence, it is necessary to ensure that input noise is not interpreted as a 0, causing INT0 to revert to 0 before the Halt state has been released.) When the mode changes from Level Mode to Edge Mode, interrupt request flags which were set in Level Mode will not be cleared. Interrupt request flags must be cleared using the following sequence. Also EI instruction should be execuse after waiting 3-cycle. DI LD (IIMC), 00H ; Switches from level to edge. LD (INTCLR), 0AH ; Clears interrupt request flag. NOP ; Wait 3-cycle NOP NOP EI					
INTRX	The interrupt request flip-flop can only be cleared by a Reset or by reading the Serial Channel Receive Buffer. It cannot be cleared by an instruction.					

Note: The following instructions and pin state change are also equivalent to an instruction that clears an interrupt request flag:

INTO: Instruction that switches to level mode after an interrupt request is issued in edge mode Change in pin input state (High to Low) after an interrupt request is issued in level mode

INTRX: Instruction that reads the receive buffer

3.4.4 Interrupt mask registers

The TMP92CD54I contains interrupt mask registers. Unlike the interrupt priority setup registers, the interrupt mask registers only enable or disable interrupt handling. If an interrupt source is disabled in the interrupt mask register, interrupts for that source will not occur even if it is enabled in the interrupt priority setup register. Interrupt mask registers can disable more than one interrupt source simultaneously.

Upon a reset, all bits in the interrupt mask registers are initialized to 1 (enable interrupts). To disable interrupts using the interrupt mask registers, it is necessary to write a 0 to the bit corresponding to the interrupt source.

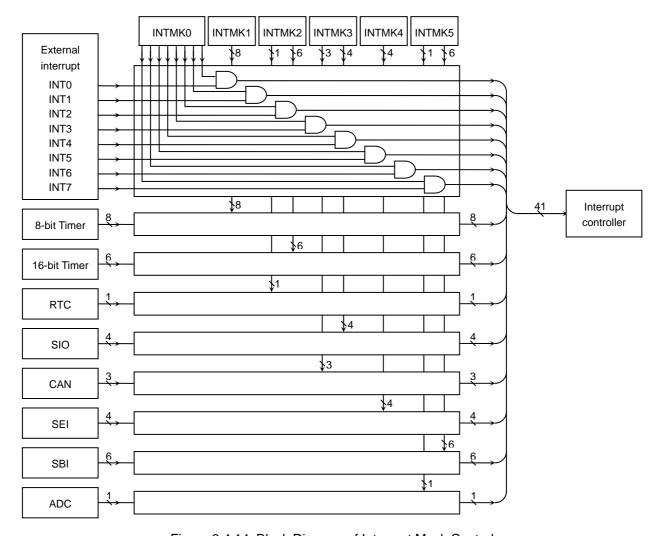


Figure 3.4.14 Block Diagram of Interrupt Mask Control

Symbol	Name	Address	7	6	5	4	3	2	1	0
			MKI7	MKI6	MKI5	MKI4	MKI3	MKI2	MKI1	MKI0
	Interrupt			•		R	W	•		•
INTMK0	Mask	E5H	1	1	1	1	1	1	1	1
	Control 0		INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0
			0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask
			1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable
			MKIT7	MKIT6	MKIT5	MKIT4	MKIT3	MKIT2	MKIT1	MKIT0
	Interrupt			1	I		/W	1	1	1
INTMK1	Mask	E6H	1	1	1	1	1	1	1	1
	Control 1		INTT7	INTT6	INTT5	INTT4	INTT3	INTT2	INTT1	INTT0
			0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask
			1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable MKITR8
			_	MKIRTC	MKITOA	MKITO8	MKITRB	MKITRA	MKITR9	MKITK8
	Interrupt						R/W		1 .	
INTMK2	Mask	E7H	_	1 INTRTC	1 INTTOA	1 INTTO8	1 INTTRB	1 INTTRA	1 INTTR9	1 INTTR8
	Control 2			0: Mask						
				1: Enable						
			=	MKICG	MKICT	MKICR	MKITX1	MKIRX1	MKITX0	MKIRX0
	l t t						R/W	•		•
INTMK3	Interrupt Mask	E8H	-	1	1	1	1	1	1	1
ii v i i vii vo	Control 3	Loii		INTCG	INTCT	INTCR	INTTX1	INTRX1	INTTX0	INTRX0
	oona o			0: Mask						
				1: Enable						
			=	=	=	=	MKISET0	MKISER0	MKISEE0	MKISEM0
	Interrupt							R	W	
INTMK4	Mask	E9H	_	_	-	-	1	1	1	1
II VII IVII X T	Control 4	Laii					INTSET	INTSER	INTSEE	INTSEM
	OUNTOI 4	roi 4					0: Mask	0: Mask	0: Mask	0: Mask
							1: Enable	1: Enable	1: Enable	1: Enable
			-	MKISBS2	MKISBE2	MKIAD	MKISBS1	MKISBE1	MKISBS0	MKISBE0
	Interrupt						R/W			
INTMK5	•	EAH	-	1	1	1	1	1	1	1
				INTSBS2	INTSBE2	INTAD	INTSBS1	INTSBE1	INTSBS0	INTSBE0
		ontrol 5		0: Mask						
				1: Enable						

Maskable bit for INTAD request
 INTAD is disabled
 INTAD is enabled

Note: Ports D0, D1, and D4 are assigned two interrupt sources each (PD0: INT5/WUINT0, PD1: INT6/WUINT1, PD4: INT7/WUINT4). If both interrupt requests are issued when interrupts are enabled, both are handled. To use only either of the two interrupt sources, disable (mask) the other interrupt source using the interrupt mask register or wakeup mask register.

Figure 3.4.15 Interrupt Mask Registers

Example register settings:

To change the INTO interrupt priority level from 3 to 7, set as follows:

DI ; Disable interrupt LD (INTMK0), 00H ; Disable INT0 LD (INTE0AD), 03H ; Set INT0 interrupt level to 3 LD (INTCLR), 0AH ; Clear INT0 interrupt request flag NOP ; Wait for 3 cycles NOP NOP LD (INTMK0), 01H ; Enable INT0 ; Enable interrupt ΕI ; Programmed operation DI ; Disable interrupt LD (INTMK0), 00H ; Disable INT0 LD (INTE0AD), 07H ; Set INT0 interrupt level to 7 ; Clear INT0 interrupt request flag LD (INTCLR), 0AH NOP ; Wait for 3 cycles NOP NOP LD (INTMK0), 01H ; Enable INT0 ; Enable interrupt ΕI

3.4.5 Wakeup interrupt controller

The TMP92CD54I has eight wakeup pins (WUINT0-7). Input signals to those pins can be used to recover from the halt state. These pins are shared with port D (PD0-7).

The input signal attribute can be set to rising edge, falling edge or rising/falling edges, separately for each pin. The signals can also be masked on a pin-by-pin basis.

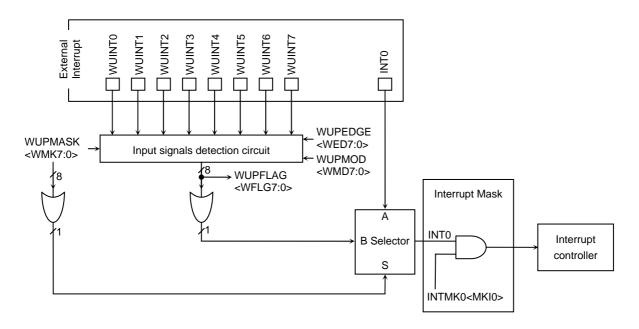


Figure 3.4.16 Block Diagram of ON/OFF Logic

The wakeup interrupt controller internally sends all interrupt signals on WUINT0-7 to INT0. Any WUINTn request that has been issued causes an INT0 interrupt to be issued. Like INT0 interrupt request from external pins, INT0 interrupt requests from the WUINTn pin are also enabled or disabled using the interrupt priority setup and interrupt mask registers.

A write of 1 to any bit in the WUPMASK register causes INT0 to be placed in wakeup interrupt mode. In this mode, the WUINTn signal for which a 1 is written in the WUPMASK register becomes valid and the input signal from the external INT0 pin is invalidated. To use the external INT0 pin, set the WUPMASK register to 00H.

The edge selection for the WUINTn signal can be set to rising edge, falling edge or rising/falling edges using the WUPMOD and WUPEDGE registers.

Reading the WUPFLAG register can determine whether a WUINTn interrupt request has been issued.

Wakeup FLAG status Register

WUPFLAG (00ECH)

	7	6	5	4	3	2	1	0
Symbol	WFLG7	WFLG6	WFLG5	WFLG4	WFLG3	WFLG2	WFLG1	WFLG0
Read/Write				R/	W			
After reset	0	0	0	0	0	0	0	0
Function	WUINT7 0:NO request 1: request	WUINT6 0:NO request 1: request	WUINT5 0:NO request 1: request	WUINT4 0:NO request 1: request	WUINT3 0:NO request 1: request	WUINT2 0:NO request 1: request	WUINT1 0:NO request 1: request	WUINT0 0:NO request 1: request

Wakeup Mode Control Register

	7	6	5	4	3	2	1	0		
Symbol	WMD7	WMD6	WMD 5	WMD4	WMD3	WMD2	WMD1	WMD0		
Read/Write		R/W								
After reset	0	0	0	0	0	0	0	0		
	WUINT7	WUINT6	WUINT5	WUINT4	WUINT3	WUINT2	WUINT1	WUINT0		
Function	0:Falling & Rising Edge									
	1:Falling or Rising Edge									

WUPMOD (00EDH)

Wakeup Edge Select Register

	7	6	5	4	3	2	1	0
Symbol	WED7	WED6	WED 5	WED4	WED3	WED2	WED1	WED0
Read/Write				R/	W			
After reset	0	0	0	0	0	0	0	0
	WUINT7	WUINT6	WUINT5	WUINT4	WUINT3	WUINT2	WUINT1	WUINT0
Function	0:Falling Edge 1:Rising							
	Edge							

WUPEDGE (00EEH)

> Note: The WUPEDGE<WED7:0> setting becomes valid when a 1 is written to the corresponding bit in WUPMOD<WMD7:0>.

> > Wakeup Mask Register

WUPMASK (00EFH)

	7	6	5	4	3	2	1	0
Symbol	WMK7	WMK6	WMK5	WMK4	WMK3	WMK2	WMK1	WMK0
Read/Write			_	R/	W			
After reset	0	0	0	0	0	0	0	0
function	WUINT7 0: Disable 1: Enable	WUINT6 0: Disable 1: Enable	WUINT5 0: Disable 1: Enable	WUINT4 0: Disable 1: Enable	WUINT3 0: Disable 1: Enable	WUINT2 0: Disable 1: Enable	WUINT1 0: Disable 1: Enable	WUINT0 0: Disable 1: Enable

► Wakeup interrupt mask control

0 WUINTn Disabled (MASK)

1 WUINTn Enabled

Ports D0, D1, and D4 are assigned two interrupt sources each (PD0: INT5/WUINT0, PD1: Note1: INT6/WUINT1, PD4: INT7/WUINT4). If both interrupt requests are issued when interrupts are enabled, both are handled. To use only either of the two interrupt sources, disable (mask) the other interrupt source using the interrupt mask register or wakeup mask register. The input signal to port D is detected as an interrupt regardless of whether port D is set to input/output port, INTn, or WUINTn. For details, see the port block diagram.

If any bit of WUPMASK<WMK7:0> is set to 1, the input signal from the external INT0 pin is Note2: disabled. To use the external INTO pin, write 00H to WUPMASK<WMK7:0> to disable the wakeup interrupt function.

Figure 3.4.17 Wakeup Registers

Example register settings:

The following example sets WUINT0 to rising edge and interrupt level 3:

DI ; Disable interrupt handling

LD (INTMK0), 00H ; Disable INT0 LD (PDFC), 00H ; Set PD0 to port LD (PDCR), 00H ; Set PD0 to input mode

LD (WUPMOD), 01H ; Set WUINT0 to "falling or rising edge"

LD (WUPEDGE), 01H ; Set WUINT0 to "rising edge"

LD (WUPFLAG), 00H ; Clear WUINT0 flag

LD (INTE0AD), 03H ; Set INT0 interrupt level (as WUINT0) to 3

LD (INTCLR), 0AH ; Clear INT0 interrupt request flag

NOP ; Wait for 3 cycles

NOP NOP

LD (INTMK0), 01H ; Enable WUINT0

El ; Enable interrupt handling

3.5 Port Functions

The TMP92CD54I has input/output ports listed in Table 3.5.1. These port pins are shared pins; they are not only used for general-purpose input/output port functions but also used as internal CPU or I/O function pins.

Table 3.5.1 Port functions

Port Name	Pin Name	Number of Pins	I/O	I/O Setting	Pin Name for built-in function
Port 0	P00 to P07	8	I/O	Bit	D0 to D7
Port 4	P40 to P47	8	I/O	Bit	A0 to A7
Port 7	P70	1	I/O	Bit	RD
	P71	1	I/O	Bit	WR
	P72	1	I/O	Bit	SI2/SCL2
	P73	1	I/O	Bit	cs
	P74	1	I/O	Bit	
	P75	1	I/O	Bit	WAIT
Port C	PC0	1	I/O	Bit	TI0 / INT1
	PC1	1	I/O	Bit	TO1
	PC2	1	I/O	Bit	TO3 / INT2
	PC3	1	I/O	Bit	TI4 / INT3
	PC4	1	I/O	Bit	TO5
	PC5	1	I/O	Bit	TO7 / INT4
Port D	PD0	1	I/O	Bit	TI8 / INT5 / A16 / WUINT0
	PD1	1	I/O	Bit	TI9 / INT6 / A17 / WUINT1
	PD2	1	I/O	Bit	TO8 / A18 / WUINT2
	PD3	1	I/O	Bit	TO9 / A19 / WUINT3
	PD4	1	I/O	Bit	TIA / INT7 / A20 / WUINT4
	PD5	1	I/O	Bit	TIB / A21 / WUINT5
	PD6	1	I/O	Bit	TOA / A22 / WUINT6
	PD7	1	I/O	Bit	TOB / A23 / WUINT7
Port F	PF0	1	I/O	Bit	TXD0
	PF1	1	I/O	Bit	RXD0
	PF2	1	I/O	Bit	SCLK0 / CTS0
	PF3	1	I/O	Bit	TXD1
	PF4	1	I/O	Bit	RXD1
	PF5	1	I/O	Bit	SCLK1 / CTS1
	PF6	1	I/O	Bit	TX
	PF7	1	I/O	Bit	RX
Port G	PG0 to PG7	8	Input	(Fixed)	AN0 to AN7
Port L	PL0 to PL3	4	Input	(Fixed)	AN8 to AN11
Port M	PM0	1	I/O	Bit	SS /A8
	PM1	1	I/O	Bit	MOSI / A9
	PM2	1	I/O	Bit	MISO / A10
	PM3	1	I/O	Bit	SECLK / A11
	PM4	1	I/O	Bit	SCK2
Port N	PN0	1	I/O	Bit	SCK0
	PN1	1	I/O	Bit	SO0/SDA0
	PN2	1	I/O	Bit	SIO / SCLO
	PN3	1	I/O	Bit	SCK1 / A12
	PN4	1	I/O	Bit	SO1 / SDA1 / A13
	PN5	1	I/O	Bit	SI1 / SCL1 / A14
	PN6	1	I/O	Bit	SO2 / SDA2 / A15

3.5.1 Port 0 (P00-P07/D0-D7)

Port 0 is an 8-bit general-purpose input/output port for which each bit can be individually specified as input or output. The control register, P0CR, and function register, P0FC, are used to specify input or output.

In addition to the general-purpose input/output port function, the pins can also function as a data bus (D0-D7).

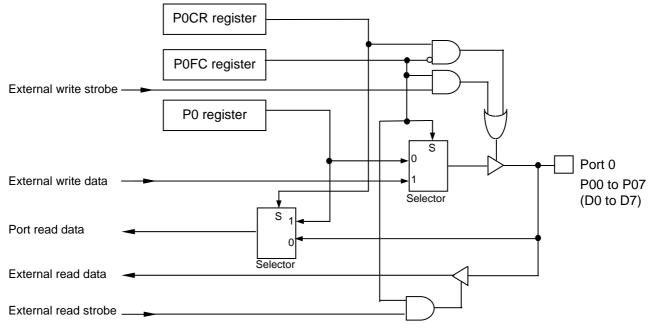


Figure 3.5.1 Port0

Table 3.5.2 Port0 Registers

						- 5							
Symbol	Name	Address	7	6	5	4	3	2	1	0			
			P07	P06	P05	P04	P03	P02	P01	P00			
P0	PORT0	00H				R/	W			_			
FU	FORTO	0011	0	0	0	0	0	0	0	0			
				Input/Output									
	PORT0 Control	02H (no RMW)	P07C	P06C	P05C	P04C	P03C	P02C	P01C	P00C			
P0CR				W									
FUCK	Register		0	0	0	0	0	0	0	0			
	register				_	0:Input	1:Output	_		_			
	PORT0		I	I	=	ı	-	=	=	P0F			
P0FC	Function	ion (no RMW)								W			
1 01 0			ı	ı	=	ı	=	=	=	0			
	Register			0:PORT 1:Data bus(D7 to D0)									

P0FC <p0f> P0CR<p0xc></p0xc></p0f>	0	1
0	Input port	Data bus (D0 to D7)
1	Output port	Data bus (D0 to D7)

3.5.2 Port 4 (P40-P47)

Port 4 is an 8-bit general-purpose input/output port for which each bit can be individually specified as input or output. The control register, P4CR, and function register, P4FC, are used to specify input or output.

In addition to the general-purpose input/output port function, the pins can also function as an address bus (A0-A7).

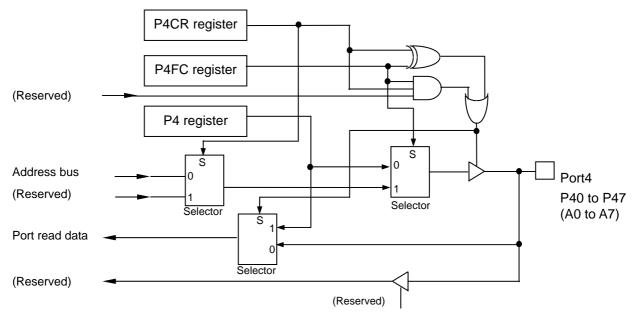


Figure 3.5.2 Port4

Table 3.5.3 Port4 Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0				
			P47	P46	P45	P44	P43	P42	P41	P40				
P4	PORT4	10H		R/W										
F4	FOR14	1011	0	0	0	0	0	0	0	0				
				Input/Output										
	PORT4 Control Register	12H (no RMW)	P47C	P46C	P45C	P44C	P43C	P42C	P41C	P40C				
P4CR			W											
F4CK			0	0	0	0	0	0	0	0				
	register		0:Input 1:Output											
	DODT4		P47F	P46F	P45F	P44F	P43F	P42F	P41F	P40F				
DAEC	PORT4 Function	13H				V	V	_	_					
-		(no RMW)	0	0	0	0	0	0	0	0				
!	Register		0:PORT 1:Address bus(A0 to A7)											

P4FC <p4xf> P4CR<p4xc></p4xc></p4xf>	0	1
0	Input port	Address bus (A0 to A7)
1	Output port	Don't use this setting.

3.5.3 Port 7 (P70-P75)

Port 7 is an 6-bit general-purpose input/output port for which each bit can be individually specified as input or output. The control register, P7CR, and function register, P7FC, are used to specify input or output.

In addition to the general-purpose input/output port function, pins 70, 71 and 73 can also function as read, write strobe and chip select signals respectively, pin 72 as an I/O pin for the clock synchronous 8-bit SIO or the serial bus interface that operates as an I²C bus, and pin 75 as a wait input.

The SBI data input (SIO), SI2, and SBI clock input/output (I²C), SCL2, are always input-enabled.

A reset initializes port pins 70, 71, 73 and 74 to output port mode and pins 72 and 75 to input port mode.

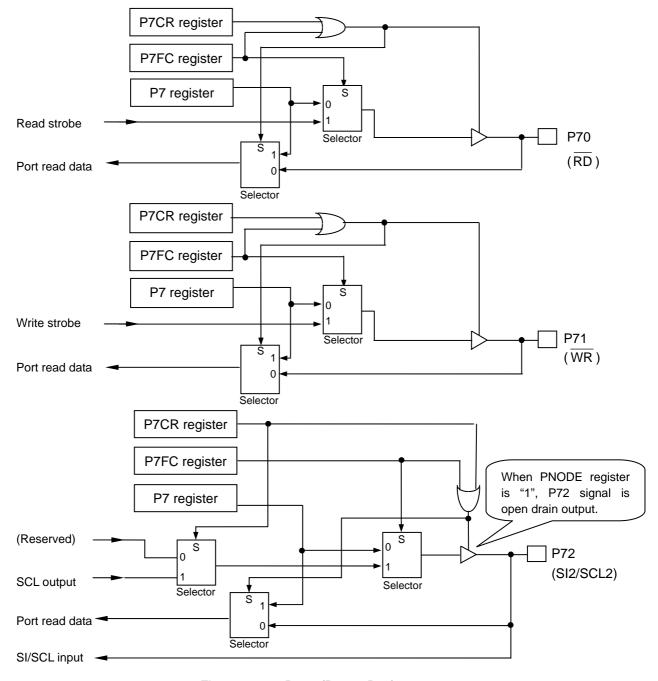


Figure 3.5.3 Port7 (P70 to P72)

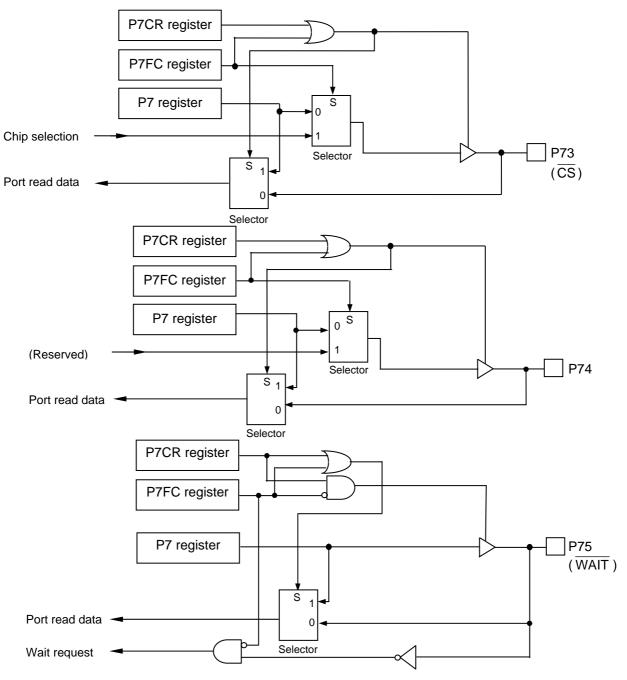


Figure 3.5.4 Port7 (P73 to P75)

Table 3.5.4 Port7 Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			Ī	-	P75	P74	P73	P72	P71	P70	
P7	PORT7	1CH					R/	W			
' '	1 OK17	1011	I	=	0	1	1	1	1	1	
					Input/Output						
	DODT7		I	=	P75C	P74C	P73C	P72C	P71C	P70C	
PORT7 P7CR Control	1EH			W							
FICK	Register	(no RMW)	I	=	0	1	1	0	1	1	
	register					0:Input 1:Output					
			I	=	P75F	P74F	P73F	P72F	P71F	P70F	
	PORT7						V	٧			
P7FC	Function	1FH	I	=	0	0	0	0	0	0	
1710	Register	(no RMW)			0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	
	riogistor				1: WAIT		1: CS	1:SI2	1: WR	1: RD	
								SCL2 ^{Note1}			

P7CR	P7FC	_	-	P75	P74	P73	P72	P71	P70	
0	0				Input Port		Input Port, SI2	Input	Input Port	
1	0			Output Port						
1	1			WAIT	Don't use this setting.	cs	Don't use this setting.	WR	RD	
0	1			WAIT	Don't use this setting.	CS	SI2, SCL2	WR	RD	

Note: The SCL2 (P72) pin (clock input/output pin for I^2C mode) can be set to open-drain by setting PNODE<0DE72> to 1.

3.5.4 Port C (PC0-PC5)

Port C is an 6-bit general-purpose input/output port for which each bit can be individually specified as input or output. The control register, PCCR, and function register, PCFC, are used to specify input or output.

In addition to the general-purpose input/output port function, the pins can also function as 8-bit timer input/output or interrupt input.

Timer inputs TI0 and TI4 are always input-enabled except when in IDLE3 or STOP mode.

A reset initializes port C to input port mode.

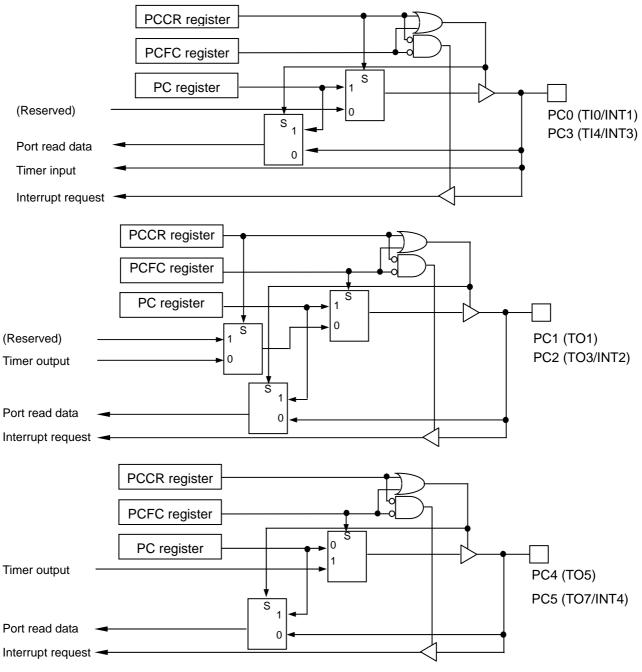


Figure 3.5.5 PortC (PC0 to PC5)

Table 3.5.5 PortC Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0		
			Ī	_	PC5	PC4	PC3	PC2	PC1	PC0		
PC	PORTC	30H					R/	W				
	TORTO	3011	I	ı	0	0	0	0	0	0		
					Input/Output							
	DODTO		I	ı	PC5C	PC4C	PC3C	PC2C	PC1C	PC0C		
PORTC PCCR Control	32H			W								
FUCK	Register	(no RMW)	I	ı	0	0	0	0	0	0		
					0:Input 1:Output							
			I	ı	PC5F	PC4F	PC3F	PC2F	PC1F	PC0F		
	PORTC						V	٧				
PCFC	Function	33H	I	ı	0	0	0	0	0	0		
1 51 6	Register	(no RMW)			0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT		
	rtogistor				INT4	1:TO5	INT3	INT2	1:TO1	INT1		
					1:TO7		TI4	1:TO3		TI0		

PCCR	PCFC	_	_	PC5	PC4	PC3	PC2	PC1	PC0
0	0			Input Port, INT4	Input Port	Input Port, INT3, TI4	Input Port, INT2	Input Port	Input Port, INT1, TI0
1	0			Output Port					
1	1			TO7	TO5	Output Port	TO3	TO1	Output Port
0	1			TO7 TO5 Do not use this setting					

Note: Do not set <PC3C>:<PC3F>, <PC2C>:<PC2F>, <PC1C>:<PC1F>, and <PC0C>:<PC0F> to "0:1".

3.5.5 Port D (PD0-PD7)

Port D is an 8-bit general-purpose input/output port for which each bit can be individually specified as input or output. The control register, PDCR, and function register, PDFC, are used to specify input or output.

In addition to the general-purpose input/output port function, the pins can also function as 16-bit timer input/output or interrupt input.

Timer inputs TI8, TI9, TIA, TIB and external interrupts INT5, INT6, and INT7 are always input-enabled except when in IDLE3 or STOP mode. Wakeup interrupts WUINT0 to WUINT7 are always input-enabled.

A reset initializes port D to input port mode.

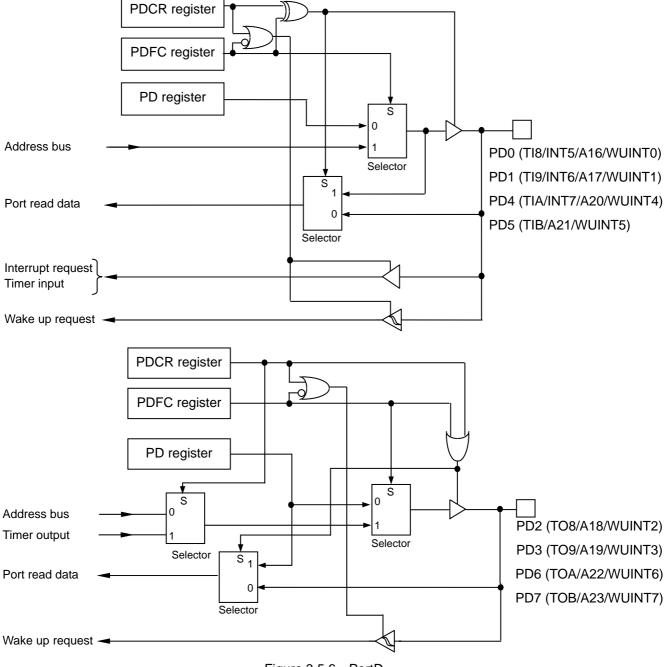


Table 3.5.6 PortD Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0		
			PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0		
PD	PORTD	34H		•	•	R/	W	•		•		
FD	PORTD	3411	0	0	0	0	0	0	0	0		
			Input/Output									
	PORTD		PD7C	PD6C	PD5C	PD4C	PD3C	PD2C	PD1C	PD0C		
PDCR	_	trol (no RMW)		W								
PDCR			0	0	0	0	0	0	0	0		
						0:Input	1:Output					
			PD7F	PD6F	PD5F	PD4F	PD3F	PD2F	PD1F	PD0F		
			W									
			0	0	0	0	0	0	0	0		
	PORTD	37H	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT		
PDFC	Function	(no RMW)	WUINT	WUINT	TIB	TIA	WUINT	WUINT	TI9	TI8		
	Register	,	7	6	WUINT	INT7	3	2	INT6	INT5		
			1:TOB	1:TOA	5	WUINT	1:TO9	1:TO8	WUINT	WUINT		
			A23	A22	1:A21	4	A19	A18	1	0		
						1:A20			1:A17	1: A16		

PDCR	PDFC	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
0	0	Input Port, WUINT7	Input Port, WUINT6	Input Port, TIB, WUINT5	Input Port, INT7, TIA, WUINT4	Input Port, WUINT3	Input Port, WUINT2	Input Port, INT6, TI9, WUINT1	Input Port, INT5, TI8, WUINT0
1	0		_		Outpu	t Port		_	_
1	1	ТОВ	TOA,	TIB, WUINT5	TIA, INT7, WUINT4	ТО9	TO8	TI9, INT6, WUINT1	TI8, INT5, WUINT0
0	1	A23	A22	A21	A20	A19	A18	A17	A16

Note 1: Ports D0, D1, and D4 are assigned two interrupt sources each (PD0: INT5/WUINT0, PD1: INT6/WUINT1, PD4: INT7/WUINT4). If both interrupt requests are issued when these interrupts are enabled, both are handled. To use only either of the two interrupt sources, disable (mask) the other interrupt source using the interrupt mask register or wakeup mask register.

Note 2: To use any pin shared with an interrupt input as an input/output port pin, ensure that interrupt requests are disabled before setting the PDFC and PDCR registers.

3.5.6 Port F (PF0-PF7)

Port F is an 8-bit general-purpose input/output port for which each bit can be individually specified as input or output. The control register, PFCR, and function register, PFFC, are used to specify input or output.

In addition to the general-purpose input/output port function, the pins can also function as serial interface and controller area network (CAN) pins.

Serial receive data pins RXD0 and RXD1, CAN receive data pin RX, clear-to-send pins CTS0 and CTS1, and serial clock pins SCLK0 and SCLK1 are always input-enabled except when in IDLE3 or STOP mode.

A reset initializes port F to input port mode.

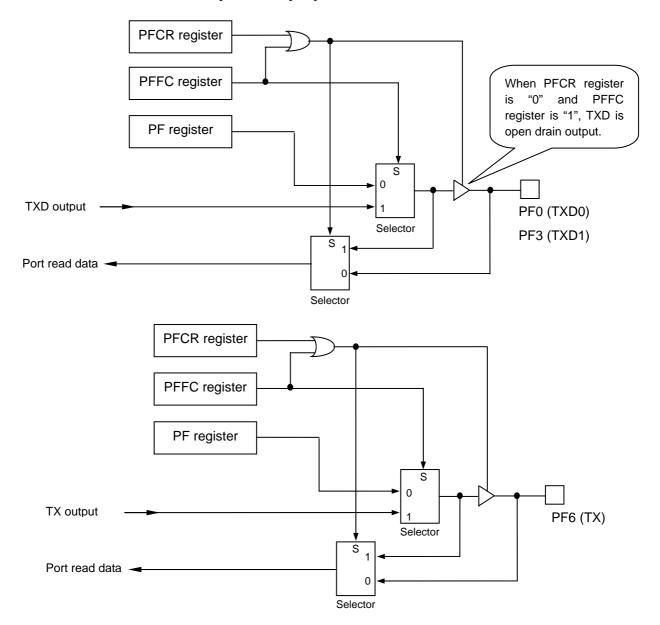


Figure 3.5.7 PortF (PF0, PF3 and PF6)

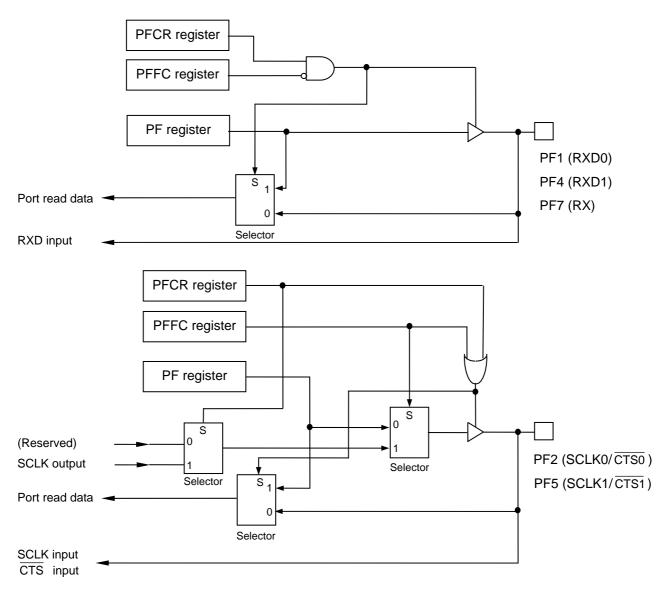


Figure 3.5.8 PortF (PF1, PF4, PF7, PF2 and PF5)

Table 3.5.7 PortF Registers

Symbol	Name	Address	7	6	5	4	3	2	1	0		
			PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0		
PF	PORTF	3CH				R/	W					
	FORTE	3011	0	0	0	0	0	0	0	0		
				Input/Output								
	PORTF	0511	PF7C	PF6C	PF5C	PF4C	PF3C	PF2C	PF1C	PF0C		
_	Control	3EH (no RMW)	W									
FFCK	Register		0	0	0	0	0	0	0	0		
				0:Input 1:Output								
			PF7F PF6F PF5F PF4F PF3F PF2F PF1F									
	PORTF	2511				٧	V					
PFFC	Function	3FH	0	0	0	0	0	0	0	0		
_	Register	(no RMW)	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT		
	rtogistor	(CI (NIVV)	1:RX	1:TX	CTS1	1:RXD1	1:TXD1	CTS0	1:RXD0	1:TXD0		
					1:SCLK1			1:SCLK0				

PFCR	PFFC	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
0	0	Input Port, RX	Input Port	Input Port, SCLK1 (Input), CTS1	Input Port, RXD1	Input Port	Input Port, SCLK0 (Input), CTS0	Input Port, RXD0	Input Port
1	0				Outpu	t Port			
1	1	RX	TX	SCLK1 (Output)	RXD1	TXD1	SCLK0 (Output)	RXD0	TXD0
0	1	RX	TX	Don't use this setting.	RXD1	TXD1 (Open Drain)	Don't use this setting.	RXD0	TXD0 (Open Drain)

3.5.7 Port G (PG0-PG7)

Port G is an 8-bit general-purpose input-only port.

In addition to the general-purpose input port function, the pins can also function as A/D converter input pins.

A/D conversion inputs AN0 to AN7 are always input-enabled except when in IDLE3 or STOP mode.

Figure 3.5.9 PortG

Table 3.5.8 PortG Register

Symbol	Name	Address	7	6	5	4	3	2	1	0		
	PG PORTG	40H	PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0		
PG			R									
		Input										

3.5.8 Port L (PL0-PL3)

Port L is an 4-bit general-purpose input-only port.

In addition to the general-purpose input port function, the pins can also function as A/D converter input pins.

A/D conversion inputs AN8 to AN11 are always input-enabled except when in IDLE3 or STOP mode.

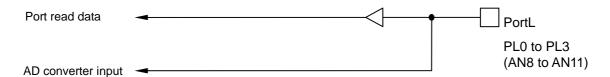


Figure 3.5.10 PortL

Table 3.5.9 PortL Register

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			Í	Ī	-	Ü	PL3	PL2	PL1	PL0	
PL	PL PORTL	54H					R				
		_	_	_	_						

3.5.9 Port M (PM0-PM4)

Port M is an 5-bit general-purpose input/output port for which each bit can be individually specified as input or output. The control register, PMCR, and function register, PMFC, are used to specify input or output.

In addition to the general-purpose input/output port function, the pins can also function as serial general-purpose interface input/output pins.

The slave select pin SS, serial data transmit/receive pins MOSI and MISO, SEI clock pin SECLK, and SBI clock input/output (SIO) pin SCK2 are always input-enabled except when in IDLE3 or STOP mode.

A reset initializes port M to input port mode.

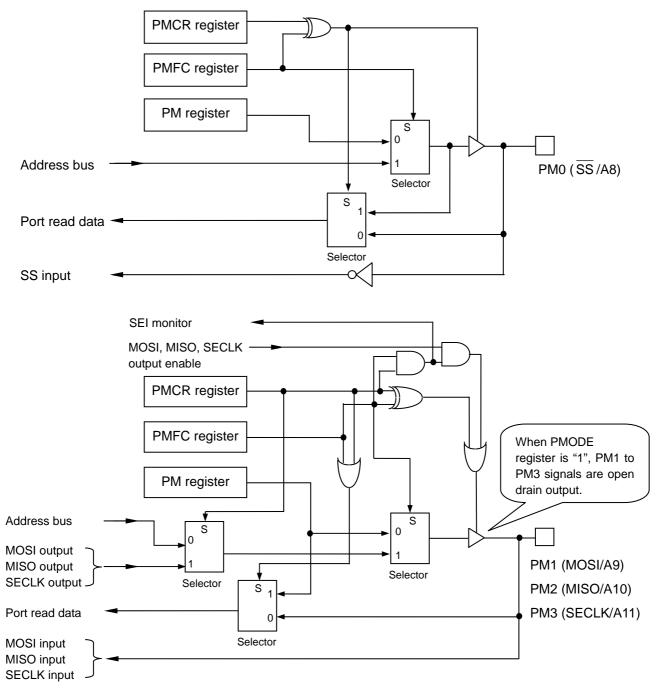


Figure 3.5.11 PortM (PM0 to PM3)

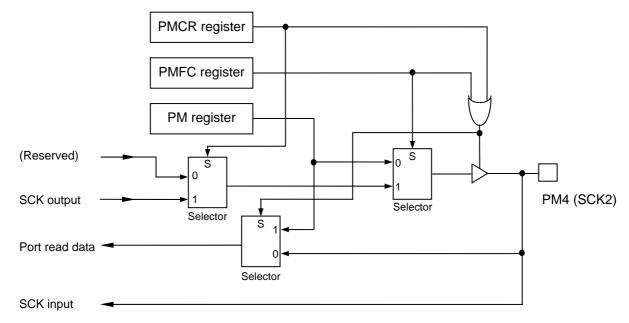


Figure 3.5.12 PortM (PM4)

Table 3.5.10 PortM Register

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	-	-	PM4	PM3	PM2	PM1	PM0
PM	PORTM	58H								
FIVI	FORTIVI	3011	ĺ	-	-	0	0	0	0	0
						Input/Output				
			I	=	=	=	ODEM3	ODEM2	ODEM1	-
	PORTM				_			R/W		
	Open		ı	-	=	=	0	0	0	-
PMODE							PM3 output 0:CMOS	PM2 output 0:CMOS	PM1 output 0:CMOS	
	3						1:Open Drain	1:Open Drain	1:Open Drain	
	PORTM		ı	-	=	PM4C	PM3C	PM2C	PM1C	PM0C
PMCR	Control	5AH				W				
1 WOR	Register	(no RMW)	-	-	-	0	0	0	0	0
	rtogiotoi					0:Input 1:Output				
			-	-	-	PM4F	PM3F	PM2F	PM1F	PM0F
	PORTM							W		
	Function	5BH	-	-	-	0	0	0	0	0
0	Register	(no RMW)				0:PORT 1:SCK2	0:PORT 1: SECLK	0:PORT 1:MISO	0:PORT 1:MOSI	0: <u>PO</u> RT 1: SS
							A11	A10	A9	A8

PMCR	PMFC	_	_	_	PM4	PM3	PM2	PM1	PM0
0	0	I	-	-	Input Port, SCK2 (Input)	Input Port	Input Port	Input Port	Input Port, SS
1	0	-	-	-			Output Port		
1	1	-	_	_	SCK2 (Output)	SECLK	MISO	MOSI	SS
0	1	-	_	_	Don't use this setting	A11	A10	A9	A8

3.5.10 Port N (PN0-PN6)

Port N is an 7-bit general-purpose input/output port for which each bit can be individually specified as input or output. The control register, PNCR, and function register, PNFC, are used to specify input or output.

In addition to the general-purpose input/output port function, the pins can also function as serial channel input/output pins.

The SBI clock input/output (SIO) pins SCK0 and SCK1, SBI data input (SIO) pins SI0 and SI1, SBI clock input/output (I2C) pins SCL0 and SCL1, and SBI data input/output (I2C) pins SDA0 and SDA1 are always input-enabled except when in IDLE3 or STOP mode.

A reset initializes port N to input port mode.

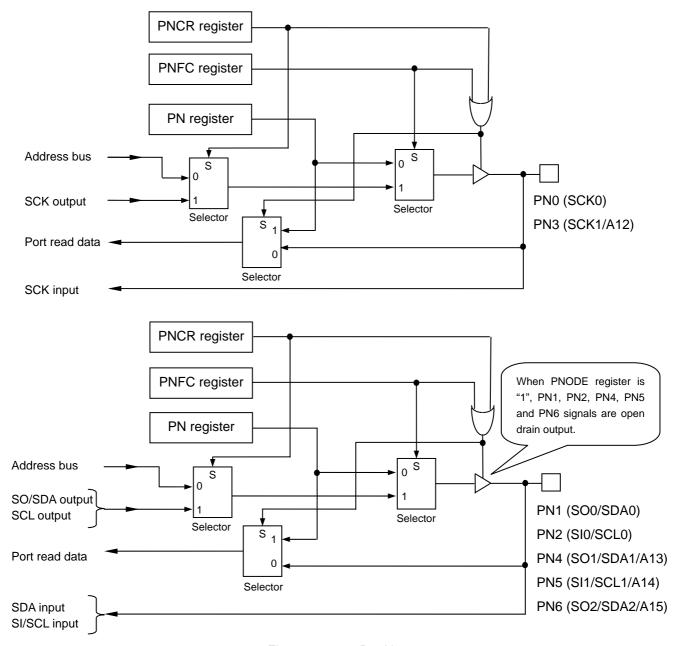


Figure 3.5.13 PortN

Table 3.5.11 PortN Register

Symbol	Name	Address	7	6	5	4	3	2	1	0			
			-	PN6	PN5	PN4	PN3	PN2	PN1	PN0			
DNI	PN PORTN	5CH		R/W									
PIN		эсп	_	0	0	0	0	0	0	0			
				Input/Output									
			ODE72	ODEN6	ODEN5	ODEN4	-	ODEN2	ODEN1	-			
	PORTN			R/	W			R/	W				
	Open		0	0	0	0	=	0	0	=			
PNODE	Drain Enable Register	5DH	P72 output 0:CMOS 1:Open Drain	PN6 output 0:CMOS 1:Open Drain	PN5 output 0:CMOS 1:Open Drain	PN4 output 0:CMOS 1:Open Drain		PN2 output 0:CMOS 1:Open Drain	PN1 output 0:CMOS 1:Open Drain				
	PORTN		-	PN6C	PN5C	PN4C	PN3C	PN2C	PN1C	PN0C			
PNCR	Control	5EH		W									
FNCK	Register	(no RMW)	=	0	0	0	0	0	0	0			
	rtogistor					0:1:	nput 1:Out	out					
			_	PN6F	PN5F	PN4F	PN3F	PN2F	PN1F	PN0F			
							W						
	PORTN	5FH	-	0	0	0	0	0	0	0			
PNFC	Function	(no RMW)		0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT	0:PORT			
	Register	(.10 1 (11117)		1: SO2	SI1	1:SO1	1:SCK1	SI0	1:SO0	1:SCK0			
				SDA2	1:SCL1	SDA1	A12	1:SCL0	SDA0				
				A15	A14	A13							

PNCR	PNFC	_	PN6	PN5	PN4	PN3	PN2	PN1	PN0
0	0	-	Input Port	Input Port	Input Port	Input Port, SCK1 (Input)	Input Port, SI0	Input Port	Input Port, SCK0 (Input)
1	0	-				Output Port	_		_
1	1	-	SO2/SDA 2	SCL1	SO1/SDA 1	SCK1 (Output)	SCL0	SO0/SDA 0	SCK0 (Output)
0	1	_	A15	A14	A13	A12	Don'	t use this set	ting.

3.6 Memory Controller

3.6.1 Overview of functions

The TMP92CD54I memory controller can control a block address space as follows:

(1) Accessing a block address space in an external area

The memory controller can specify a block size and start address for a single block address space allocated in an external area.

(2) Specifying a memory type

The memory controller can specify either SRAM or ROM as the type of memory to be connected to a block address space.

(3) Specifying a data bus width

The data bus width of a block address space is fixed to eight bits.

(4) Controlling wait states

The memory controller can control the number of wait states for external bus cycles using the wait specification bit in a control register and the WAIT input pin. It can specify the number of wait states separately for a read cycle and write cycle. The memory controller supports the following five modes to control the number of wait states:

0 wait states, 1 wait state,

2 wait states, 3 wait states,

N wait states (controlled using the WAIT pin)

0 wait, 1 wait, 2 wait, 3 wait, N wait (N is controlled with $\overline{\text{WAIT}}$ pin)

3.6.2 Control registers and operation upon a reset

This section describes the registers used to control the memory controller as well as the status upon a reset and necessary settings.

(1) Control registers

The following control registers are used for the memory controller:

- Control register (BCSH/BCSL: Block chip select High/Low)
 - Configures the basic functions of the memory controller, such as the type of memory to be connected and the number of wait states for read and write.
- Memory start address register (MSAR)
 - Specifies the start address of the selected block address space.
- Memory address mask register (MSMR)
 - Specifies the block size of the selected block address space.

(2) Operation upon a reset

Upon a reset, the block address space is set to addresses 000000H to FFFFEFH.

After a reset has been released, use the memory start address register (MSAR) and memory address mask register (MAMR) to specify the block address space and configure the control register (BCSL/H).

To make the settings effective, set BCSL<BE> to 1.

3.6.3 Basic functions and register settings

This section describes the memory controller functions for setting the block address area, memory type, and number of wait states.

(1) Specifying the block address space

Clearing BCSH<BM> to 0 causes the block address space to be fixed to the range of 000000H to FFFFEFH with the settings of MSAR (memory start address register) and MAMR (memory address mask register) disabled.

Setting BCSH<BM> to 1 enables the MSAR and MAMR settings, thus allowing the user to specify any block address space. The MSAR and MAMR specify the start address and block address space size, respectively. To specify the block address space size, either mask or enable comparison for each bit of the address. The memory controller compares the address with the value in the register in each bus cycle to determine whether it is accessing an external memory location. Note that any address bits masked with MAMR are not compared. If the compared addresses match, the memory controller pulls the chip select signal (\overline{CS}) low.

Figure 3.6.1 shows an example of connection between the TMP92CD54I and external memory. In this example, RAM is connected via an 8-bit bus.

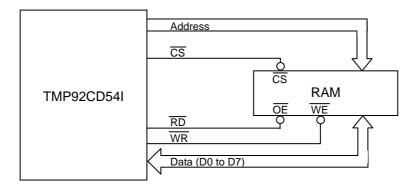


Figure 3.6.1 Example of connecting external memory (external RAM)

(i) Setting the memory start address register

Bits MS23 to MS16 in the memory start address register correspond to address bits A23 to A16, respectively. The start lower address, A15 to A0, are always 0000H. The start address of the block address space can, therefore, be specified within the range from 000000H to FF0000H, in 64-Kbyte units.

(ii) Setting the memory address mask register

The memory address mask register specifies whether each bit in the address will be compared or not. The bits cleared to 0 will be compared while those set to 1 will not be compared. Bit A23 is always compared.

The address bits for the block address space that can be masked are A22 to A15.

The following sizes can be specified for the block address space:

Table 3.6.1 Block Address Space

Size (bytes) CS area	256	512	32 K	64 K	128 K	256 K	512 K	1 M	2 M	4 M	8 M
CS			0	0	0	0	0	0	0	0	0

Note: Upon a reset, BCSH<BM> is set to 0. The block address space is, therefore, set to addresses 000000H to FFFFEFH. Setting BCSH<BM> to 1 enables the start address (MSAR register) and address space size (MAMR register) to be specified.

(iii) Example register settings

To set the block address area 64 KB from address 110000H, set the registers as follows:

	MSB							LSE	3
	7	6	5	4	3	2	1	0	
MSAR	0	0	0	1	0	0	0	1	; set start address to 110000H
MAMR	0	0	0	0	0	0	0	1	; set block address area size to 64k-bytes

Bits MS23 to MS16 in the memory start address register (MSAR) correspond to address bits A23 to A16, respectively. A15 to A0 are 0. If the value of MASR is set as shown above, therefore, the start address of the block address space becomes 110000H.

Bits MV22 to MV15 in the memory address mask register specify whether bits A22 to A15 will be compared in address comparison. The bits cleared to 0 will be compared while those set to 1 will not be compared. Bit A23 is always compared.

The above settings specify that bits A23 to A16 will be compared with the value specified as the start address. This results in the 64-Kbyte range of 110000H to 11FFFFH being set as the block address space. If the address on the bus is matched, the memory controller drives the chip select signal ($\overline{\text{CS}}$) low.

(iv) If the block overlaps built-in memory space

If the specified block address space overlaps the built-in memory space, the block address space will be handled according to the following order of priority:

This means that priorities are assigned to prevent collision rather than remapping the block addresses.

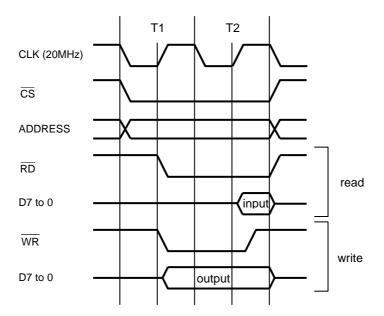
If any address outside the specified block address space is accessed, the number of wait bus cycles is set to 1 (with the \overline{RD} and \overline{WR} signals output but the \overline{CS} signal not output). It is a fixed parameter.

(2) Controlling wait states

An external bus cycle is completed in two states (100 ns at 20 MHz) at a minimum. The number of wait states for read and write cycles can be specified by setting <BWR2:0> and <BWW2:0> in control register BCSL. BWW and BWR can be set in the same way, as shown below.

			TTT Sit (1991 Tegener)
BWW2 BWR2	BWW1 BWR1	BWW0 BWR0	Function
0	0	1	2states (0 wait) access fixed mode
0	1	0	3states (1 wait) access fixed mode (Default)
1	0	1	4states (2 wait) access fixed mode
1	1	0	5states (3 wait) access fixed mode
0	1	1	WAIT pin input mode
	Others		(Reserved)

Table 3.6.2 BWW/BWR bit (BCSL Regsiter)


(i) Fixed wait mode

In this mode, a bus cycle is always completed in a specified number of states. The number of states can be specified in the range from two states (zero waits) to five states (three waits).

(ii) WAIT pin input mode

In this mode, the WAIT input pin is sampled and wait states are inserted as long as the signal is low. In this mode, a bus cycle requires two states at a minimum. If the wait signal is high in the second state, the bus cycle is completed. A bus cycle may be extended to more than two states as long as the wait signal is low.

- (3) Bus access timing
 - External read/write bus cycle (0 wait states)

• External read/write bus cycle (1 wait state)

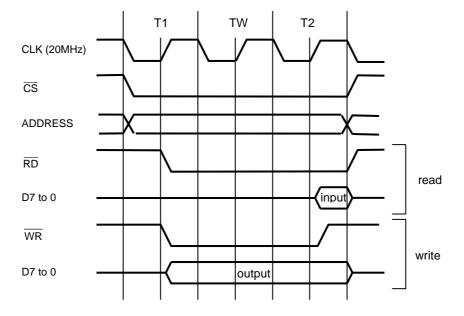
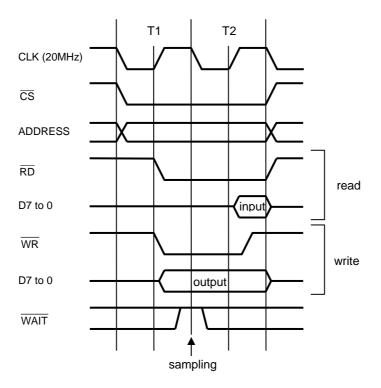



Figure 3.6.2 External Read/Write Bus Cycle (0 and 1 wait status)

• External read/write bus cycle (0 wait states in WAIT pin input mode)

• External read/write bus cycle (N wait states in $\overline{\text{WAIT}}$ pin input mode)

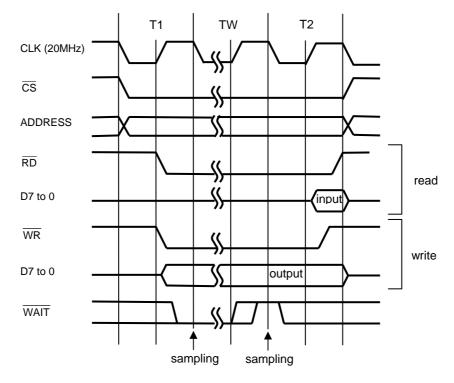
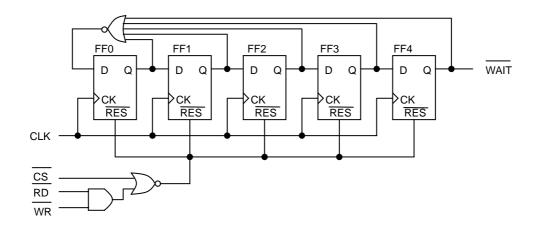



Figure 3.6.3 External Read/Write Bus Cycle (WAIT pin input mode)

• Example WAIT input circuit (for 5 wait states)

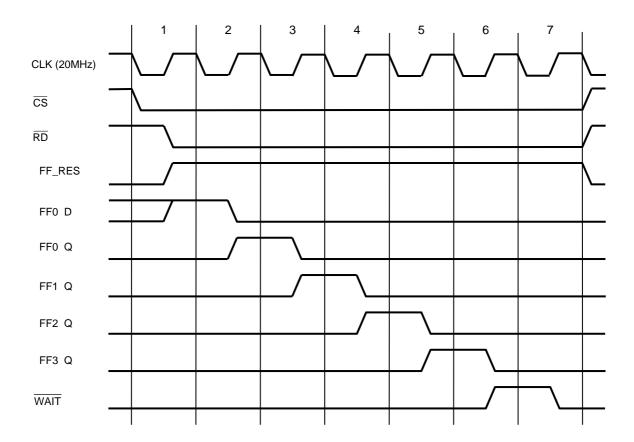


Figure 3.6.4 Example WAIT Input Circuit (for 5 wait status)

3.6.4 Registers

This section summarizes the memory control registers and their settings. For the address of each register, refer to Chapter 5, "List of Special Function Registers."

(1) Control registers

The memory is controlled with the BCSL and BCSH registers.

Block CS/WAIT control register (L)

BCSL (0148H)

	7	6	5	4	3	2	1	0
bit Symbol	-	BWW2	BWW1	BWW 0	_	BWR2	BWR1	BWR0
Read/W rite				V	V			
After Reset	-	0	1	0	_	0	1	0

<BWW2:0>: Specify the number of write wait states.

001 = 2-state (0-wait) access 010 = 3-state (1-wait) access

101 = 4-state (2-wait) access 110 = 5-state (3-wait) access

 $011 = \overline{\text{WAIT}}$ pin input mode Others = (reserved)

<BWR2:0>: Specify the number of read wait states.

001 = 2-state (0-wait) access 010 = 3-state (1-wait) access

101 = 4-state (2-wait) access 110 = 5-state (3-wait) access

 $011 = \overline{\text{WAIT}}$ pin input mode Others = (reserved)

Block CS/WAIT control register (H)

BCSH (0149H)

	7	6	5	4	3	2	1	0
bit Symbol	BE	BM	-	1	BOM1	вом0	BBUS1	BBUS0
Read/W rite				V	V			
After reset	1	0	0(Fix to 0)	0(Fix to 0)	0	0	0	0

<BE>: Enable bit

0 =Does not output the chip select signal.

1 = Outputs the chip select signal (default).

<BM>: Specify block address space.

0 = Sets the CS block address space to 000000H-FFFFEFH (default).

1 = Enables the CS block address space to be programmed.

Note: Upon a reset, the CS block address space is set to 000000H-FFFFEFH.

<BOM1:0>

00 = SRAM or ROM (default)

Others = (reserved)

<BBUS1:0:> Specify data bus width.

00 = 8 bits (default)

Others = (reserved)

Figure 3.6.5 Block CS/WAIT Control Register

(2) Block address space specification registers

The start address and range of the block address space are specified using two registers, memory start address register (MSAR) and memory address mask register (MAMR).

Memory start address register

MSAR (014BH)

	7	6	5	4	3	2	1	0
bit Symbol	MS23	MS22	MS21	MS20	MS19	MS18	MS17	MS16
Read/W rite				R/	W			
After Reset	1	1	1	1	1	1	1	1

<MS23:16>: Specify start address.

These bits specify the start address of each block address space. The bits in this register correspond to address bits A23 to A16.

Memory address mask register

MAMR (014AH)

	7	6	5	4	3	2	1	0
bit Symbol	MV22	MV21	MV20	MV19	MV18	MV17	MV16	MV15
Read/W rite				R/	W			
After reset	1	1	1	1	1	1	1	1

<MV22:15>:

These bits specify whether the corresponding address bits will be compared in address comparison. Bits MV22 to MV15 correspond to address bits A22 to A15. Setting a bit to 0 causes the corresponding bit of the value on the address bus to be compared with the start address bit. Setting a bit to 1 causes the bit not to be compared. Bit A23 is always compared.

Figure 3.6.6 Memory Start Address/Memory Address Mask Registers

3.7 8-bit Timers

The TMP92CD54I contains eight channels of 8-bit timers (timers 0 to 7).

The timers are grouped into four modules, each consisting of two channels (timer 01, timer 23, timer 45 and timer 67) and can operate in one of the following four modes:

- 8-bit interval timer mode
- 16-bit interval timer mode
- 8-bit programmable square wave (PPG, with variable cycle and duty ratio) output mode
- 8-bit pulse width modulation (PWM, with fixed cycle and variable duty ratio) output mode

Figure 3.7.1 to Figure 3.7.4 show block diagrams of timers 01, 23, 45 and 67.

Each channel consists of an 8-bit up-counter, 8-bit comparator and 8-bit timer register. A timer flip-flop and prescaler are provided for each pair of two channels.

The timer operating mode and flip-flop are controlled using five special function registers (SFR).

Four modules (timers 01, 23, 45 and 67) operate independently of each other. All modules operate in the same way except the differences in specification listed in Table 3.7.1. This section only describes the operation of timer 01.

Table 3.7.1 Registers and Pins for each Module

Specifica	Module	timers 01	timers 23	timers 45	timers 67
External	Input pin for external clock	TI0 (shared with PC0)	-	TI4 (shared with PC3)	-
pin	Output pin for timer flip-flop	TO1 (shared with PC1)	TO3 (shared with PC2)	TO5 (shared with PC4)	TO7 (shared with PC5)
	Timer run register	TRUN01 (0080H)	TRUN23 (0088H)	TRUN45 (0090H)	TRUN67 (0098H)
SFR	Timer register	TREG0 (0082H) TREG1 (0083H)	TREG2 (008AH) TREG3 (008BH)	TREG4 (0092H) TREG5 (0093H)	TREG6 (009AH) TREG7 (009BH)
(address)	Timer mode register	TMOD01 (0084H)	TMOD23 (008CH)	TMOD45 (0094H)	TMOD67 (009CH)
	Timer flip-flop control register	TFFCR1 (0085H)	TFFCR3 (008DH)	TFFCR5 (0095H)	TFFCR7 (009DH)

3.7.1 Block diagram for each module

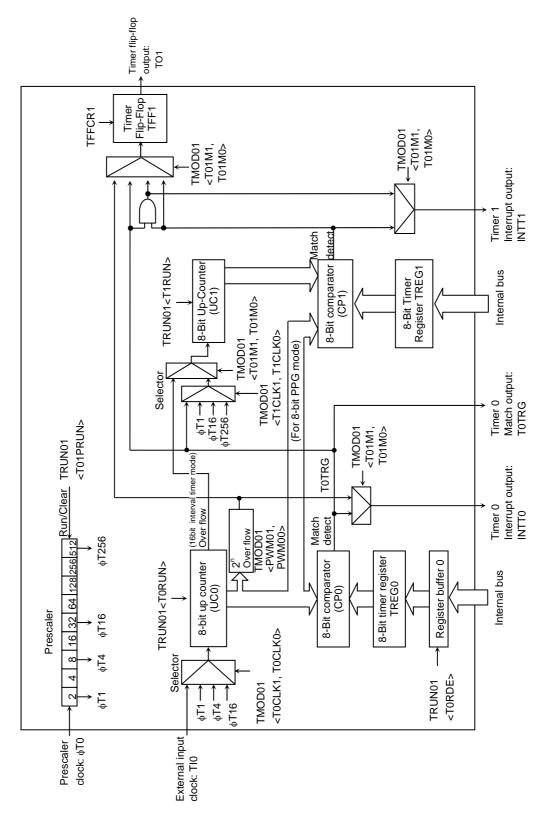


Figure 3.7.1 Timers 01 Block Diagram

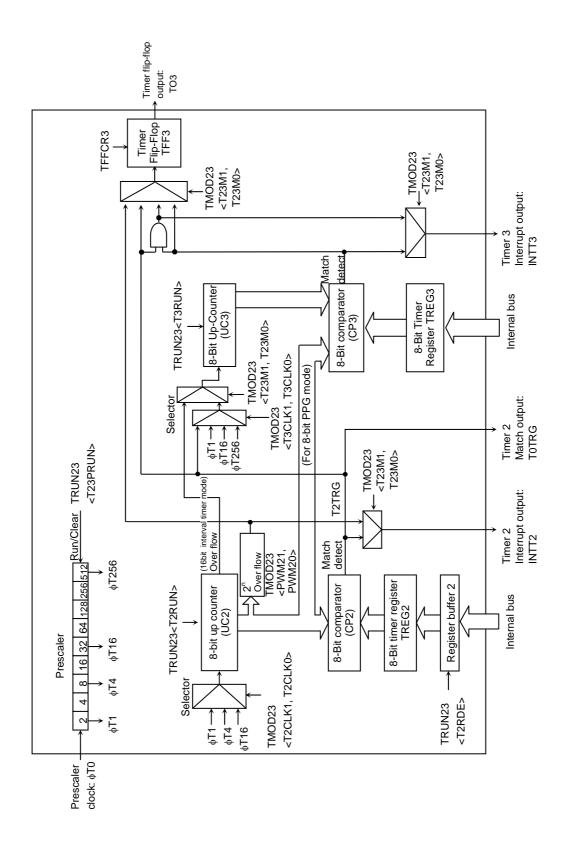


Figure 3.7.2 Timers 23 Block Diagram

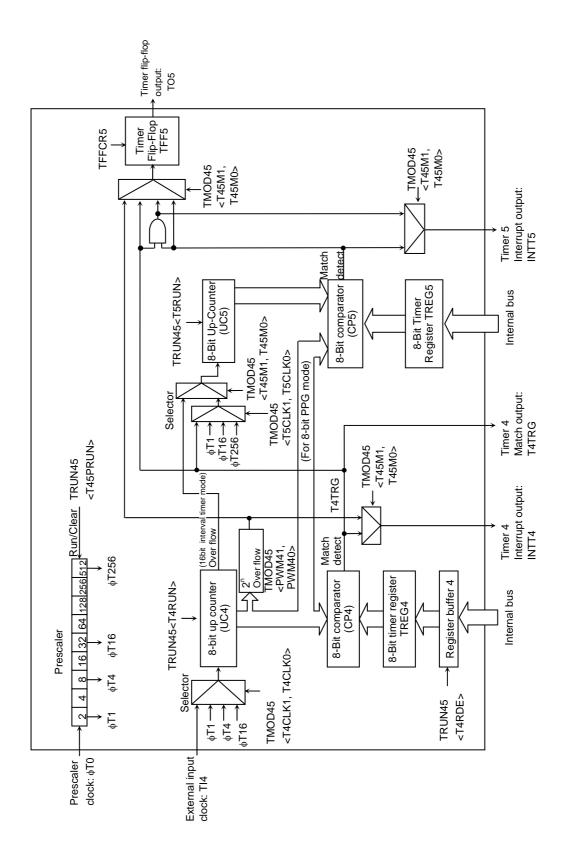


Figure 3.7.3 Timers 45 Block Diagram



Figure 3.7.4 Timers 67 Block Diagram

3.7.2 Description of each circuit

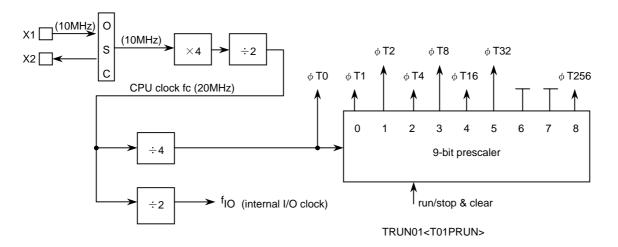
(1) Prescaler

The 9-bit prescaler divides the 1/4 CPU clock (fc/4) to generate the input clock for timer 01.

The operation of the prescaler can be controlled using TRUN01<T01PRUN> in the timer operation control register. Setting TRUN01<T01PRUN> to 1 causes the prescaler to start counting. Setting the bit to 0 causes the prescaler to be zero-cleared and stopped.

Table 3.7.2 Prescaler Output Clock
At fc=20MHz

Output clock Interval


φT1 (8/fc) 400 ns

φT4 (32/fc) 1.6 μs

φT16 (128/fc) 6.4 μs

φT256 (2048/fc) 102.4 μs

Note: The numbers in parentheses indicate the values at the maximum operating frequency.

•

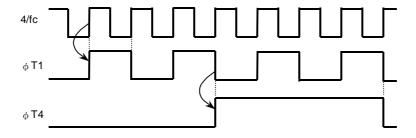


Figure 3.7.5 Prescaler

(2) Up-counters (UC0 and UC1)

The up-counters are 8-bit binary counters that increment the count according to the input clock specified with the timer mode register, TMOD01.

The input clock for UC0 is selected from among an external clock supplied through the TI0 pin and three types of prescaler output clock, ϕ T1, ϕ T4 and ϕ T16, according to the setting of TMOD01<T01CLK1:0>.

The input clock for UC1 depends on the operating mode. In 16-bit timer mode, the overflow output from UC0 is used as the input clock for UC1. In other modes, the input clock is selected from among input clock ϕ T1, ϕ T16 and ϕ T256 or the timer 0 comparator output (match detection).

The up-counters are set to either "stop and clear" or "count up" using TRUN01<T0RUN> and TRUN01<T1RUN>. Upon a reset, the up-counters are cleared and the timer is stopped.

(3) Timer registers (TREG0 and TREG1)

A timer register is an 8-bit register that specifies an interval time. If the up-counter value matches the value set in the timer register, the comparator match detection signal is activated. If the timer register is set to 00H, the match signal is activated when the up-counter overflows.

TREGO is paired with a register buffer to form a double-buffer configuration.

The double buffer is controlled using TRUN01<T0RDE>. The double buffer is disabled if TRUN01<T0RDE> = 0 and enabled if TRUN01<T0RDE> = 1.

If the double buffer is enabled, data transfer from the register buffer to the timer register takes place when a 2^n overflow occurs in PWM mode or when period comparison results in a match in PPG mode. In timer mode, therefore, the double buffer cannot be used.

Upon a reset, TRUN01<T0RDE> is initialized to 0, thus disabling the double buffer. To use the double buffer, first write a value to the timer register and set <T0RDE> to 1 before writing a next setting value to the register buffer.

Figure 3.7.6 shows the configuration of TREGO.

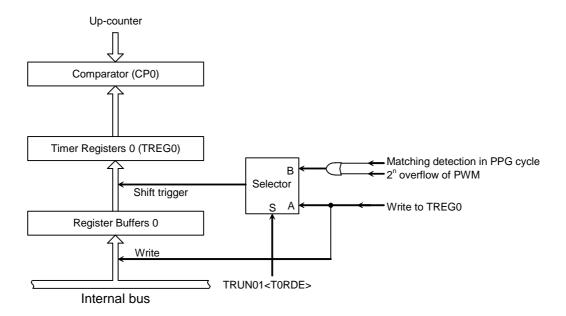


Figure 3.7.6 Configuration of TREG0

Note: The timer register and register buffer are assigned to the same address. If TRUN01<T0RDE> = 0, the same number is written to both the register buffer and timer register. If TRUN01<T0RDE> = 1, the number is only written to the register buffer.

The timer registers are located at the following addresses:

TREG0: 000082H TREG1: 000083H TREG2: 00008AH TREG3: 00008BH TREG4: 000092H TREG5: 000093H TREG6: 00009AH TREG7: 00009BH

These registers are write-only and cannot be read.

(4) Comparator (CP0)

The comparator compares the up-counter value with the value set in the timer register and, if they match, clears the up-counter to 0 and issues an interrupt (INTTO-1). It also inverts the value of the timer flip-flop if inversion is enabled.

(5) Timer flip-flop (TFF1)

The timer flip-flop (TFF1) is inverted with a match detection signal from the comparator. The timer flip-flop control register, TFFCR1<TFF1IE>, enables or disables the inversion of the flip-flop.

Upon a reset, the values of TFF1 and TFF0 are initialized to 0. To set TFF1 to 1 or 0, write 01 or 10 to TFFCR1<TFF1C1:0>, respectively. Writing 00 to these bits inverts the value of TFF1 (soft inversion).

The value of TFF1 can be output through timer output pin TO1 (shared with PC1). To output the timer value, it is necessary to first set the port to enable output, using the port C function register (PCFC).

TFF is inverted when the following conditions are satisfied, depending on the mode:

8-bit interval timer mode : A match between UC0 and TREG0 or a match

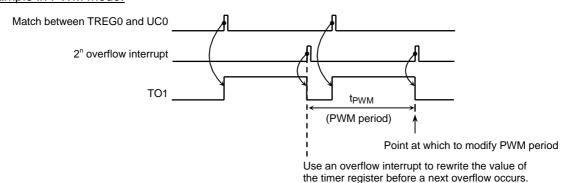
between UC1 and TREG1 (as selected).

16-bit interval timer mode : A match between UC0 and TREG0 and a match

between UC1 and TREG1.

8-bit PWM mode : A match between UC0 and TREG0 or a 2ⁿ overflow.

8-bit PPG mode : A match between UC0 and TREG0 or a match


between UC0 and TREG1.

Note: Care should be taken when the 8-bit timer is used with a double buffer in PWM or PPG mode.

If data in the register buffer is updated immediately before an overflow occurs with a match between the up-counter value and the timer register setting, a signal having a waveform different from the set value may be output. To prevent that problem, in PWM mode, use an overflow interrupt to ensure that the register buffer update is completed more than six cycles (fc x 6) before a next overflow occurs.

Similarly, when using PPG mode, use a period comparison match interrupt to ensure that the register buffer update is completed more than six cycles before a next match in period comparison.

Example in PWM mode:

3.7.3 8-bit timer registers

Timers 01 Operating Control Register

7 6 5 4 3 2 1 0 TRUN01 T1RUN **TORUN** Bit symbol T0RDE I2T01 T01PRUN (0080H)R/W Read/Write R/W After Reset 0 0 0 0 0 Double IDLE2 Timer Run/Stop control buffer 0: Stop 0: Stop & Clear Function 0: Disable 1: Operate 1: Run (count up) 1: Enable TREGO double buffer control Timer Run/Stop control Disable Stop & Clear 1 Enable 1 Run (count up)

I2T01: Operation in IDLE2 mode (for details, see "3.3.2

Standby Controller")
T01PRUN: Prescaler operation
T1RUN: Timer 1 operation
T0RUN: Timer 0 operation

Note1: TRUN01 bits 4 to 6 return undefined values if read.

Note2: In PPG/PWM mode, <T0RDE> should be set to 1 to enable the double buffer.

Timer 23 Operation Control Register

		7	6	5	4	3	2	1	0	
TRUN23	Bit symbol	T2RDE	-	-	-	I2T23	T23PRUN	T3RUN	T2RUN	
(H8800)	Read/Write	R/W					R/	W		
	After Reset	0	-	-	-	0	0	0	0	
	Function	Double				IDLE2	Timer Run/Stop control			
		buffer				0: Stop	0: Stop & Clear			
		0: Disable				1: Rung	1: Run (count up)			
		1: Enable								
		TREG2 doub	ole buffer con	itrol				→ Timer Rur	n/Stop control	
		0 Disa	ble					0 5	Stop & Clear	
		1 Ena	ble					1 F	Run (count up)	

I2T23: Operation in IDLE2 mode (for details, see "3.3.2 Standby Controller")

T23PRUN: Prescaler operation T3RUN: Timer 3 operation T2RUN: Timer 2 operation

Note1: TRUN23 bits 4 to 6 return undefined values if read.

Note2: In PPG/PWM mode, <T2RDE> should be set to 1 to enable the double buffer.

Figure 3.7.7 Register for 8-bit Timers (TRUN01, TRUN23)

Timer 45 Operation Control Register

TRUN45 (0090H)

	7	6	5	4	3	2	1	0
Bit symbol	T4RDE	-	-	-	I2T45	T45PRUN	T5RUN	T4RUN
Read/Write	R/W					R/	W	
After Reset	0	-	-	-	0	0	0	0
Function	Double buffer 0: Disable 1: Enable				IDLE2 0: Stop 1: Operate	Timer Run/S 0: Stop & C 1: Run (cou	lear	ol
		ble buffer cor	itrol					un/Stop contro
	0 Disa	able					0	Stop & Clear
	1 Ena	ble					1	Run (count up

I2T45: Operation in IDLE2 mode (for details, see "3.3.2

Standby Controller") T45PRUN: Prescaler operation

T5RUN: Timer 5 operation T4RUN: Timer 4 operation

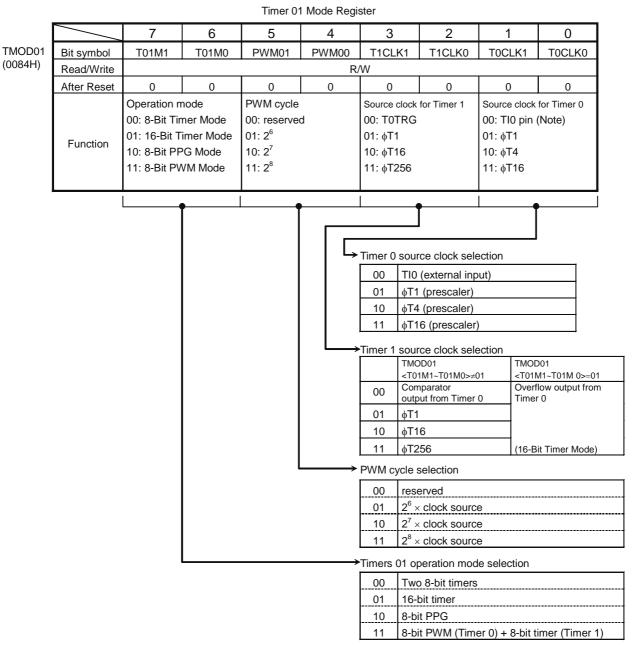
Note1: TRUN45 bits 4 to 6 return undefined values if read.

Note2: In PPG/PWM mode, <T4RDE> should be set to 1 to enable the double buffer.

Timer 67 Operation Control Register

TRUN67 (0098H)

	7	6	5	4	3	2	1	0
Bit symbol	T6RDE	-	ı	-	I2T67	T67PRUN	T7RUN	T6RUN
Read/Write	R/W					R/	W	
After Reset	0	-	-	-	0	0 0 0		0
Function	Double buffer 0: Disable 1: Enable				IDLE2 0: Stop 1: Operate	Timer Run/S 0: Stop & C 1: Run (cou	lear	
	TREG6 doul		itrol				0 S	n/Stop control top & Clear un (count up)


I2T67: Operation in IDLE2 mode (for details, see "3.3.2

Standby Controller") T67PRUN: Prescaler operation T7RUN: Timer 7 operation T6RUN: Timer 6 operation

Note1: TRUN67 bits 4 to 6 return undefined values if read.

Note2: In PPG/PWM mode, <T6RDE> should be set to 1 to enable the double buffer.

Figure 3.7.8 Register for 8-bit Timers (TRUN45, TRUN67)

Note: To set the TI0 pin, first set port C and then set TMOD01.

Figure 3.7.9 Register for 8-bit Timers (TMOD01)

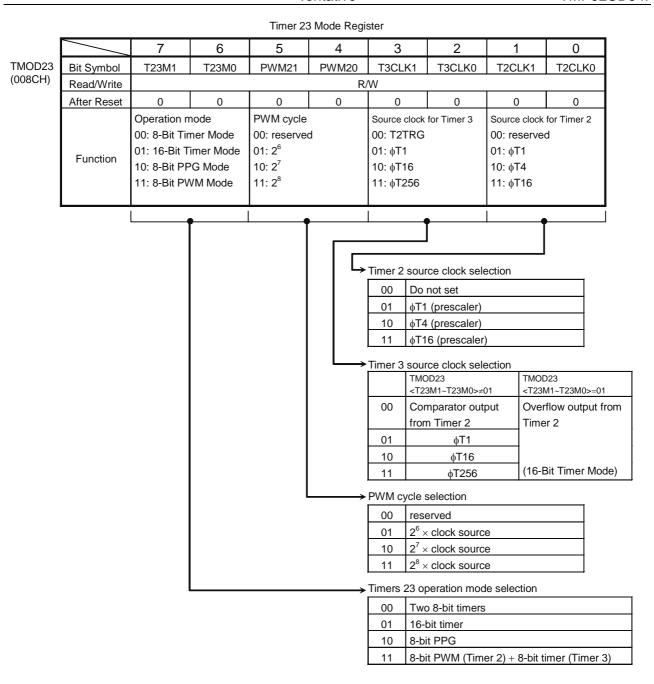
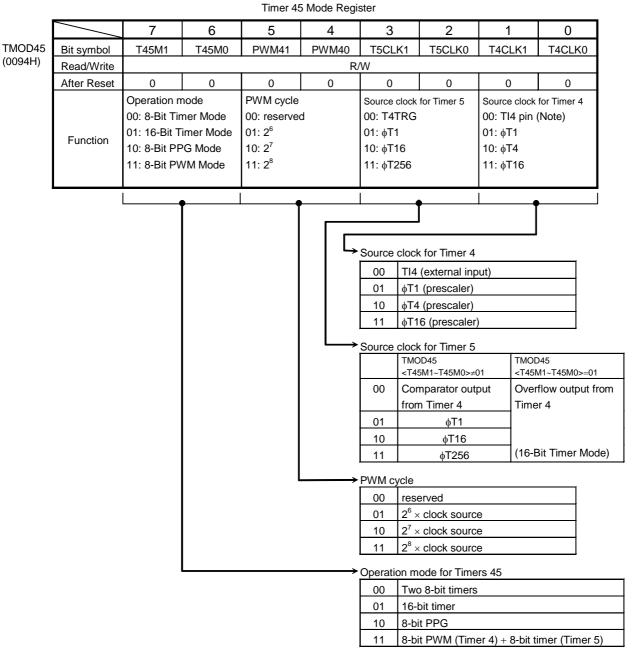



Figure 3.7.10 Register for 8-bit Timers (TMOD23)

Note: To set the TI4 pin, first set port C and then set TMOD45.

Figure 3.7.11 Register for 8-bit Timers (TMOD45)

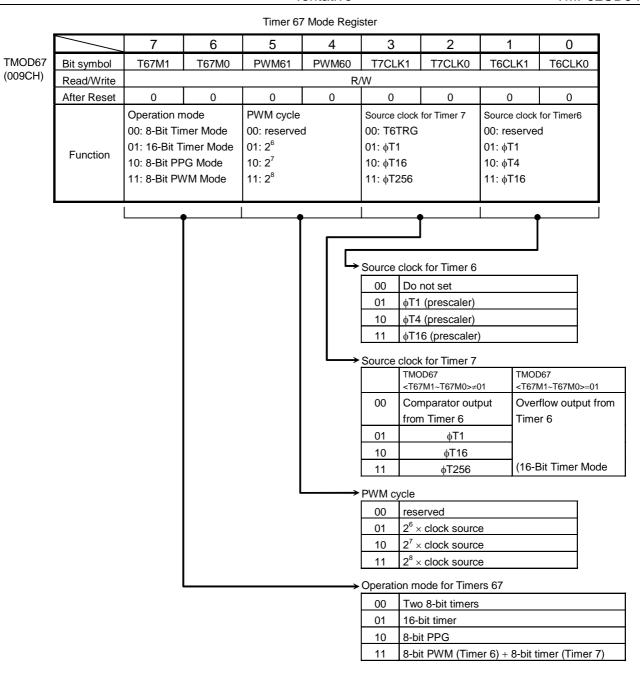


Figure 3.7.12 Register for 8-bit Timers (TMOD67)

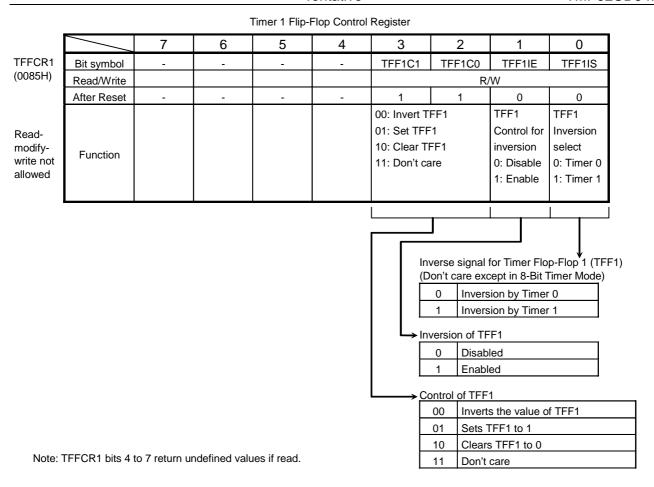


Figure 3.7.13 Register for 8-bit Timers (TFFCR1)

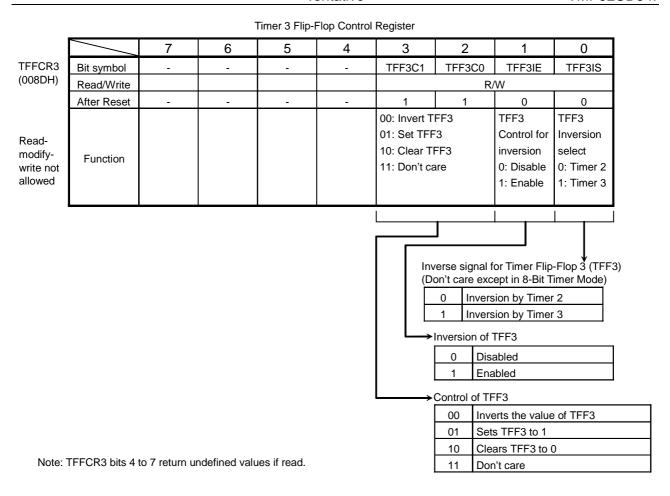


Figure 3.7.14 Register for 8-bit Timers (TFFCR3)

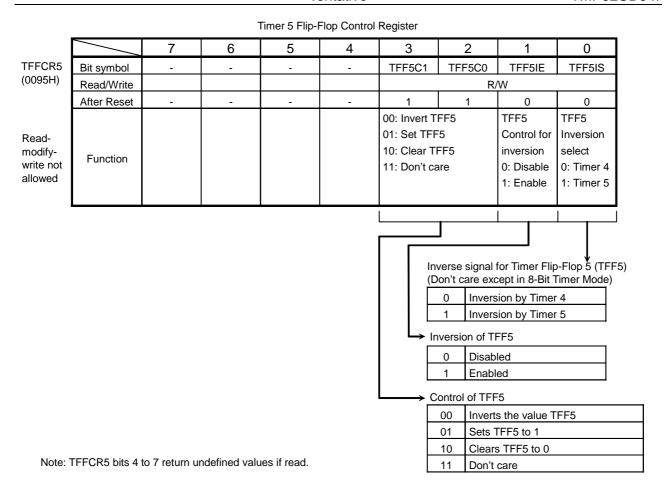


Figure 3.7.15 Register for 8-bit Timers (TFFCR5)

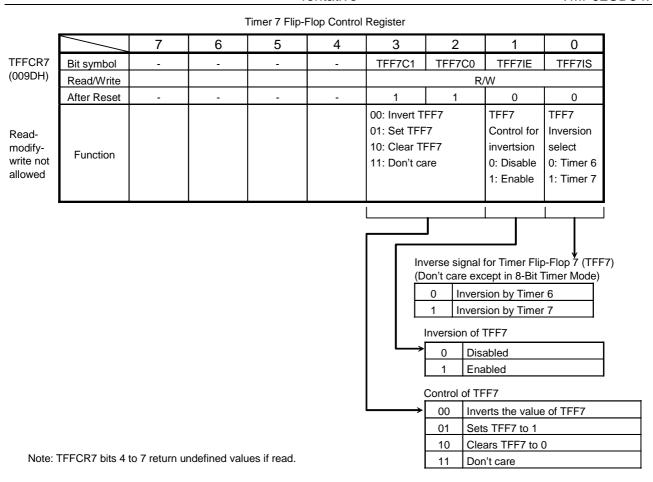


Figure 3.7.16 Register for 8-bit Timers (TFFCR7)

Timer Registers (TREG 0 to 7)

Symbol	Address	7	6	5	4	3	2	1	0
TREG0	82H (no RMW)				V Unde				
TREG1	83H (no RMW)					V fined			
TREG2	8AH (no RMW)					V fined			
TREG3	8BH (no RMW)					V Ifined			
TREG4	92H (no RMW)				V				
TREG5	93H (no RMW)					V Ifined			
TREG6	9AH (no RMW)					V fined			
TREG7	9BH (no RMW)				V Unde	V Ifined			

Note: The TREG registers are used for the comparator. A match between UC and TREG causes a match detection signal to be generated.

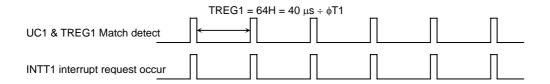
See examples in "3.7.4 Operation in Each Mode."

Figure 3.7.17 Register for 8-bit Timers (TREG0~TREG7)

3.7.4 Operation in each mode

(1) 8-bit timer mode

Each of timers 0 and 1 can be used as an independent 8-bit interval timer.


a. Generating interrupts at regular intervals (using timer 1)

To use timer 1 to generate timer 1 interrupts (INTT1) at regular intervals, first stop timer 1 and then set the operating mode, input clock and interval in TMOD01 and TREG1. Next, enable INTT1 and then start counting with timer 1.

Example: To generate INTT1 interrupts every 40 μ s when fc = 20 MHz, set the registers in the following order:

	MSB						- 1	_SB		
_		7	6	5	4	3	2	1	0	
TRUN01	\leftarrow	-	Х	Х	Х	-	-	0	-	Stop timer 1 and clear it to zero.
TMOD01	\leftarrow	0	0	Х	Х	0	1	-	-	Select 8-bit timer mode and set the input clock to $\phi T1$
										$(0.4-\mu s resolution, at fc = 20 MHz)$.
TREG1	\leftarrow	0	1	1	0	0	1	0	0	Set TREG1 to 40 μ s ÷ ϕ T1 = 100 = 64H.
INTET01	\leftarrow	Х	1	0	1	-	-	-	-	Enable INTT1 and set the interrupt level to 5.
_TRUN01	\leftarrow	-	Х	Х	Х	-	1	1	-	Start counting with timer 1.

X = Don't care "-" = No change

See Table 3.7.3 for how to select the input clock.

Table 3.7.3 Selecting Interrupt Interval and the Input Clock Using 8-Bit Timer

Input Clock	Interrupt Interval (at fc = 20 MHz)	Resolution
φT1 (8/fc)	0.4 μs to 102.4 μs	0.4 μs
φT4 (32/fc)	1.6 μs to 409.6 μs	1.6 μs
φT16 (128/fc)	6.4 μs to 1.639 ms	6.4 μs
φT256 (2048/fc)	102.4 μs to 26.22 ms	102.4 μs

Note: The available input clocks for timer 0 and timer 1 differ as follows:

Timer 0: Timer 0 input (TI0), ϕ T1, ϕ T4, or ϕ T16

Timer 1: Timer 0 match detection signal (T0TRG), \$\phi\$T1, \$\phi\$T16, or \$\phi\$T256

b. Outputting a square wave of 50% duty ratio

Invert the value of the timer flip-flop (TFF1) at regular intervals and output the inverted value to the timer flip-flop output pin (TO1).

Example: To output a square wave having a period of $2.4~\mu s$ when fc = 20~MHz, set the registers in the following order. Either timer 0 or timer 1 can be used for that purpose. The example uses timer 1.

```
1
TRUN01
                       Х
                           Х
                                                            Stop timer 1 and clear it to zero.
TMOD01
                                                            Select 8-bit timer mode and set the input clock to \phi T1 (0.4
                                                            \mus, at fc = 20 MHz).
                                                            Set TREG1 to 2.4 \mus ÷ \phiT1 ÷ 2 = 3.
TREG1
                       0
                           0
                               0
                                    0
                                                            Clear TFF1 to 0 and set it to be inverted with a match
TFFCR1
                       Х
                           Х
                               Х
                                                            detection signal from timer 1.
PCCR
                       Х
                                                            Set PC1 to the TO1 output pin.
PCFC
                       Х
_TRUN01
                                                            Start counting with timer 1.
```

X = Don't care "-" = No change

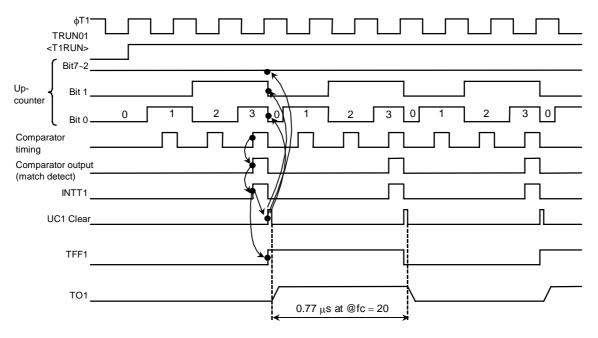


Figure 3.7.18 Square Wave Output Timing Chart (50% Duty)

c. Incrementing the timer 1 count with a match output from timer 0

Select 8-bit timer mode and set the input clock for timer 1 to the timer 0 comparator output.

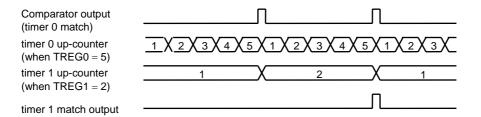


Figure 3.7.19 Timer 1 Count Up on Signal from Timer 0

(2) 16-bit timer mode

A pair of timers 0 and 1 can be used as a 16-bit interval timer. Setting TMOD01 <T01M1:0> to 01 selects 16-bit timer mode.

In 16-bit timer mode, an overflow output from timer 0 is used as the input clock for timer 1 regardless of the value of TMOD01<T1CLK1:0>. For details of relationship between the timer (interrupt) interval and input clock, see Table 3.7.3.

The lower eight bits of the timer interrupt interval are specified with timer register TREGO and the upper eight bits with TREG1. Ensure that TREGO is always set first because a write to TREGO causes comparison to be temporarily disabled, after which a write to TREG1 starts comparison.

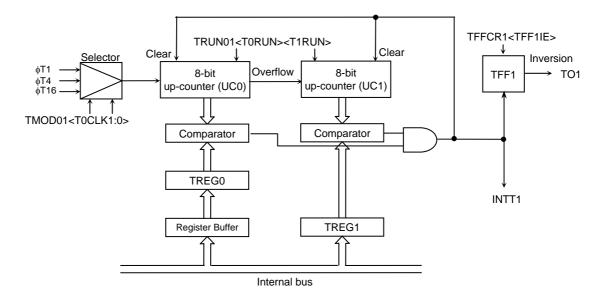


Figure 3.7.20 Block Diagram of 16-Bit Interval Timer Mode

Example: To generate INTT1 interrupts every 0.4 second when fc = 20 MHz, set the following values in timer registers TREG0 and TREG1:

If ϕ T16 (6.4 µs at 20 MHz) is counted as the input clock:

 $0.4 \text{ s} \div 6.4 \text{ } \mu\text{s} = 62500 = \text{F424H}$

Therefore, set TREG0 = 24H and TREG1 = F4H.

The timer 0 comparator outputs a match detection signal every time up-counter UC0 matches TREG0 but UC0 is not cleared at that time.

The timer 1 comparator outputs a match detection signal at every comparison timing where up-counter UC1 matches TREG1. If both timers 0 and 1 output match detection signals simultaneously, up-counters UC0 and UC1 are cleared to zero and an INTT1 interrupt occurs. The value of timer flip-flop TFF1 is also inverted if inversion is enabled.

Example: When TREG1 = 04H and TREG0 = 80H:

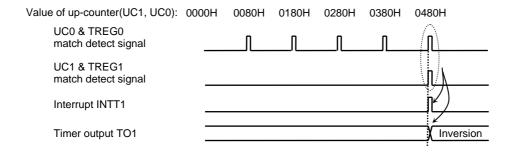


Figure 3.7.21 Timer Output by 16-Bit Interval Timer Mode

(3) 8-bit PPG (programmable square wave) output mode

Timer 0 can be used to output a square wave having any specified frequency and duty ratio. Either low-active or high-active output pulses can be selected. In this mode, timer 1 is disabled. The square wave is output through TO1 (shared with PC1).

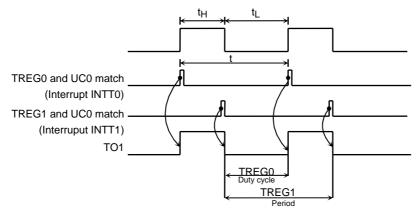


Figure 3.7.22 8 bit PPG Output Waveforms

In this mode, 8-bit up-counter UC0 inverts the timer output every time its value matches the value in timer register TREG0 or TREG1 to output a programmable square wave.

The value of TREG0 must be smaller than that of TREG1.

In this mode, the up-counter for timer 1, UC1, cannot be used. Timer 1 must, however, be set to the counting state by setting TRUN01 <T1RUN> to 1.

Figure 3.7.23 shows a block diagram of this mode:

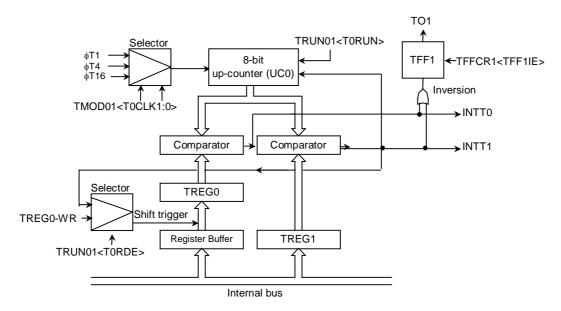


Figure 3.7.23 Block Diagram of 8-Bit PPG Output Mode

In this mode, if the double buffer for TREG0 is enabled, the value of the register buffer is shifted into TREG0 when TREG1 and UC0 match.

Using the double buffer facilitates processing for a small duty ratio (if the duty ratio is varied).

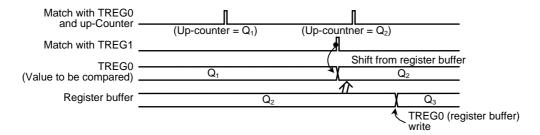
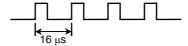



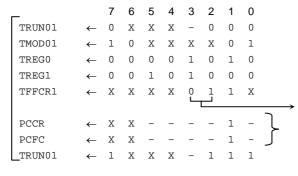
Figure 3.7.24 Operation of Register Buffer

Example: Outputting pulses having a duty ratio of 1/4 at 62.5 kHz (when fc = 20 MHz)

Calculate the value to set in the timer register, as follows:

To obtain a frequency of 62.5 kHz, create a waveform having a period of t = 1/62.5 kHz = 16 μs .

 $\phi T1 = 0.4 \mu s \text{ (at 20 MHz)}$:


$$16 \mu s \div 0.4 \mu s = 40$$

Therefore, TREG1 = 40 = 28H.

Next, to obtain a duty ratio of 1/4, using t x $1/4 = 16 \mu s$ x $1/4 = 4 \mu s$:

$$4 \mu s \div 0.4 \mu s = 10$$

Therefore, TREG0 = 10 = 0AH.

Stop timers 0 and 1 and clear them to zero.

Select 8-bit PPG mode and set the input clock to ϕ T1.

Write 0AH.

Write 28H.

Set TFF1 and enable inversion.

Setting 10 results in a negative-logic output waveform.

Set PC1 to the TO1 pin.

Enable double buffer and start counting with timers 0 and 1

X = Don't care "-" = No change

(4) 8-bit PWM output mode

This mode is supported only for timer 0. In this mode, a PWM signal having a resolution of up to eight bits can be output. The PWM signal is output through TO1 (shared with PC1).

In this mode, timer 1 can be output as an 8-bit timer.

The timer output is inverted when the up-counter (UC0) value matches the value set in the timer register (TREG0) or when the 2^n counter overflows (n = 6, 7 or 8, as specified with TMOD01<PWM01:00>). UC0 is cleared when the 2^n counter overflows.

The following conditions must be satisfied to use PWM mode:

```
(TREG0 setting) \leq (2<sup>n</sup> counter overflow setting)
(TREG0 setting) \neq 0
```

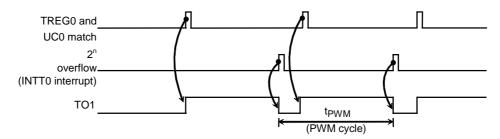


Figure 3.7.25 8-bit PWM Waveforms

Figure 3.7.26 shows a block diagram of this mode:

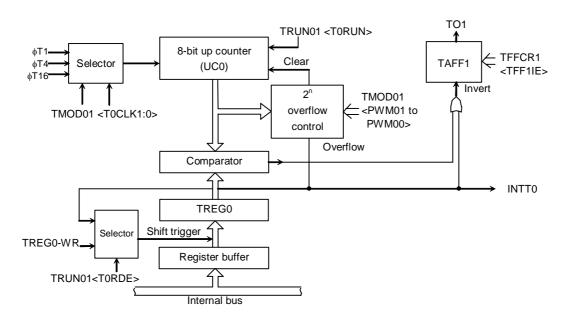


Figure 3.7.26 Block Diagram of 8-Bit PWM Mode

In this mode, if the double buffer for TREG0 is enabled, the value of the register buffer is shifted into TREG0 when an 2^n overflow is detected.

Using the double buffer facilitates processing for a small duty ratio.

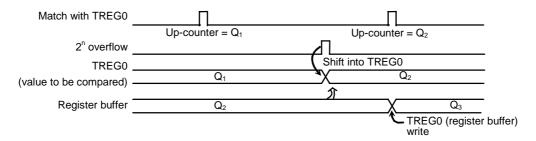
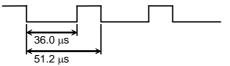



Figure 3.7.27 Register Buffer Operation

Example: Using timer 0 to output the following PWM waveform through the TO1 pin (fc = 20 MHz)

To obtain a PWM period of $51.2~\mu s$ with $\phi T1 = 0.4~\mu s$ (at fc = 20~MHz):

$$51.2 \ \mu s \div 0.4 \ \mu s = 2^n = 128$$

Therefore, set n to 7.

Since the Low-level period is 36.0 $\mu s,$ set TREG0 to the following value when $\phi T1=0.4~\mu s$: 36.0 $\mu s\div 0.4~\mu s=90=5AH$

	MS	В						L	_SB		
_		7	6	5	4	3	2	1	0		
TRUN01	\leftarrow	-	Х	Х	Х	_	-	-	0	Stop timer 0 and clear it to zero.	
TMOD01	\leftarrow	1	1	1	0	_	-	0	1	Select 8-bit PWM mode (period = 27) and set the input	ıt
										clock to φT1.	
TREG0	\leftarrow	0	1	0	1	1	0	1	0	Write 5AH.	
TFFCR1	\leftarrow	Х	Х	Х	Х	1	0	1	Х	Clear TFF1 and enable inversion.	
										_	
PCCR	\leftarrow	Х	Х	-	-	-	_	1	-	Set PC1 to the TO1 pin.	
PCFC	\leftarrow	Х	Х	-	-	-	_	1	-	Set FC1 to the TO1 pin.	
TRUN01	\leftarrow	1	Х	Х	Х	-	1	-	1	Enable double buffer and start counting with timer 0.	

Table 3.7.4 PWM Cycle

	PWM Interval (at fc = 20MHz)				
	φТ1	φТ4	φT16		
2 ⁶	25.6 μs (39.06 kHz)	102.4 μs (9.77 kHz)	409.6 μs (2.44 kHz)		
27	51.3 μs (19.53 kHz)	204.8 μs (4.88 kHz)	819.2 μs (1.22 kHz)		
2 ⁸	102.4 μs (9.77 kHz)	409.6 μs (2.44 kHz)	1.6384 ms (0.61 kHz)		

(5) Settings for each timer mode

Table 3.7.5 shows the SFR settings for each mode.

Table 3.7.5 Interval Timer Mode Setting Registers

Register name	TMO		DD01		TFFCR1
<bit symbol=""></bit>	<t01m1:0></t01m1:0>	<pwm01:00></pwm01:00>	<t1clk1:0></t1clk1:0>	<t0clk1:0></t0clk1:0>	<tff1is></tff1is>
Function	Interval Timer mode	PWM cycle	Upper timer input clock	Lower timer input clock	Timer F/F invert signal select
8-bit timer × 2 channels	00	-	Lower timer match, φT1, φT16, φT256 (00, 01, 10, 11)	External clock, \$\phi T1, \$\phi T4, \$\phi T16\$ (00, 01, 10, 11)	0: Lower timer output 1: Upper timer output
16-bit interval timer mode	01	-	-	External clock, \$\phi T1, \$\phi T4, \$\phi T16\$ (00, 01, 10, 11)	-
8-bit PPG × 1 channel	10	-	-	External clock, \$\phi T1, \$\phi T4, \$\phi T16\$ (00, 01, 10, 11)	-
8-bit PWM × 1 channel	11	2 ⁶ , 2 ⁷ , 2 ⁸ (01, 10, 11)	-	External clock, \$\phi T1, \$\phi T4, \$\phi T16\$ (00, 01, 10, 11)	-
8-bit timer × 1 channel	11	-	φT1, φT16 , φT256 (01, 10, 11)	-	Output disabled

[&]quot;-" = Don't care

3.8 16-bit Timers/Event Counters

The TMP92CD54I contains two channels of 16-bit timers/event counters (timer 8 and timer A), which can operate in the following modes:

- 16-bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable square wave (PPG) output mode

The following operating modes are also supported by using the capture function:

- Frequency measurement mode
- Pulse width measurement mode
- Time difference measurement mode

Figure 3.8.1 and Figure 3.8.2 show block diagrams of timers 8 and A.

Each channel mainly consists of a 16-bit up-counter, two 16-bit timer registers (one with double-buffer configuration), two 16-bit capture registers, two comparators, a capture input controller, timer flip-flops and their controller. Each timer is controlled with 11 register (SFR) bytes.

The two channels, timer 8 and timer A, operate independently of each other. Both channels operate in the same way except the differences in specification listed in Table 3.8.1. This section only describes the operation of timer 8.

Table 3.8.1 Differences between Timer 8 and Timer A

Channel Specification		Timer 8	Timer A
External	External clock / Capture trigger input pins	TI8 (also used as PD0) TI9 (also used as PD1)	TIA (also used as PD4) TIB (also used as PD5)
Pins	Timer flip-flop output pins	TO8 (also used as PD2) TO9 (also used as PD3)	TOA (also used as PD6) TOB (also used as PD7)
SFR (address)	Timer Run Register	TRUN8 (00A0H)	TRUNA (00B0H)
	Timer Mode Register	TMOD8 (00A2H)	TMODA (00B2H)
	Timer Flip-Flop Control Register	TFFCR8 (00A3H)	TFFCRA (00B3H)
	Timer Register	TREG8L (00A8H)	TREGAL (00B8H)
		TREG8H (00A9H)	TREGAH (00B9H)
		TREG9L (00AAH)	TREGBL (00BAH)
		TREG9H (00ABH)	TREGBH (00BBH)
	Capture Register	CAP8L (00ACH)	CAPAL (00BCH)
		CAP8H (00ADH)	CAPAH (00BDH)
		CAP9L (00AEH)	CAPBL (00BEH)
		CAP9H (00AFH)	CAPBH (00BFH)

3.8.1 Block diagram

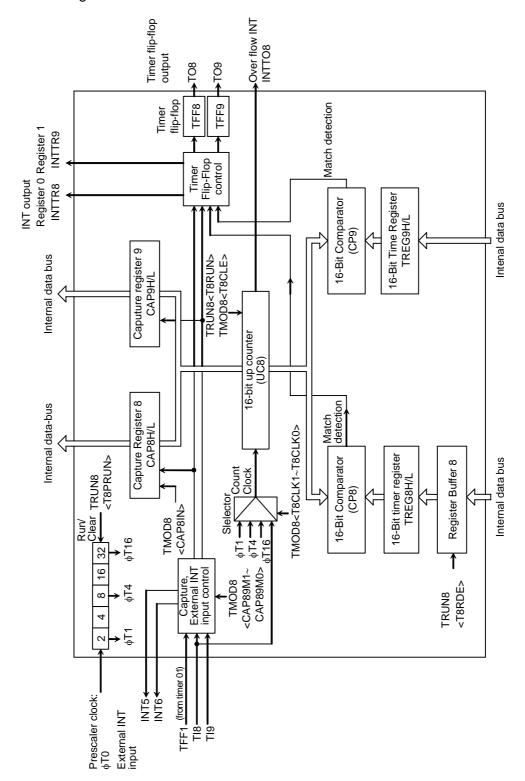


Figure 3.8.1 Block Diagram of Timer 8

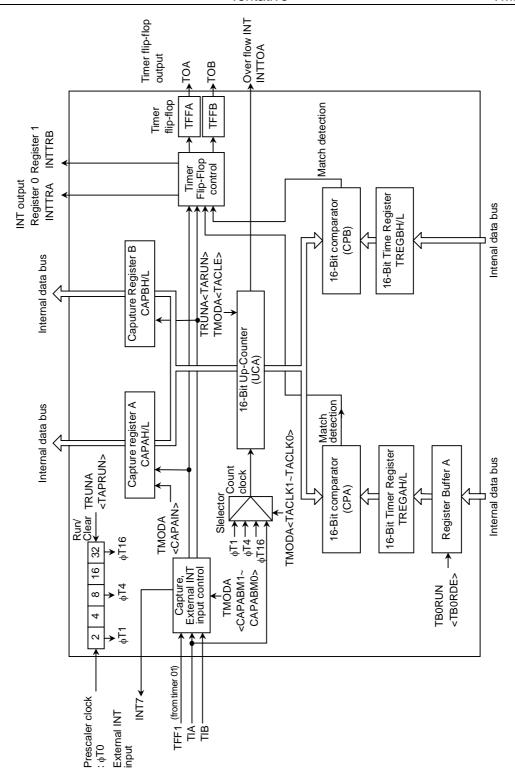


Figure 3.8.2 Block diagram of Timer A

3.8.2 Operation of each circuit

(1) Prescaler

A 5-bit prescaler provides a clock source for timer 8. The input clock for the prescaler, ϕ T0, is obtained by dividing fc by four. The TRUN8 <T8PRUN> bit enables or stops the prescaler operation. A write of 1 to the bit causes the prescaler to start counting and a write of 0 causes it to be cleared and stopped. Table 3.8.2 shows the resolutions of prescaler output clocks.

Table 3.8.2 Prescaler Clock Resolution

At fc=20MHz

Output clock	Interval	
φT1 (8/fc)	0.4 μs	
φT4 (32/fc)	1.6 μs	
φT16 (128/fc)	102.4 μs	

(2) Up-counter (UC8)

The up-counter is a 16-bit binary counter according to the input clock specified with TMOD8 <T8CLK1, T8CLK0>.

The input clock can be selected from among $\phi T1$, $\phi T4$, $\phi T16$ and an external clock on the TI8 pin. The TRUN8 <T8RUN> bit controls counting, stopping and clearing the counter.

The up-counter, UC8, is cleared to zero when its value matches the timer register, TREG9H/L, if clearing is enabled. The TMOD8 <T8CLE> bit is used to enable or disable clearing.

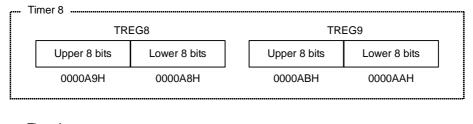
If clearing is disabled, the counter operates as a free-running counter.

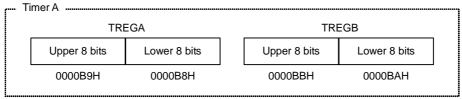
If an overflow occurs in UC8, an overflow interrupt (INTTO8) is generated.

(3) Timer registers (TREG8H/L and TREG9H/L)

These two 16-bit registers are used to frequencies specify A comparator match detection signal is output if the value in up-counter UC8 matches that in the timer register. To set data in 16-bit timer registers TREG8H/L and TREG9H/L, use a 2-byte data transfer instruction or use two 1-byte data transfer instructions to set the lower eight bits and then the upper eight bits.

The TREG8 timer register has a double-buffer configuration and is paired with register buffer 8. The double buffer can be enabled or disabled using the timer 8 control register. The double buffer is disabled if the register bit is set to 0 and enabled if it is set to 1.


When the double buffer is enabled, a data transfer from the register buffer to the timer register takes place if the value in the up-counter (UC8) matches the value in the timer register (TREG9).

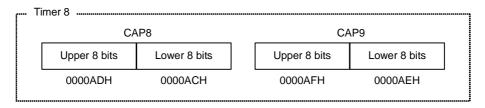

Upon a reset, the values in TREG8 and TREG9 are undefined. To use the 16-bit timer, therefore, it is necessary to first write data to the registers.

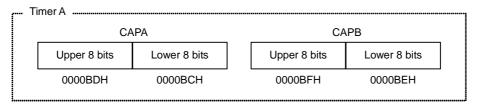
Upon a reset, TRUN8<T8RDE> is initialized to 0, thus disabling the double buffer. To use the double buffer, first write data to the timer register and set TRUN8<T8RDE> to 1 before writing next data to the register buffer.

The TREG8 and register buffer are assigned to the same address, 0000A8H / 0000A9H. If TRUN8<T8RDE> = 0, the same value is written to both TREG8 and register buffer. If TRUN8<T8RDE> = 1, the value is only written to the register buffer.

The timer registers are located at the following addresses:

The timer registers are write-only. They cannot be read using a program.


Figure 3.8.3 Address of Timer Registers


(4) Capture registers (CAP8H/L and CAP9H/L)

The capture registers are 16-bit registers that latch the value of UC8.

To read data from a capture register, use a 2-byte data transfer instruction or use two 1-byte data transfer instructions to read the lower eight bits and then the upper eight bits.

The capture registers are located at the following addresses:

The capture registers are read-only. They cannot be written using a program.

Figure 3.8.4 Address of Cature Registers

(5) Capture input and external interrupt control

This circuit controls the timing for latching the value of up-counter UC8 into capture register CAP8 and the generation external interrupt INT5. The TMOD8 <CAP89M1, CAP89M0> bits specify the capture register interrupt timing and external interrupt edge selection. (External interrupt INT6 is fixed to the rising edge.)

The prescaler must be set to the RUN state (TRUN8 <T8PRUN> = 1).

The value of up-counter UC8 can also be latched into the capture register using software (Software capture). By software capture, writing a 0 to TMOD8 < CAPSIN > causes the current value of UC8 to be captured into capture register CAP8.

(6) Comparators (CP8 and CP9)

The 16-bit comparators compare the value in UC8 with the values set in TREG8 and TREG9 to detect a match.

Upon the detection of a match, they generate INTTR8 and INTTR9, respectively.

(7) Timer flip-flops (TFF8 and TFF9)

The timer flip-flops (TFF8 and TFF9) are inverted with a match detection signal from the comparator or a capture register latch signal. Inversion triggers for TFF8 and TFF9 can be controlled using TFFCR8 <CAP9T8, CAP8T8, EQ9T8, EQ8T8> and TMOD8<CAP9T9, EQ9T9>, respectively. Upon a reset, the values in TFF8 and TFF9 are undefined. Writing 00 to <TFF8C1:0> and <TFF9C1:0> triggers the inversion of the flip-flop. Writing 01 causes the flip-flop to be set to 1 while writing 10 causes it to be cleared to 0.

The values of TFF8 and TFF9 can be output through timer output pins TO8 (shared with PD2) and TO9 (shared with PD3). To output the timer value, it is necessary to first set the port to enable output, using the port D SFR.

3.8.3 16-bit timer registers

Timer 8 Operation Control Register

TRUN8 (00A0H)

	7	6	5	4	3	2	1	0
Bit symbol	T8RDE	-	-	-	I2T8	T8PRUN	ı	T8RUN
Read/Write	R/W	R/W			R/W	R/W		R/W
After Reset	0	0	-	-	0	0	-	0
Function	Double Buffer 0: Disable 1: Enable	Write 0			IDLE2 0: Stop 1: Operate	Timer Run/S 0: Stop & C 1: Run (cou	lear	

Count operation

Stop and Clear

Count

I2T8: Operation in IDLE2 mode (for details, see "3.3.2

Standby Controller")
T8PRUN: Prescaler operation
T8RUN: Timer 8 operation

Note: TRUN8 bits 1, 4, and 5 return undefined values if read.

Timer A Operation Control Register

TRUNA	
(00B0H)	

	7	6	5	4	3	2	1	0
Bit symbol	TARDE	-	-	-	I2TA	TAPRUN	-	TARUN
Read/Write	R/W	R/W			R/W	R/W		R/W
After Reset	0	0	-	-	0	0	-	0
Function	Double Buffer 0: Disable 1: Enable	Write 0			IDLE2 0: Stop 1: Operate	0: Stop & C		ontrol

O Stop and Clear
Count

I2TA: Operation in IDLE2 mode (for details, see "3.3.2 $\,$

Standby Controller")
TAPRUN: Prescaler operation
TARUN: Timer 8 operation

Note: TRUNA bits 1, 4, and 5 return undefined values if read.

Figure 3.8.5 Registers for 16-bit Timers (TRUN8, TRUNA)

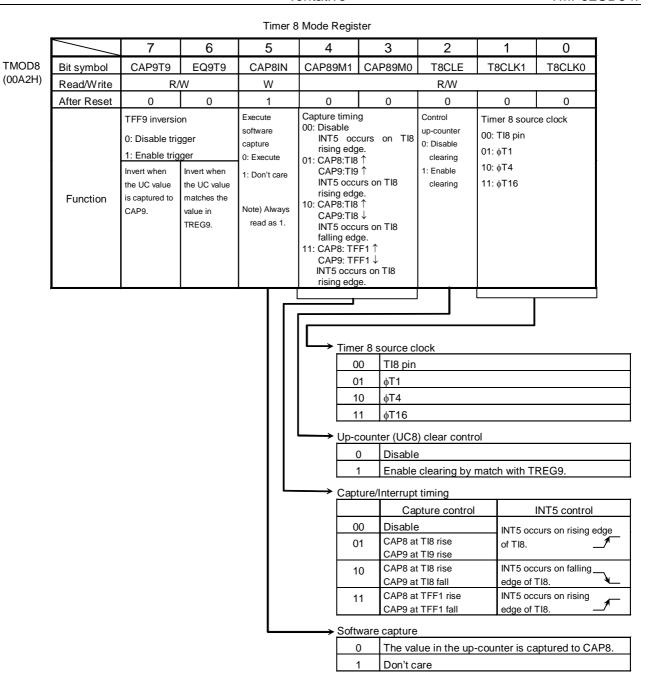


Figure 3.8.6 Registers for 16-bit Timers (TMOD8)

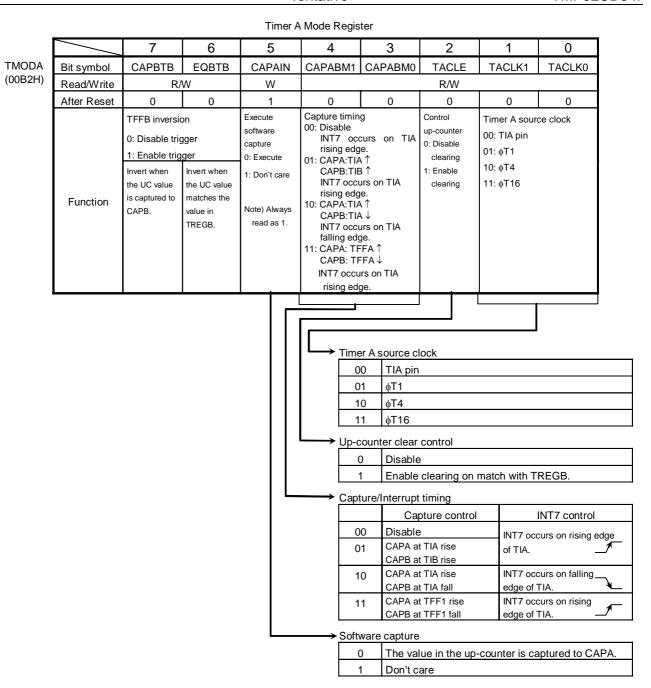


Figure 3.8.7 Registers for 16-bit Timers (TMODA)

TFFCR8

(00A3H)

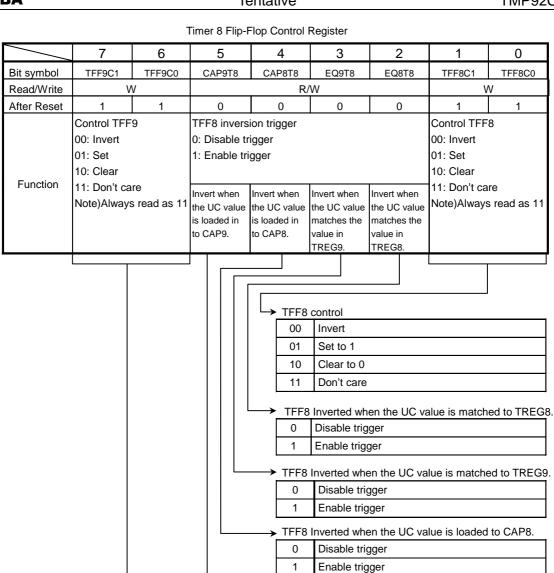


Figure 3.8.8 Registers for 16-bit Timers (TFFCR8)

TFF8 Inverted when the UC value is loaded to CAP9.

Disable trigger

Enable trigger

Set to 1

Clear to 0

Don't care

1

00 01

10

11

TFF9 control
00 Invert

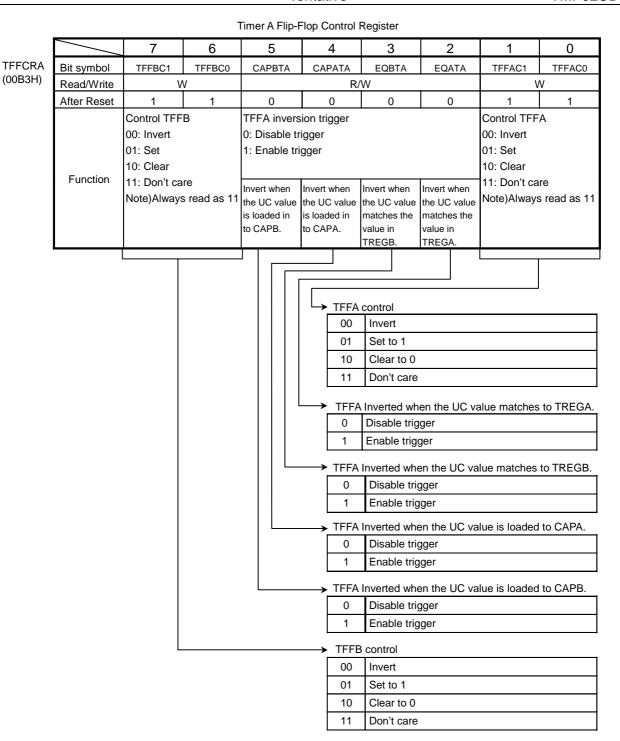


Figure 3.8.9 Registers for 16-bit Timers (TFFCRA)

Timer Registers (Timer 8 and Timer A)									
Symbol	Address	7	6	5	4	3	2	1	0
TREG8L	A8H (no RMW)		- W Undefined						
TREG8H	A9H (no RMW)		- W Undefined						
TREG9L	AAH (no RMW)		- W Undefined						
TREG9H	ABH (no RMW)		- W Undefined						
TREGAL	B8H (no RMW)		- W Undefined						
TREGAH	B9H (no RMW)		- W Undefined						
TREGBL	BAH (no RMW)		- W Undefined						
TREGBH	BBH (no RMW)					- W efined			

Capture Registers (Timer 8 and Timer A)									
Symbol	Address	7	6	5	4	3	2	1	0
CAP8L	ACH		- R Undefined						
CAP8H	ADH				F Unde	₹			
CAP9L	AEH		- R Undefined						
САР9Н	AFH		- R						
CAPAL	всн		Undefined - R						
САРАН	BDH		Undefined - R Undefined						
CAPBL	BEH		- R Undefined						
САРВН	BFH				F Unde				

Figure 3.8.10 Registers for 16-bit Timers. (TREG8 to B (L/H), CAP8 to B (L/H))

3.8.4 Operation in each mode

(1) 16-bit interval timer mode

Generating interrupts at regular intervals

Set an interval time in timer register TREG9 to generate an INTTR9 interrupt.

```
0
                      0
                          X
                              Х
                                          X
                                                         Stop timer 8.
INTET89
                  Х
                      1
                          0
                              Ω
                                      Ω
                                          O
                                                         Enable INTTR9, set the level to 4, and disable INTTR8.
                                  Х
TFFCR8
                          0
                              0
                                  0
                                                         Disable trigger.
TMOD8
                              0
                                                         Set the input clock to the prescaler output clock and
                               = 01, 10, 11)
                                                         disable the capture function.
TREG9
                                                         Set an interval time (16 bits).
TRUN8
                     0
                          Х
                              Х
                                                         Start timer 8.
```

X = Don't care "-" = No change

(2) 16-bit event counter mode

The 16-bit timer can function as an event counter by using an external clock (supplied on the TI8 pin) as the input clock.

The up-counter is incremented on the rising edge of the TI8 pin input. The count value can be obtained by performing a software capture and then reading the captured value.

```
5
TRUN8
                      0
                          X
                              X
                                          Χ
                                              Ω
                                                         Stop timer 8.
PDCR
                                              1
                                                         Set PD0 to TI8.
PDFC
INTET89
                      1
                          0
                                          0
                                                         Enable INTTR9, set the level to 4, and disable INTTR8.
                                  Ω
TFFCR8
                      1
                                              1
                                                         Disable trigger.
TMOD8
                      0
                          1
                              Ω
                                  Ω
                                                         Set the input clock to the TI8 pin input.
TREG9
                                                         Set the count value (16 bits).
                  0
                     0
                          Χ
                             Χ
                                                         Start timer 8.
TRUN8
```

X = Don't care "-" = No change

Note: The prescaler must also be set to "Run" mode (TRUN8 <T8PRUN> = "1") when the timer is used as an event counter.

(3) 16-bit PPG (programmable square wave) output mode

In this mode, the timer can be used to output a square wave having any specified frequency and duty ratio (programmable square wave). Either low-active or high-active output pulses can be selected.

The inversion of timer flip-flop TFF8 is triggered with a match between UC8 and the timer register (TREG8 and TREG9) setting, resulting in a programmable square wave being output through the TO8 pin. The values of TREG8 and TREG9 must satisfy the following condition:

(TREG8 value) < (TREG9 value)

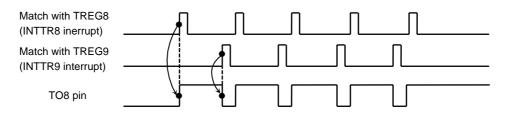


Figure 3.8.11 Programmable Pulse Generation (PPG) Output Waveforms

In this mode, if the double buffer for TREG8 is enabled, the value of register buffer 8 is shifted into TREG8 upon a match with TREG9. Using the double buffer facilitates processing for a small duty ratio.

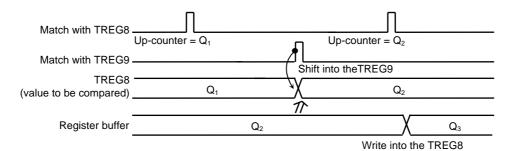


Figure 3.8.12 Operation of Register Buffer

The following shows a block diagram of this mode:

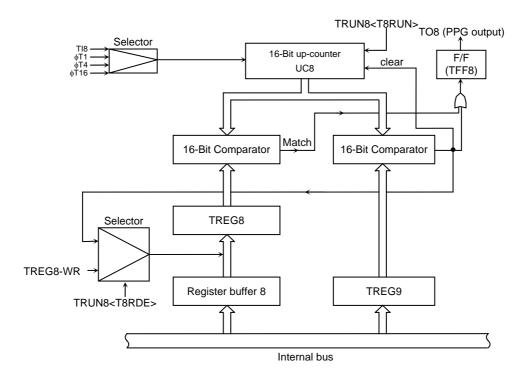


Figure 3.8.13 Block Diagram of 16-bit PPG Output Mode

In 16-bit PPG output mode, set the registers as follows:

```
6
                                              0
TRUN8
                                                          Disable TREG8 double buffer and stop timer 8.
TREG8
                                                          Set a duty ratio (16 bits).
                                                          Set a frequency (16 bits).
TREG9
TRUN8
                                                          Enable TREG8 double buffer.
                                                          (Duty ratio/frequency modified with an INTTR9 interrupt)
                                                          Set TFF8 to invert upon detection of a match with TREG8
TFFCR8
                                                          and TREG9. Initialize TFF8 to 0.
                                                          Set the input clock to the prescaler output clock and
TMOD8
                                                          disable the capture function.
                                  01, 10, 11)
PDCR
                                                          Assign TO8 to the PD2 pin.
PDFC
TRUN8
                          Х
                                                          Start timer 8.
```

X = Don't care; "-" = No change

(4) Examples using the capture function

The capture function can be used for many applications, including the following examples:

- a. One-shot pulse output from external trigger pulse
- b. Frequency measurement
- c. Pulse width measurement
- d. Time difference measurement

a. One-shot pulse output from external trigger pulse

Operate up-counter UC8 in free-running mode using the prescaler output clock. Supply external trigger pulses through the TI8 pin and use the capture function to latch the up-counter value into capture register CAP8 on the rising edge of a trigger pulse.

An INT5 interrupt occurs on the rising edge of an external trigger pulse. In INT5 interrupt handling, set timer register TREG8 with the sum (c + d) of the CAP8 value (c) and delay time (d). For timer register TREG9, set the sum (c + d + p) of the TREG8 value (c + d) and the width of the one-shot pulse (p). (That is, TREG8 = c + d and TREG9 = c + d + p.)

In addition, set <EQ9T8, EQ8T8> to 11 to enable a trigger so that timer flip-flop TFF8 will be inverted upon a match between UC8 and TREG8 as well as a match between UC8 and TREG9.

Once a one-shot pulse has been output, use the INTTR9 interrupt handling to redisable a trigger.

The symbols (c), (d), and (p) in the above description correspond to symbols c, d, and p in Figure 3.8.14, "One-shot pulse output from an external trigger pulse (with delay)."

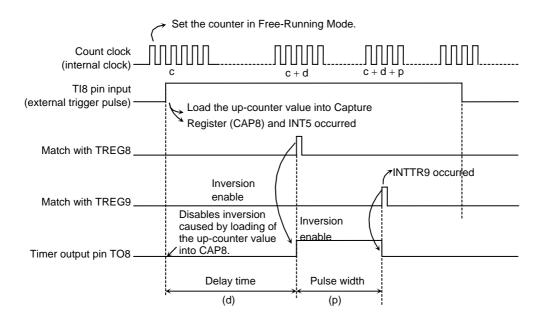
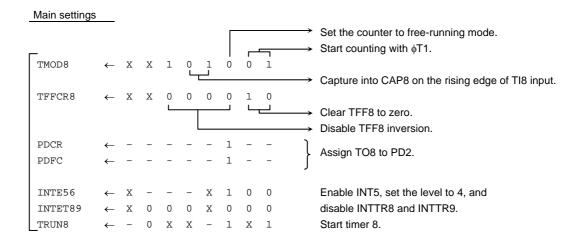



Figure 3.8.14 One-shot Pulse Output (with delay)

Example settings: Outputting a one-shot pulse of 2 ms with a 3-ms delay using an external trigger pulse on the TI8 pin

Setting of INT5

```
TREG8 \leftarrow CAP8 + 3 ms/\phiT1

TREG9 \leftarrow TREG8 + 2 ms/\phiT1

TFFCR8 \leftarrow X X - - 1 1 - -

Enable TFF8 inversion upon a match with TREG8 and TREG9.

INTET89 \leftarrow X 1 0 0 X - - -

Enable INTTR9.
```

Setting INTTR9

```
TFFCR8 \leftarrow X X - - 0 0 - - Disable TFF8 inversion upon a match with TREG8 and TREG9.

INTET89 \leftarrow X 0 0 0 X - - - Disable INTTR9.
```

X = Don't care; "-" = No change

If a delay time is not necessary, invert timer flip-flop TFF8 when the counter value is captured into CAP8 and use an INT5 interrupt to set timer register TREG9 with the sum (c + p) of the CAP8 value (c) and the one-shot pulse width (p). Enable TFF8 so that it will be inverted upon a match between TREG9 and UC8. And upon an INTTR9 interrupt, redisable TFF8.

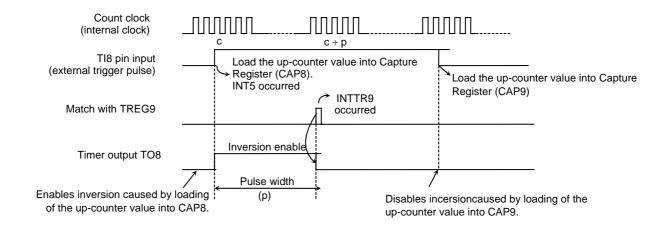


Figure 3.8.15 One-shot Pulse Output (without delay)

b. Frequency measurement

In this mode, the timer is used to measure the frequency of an external clock. Supply an external clock through the TI8 pin and measure it using 8-bit timers (timers 0 and 1) and a 16-bit timer/event counter (timer 8). Set the timer 8 input clock to the TI8 input and set TMOD8 < CAP89M1, CAP89M0> to 11. Capture the value of up-counter UC8 into CAP8 on the rising edge of timer flip-flop TFF1 for the 8-bit timers (timers 0 and 1) and into CAP9 on its falling edge.

Use 8-bit timer interrupts (INTT0 and INTT1) to obtain the frequency from the difference between the values in capture registers CAP8 and CAP9.

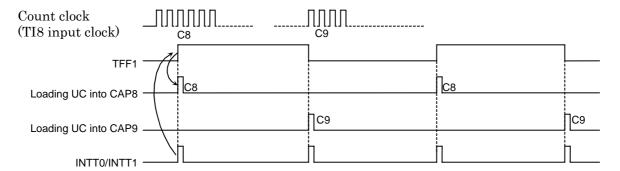


Figure 3.8.16 Frequency Measurement

For example, if the TFF1 "1" level width is set to 0.5 s with the 8-bit timers and the difference between CAP8 and CAP9 is 100, then the frequency is $100 \div 0.5$ s = 200 Hz.

c. Pulse width measurement

In this mode, the timer is used to measure the High-level width of an external pulse. Supply an external pulse through the TI8 pin and operate the 16-bit timer/event counter in free-running mode using the internal clock. Use the capture function to trigger capturing on both the rising and falling edges of an external pulse to capture the value of the up-counter (UC8) into capture registers CAP8 and CAP9. An INT5 interrupt occurs on the falling edge of the TI8 pin input.

The pulse width can be determined from the difference between CAP8 and CAP9 and the period of the internal clock.

For example, if the prescaler output clock period is $0.8~\mu s$ and the difference between CAP8 and CAP9 is 100, then the pulse width is $100~x~0.8~[\mu s] = 80~[\mu s]$.

Software-based processing is necessary if the pulse width to be measured exceeds the maximum count time for UC8.

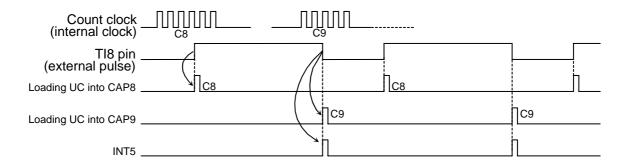


Figure 3.8.17 Pulse Width Measurement

Note: Only in pulse width measurement mode (TMOD8 <CAP89M1:0> = 10), an INT5 external interrupt occurs on the falling edge of the TI8 input. It occurs on the rising edge in all other modes.

To measure the Low-level width, multiply the period of the prescaler output clock by the difference between the first C9 value and the second C8 value in the INT5 interrupt handling.

d. Time difference measurement

In this mode, the timer is used to measure the time difference between the rising edges of an external pulse input on the TI8 and TI9 pins. Operate the 16-bit timer/event counter (timer 8) in free-running mode using the internal clock and capture the value of up-counter UC8 into capture register CAP8 on the rising edge of the TI8 input, at which time an INT5 interrupt occurs.

Similarly, capture the value of up-counter UC8 into capture register CAP9 on the rising edge of the TI9 input, at which time an INT6 interrupt occurs.

Once the values have been captured into the capture registers, the time difference can be determined by multiplying the period of the internal clock by the difference between CAP9 and CAP8.

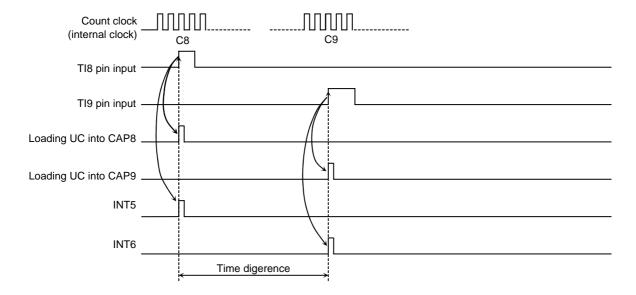


Figure 3.8.18 Time Difference Measurement

3.9 Serial Channels

The TMP92CD54I contains two serial input/output channels. Both channels support UART mode (asynchronous communication) and I/O interface mode (synchronous communication).

I/O interface mode	—— Mode 0:	Transmits and receives I/O data and its synchronization signal (SCLK) for expanding I/O.
• UART mode	Mode 1: Mode 2: Mode 3:	Transmits/receives 7-bit data. Transmits/receives 8-bit data. Transmits/receives 9-bit data.

In mode 1 and mode 2, a parity bit can be added. In mode 3, a wakeup function is supported for the master controller to activate the slave controller in a serial link system.

Figure 3.9.2 and Figure 3.9.3 show block diagrams for each channel.

Serial channels 0 and 1 operate independently of each other. Both channels operate in the same way except the differences in specification listed in Table 3.9.1. This section only describes the operation of channel 0.

Table 3.9.1 Differences between Channels 0 to 1

	Channel 0	Channel 1
Pin Name	TXD0 (PF0) RXD0 (PF1) CTS0 /SCLK0 (PF2)	TXD1 (PF3) RXD1 (PF4) CTS1/SCLK1 (PF5)

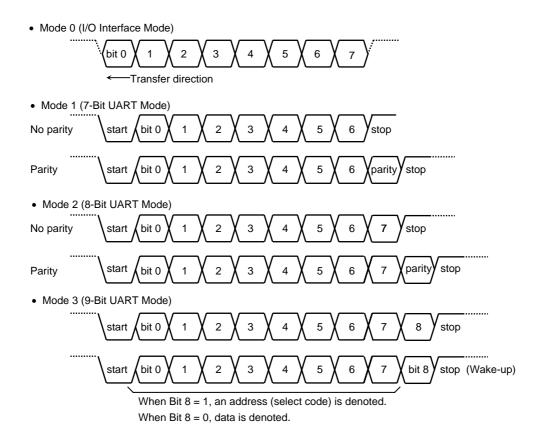


Figure 3.9.1 Data Formats

3.9.1 Block diagram for each channel

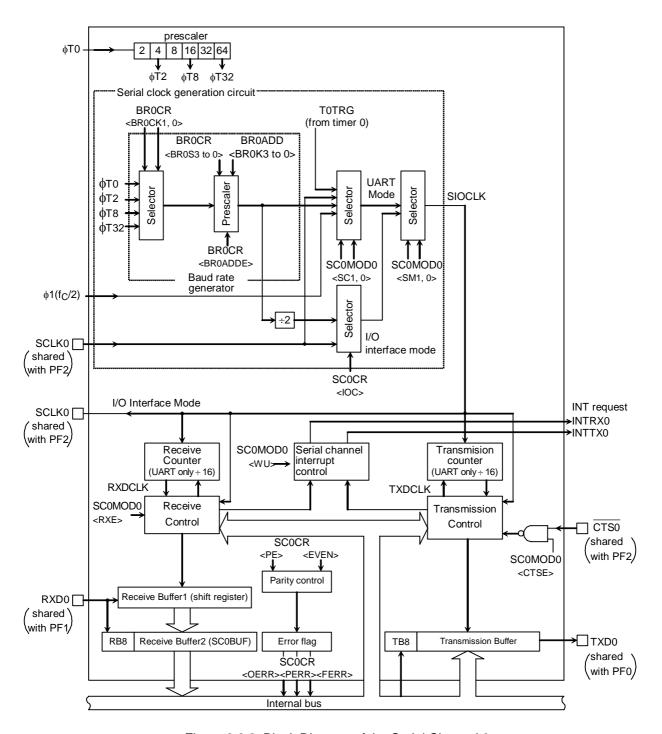


Figure 3.9.2 Block Diagram of the Serial Channel 0

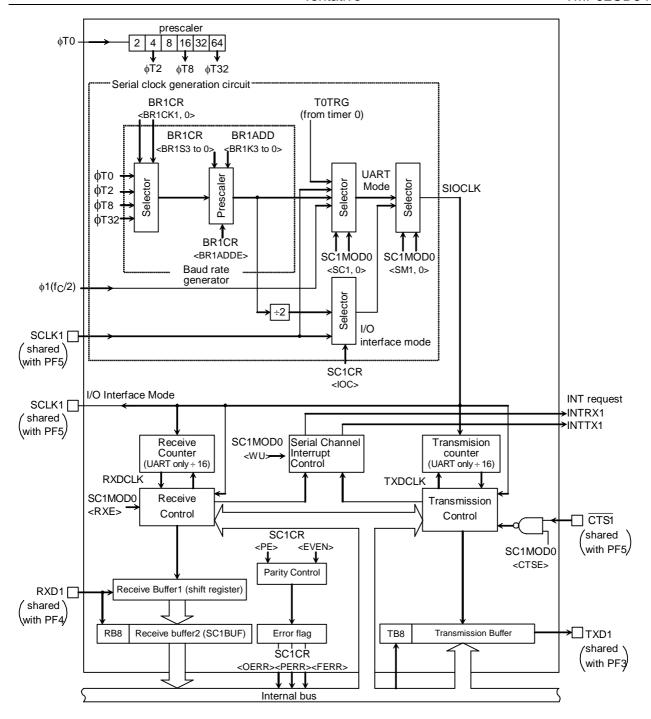


Figure 3.9.3 Block Diagram of the Serial Channel 1

3.9.2 Operation of each circuit

(1) Prescaler

The 6-bit prescaler divides the 1/4 system clock (fc/4) to generate the input clock for the baud rate generator. The BR0CR<BR0CK1:0> bits in the baud rate generator control register specify the input clock from the prescaler.

Table 3.9.2 shows the resolutions of prescaler output clocks.

Table 3.9.2 Prescaler Clock Resolution to Baud Rate Generator

	At tc=20MHz
Output clock	Clock resolution
φT0 (4/fc)	0.2μs
φT2 (16/fc)	0.8μs
φT8 (64/fc)	3.2μs
φT32 (256/fc)	12.8µs

The baud rate generator uses one of four prescaler output clocks, $\phi T0$, $\phi T2$, $\phi T8$ and $\phi T32$.

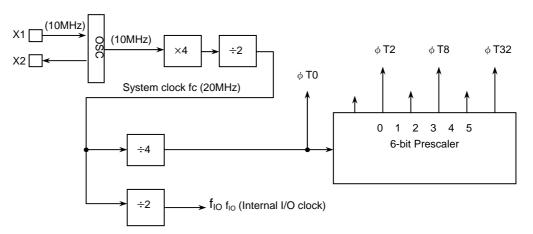


Figure 3.9.4 6-bit Prescaler

(2) Baud rate generator

The baud rate generator generates a transmit/receive clock that defines the transfer speed on a serial channel.

The clock input to the baud rate generator is generated with the 6-bit prescaler from ϕ T0, ϕ T2, ϕ T8, or ϕ T32. The BR0CR<BR0CK1:0> bits in the baud rate generator control register specify the input clock.

The baud rate generator contains a frequency divider that can divide the clock by N (N = 1 to 16) or N + (16 - K)/16 (N = 2 to 15 and K = 1 to 15). Note that specifying division by N causes the (16 - K)/16 portion to be disabled.

	Division by N setting	Division by N + (16 - K)/16 setting				
N K	-	1	2		15	
1	1		Do not use	this setting		
2	2	2+1/16	2+2/16	•••	2+15/16	
3	3	3+1/16	3+2/16		3+15/16	
4	4	4+1/16	4+2/16		4+15/16	
5	:	:	:		:	
14	14	14+1/16	14+2/16		14+15/16	
15	15	15+1/16	15+2/16	•••	15+15/16	

so the overall division can take any value in the range [1; N+(16-K)/16; 16] with N = 2, 3, ..., 15 and K = 1, 2, ..., 15.

The transfer rate is determined from the settings of BROCR<BROADDE, BROS3:0> and BROADD<BROK3:0>.

BR0CR<BR0ADDE>: Division by N + (16 - K)/16

```
0: Disabled
1: Enabled

BR0CR<BR0S3:0>: Set division ratio
0000: N = 16 (cannot be used when division by N + (16 - K)/
16 is enabled)
0001: N= 1
0010: N= 2
:
:
:
:1111: N=15
```

BR0ADD<BR0K3:0>: Set division ratio K (when division by N + (16 - K)/16 is enabled)

```
0000: Disabled
0001: K=1
:
:
:
:1111: K=15
```

• In UART mode

(1) When BR0CR < BR0ADDE > = 0

The setting of BR0ADD<BR0K3:0> is ignored and the frequency is divided by N as specified with BR0CK<BR0S3:0> (N = 1, 2, 3 ... 16).

(2) When BROCR < BROADDE > = 1

Division by N + (16 - K)/16 is enabled. The frequency is divided by N + (16 - K)/16 according to N specified with BR0CR<BR0S3:0> (N = 2, 3 ... 15) and K

specified with BR0ADD
 $R0K3:0> (K = 1, 2, 3 \dots 15)$.

Note: If N = 1 or 16, division by N + (16 - K)/16 is disabled and BR0CR <BR0ADDE> must be set to 0.

• In I/O interface mode

In I/O interface mode, division by N + (16 - K)/16 cannot be used. Always set BR0CR<BR0ADDE> to 0 to perform division by N.

The following shows how to calculate the baud rate when using the baud rate generator:

• UART mode

$$Baud\ Rate = \frac{Baud\ rate\ generator\ input\ clock\ frequency}{Baud\ rate\ generator\ frequency\ division\ value} \div 16$$

• I/O interface mode

$$Baud Rate = \frac{Baud rate generator input clock frequency}{Baud rate generator frequency division value} \div 16$$

• Division by an integer (N)

The baud rate in UART mode is calculated as follows when fc = 19.6608 MHz, the input clock is ϕ T2 (frequency: fc/16), division value N (BR0CR<BR0S3:0>) = 8, and BR0CR<BR0ADDE> = 0:

Baud Rate =
$$\frac{\text{fc/16}}{8} \div 16$$

= $19.6608 \times 10^6 \div 16 \div 8 \div 16 = 9600 \text{ (bps)}$

Note: The setting of BR0ADD<BR0K3:0> is ignored for division by an integer because division by N + (16 - K)/16 is disabled.

• Division by N + (16 - K)/16 (in UART mode only)

The baud rate is calculated as follows when fc = 15.9744 MHz, the input clock is ϕ T2 (frequency: fc/16), division value N (BR0CR<BR0S3:0>) = 6, K (BR0ADD<BR0K3:0>) = 8, and BR0CR<BR0ADDE> = 1:

Baud Rate =
$$\frac{\text{fc/16}}{6 + (16 - 8)/16} \div 16$$

= $15.9744 \times 10^6 \div 16 \div (6 + 8/16) \div 16 = 9600 \text{ (bps)}$

Table 3.9.3 and Table 3.9.4 show example baud rates in UART mode.

An external clock input can also be used as the serial clock. The following shows how to calculate the baud rate in that case:

• UART mode

Baud rate = external clock input frequency ÷ 16

The external clock input frequency must be less than or equal to fc/4.

• I/O interface mode

Baud rate = external clock input frequency

The external clock input frequency must be less than or equal to fc/16.

Table 3.9.3 Selection of Transfer Rate (1) (When using the baud rate generator with BR0CR<BR0ADDE> = 0)

Unit: kbps

fc [MHz]	Input Clock Frequency Divider	φT0 (4/fc)	φT2 (16/fc)	φT8 (64/fc)	φT32 (256/fc)
18.432000	15	19.200	4.800	1.200	0.300
40.000000	8	38.400	9.600	2.400	0.600
19.660800	16	19.200	4.800	1.200	0.300

Note: In I/O interface mode, the transfer rate is eight times the value shown in the table.

Table 3.9.4 Selection of Transfer Rate (2) (When using timer 0 input clock φT1)

Unit: kbps

			OTIII. Riopo
f	c 20	19.6608	16
TREG0	MHz	MHz	MHz
02H		76.8	62.5
04H		38.4	31.25
05H	31.25		
08H		19.2	-
10H		9.6	

How to calculate the baud rate (when using timer 0)

Transfer rate =
$$\frac{fc}{TREG0 \times \underline{8} \times 16}$$

$$(When the timer 0 input clock is $\phi T1$)$$

Note: In I/O interface mode, a match signal from timer 0 cannot be used as a transfer clock.

(3) Serial clock generator

This circuit generates a basic clock for transmitting and receiving data.

• In UART mode

The SC0MOD0<SC1:0> register selects the clock to be used to generate the basic clock, SIOCLK, from the baud rate generator, internal clock ϕ 1 (fc/2), a match detection signal from timer 0, or an external clock (SCLK0).

In I/O interface mode

In SCLK output mode (SCOCR<IOC> = 0), the frequency of the baud rate generator output is divided by two to generate the basic clock.

In SCLK input mode (SC0CR<IOC> = 1), the basic clock is generated by detecting the rising or falling edge, as specified with the SC0CR<SCLKS> register.

(4) Receive counter

The receive counter is a 4-bit binary counter used in UART mode that increments with SIOCLK. A bit of data is received using 16 SIOCLK cycles and data is sampled in the seventh, eighth, and ninth clock cycles.

The received data is determined based on majority rule using three samples.

For example, if data is sampled as 1, 0, and 1 in the seventh, eighth, and ninth clock cycles, respectively, the received data is determined to be 1. If the sampled data is 0, 0, and 1, the received data is determined to be 0.

(5) Receive controller

• In I/O interface mode

In SCLK output mode (SCOCR<IOC> = 0), the RXD0 pin is sampled on the rising edge of the shift clock output to the SCLK0 pin.

In SCLK input mode (SC0CR<IOC> = 1), the RXD0 pin is sampled on the rising or falling edge of the SCLK0 pin input, depending on the SC0CR<SCLKS> setting.

• In UART mode

The receive controller has a start bit detector based on majority rule. If at least two of the three samples are 0, the controller determines that the start bit is valid and starts receiving data.

It also determines received data based on majority rule during data reception.

(6) Receive buffer

The receive buffer has double-buffer structure to prevent an overrun error. Received data is stored in receive buffer 1 (shift register) one bit at a time. Once seven or eight bits have been stored, the data is moved to the other buffer, receive buffer 2 (SC0BUF), at which time an INTRX0 interrupt occurs.

The CPU only reads data from receive buffer 2 (SC0BUF). Data received next can be stored in receive buffer 1 before the CPU reads the received data from receive buffer 2 (SC0BUF). An overrun error occurs, however, if the CPU does not read data from receive buffer 2 (SC0BUF) before all bits of next data are stored in receive buffer 1. If an overrun error occurs, the contents of receive buffer 2 and SC0CR<RB8> are maintained but those of receive buffer 1 are lost.

The parity bit when a parity is added to 8-bit UART data or the most significant bit in 9-bit UART mode is stored in SCOCR<RB8>.

In 9-bit UART mode, setting SC0MOD<WU> to 1 enables slave controller wakeup operation and an INTRX0 interrupt occurs only if SC0CR<RB8> = 1.

(7) Transmit counter

The transmit counter is a 4-bit binary counter used in UART mode. It is also counted with SIOCLK and generates a transmit clock, TXDCLK, once every 16 clock cycles.

Figure 3.9.5 Generation of the transmission clock

(8) Transmit controller

• In I/O interface mode

In SCLK output mode (SC0CR<IOC> = 0), the data in the transmit buffer is output to the TXD0 pin, one bit at a time, on the rising edge of the shift clock output through the SCLK0 pin.

In SCLK input mode (SCOCR<IOC> = 1), the data in the transmit buffer is output to the TXDO pin, one bit at a time, on the rising or falling edge of the SCLK input, depending on the SCOCR<SCLKS> setting.

• In UART mode

Once the CPU writes transmit data to the transmit buffer, the transmit controller starts transmission on the next rising edge of TXDCLK.

Handshaking

Serial channels 0 and 1 have the $\overline{\text{CTS}}$ pins, which enable transmission in frame units, thus preventing an overrun error. This function can be disabled or enabled using SC0MOD0<CTSE>.

If the $\overline{\text{CTS0}}$ pin is driven High during transmission, the transmitter completes the transmission of the data currently being transmitted and then stop transmission until the $\overline{\text{CTS0}}$ pin is driven back Low. An INTTX0 interrupt, however, occurs, with which the transmit controller requests next transmit data from the CPU, writes the data to the transmit buffer and then waits until transmission is ready.

The TMP92CD54I does not have a dedicated RTS pin. Any single port can be assigned to the RTS function. Once the receiver completes receiving data (in the RXD interrupt routine), it can drive the assigned RTS port High to request the transmitter to suspend transmission, thus easily implementing handshaking.

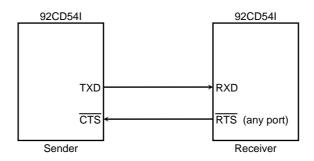
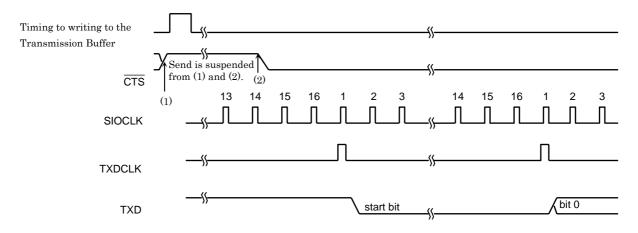



Figure 3.9.6 Handshake Function

Note 1: If the CTS signal is driven High during transmission, next data transmission stops upon the completion of the current transmission.

Note 2: Transmission starts on the first falling edge of the TXDCLK clock after the CTS signal falls.

Figure 3.9.7 CTS (Clear to send) Timing

(9) Transmit buffer

The CPU writes transmit data to the transmit buffer (SC0BUF). The transmit buffer shifts out the data, one bit at a time, in an LSB-first manner, with the transmit shift clock, TXDSFT, generated from the transmit controller. Once all bits have been shifted out, an INTTX0 interrupt occurs indicating that the transmit buffer is empty.

(10) Parity controller

Setting the SCOCR<PE> bit in the serial channel control register to 1 enables transmission with a parity. A parity can, however, be added only in 7-bit UART or 8-bit UART mode. The SCOCR<EVEN> register bit specifies whether an even or odd parity is used.

When transmitting data, the parity controller automatically generates a parity from the data written to the transmit buffer, SC0BUF. The parity is transmitted using SC0BUF<TB7> in 7-bit UART mode or SC0MOD0<TB8> in 8-bit UART mode. Ensure that the SC0CR<PE> and SC0CR<EVEN> bits are set before writing transmit data to the receive buffer.

When receiving data, the parity controller automatically generates a parity from the data that has been shifted into receive buffer 1 and then moved to receive buffer 2 (SC0BUF). The generated parity is compared with the parity contained in SC0BUF<RB7> in 7-bit UART mode or SC0CR<RB8> in 8-bit UART mode. If they differ, a parity error occurs and the SC0CR<PERR> flag is set.

(11) Error flags

Three error flags are provided to improve reliability in received data.

1. Overrun error <OERR>

An overrun error occurs if all bits of next data are received into receive buffer 1 with valid data still contained in receive buffer 2 (SC0BUF).

Recommended processing flow when an overrun error occurs:

(Receive interrupt routine)

- 1) Read the receive buffer.
- 2) Read the error flag.
- 3) if <OERR>=1

then

- 4) Write 0 to <RXE> to disable reception.
- 5) Wait until the current frame is completed.
- 6) Read the receive buffer.
- 7) Read the error flag.
- 8) Write 1 to <RXE> to enable reception.
- 9) Request retransmission.
- 10) Miscellaneous processing

2. Parity error <PERR>

A parity error occurs if the parity generated from the data moved to receive buffer 2 (SC0BUF) differs from the parity bit received through the RXD pin.

Framing error <FERR>

The stop bit in the received data is sampled three times near the middle of the reception period. A framing error occurs if it proves to be 0 based on majority rule.

(12) Start and stop timings for each signal

a. In UART mode

Reception

Table 3.9.5 Start and Stop Timings

Mode	9-Bit (Note)	8-Bit + Parity (Note)	8-Bit, 7-Bit + Parity, 7-Bit
Interrupt timing	Center of last bit (bit 8)	Center of last bit (parity bit)	Center of stop bit
Framing error timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity error timing	_	Center of last bit (parity bit)	Center of last bit (parity bit)
Overrun error timing	Center of last bit (bit 8)	Center of last bit (parity bit)	Center of stop bit

Note: In 9-bit mode or 8-bit + parity mode, the ninth bit pulse and an interrupt occur simultaneously. To normally check for a framing error, therefore, it is necessary to wait for a single bit cycle to transmit a stop bit.

Transmission

Table 3.9.6 Stop Timings

Mode	9-Bit	8-Bit + Parity	8-Bit, 7-Bit + Parity, 7-Bit		
Interrupt timing	Just before stop bit is	Just before stop bit is	Just before stop bit is		
	transmitted	transmitted	transmitted		

b. I/O interface

Table 3.9.7 Interrupt Timings

Transmission	SCLK Output Mode	Immediately after rise of last SCLK signal. (See figure 3.9 20.)					
Interrupt timing	SCLK Input Mode	Immediately after rise of last SCLK signal Rising Mode, or immediately after fall in Falling Mode. (See figure 3.9 21.)					
Receiving	SCLK Output Mode	Timing used to transfer received data to Receive Buffer 2 (SC0BUF) (i.e. immediately after last SCLK). (See figure 3.9 22.)					
Interrupt timing	SCLK Input Mode	Timing used to transfer received data to Receive Buffer 2 (SC0BUF) (i.e. immediately after last SCLK). (See figure 3.9 23.)					

3.9.3 SFR description

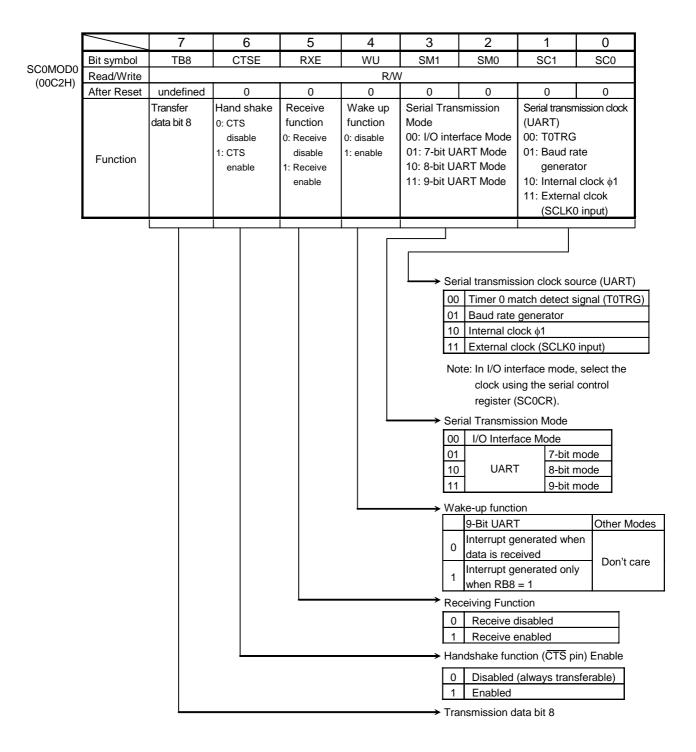


Figure 3.9.8 Serial Mode Control Register (channel 0, SC0MOD0)

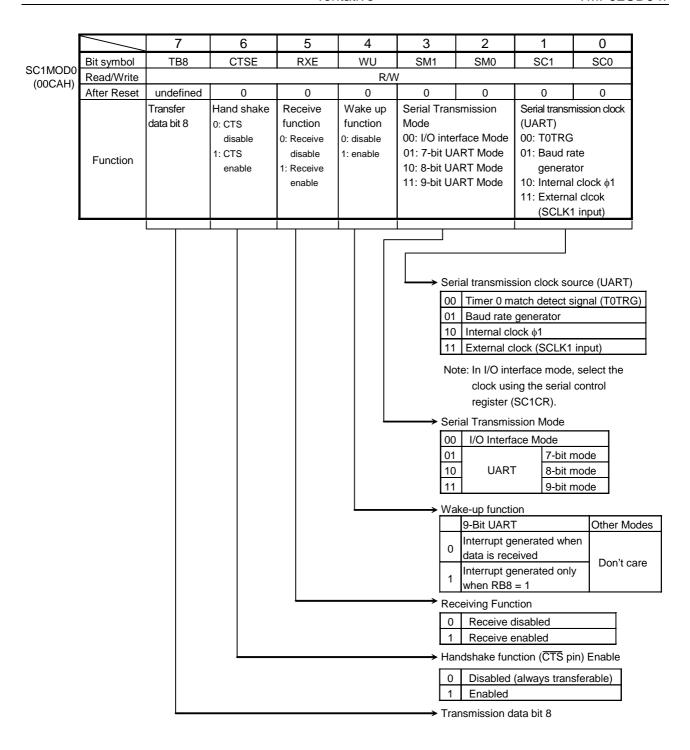
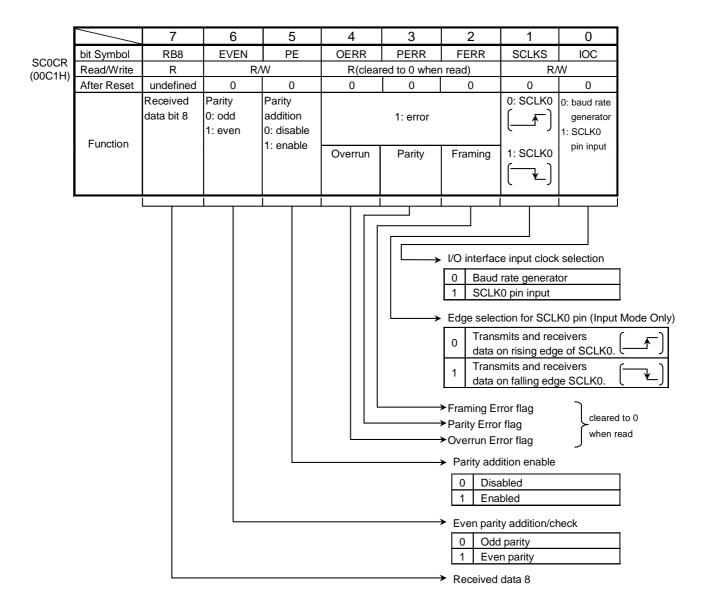
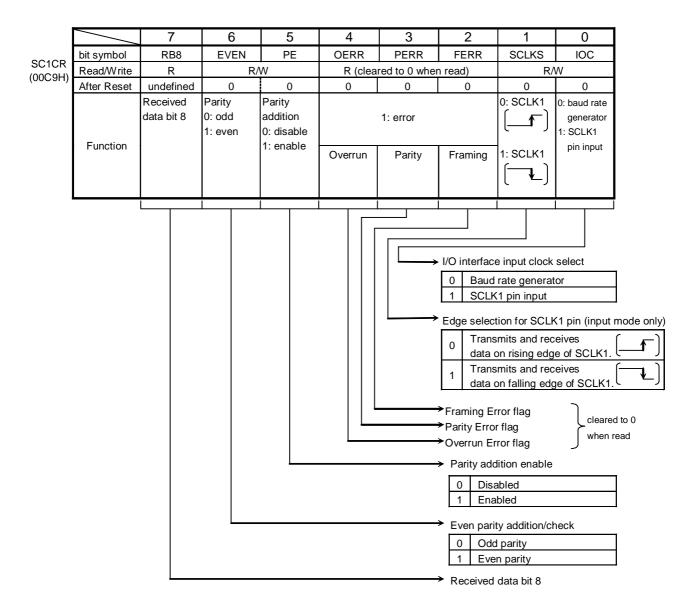




Figure 3.9.9 Serial Mode Control Register (channel 1, SC1MOD0)

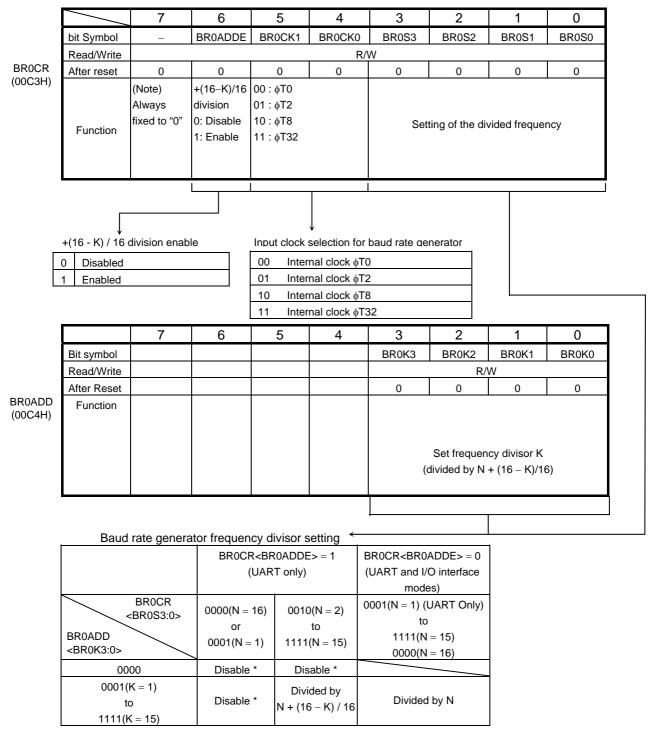
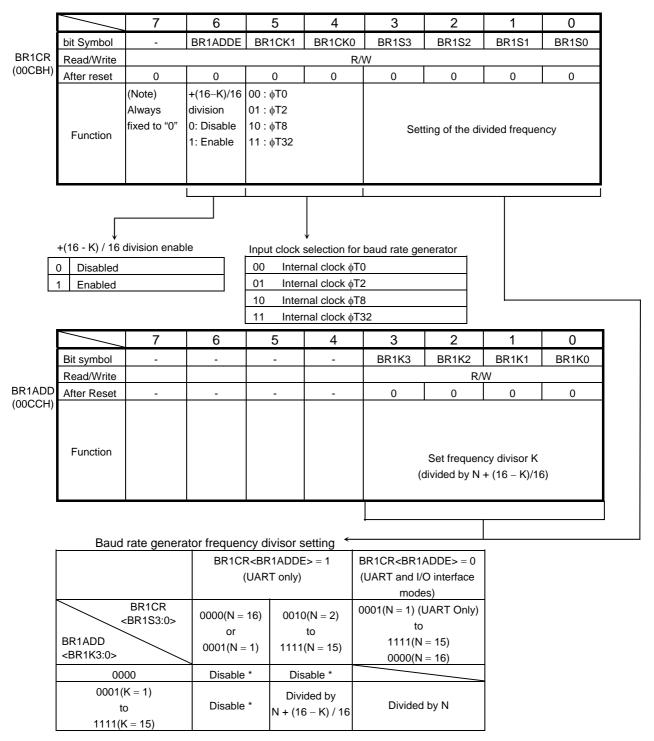

Note: Reading any of the error flags causes all of them to be cleared. Do not use a bit test instruction to test a single bit only.

Figure 3.9.10 Serial Control Register (channel 0, SC0CR)

Note: Reading any of the error flags causes all of them to be cleared. Do not use a bit test instruction to test a single bit only.


Figure 3.9.11 Serial Control Register (channel 1, SC1CR)

^{*:} When N = 1 or 16, division by N + (16 - K)/16 in UART mode cannot be used. Division by N + (16 - K)/16 with <BR0K3:0>=0000 is also not supported. If any of those settings are used, set BR0CR<BR0ADDE> to 0 to disable division by N + (16 - K)/16.

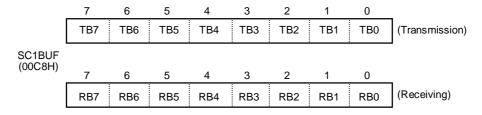
- Note 1: When using division by N + (16 K)/16, first set the value of K (K = 1 to 15) in BR0ADD<BR0K3:0> before setting BR0CR<BR0ADDE> to 1.
- Note 2: Division by N + (16 K)/16 can only be used in UART mode. In I/O interface mode, set BR0CR<BR0ADDE> to 0 to disable division by N + (16 K)/16.

Figure 3.9.12 Baud Rate Generator Control (channel 0, BR0CR, BR0ADD)

^{*:} When N = 1 or 16, division by N + (16 - K)/16 in UART mode cannot be used. Division by N + (16 - K)/16 with <BR0K3:0>=0000 is also not supported. If any of those settings are used, set BR0CR<BR0ADDE> to 0 to disable division by N + (16 - K)/16.

- Note 1: When using division by N + (16 K)/16, first set the value of K (K = 1 to 15) in BR1ADD<BR1K3:0> before setting BR1CR<BR1ADDE> to 1.
- Note 2: Division by N + (16 K)/16 can only be used in UART mode. In I/O interface mode, set BR1CR<BR1ADDE> to 0 to disable division by N + (16 K)/16.

Figure 3.9.13 Baud Rate Generator Control (channel 1, BR1CR, BR1ADD)


	7	6	5	4	3	2	1	0	_
SC0BUF (00C0H)	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0	(Transmission)
	7	6	5	4	3	2	1	0	
	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	(Reveiving)

Note: SC0BUF does not support a read-modify-write operation.

Figure 3.9.14 Serial Transmission/Receiving Buffer Registers (channel 0, SC0BUF)

		7	6	5	4	3	2	1	0
SC0MOD1	Bit symbol	1280	FDPX0	-	-	-	-	-	-
(00C5H)	Read/Write	R/W	R/W						
	After Reset	0	0	-	ı	i	ı	ı	-
		IDLE2	duplex						
	Function	0: Stop	0: half						
		1: Run	1: full						

Figure 3.9.15 Serial Mode Control Register 1 (channel 0, SC0MOD1)

Note: SC1BUF does not support a read-modify-write operation.

Figure 3.9.16 Serial Transmission/Receiving Buffer Registers (channel 1, SC1BUF)

		7	6	5	4	3	2	1	0
SC1MOD1 (00CDH)	bit Symbol	I2S1	FDPX1	-	-	-	-	-	-
	Read/Write	R/W	R/W						
	After Reset	0	0	-	ı	i	ı	ı	-
	Function	IDLE2	duplex						
		0: Stop	0: half						
		1: Run	1: full						

Figure 3.9.17 Serial Mode Control Register 1 (channel 1, SC1MOD1)

3.9.4 Operation in each mode

(1) Mode 0 (I/O interface mode)

This mode is used to increase the number of input/output pins (I/O). In this mode, a serial channel transmits and receives data to and from a shift register or other devices connected externally.

The I/O interface mode can be selected between SCLK output mode, in which the TMP92CD54I outputs a synchronization clock (SCLK) and SCLK input mode, in which SCLK is supplied from an external device.

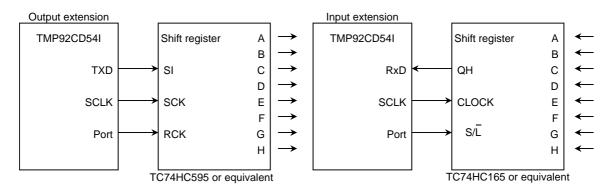


Figure 3.9.18 Example of SCLK Output Mode Connection

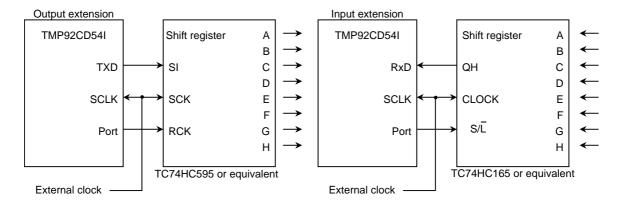


Figure 3.9.19 Example of SCLK Input Mode Connection

a. Transmission

In SCLK output mode, every time the CPU writes data to the transmit buffer, 8-bit data is output through the TXD0 pin and the synchronization clock through the SCLK0 pin.

Once all data has been output, INTESO<ITX0C> is set to 1 and an INTTX0 interrupt occurs.

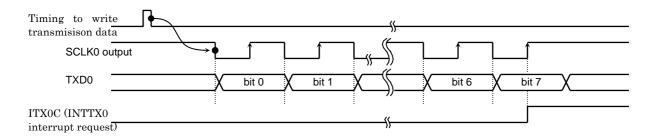


Figure 3.9.20 Transmitting Operation in I/O Interface Mode (SCLK0 Output Mode)

In SCLK input mode, when the transmit buffer contains data written by the CPU, activating the SCLK0 input causes 8-bit data to be output through the TXD0 pin.

Once all data has been output, INTESO<ITX0C> is set to 1 and an INTTX0 interrupt occurs.

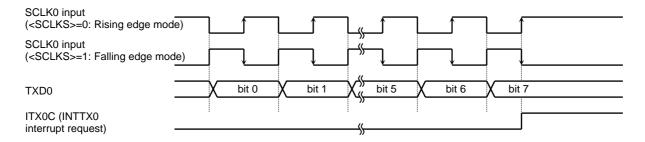


Figure 3.9.21 Transmitting Operation in I/O Interface Mode (SCLK0 Input Mode)

b. Reception

In SCLK output mode, every time the CPU reads received data and the receive interrupt flag, INTES0<IRX0C>, is cleared, the synchronization clock is output through the SCLK0 pin and next data is shifted into receive buffer 1. Once 8-bit data has been received, the data is moved to receive buffer 2 (SC0BUF), causing INTES0<IRX0C> to be re-set to 1 and an INTRX0 interrupt to occur.

The initial start of SCLK output is triggered by setting SC0MOD0<RXE> to 1.

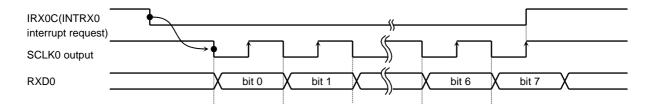


Figure 3.9.22 Receiving Operation in I/O Interface Mode (SCLK0 Output Mode)

In SCLK input mode, when the CPU has read received data and the receive interrupt flag, INTES0<IRX0C>, has been cleared, activating the SCLK0 input causes next data to be shifted into receive buffer 1. Once 8-bit data has been received, the data is moved to receive buffer 2 (SC0BUF), causing INTES0<IRX0C> to be re-set to 1 and an INTRX0 interrupt to occur.

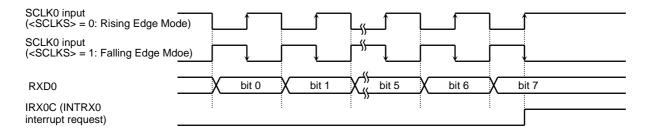


Figure 3.9.23 Receiving Operation in I/O interface Mode (SCLK0 Input Mode)

Note: To receive data, in either SCLK input or output mode, ensure that SC0MOD0 <RXE> is set to 1 to enable reception.

c. Transmission/reception (full duplex)

To transmit and receive data in full duplex mode, set the receive interrupt level to 0 and the transmit interrupt level to any of 1 to 6.

Perform receive processing in the transmit interrupt handling routine, as shown below, before setting next data to be transmitted:

Example: Channel 0, SCLK output

Transmit and receive data at 9600 bps

fc = 19.6608 MHz

Main routine

	1	6	5	4	3	2	1	U	
INTES0	Х	0	0	1	Х	0	0	0	Set transmit interrupt level to 1 and
									set receive interrupt level to 0 (disable).
PFCR	-	-	-	-	-	1	0	1	Set PF0, PF1 and PF2 to the TXD0, RXD0 and
PFFC	-	-	-	-	-	1	-	1	SCLK0 pins, respectively.
SC0MOD0	0	0	0	0	0	0	0	0	Enable reception and set I/O interface mode.
SC0MOD1	1	1	0	0	0	0	0	0	Specify full duplex mode.
SC0CR	0	0	0	0	0	0	0	0	Sclk_out, transmit on falling edge and receive on
									rising edge.
BR0CR	0	0	1	0	0	0	0	0	Select 9600 bps.
SC0MOD0	0	0	1	0	0	0	0	0	Enable reception.
SC0BUF	*	*	*	*	*	*	*	*	Set transmit data and activate.

INTTX0 interrupt routine

Acc	\leftarrow	SC	COBU	JF					Read the received dat
SC0BUF	*	*	*	*	*	*	*	*	Set transmit data.

X = Don't care "-" = No change

(2) Mode 1 (7-bit UART mode)

Setting SC0MOD0<SM1:0> to 01 in the serial channel mode register selects 7-bit UART mode.

In this mode, a parity bit can be added and SCOCR<PE> in the serial channel control register enables or disables the addition of a parity bit. When <PE>= 1 (enabled), either an even or odd parity can be selected using SCOCR<EVEN>.

Example: The table below shows control register settings for transmitting data in the following format:

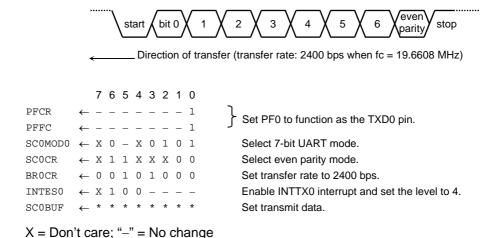


Figure 3.9.24 Transmit Data Example (mode 1)

(3) Mode 2 (8-bit UART mode)

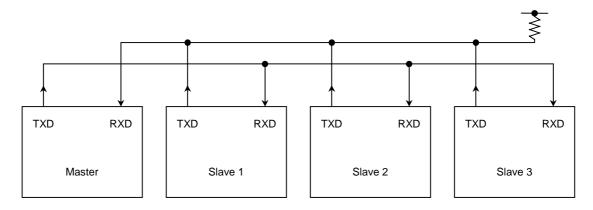
Setting SC0MOD0<SM1:0> to 10 selects 8-bit UART mode.

In this mode, a parity bit can be added and SCOCR<PE> enables or disables the addition of a parity bit. When <PE>= 1 (enabled), either an even or odd parity can be selected using SCOCR<EVEN>.

Example: The table below shows control register settings for receiving data in the following format:

Settings in main routine 7 6 5 4 3 2 1 0 Set PF1 to the RXD0 pin. PFCR Enable reception and select 8-bit UART mode. SC0MOD0 - 0 1 X 1 0 0 1 ← X 0 1 X X X 0 0 Select odd parity mode. SC0CR BR0CR ← 0 0 0 1 1 0 0 0 Set transfer rate to 9600 bps. \leftarrow - - - - X 1 0 0 INTES0 Enable INTRX0 interrupt and set the level to 4. Settings in interrupt routine ← SC0CR AND 00011100 Check for errors. ≠ 0 then ERROR if Acc Acc ← SC0BUF Read the received data. X = Don't care "-" = No change

Figure 3.9.25 Transmit Data Example (mode 2)


(4) Mode 3 (9-bit UART mode)

Setting SC0MOD0<SM1,SM0> to 11 selects 9-bit UART mode. This mode does not support a parity bit.

The most significant bit (bit 9) is written to SC0MOD0<TB8> in the serial channel mode register for transmission or stored into SC0CR<RB8> in the serial channel control register for reception. When data is written to or read from the buffer, the most significant bit must always be transferred first, followed by the bits in SC0BUF.

Wakeup function

In 9-bit UART mode, setting SC0MOD<WU> to 1 enables slave controller wakeup operation and an INTRX0 interrupt occurs only if <RB8> = 1.

Note: The TXD pin on the slave controller must be set to open-drain.

Figure 3.9.26 Serial Link Using Wakeup Function

Protocol

- a. Set the master and slave controllers to 9-bit UART mode.
- b. In each slave controller, set SC0MOD0<WU> to 1 to enable reception.
- c. The master controller transmits a single frame including the slave controller selection code (8 bits). The most significant bit (bit 8) of the frame, <TB8>, must be set to 1.

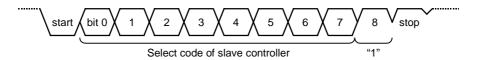


Figure 3.9.27 Frame (1)

- d. Each slave controller receives the above frame. The slave controller whose code matches the received selection code clears the WU bit to 0.
- e. The master controller transmits data to the selected slave controller (with SC0MOD0<WU> cleared to 0). The most significant bit (bit 8) of the data, <TB8>, must be set to 0.

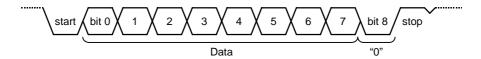


Figure 3.9.28 Frame (2)

f. The other slave controllers, with <WU> set to 1, ignore the received data because the most significant bit (bit 8) of <RB8> is 0 so that an INTRX0 interrupt does not occur. The slave controller with <WU> cleared to 0 can also transmit data to the master controller to notify that it has completed receiving the data.

Example: Serially linking with two slave controllers using internal clock $\phi 1$ as the transfer clock

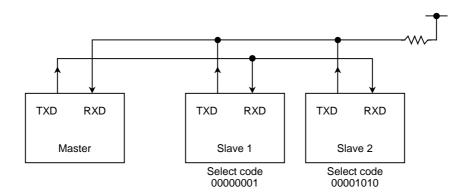


Figure 3.9.29 Transfer Clock Example

• Settings in master controller

Main routine

INTTX0 interrupt routine

• Settings in slave controller

Main routine

```
Acc \leftarrow SC0BUF if Acc = select code then SC0MOD0 \leftarrow - - - 0 - - - Clear <WU> to 0.
```

3.10 Serial Bus Interface (SBI)

The TMP92CD54I contains three serial bus interface (SBI) channels, SBI0, SBI1, and SBI2.

The serial bus interface supports the following two operating modes:

- I²C bus mode (multi-master)
- Clock synchronous 8-bit SIO mode

Table 3.10.1 Used Pins

	I ² C bus	Clocked-synchronous 8-bit SIO
SBI0	SCL0 (PN2), SDA0 (PN1) PNODE <oden2, oden1=""></oden2,>	SCK0 (PN0), SO0 (PN1), SI0 (PN2)
SBI1	SCL1 (PN5), SDA1 (PN4) PNODE <oden5, oden4=""></oden5,>	SCK1 (PN3), SO1 (PN4), SI1 (PN5)
SBI2	SCL2 (P72), SDA2 (PN6) PNODE <ode72, oden6=""></ode72,>	SCK2 (PM4), SO2 (PN6), SI2 (P72)

Each channel operates in the same way. This section describes only SBIO.

In I²C bus mode, the TMP92CD54I is connected to an external device through PN1 (SDA0) and PN2 (SCL0). In clock synchronous 8-bit SIO mode, the TMP92CD54I is connected to an external device through PN0 (SCK0), PN1 (SO0), and PN2 (SI0).

The following table shows the pin settings for each mode:

Table 3.10.2 Pin Settings

	PNODE <oden2, oden1=""></oden2,>	PNCR <pn2c, pn0c="" pn1c,=""></pn2c,>	PNFC <pn2f, pn0f="" pn1f,=""></pn2f,>
I ² C Bus Mode	11	11X	11X
Clocked Synchronous	VV	011	011
8-Bit SIO Mode	^^	010	011

X: Don't care

3.10.1 Configuration

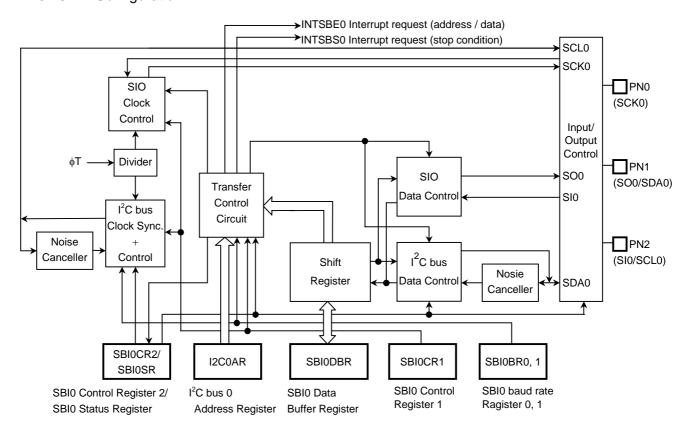
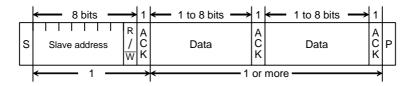


Figure 3.10.1 Serial Bus Interface 0 (SBI0)

3.10.2 Control

The following registers are used to control the serial bus interface and monitor its operating state:


- Serial bus interface 0 control register 1 (SBI0CR1)
- Serial bus interface 0 control register 2 (SBI0CR2)
- Serial bus interface 0 data buffer register (SBI0DBR)
- I²C bus 0 address register (I2C0AR)
- Serial bus interface 0 status register (SBI0SR)
- Serial bus interface 0 baud rate register 0 (SBI0BR0)
- Serial bus interface 0 baud rate register 1 (SBI0BR1)

The above registers have different functions depending on the mode in which they are used. For details, see "3.10.4 Control Registers in I²C Bus Mode" and "3.10.7 Control in Clock Synchronous 8-bit SIO Mode."

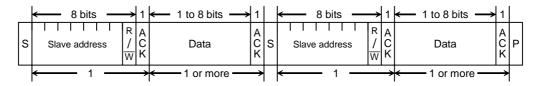

3.10.3 Data formats in I²C bus mode

Figure 3.10.2 shows the data formats used in I²C bus mode.

(a) Addressing format

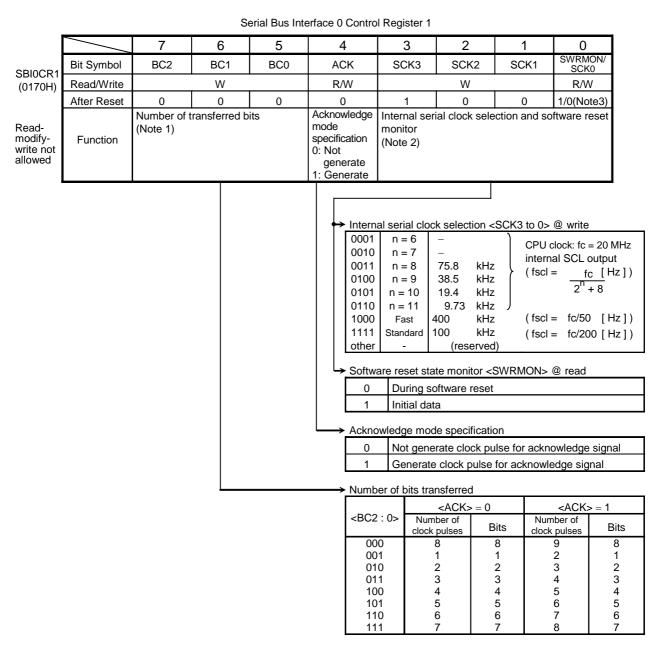
(b) Addressing format (with restart)

(c) Free data format (Transfer format for transferring data from the master device to a slave device)

Note:

S: Start condition

R / \overline{W} : Direction bit

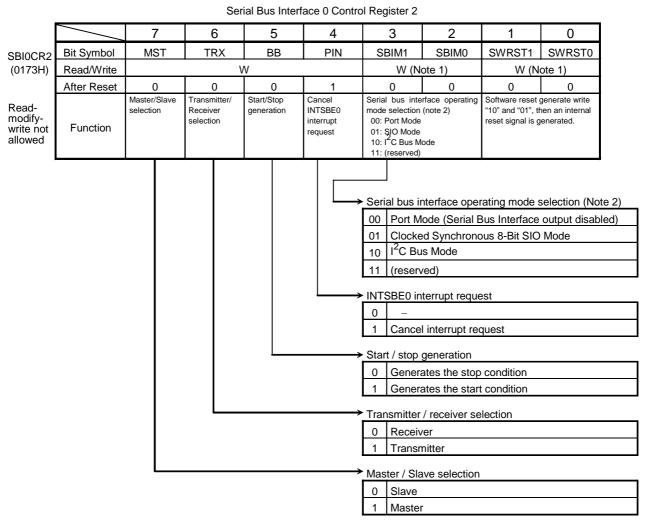

ACK: Acknowledge bit

P: Stop condition

Figure 3.10.2 Data Format in the I²C Bus Mode

3.10.4 Control Registers in I²C Bus Mode

The following registers are used to control the serial bus interface (SBI) and monitor its operating state in I²C bus mode:



Note 1: It is necessary to clear <BC2:0> to 000 before attempting to change the operating mode to clock synchronous 8-bit SIO mode.

Figure 3.10.3 Registers for the I²C Bus Mode

Note 2: For details of the SCL line clock frequency, see "3.10.5 (3) Serial clock."

Note 3: The initial values of SCK0 and SWRMON are 0 and 1, respectively.

Note1: When read, this register functions as SBI0SR.

Note2: Ensure that the bus is free before attempting to select port mode.

Also ensure that the port state is High before attempting to change the mode from port mode to I²C bus or clock synchronous 8-bit SIO mode.

Figure 3.10.4 Registers for the I²C Bus Mode

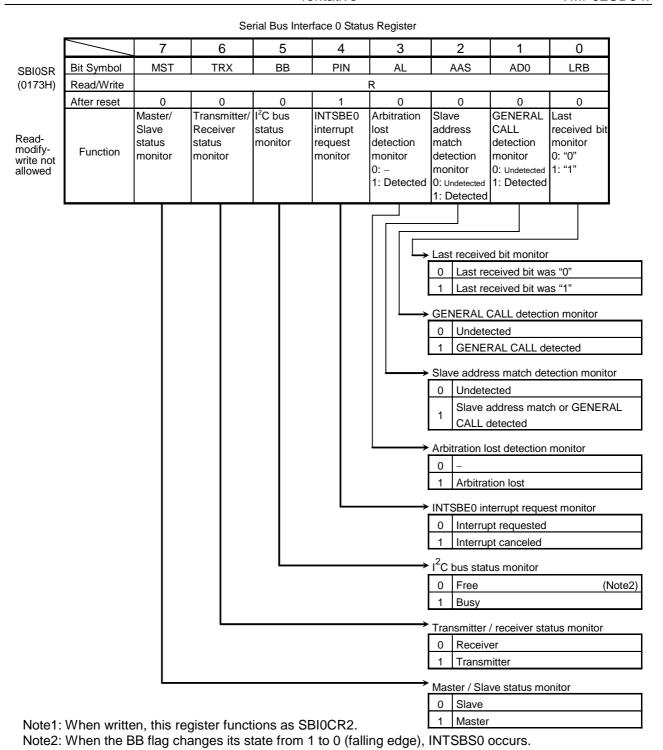


Figure 3.10.5 Registers for the I²C Bus Mode

Serial Bus Interface 0 Baud Rate Register 0 7 6 5 4 2 1 0 I2SBI0 Bit Symbol SBI0BR0 R/W (0174H) Read/Write W After Reset 0 0 Read-(Note) IDLE2 modify-write not Fixed to "0" 0: Stop **Function** allowed 1: Run Operation during IDLE 2 Mode 0 Stop 1 Operate Serial Bus Interface 0 Baud Rate Register 1 6 0 P4MON/ Bit Symbol SBI0BR1 P4EN (0175H) Read/Write R/W After Reset 0 Internal clock Function 0: Stop 1: Operate Baud rate clock control 0 Stop 1 Operate Serial Bus Interface 0 Data Buffer Register 6 5 0 SBI0DBR RB1/TB1 Bit Symbol RB7/TB7 RB6/TB6 RB5/TB5 RB4/TB4 RB3/TB3 RB2/TB2 RB0/TB0 (0171H) Read/W rite R (received)/W (transfer) Read-After Reset Undefined modifywrite not allowed Note: When writing transmit data, justify the data toward the MSB (bit 7) side. I²C Bus 0 Address Register I2C

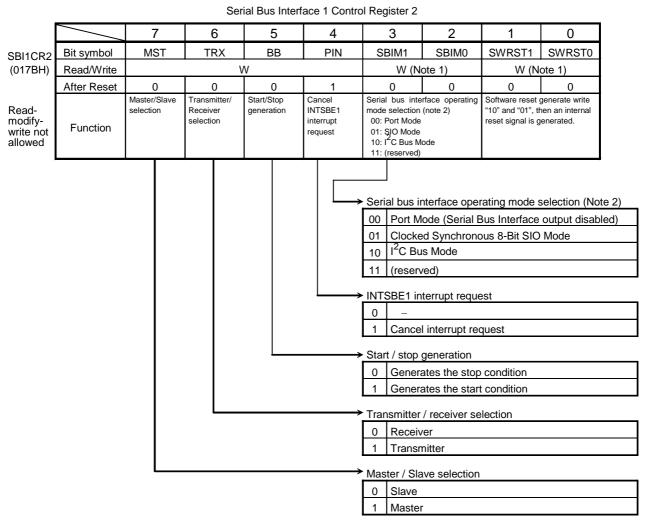
		7	6	5	4	3	2	1	0			
I2C0AR (0172H) Read- modify- write not allowed	Bit Symbol	SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS			
	Read/Write	W										
	After Reset	0	0	0	0	0	0	0	0			
	Function	Sla	ave address s	selection for	when device	is operating	as slave dev		Addressing or free data format			

Address recognition mode specification Addressing format Free data format

The addressing or free data format affects both the slave and master.

When using the addressing format (<ALS>=0), the TRX bit is updated with the direction bit, R/W (bit 8 of the first byte received after the start condition). In addition, in slave mode, the MCU finds the bus when it recognizes the address which follows the start condition.

When using the free data format (<ALS>=1), TRX remains unchanged because all words on the bus are not recognized as an address but as data words.


Figure 3.10.6 Registers for the I²C Bus Mode

				Seirial Bus Inte	erface 1 (Conrol	Regis	ter 1				
		7	6	5		1		3	2		1 0	
SBI1CR1	Bit symbol	BC2	BC1	BC0	AC			CK3	SCK		CK1 SWRI	/ION/
(0178H)	Read/W rite		W		R/	W			W		R/\	N
	After Reset	0	0	0	C)		1	0	(0 1/0(N	ote3)
Read- modify- write not allowed	Function	Number of t (Note 1)	ransferre	ed bits	mode specific 0: Not gene	mode specification		Internal serial clock selection and software reset monitor (Note 2)				reset
						0007 0010 0017 0100 0107 0110 1100 1111 othe Softwar 0 1	l r) r) r) r) r) n) n) n) st r Du Ini	n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 Fast andard - set sta uring so tial dat	75.8 38.5 19.4 9.73 400 100 (rese te monitoftware rese	kHz kHz kHz kHz kHz (f: kHz (f: kHz (f: kHz (f: cerved)	to 0> @ write CPU clock: fc = ntemal SCL = $\frac{fc}{2^n + 8}$ scl = fc/50 [scl = fc/200 [MON> @ read r acknowledge sign	20 MHz utput [Hz]) Hz]) Hz])
						TTUINE	01 01 1		<ack></ack>		<ack< td=""><td>> = 1</td></ack<>	> = 1
				<bc2< td=""><td>: 0></td><td></td><td>ber of pulses</td><td>Bits</td><td>Number of clock pulses</td><td>Bits</td></bc2<>	: 0>		ber of pulses	Bits	Number of clock pulses	Bits		
						00			8	8	9	8
						00			1	1	2	1
						01 01			2 3	2 3	3 4	2 3
						10			3 4	3 4	5	4
						10			5	5	6	5
						11			6	6	7	6
						11			7	7		

Note 1: It is necessary to clear <BC2:0> to 000 before attempting to change the operating mode to clock synchronous 8-bit SIO mode synchronous 8-bit SIO mode.

Note 2: For details of the SCL line clock frequency, see "3.10.5 (3) Serial clock." Note 3: The initial values of SCK1 and SWRMON are 0 and 1, respectively.

Figure 3.10.7 Registers for the I²C Bus Mode

Note1: When read, this register functions as SBI1SR.

Note2: Ensure that the bus is free before attempting to select port mode.

Also ensure that the port state is High before attempting to change the mode from port mode to I²C bus or clock synchronous 8-bit SIO mode.

Figure 3.10.8 Registers for the I²C Bus Mode

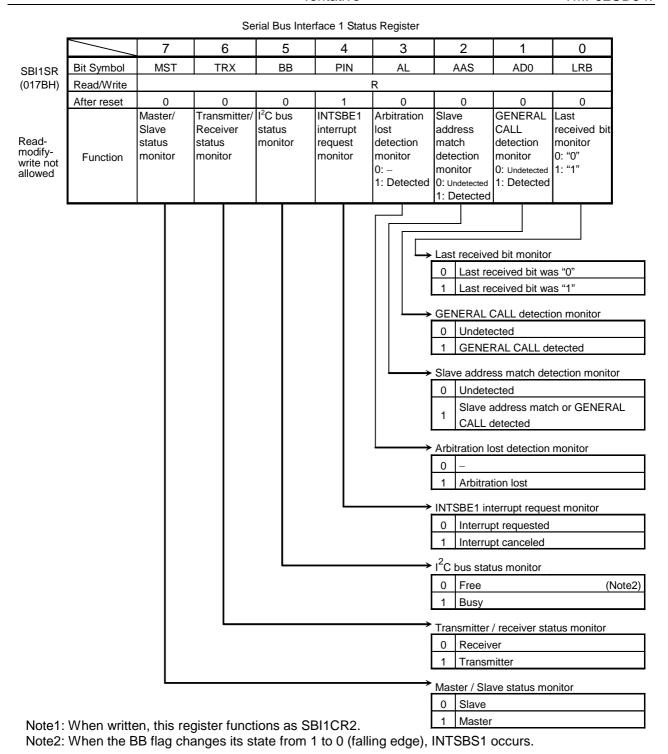


Figure 3.10.9 Registers for the I²C Bus Mode

Serial Bus Interface 1 Baud Rate Register 0 6 5 4 2 1 0 I2SBI0 Bit Symbol SBI1BR0 R/W (017CH) Read/Write W After Reset 0 0 Read-(Note) IDLE2 Fixed to "0' modify-Function 0: Stop write not 1: Run allowed Operation during IDLE 2 Mode 0 Stop Operate Serial Bus Interface 1 Baud Rate Register 1 7 6 5 4 2 1 0 P4MON/ Bit symbol SBI1BR1 P4EN (017DH) Read/Write R/W After Reset 0 Read-Internal modifyclock write not **Function** 0: Stop allowed 1: Operate Baud rate clock control 0 Stop Operate Serial Bus Interface 1 Data Buffer Register 6 5 4 1 0 RB7/TB7 RB6/TB6 RB5/TB5 RB3/TB3 RB2/TB2 RB1/TB1 Bit symbol RB4/TB4 RB0/TB0 SBI1DBR (0179H)Read/Write R (received)/W (transfer) Read-After Reset Undefined modifywrite not Note: When writing transmit data, justify the data toward the MSB (bit 7) side. allowed I²C Bus 1 Address Register 7 6 5 4 3 2 0 Bit Symbol SA6 SA5 SA4 SA3 SA2 SA1 SA0 ALS I2C1AR (017AH) Read/Write W 0

After Reset 0 0 0 0 0 0 Read-modify-Slave address selection for when device is operating as slave device Function write not

> Address recognition mode specification Addressing format 0 Free data format

Addressing

or free data

format

The addressing or free data format affects both the slave and master.

allowed

When using the addressing format (<ALS>=0), the TRX bit is updated with the direction bit, R/W (bit 8 of the first byte received after the start condition). In addition, in slave mode, the MCU finds the bus after the start condition with which it recognizes the address.

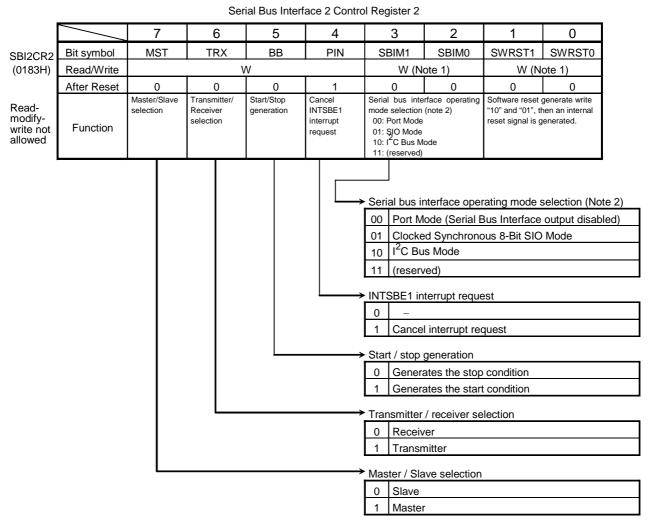

When using the free data format (<ALS>=1), TRX remains unchanged because all words on the bus are not recognized as an address but as data words.

Figure 3.10.10 Registers for the I²C Bus Mode

			Ser	ial Bus Inter	face 2 C	ontrol I	Regist	er 1					
		7	6	5	4	ļ	3	3	2		1	0	
BI2CR1	Bit symbol	BC2	BC1	BC0	AC	K	SC	K3	SCK	2 5	CK1	SWRN SCK	10N/ (0
(0180H)	Read/W rite		W		R/	R/W			W			R/V	
	After Reset	0	0	0	0		1		0		0	1/0(Nc	_
Read- nodify- vrite not allowed	Function	Number of t (Note 1)	ransferred bi	its	Acknown mode specific 0: Not general 1: Gen	ation	Intern monit (Note	or	ial clock	selection	and so	oftware r	eset
						0001 0010 0011 0100 0101 0110 1000 1111 othe Softwa 0 1	n n n n n n n n Star T Star Pare res	= 6 = 7 = 8 = 9 = 10 = 11 Fast andard - set sta ring so ial data	- 75.8 38.5 19.4 9.73 400 100 (rese te monit	kHz kHz kHz kHz kHz rved) or <swr a<="" cication="" ck="" eset="" for="" pulse="" td=""><td>CPU clo interna (fscl = f (fscl = f (fscl = f</td><td>ock: fc = 2 I SCL or fc 2" + 8 c/50 [I c/200 [I @ read</td><td>eo MHz utput [Hz]) Hz]) Hz])</td></swr>	CPU clo interna (fscl = f (fscl = f (fscl = f	ock: fc = 2 I SCL or fc 2" + 8 c/50 [I c/200 [I @ read	eo MHz utput [Hz]) Hz]) Hz])
					 ;	Numb	erorb	nts trai	nsferred <ack></ack>			<ack:< td=""><td></td></ack:<>	
						<bc2< td=""><td>: 0></td><td></td><td>ber of</td><td></td><td></td><td>nber of</td><td>> = 1 Bits</td></bc2<>	: 0>		ber of			nber of	> = 1 Bits
						00	0		pulses 8	Bits 8	clock	cpulses 9	8
						00	1		1	1		2	1
						01			2	2		3	2
						01 10			3 4	3 4		4 5	3 4
						10			5	5		6	5
						11			6	6		7	6
						11	1		7	7		8	7

- Note 1: It is necessary to clear <BC2:0> to 000 before attempting to change the operating mode to clock synchronous 8-bit SIO mode.
- Note 2: For details of the SCL line clock frequency, see "3.10.5 (3) Serial clock."
- Note 3: The initial values of SCK2 and SWRMON are 0 and 1, respectively.

Figure 3.10.11 Registers for the I²C Bus Mode

Note1: When read, this register functions as SBI2SR.

Note2: Ensure that the bus is free before attempting to select port mode.

Also ensure that the port state is High before attempting to change the mode from port mode to I²C bus or clock synchronous 8-bit SIO mode.

Figure 3.10.12 Registers for the I²C Bus Mode

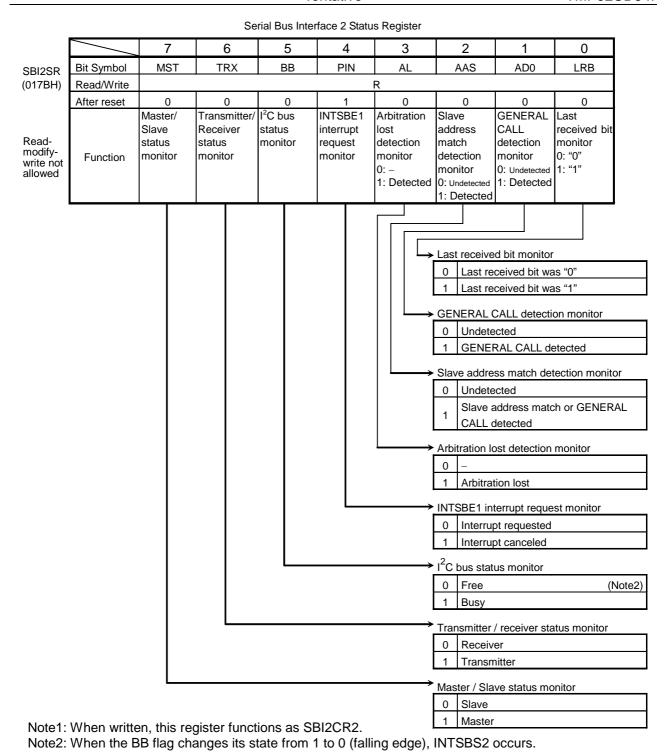


Figure 3.10.13 Registers for the I²C Bus Mode

Serial Bus Interface 2 Baud Rate Regster 0 7 6 5 4 2 1 0 I2SBI0 Bit Symbol SBI2BR0 Read/Write R/W (0184H)W After Reset 0 0 Read-(Note) IDLE2 modify-Fixed to "0" **Function** 0: Stop write not 1: Run allowed Operation during IDLE 2 Mode 0 Stop 1 Operate Serial Bus Interface 2 Baud Rate Register 1 7 6 4 5 2 1 0 P4MON/ Bit symbol SBI2BR1 P4EN (0185H) Read/Write R/W After Reset 0 Internal Readmodifyclock **Function** write not 0: Stop 1: Operate allowed Baud rate clock control 0 Stop Operate Sirial Bus Interface 2 Data Buffer Register 6 5 4 1 0 RB7/TB7 RB6/TB6 RB5/TB5 RB4/TB4 RB3/TB3 RB2/TB2 RB1/TB1 RB0/TB0 Bit symbol SBI2DBR (0181H) Read-modify-Read/Write R (received)/W (transfer) After Reset Undefined write not Note: When writing transmit data, justify the data toward the MSB (bit 7) side.

				ITC Bus 2	Address Re	gister								
		7	6	5	4	3	2	1	0					
I2C2AR	Bit Symbol	SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS					
(0182H)	Read/Write		W											
	After Reset	0	0	0	0	0	0	0	0					
Read- modify- write not allowed	Function	Sla	ice	Addressing or free data format										

Address recognition mode specification

O Addressing format

1 Free data format

The addressing or free data format affects both the slave and master.

When using the addressing format (<ALS>=0), the TRX bit is updated with the direction bit, R/W (bit 8 of the first byte received after the start condition). In addition, in slave mode, the MCU finds the bus after the start condition with which it recognizes the address.

When using the free data format (<ALS>=1), TRX remains unchanged because all words on the bus are not recognized as an address but as data words.

Figure 3.10.14 Registers for the I²C Bus Mode

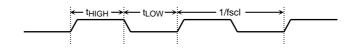
3.10.5 Control in I²C Bus Mode

(1) Specifying acknowledgment mode

When SBIOCR1 <ACK> is set to 1, the serial bus interface operates in acknowledgment mode. When operating as the master, it adds a single clock cycle for an acknowledge signal. When operating as a slave, it counts a clock cycle for an acknowledge signal. In transmitter mode, the serial bus interface relinquishes the SDA0 pin during that clock cycle so that it can receive an acknowledge signal from the receiver. In receive mode, it pulls the SDA0 pin Low during that clock cycle to generate an acknowledge signal.

When SBIOCR1<ACK> is set to 0, the serial bus interface operates in non-acknowledgment mode: When operating as the master, it does not add a clock cycle for an acknowledge signal. When operating as a slave, it does not count a clock cycle for an acknowledge signal.

(2) Selecting the number of bits to be transferred


The number of bits to be transmitted or received is selected using SBIOCR1 <BC2:0>.

The slave address and the direction bit are always transferred in eight bits because the start condition clears SBI0CR1 <BC2:0> to 000. In other cases, SBI0CR1 <BC2:0> maintains the value once it has been set.

(3) Serial clock

a. Clock source

The SBIOCR1 <SCK3:0> bits select the maximum transfer frequency for the serial clock that is output through the SCL0 pin in master mode.

Formula	SBI0CR1 <sck3 0="" to=""></sck3>	n
$t_{LOW} = 2^{n-1} / fc$ $t_{HIGH} = 2^{n-1} / fc + 8 / fc$ $fscl = 1 / (t_{LOW} + t_{HIGH})$ $= fc / (2^{n} + 8)$	0011 0100 0101 0110	8 9 10 11
$t_{LOW} = 32 / fc, t_{HIGH} = 18 / fc$ fscl = fc / 50	1000	-
$t_{LOW} = 100 / fc, t_{HIGH} = 100 / fc$ fscl = fc / 200	1111	-

Figure 3.10.15 Clock Source

b. Clock synchronization

The I²C bus is driven in a wired-AND manner due to the pin structure. Therefore, the first master that has pulled the clock line Low disables the clock for any other master outputting a High level. The master outputting a High level should detect that condition and take appropriate action.

The TMP92CD54I supports clock synchronization to ensure normal transfer even if multiple masters with different transfer rates exist on the bus.

The following describes an example clock synchronization procedure when two masters are simultaneously operating on the bus:

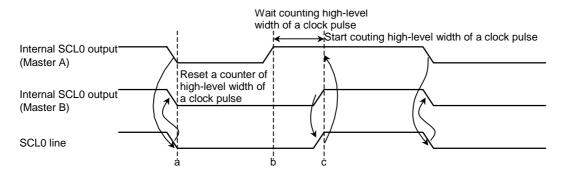


Figure 3.10.16 Clock Synchronization

At point "a", master A pulls its internal SCL0 output Low, causing the SCL0 line on the bus to be driven Low. Detecting that transition, master B resets the High period count and pulls its internal SCL0 output Low.

At point "b", master A completes counting the Low period and drives its internal SCL0 output High. However, since master B is maintaining the SCL0 bus line Low, master A stops counting the High period. At point "c", master B drives its internal SCL0 output High, causing the SCL0 bus line to be driven High. Upon detecting that transition, master A starts counting the High period.

As shown above, when more than one master is connected on the bus, the clock on the bus is determined by the master with the shortest High period and that with the longest Low period.

c. Effects of the SCL rise time on the transfer rate

Clock synchronization inserts a wait time for the rise time on the SCL line. In that case, the actual transfer rate is slower than the value described in the data sheet.

The following shows details and examples:

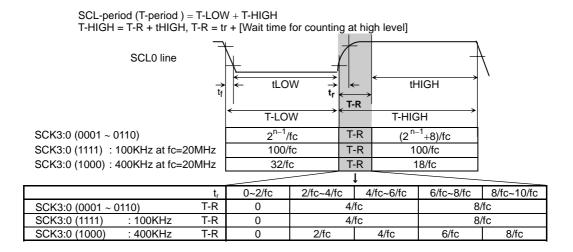


Figure 3.10.17 Insert Wait Time (T-R) by Rising Time of SCL0 Line (t_r)

If the SCL0 rise time, tr, is less than 2/fc, a synchronization wait time is not inserted.

If it is 2/fc or greater, T-HIGH is extended by the period of T-R, resulting in a slower transfer rate.

```
Example1: (1) In the case, fc = 20MHz, <SCK3:0> = 0011 and t_r = 50ns:
                 T-R = 0ns. since t_r = 50ns.
                 T-Period = 2^{n-1}/fc + 0 + (2^{n-1} + 8)/fc = 266/fc = 13.2 \,\mu s (75.8KHz)
              (2) In the case, fc = 20MHz, <SCK3:0> = 0011 and t_r = 250ns:
                 T-R = 4/fc, since t_r = 250ns.
                 T-Period = 2^{n-1}/fc + 4/fc + (2^{n-1} + 8)/fc = 268/fc = 13.4 \mu s (74.6 \text{KHz})
Example 2: (1) In the case, fc = 20MHz, \langle SCK3:0 \rangle = 1111 and t_r = 50ns:
                 T-R = 0ns. since t_r = 50ns.
                 T-Period = 100/\text{fc} + 0 + 100/\text{fc} = 10\mu\text{s} (100KHz)
              (2) In the case, fc = 20MHz, <SCK3:0> = 1111 and t_r = 150ns:
                 T-R = 4/fc, since t_r = 150ns.
                 T-Period = 100/\text{fc} + 4/\text{fc} + 100/\text{fc} = 10.2\mu\text{s} (98.0KHz)
Example3: (1) In the case, fc = 20MHz, <SCK3:0> = 1000 and t_r = 50ns:
                 T-R = 0ns, since t_r = 50ns.
                 T-Period = 32/fc + 0 + 18/fc = 2.5\mu s (400KHz)
              (2) In the case, fc = 20MHz, <SCK3:0> = 1000 and t_r = 150ns:
                 T-R = 2/fc, since t_r = 150ns.
                 T-Period = 32/fc + 2/fc + 18/fc = 2.6\mu s (384.6KHz)
```

(4) Setting the slave address and address recognition mode

To operate the TMP92CD54I as a slave device, set the slave address <SA6:0> and <ALS> in I2C0AR.

Clearing I2COAR <ALS> to 0 selects address recognition mode (addressing format).

(5) Selecting the master or slave

Setting SBI0CR2 <MST> to 1 causes the TMP92CD54I to operate as a master device.

Clearing SBI0CR2 <MST> to 0 causes the TMP92CD54I to operate as a slave device. SBI0CR2<MST> is cleared by hardware upon the detection of a stop condition or arbitration lost on the bus.

(6) Selecting the transmitter or receiver

SBI0CR2 <TRX> selects either transmitter or receiver operation. Setting <TRX> to 1 causes the TMP92CD54I to operate as a transmitter. Setting <TRX> to 0 causes the TMP92CD54I to operate as a receiver.

When transferring data using the addressing format in slave mode, the device receives the slave address and direction bit in the first byte. If the received slave address matches the value of I2C0AR (the device's slave address), the value of <TRX> varies according to the direction bit. If $R/\overline{W}=0$ (slave reception), <TRX> is cleared to 0 and an acknowledge signal is returned to receive subsequent data. If R/W=1 (slave transmission), <TRX> is set to 1 and an acknowledge signal is returned to transmit subsequent data. For a general call, where all bits of the first byte are 0, R/W=0 so that <TRX> is cleared to 0 and an acknowledge signal is returned to receive subsequent data.

In master mode, when an acknowledge signal is returned from the slave device, the value of <TRX> varies depending on the value of R/W that has been sent. If R/W = 0 (master transmission), <TRX> is set to 1. If R/W = 1 (master reception), <TRX> is cleared to 0. If no acknowledge signal is returned, <TRX> maintains the previous value.

<TRX> is cleared by hardware upon the detection of a stop condition or arbitration lost on the I²C bus.

(7) Generating start and stop conditions

When SBIOSR <BB> is 0, writing 1111 to SBIOCR2 <MST, TRX, BB, PIN> causes a start condition and the 8-bit data in SBIODBR to be output on the bus. SBIOCR1<ACK> must be set to 1 before the start condition.

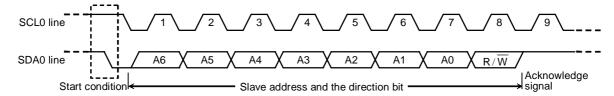


Figure 3.10.18 Start Condition Generation and Slave Address Generation

When SBIOSR <BB> is 1, writing 111 to SBIOCR2 <MST, TRX, PIN> and 0 to SBIOCR2<BB> causes a stop condition output sequence to start on the bus. Do not rewrite the contents of SBIOCR2 <MST, TRX, BB, PIN> until a stop condition occurs on the bus.

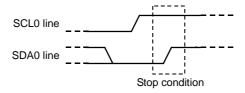


Figure 3.10.19 Stop Condition Generation

The bus status can be determined by reading SBIOSR <BB>. SBIOSR <BB> is set to 1 if a start condition is detected on the bus (bus busy state) and cleared to 0 if a stop condition is detected on the bus (bus free state). When the SBIOSR<BB> flag changes its state from 1 to 0 (falling edge), INTSBSO occurs.

(8) Issuing and releasing an interrupt service request

When serial bus interface interrupt request 0 (INTSBE0) is issued due to a slave address or data transfer, SBI0SR <PIN> is cleared to 0. The SCL0 line is pulled Low while SBI0SR <PIN> is 0.

SBIOSR <PIN> is cleared to 0 once a single word has been transmitted or received. It is set to 1 once data has been written to SBIODBR or read from SBIODBR.

It requires a time of tLOW between SBIOSR <PIN> being set to 1 and the SCL0 line being relinquished.

In address recognition mode (I2C0AR<ALS> = 0), SBI0CR2<PIN> is cleared to 0 if the received slave address matches the value set in I2C0AR or when a general call (where all bits of the 8-bit data after the start condition are 0) is received. A program can write a 1 to SBI0CR2 <PIN> to set it to 1. When it writes a 0, however, the bit is not cleared to 0.

(9) Operating mode of the serial bus interface

The SBIOCR2 <SBIM1:0> bits specify the operating mode of the serial bus interface.

To use it in I²C bus mode, set SBI0CR2<SBIM1:0> to 10.

Ensure that the bus is free before attempting to change the operating mode to port mode.

(10) Arbitration lost detection monitor

The I²C bus allows multi-master operation (two or more masters can simultaneously exist on a single bus), thus requiring a bus arbitration procedure to guarantee the contents of transferred data.

The I²C bus uses data on the SDA0 line for bus arbitration.

The following describes an example arbitration procedure when two masters are simultaneously operating on the bus: Both masters A and B output the same data up until the bit at point "a". At point "a", master A outputs a Low level while master B outputs a High level. Since the SDA0 line on the bus is driven in a wired-AND manner, it is pulled Low by master A. When the SCL0 bus line rises at point "b", the slave device fetches data on the SDA0 line, that is, data from master A. At this time, data output from master B is invalid. That state of master B is called "arbitration lost." Master B relinquishes the SDA pin to prevent it from affecting data output from other masters. If more than one master transmits exactly the same data in the first word, the arbitration procedure continues for the second and subsequent words.

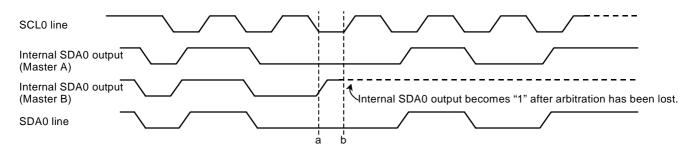


Figure 3.10.20 Arbitration Lost

The level of the SDA0 bus line is compared with the internal SDA0 output level on the rising edge of the SCL0 line. If they do not match, SBI0SR <AL> is set to 1 to indicate the arbitration lost state.

When SBIOSR <AL> is set to 1, the SBIOSR <MST, TRX> bits are reset to 00, causing a transition to slave receive mode. The serial clock is, however, output until the end of data transfer that was being transmitted when SBIOSR <AL> changed to 1.

SBIOSR <AL> is reset to 0 by writing data to SBIODBR, reading data from SBIODBR, or writing data to SBIOCR2.

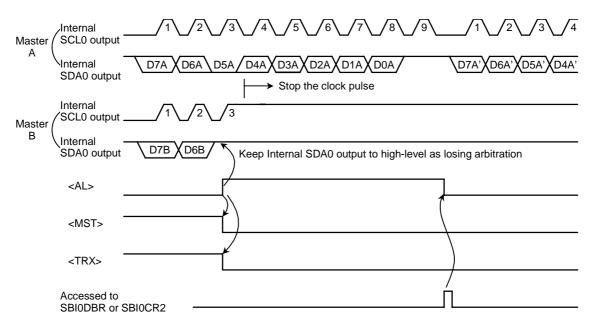


Figure 3.10.21 Example of a Master Device B (D7A = D7B, D6A = D6B)

(11) Slave address match detection monitor

In slave mode, SBI0SR <AAS> is set to 1 if the device receives a general call or the same slave address as that set in I2C0AR in address recognition mode (I2C0AR <ALS> = 0). If I2C0AR <ALS> = 1, SBI0SR <AAS> is set to 1 when the first word is received. SBI0SR <AAS> is cleared to 0 by writing data to SBI0DBR or reading data from SBI0DBR.

(12) General call detection monitor

In slave mode, SBI0SR <AD0> is set to 1 when a general call (where all bits of the 8-bit data after the start condition are 0) is received, and cleared to 0 when a start or stop condition is detected on the bus.

(13) Last received bit monitor

The value on the SDA0 line is captured on the rising edge of the SCL0 line and set in SBI0SR <LRB>.

In acknowledgment mode, reading SBIOSR <LRB> immediately after an INTSBE0 interrupt request is issued results in the ACK signal being read.

(14) Software reset

If the serial bus interface circuit is locked due to external noise, the software reset function can be used to initialize the serial bus interface circuit.

To initialize the serial bus interface circuit, first write 10 and then 01 to SBI0CR2 <SWRST1:0>, causing a reset signal to be applied to the circuit. This initializes the values in all control and status registers.

Initializing the serial bus interface causes <SWRST1:0> to be automatically cleared to 00.

Note: Initialization requires approximately 1.4 μ s (when fc = 20 MHz). SBI0CR1 <SWRMON> can be monitored to determine whether initialization has been completed.

(15) Serial bus interface data buffer register (SBI0DBR)

SBIODBR is read or written to read received data or write transmit data.

In master mode, the device generates a start condition after the slave address and direction bit are sets in this register.

(16) I²C bus address register (I2C0AR)

The I2C0AR <SA6:0> bits set a slave address when the TMP92CD54I operates as a slave device.

If I2COAR <ALS> is set to 0, the TMP92CD54I recognizes the slave address output from the master device and uses the addressing data format.

If I2C0AR <ALS> is set to 1, the TMP92CD54I does not recognizes the slave address and uses the free data format.

(17) Baud rate register (SBI0BR1)

It is necessary to write a 1 to SBI0BR1 <P4EN> before attempting to use the I²C bus.

(18) IDLE2 setup register (SBI0BR0)

The SBI0BR0 <I2SBI0> bit enables or disable the operation when the TMP92CD54I enters IDLE2 mode.

It is necessary to set this bit before attempting to execute the HALT instruction.

3.10.6 Data Transfer Procedure in I²C Bus Mode

(1) Initializing the device

First, it is necessary to set SBI0BR1 <P4EN> and SBI0CR1 <ACK, SCK2:0>. Write a 1 to SBI0BR1 <P4EN> and 0s to SBI0CR1 bits 7, 6, 5 and 3.

Next, set <SA6:0> (slave address) and <ALS> (0 for the addressing format) in I2C0AR.

Then, write 000 to SBI0CR2 <MST, TRX, BB>, 1 to <PIN>, 10 to <SBIM1:0>, 00 to <SWRST1:0>, and set the initial state to slave receiver mode.

(2) Generating a start condition and slave address

a. In master mode

In master mode, a start condition and slave address are generated using the following procedure:

First, ensure that the bus is free (SBI0CR2<BB> = 0).

Next, write a 1 to SBIOCR1 <ACK> to select acknowledgment mode. In SBIODBR, write the slave address and the direction bit to which data will be transmitted.

When SBI0CR2<BB> is 0, writing 1111 to SBI0CR2 <MST, TRX, BB, PIN> causes a start condition to be generated on the bus. Following the start condition, output nine clock cycles on the SCL0 pin. In the first eight clock cycles, output the slave address and direction bit stored in SBI0DBR. In the ninth clock cycle, relinquish the SDA0 line and receive an acknowledge signal from the slave device.

On the falling edge of the ninth clock cycle, an INTSBE0 interrupt request occurs and SBI0CR2<PIN> is cleared to 0. In master mode, pull the SCL0 line Low while SBI0CR2<PIN> is 0. Only when an acknowledge signal is returned from the slave device, an INTSBE0 interrupt request occurs and the value of SBI0CR2<TRX> changes depending on the direction bit transmitted.

b. In slave mode

In slave mode, a start condition and slave address are received.

After receiving a start condition from the master device, receive the slave address and direction bit from the master device in the first eight clock cycles on the SCL0 line. If the received address indicates a general call or matches the slave address set in I2C0AR, pull the SDA0 line Low in the ninth clock cycle to output an acknowledge signal.

On the falling edge of the ninth clock cycle, an INTSBE0 interrupt request occurs and SBI0CR2<PIN> is cleared to 0. In slave mode, pull the SCL0 line Low while SBI0CR2<PIN> is 0. Only when an acknowledge signal is returned from the slave device, an INTSBE0 interrupt request occurs and the value of SBI0CR2<TRX> changes depending on the direction bit received.

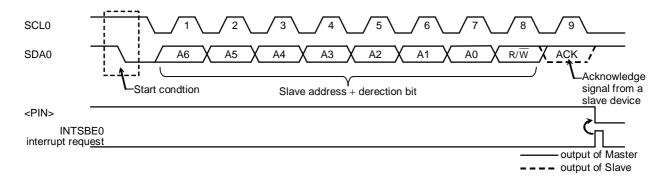


Figure 3.10.22 Start Condition Generation and Slave Address Transfer

(3) Transferring a single word of data

When handling an INTSBE0 interrupt upon the end of transferring a single word, test SBI0CR2<MST> to determine whether the mode is master or slave mode.

a. In master mode (SBI0CR2<MST> = 1)

Test SBI0CR2<TRX> to determine whether the TMP92CD54I is the transmitter or receiver.

<u>In transmitter mode (SBI0CR2<TRX> = 1)</u>

Test SBI0SR<LRB>. If SBI0SR <LRB> = 1, the receiver is not requesting data. In that case, generate a stop condition (see 3.10.6 (4)) and complete data transfer.

If SBI0SR <LRB> is 0, the receiver is requesting next data. If the data to be transferred next consists of eight bits, write the transfer data to SBI0DBR. It the data consists of other than eight bits, set SBI0CR1<BC2:0> and <ACK> before writing the transfer data to SBI0DBR.

Once the data has been written, SBIOSR <PIN> is set to 1, after which the SCL0 pin generates a serial clock for transferring the next word of data and the SDA0 pin transfers the word. Upon the completion of transfer, an INTSBE0 interrupt request occurs, SBIOSR <PIN> is set to 0, and the SCL0 line is pulled Low. To transfer multiple words, repeat the above SBIOSR <LRB> test and subsequent steps.

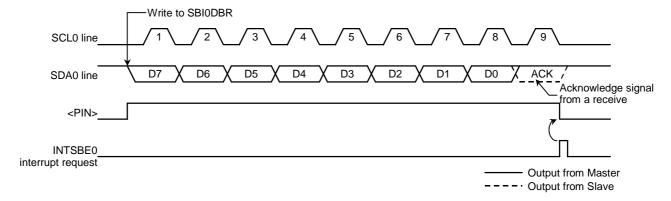


Figure 3.10.23 Example in which <BC2 to 0> = "000" and <ACK> = "1" in Transmitter Mode

In receiver mode (SBI0SR<TRX> = 0)

If the data to be transferred consists of other than eight bits, set SBI0CR1 <BC2:0> and <ACK> and read the received data from SBI0DBR to relinquish the SCL0 line (the data is undefined if it is read immediately after the slave address is transmitted). Reading data causes SBI0CR2<PIN> to be set to 1 and a serial clock for transferring the next data word to be output on the SCL0 pin. For the last bit, a 0 is output on the SDA0 pin when the acknowledge signal goes Low.

Then, an INTSBE0 interrupt request occurs, SBI0CR2<PIN> is set to 0, and the SCL0 line is pulled Low. A transfer clock for a single word and an acknowledge signal are output every time the received data is read from SBI0DBR.

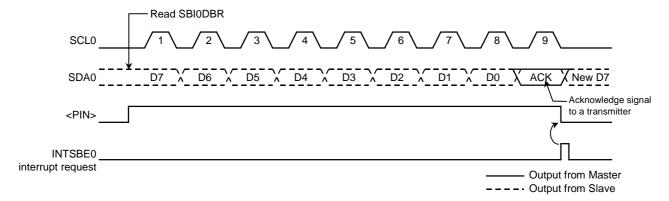


Figure 3.10.24 Example of when <BC2 to 0> = "000", <ACK> = "1" in Receiver Mode

To request the transmitter to terminate data transmission, clear SBIOCR1 <ACK> to 0 before reading the word of data preceding the word to be received last. This prevents a clock for acknowledging the last data from being generated. During processing after the transfer end interrupt request is issued, set SBIOCR1<BC2:0> to 001 and read data, which causes a clock for single-bit transfer to be generated. At this time, the master is the receiver so that the SDA0 line on the bus remains High level. The transmitter receives this High level as an ACK signal, with which the receiver can notify the transmitter of the completion of transfer.

During processing after the reception end interrupt request for that single-bit transfer, generate a stop condition to complete data transfer. The generation of the stop condition (see 3.10.6 (4)) causes an INTSBSO interrupt request.

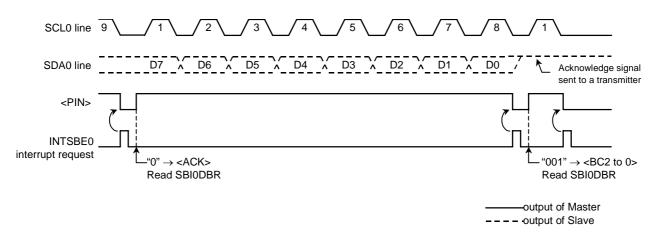


Figure 3.10.25 Termination of Data Transfer in Master Receiver Mode

b. In slave mode (SBI0CR2<MST> = 0)

Processing in slave mode is classified into processing normally performed in slave mode and processing performed when the device detects arbitration lost and enters slave mode.

The following describes when an INTSBE0 interrupt request is issued in each case:

- In normal slave mode:
 - (1) When the addressing format is used and the received slave address matches the address set in I2CAR. Alternatively, when a general call is received.
 - (2) When data transfer has been completed
- If the device changes from master mode to slave mode due to arbitration lost:
 - (1) When the transfer of the word with which arbitration lost was detected is completed

When an INTSBE0 interrupt request occurs, SBI0CR2<PIN> is cleared to 0, and the SCL0 line is pulled Low. Once data is written to or read from SBI0DBR or SBI0CR2<PIN> is set to 1, the SCL0 pin is relinquished in a period of tLOW.

Note: SBI0CR2<PIN> is set to 0 and the SCL0 pin is pulled Low only if the TMP92CD54I detects arbitration lost while transmitting a slave address as a master and the TMP92CD54I itself is called as a slave device (slave address match).

If it detects arbitration lost while transmitting a slave address as a master but the slave address does not match, or if it detects arbitration lost while transmitting data as a master, an INTSBE0 interrupt request occurs upon the completion of transferring the word with which arbitration lost was detected, but SBI0CR2<PIN> is not cleared to 0.

When the SBI0SR<BB> flag changes its state from 1 to 0 (falling edge), INTSBS0 occurs.

In slave mode, test the SBI0SR <AL>, <TRX>, <AAS>, and <AD0> bits and then determine the status from the combination of those values to take appropriate action.

Table 3.10.3 shows the states in slave mode and required operations.

Table 3.10.3 Operation in the Slave Mode

<trx></trx>	<al></al>	<aas></aas>	<ad0></ad0>	Conditions	Process
1	0	1	0	In the master transmitter mode, this device detects the arbitration lost during transferring the slave address. It turns into the slave receiver mode. After that this device finishes receiving from other masters the slave address which is the same as that of this device and the direction bit "1". In the slave receiver mode, this device finishes receiving from master the slave address which is the same as	
		0	0	that of this device and the direction bit "1". In the slave transmitter mode, this device finishes transmitting 1-word data.	·
0	1	1	1/0	In the master transmitter mode, this device detects the arbitration lost during transferring the slave address. It turns into the slave receiver mode. After that this device finishes receiving from other masters the slave address which is the same as that of this device and the direction bit "0" or receiving the GENERAL CALL.	·
		0	0		The <pin> is not cleared to "0".</pin>
	0	1	1/0	In the slave receiver mode, this device finishes receiving from master the slave address which is the same as that of this device and the direction bit "0" or receiving the GENERAL CALL.	mode. Read the SBI0DBR to set the <pin> to "1" (reading dummy data) or set the <pin> to "1".</pin></pin>
		0	1/0	In the slave receiver mode, this device finishes receiving 1-word data.	This device operates in the slave receiver mode. Set the number of bits in 1-word to the <bc2 0="" to=""> and read the received data in the SBI0DBR. (<pin> is set to "1" and SCL0 is released.)</pin></bc2>

(4) Generating a stop condition

When SBIOSR <BB> is 1, writing 111 to SBIOCR2 <MST, TRX, PIN> and 0 to <BB> causes a stop condition output sequence to start on the bus. Do not rewrite the contents of SBIOCR2 <MST, TRX, BB, PIN> until a stop condition occurs on the bus.

If the SCL0 line on the bus has already been pulled by another device, the SDA0 line rises after the SCL0 line is relinquished, thus generating a stop condition. When SBIOSR <BB> is cleared to 0, an INTSBS0 interrupt request is issued as a result of a stop condition.

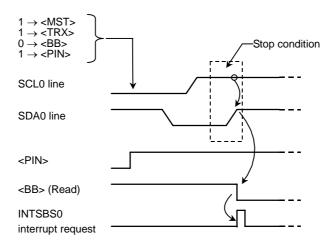


Figure 3.10.26 Stop Condition Generation

(5) Restart procedure

The restart procedure is used when the master device changes the direction of transfer for the slave device without terminating data transfer. The following describes the procedure for performing a restart in master mode.

First, write 000 to SBI0CR2 <MST, TRX, BB> and 1 to <PIN> to relinquish the bus. At this time, the SDA0 pin maintains a High level and the SCL0 pin is relinquished so that the bus is still busy as viewed from other devices because no stop condition occurs. Then, test SBI0SR <BB> and wait until it becomes 0 to determine that the SCL0 pin has been relinquished. Next, test SBI0SR<LRB> and wait until it becomes 1 to determine that no other device is pulling the SCL0 bus line Low. After determining that the bus is free using the above steps, generate a start condition as described in 3.10.6 (2).

To satisfy the setup time condition for a restart, a software wait time is required between the bus free state being determined and a start condition being generated. The time is at least 600 ns in fast mode or at least $4.7~\mu s$ in standard mode.

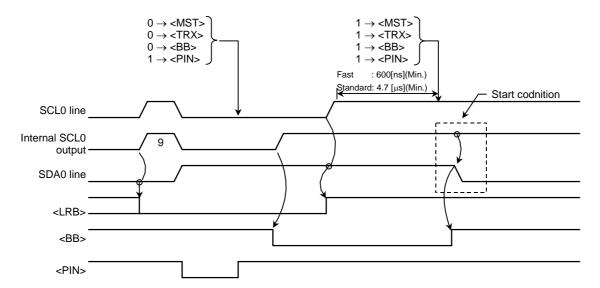
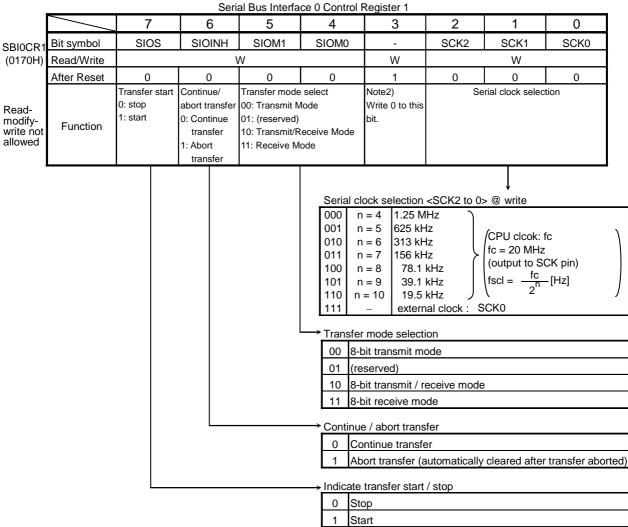



Figure 3.10.27 Timing Diagram when Restarting

3.10.7 Control in clock synchronous 8-bit SIO mode

The following registers are used to control the serial bus interface and monitor its operating state in clock synchronous 8-bit SIO mode:

Note1: When using SIO mode, write a 0 to this bit.

Note2: After setting the transfer mode and serial clock, write a 1 to <SIOS> to start transfer. To set the transfer mode and serial clock, first set <SIOS> to 0 and <SIOINH> to 1.

_	Serial Bus interface 0 Data Buffer Register												
SBI0DBR		7	6	5	4	3	2	1	0				
(0171H)	Bit symbol	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0				
Read- modify-	Read/Write	R (receiver) / W (transfer)											
write not	After Reset	Undefined											
allowed													

Figure 3.10.28 Register for the SIO Mode

Serial Bus Interface 0 Control Register 2

		7	6	5	4	3	2	1	0
SBI0CR2	Bit symbol	-	-	-	-	SBIM1	SBIM0	-	-
(0173H)	Read/Write					W		W	W
	After Reset	-	ı	ı	ı	0	0	0	0
Read- modify- write not allowed	Function					Serial bus interf mode selection 00: Port mode 01: SIO mode 10: I ² C bus mod 11: (reserved)	·	(Note2)	(Note2)

Serial bus interface operation mode selection

00	Port mode (serial bus interface output disabled)
01	Clocked-Synchronous 8-bit SIO mode
10	I ² C bus mode
11	(reserved)

Note1: SBI0CR2<1:0> must always be set to 00.

Note2: It is necessary to clear SBIOCR1 <BC2:0> to 000 before attempting to change the

operating mode to clock synchronous 8-bit SIO mode.

Serial Bus Interface 0 Status Register

		7	6	5	4	3	2	1	0	
	bit Symbol	-	-	-	-	SIOF	SEF	-	-	
SBI0SR	Read/Write					F	₹			
(0173H)	After reset	-	-	-	-	0	0	-	-	
	Function					Serial transfer operation status monitor	Shift operation status monitor			
							0 Shift on 1 Shift on Serial transf	ion status moderation termoperation in profession in profession in profession in profession in profession in profession in the profession	ninated rogress status monit	or

Figure 3.10.29 Registers for the SIO Mode

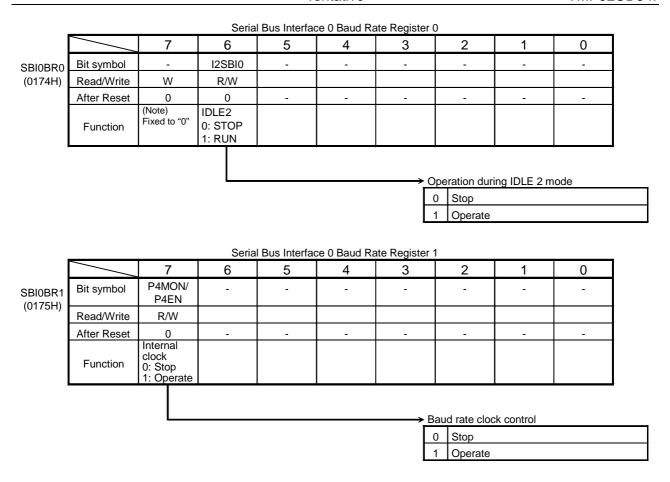
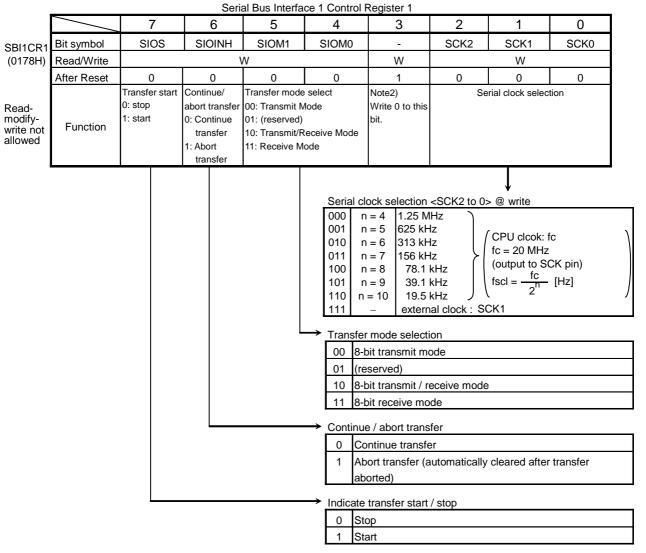



Figure 3.10.30 Registers for the SIO Mode

Note1: When using SIO mode, write a 0 to this bit.

Note2: After setting the transfer mode and serial clock, write a 1 to <SIOS> to start transfer. To set the transfer mode and serial clock, first set <SIOS> to 0 and <SIOINH> to 1.

			Seria	al Bus interfa	ce 1 Data Bu	ıffer Register						
SBI1DBR		7	6	5	4	3	2	1	0			
(0179H)	Bit symbol	RB7/TB7	RB7/TB7									
Read-	Read/Write				R (receiver)	W (transfer)						
modify- write not	After Reset	Undefined										
allowed												

Figure 3.10.31 Register for the SIO Mode

Serial Bus Interface 1 Control Register 2

		7	6	5	4	3	2	1	0
SBI1CR2 (017BH) Read- modify- write not allowed	Bit symbol	-	-	-	-	SBIM1	SBIM0	-	-
	Read/Write					W		W	W
	After Reset	-	1	ı	-	0	0	0	0
	Function					Serial bus interf mode selection 00: Port mode 01: SIO mode 10: I ² C bus mod 11: (reserved)	·	(Note2)	(Note2)

Serial bus interface operation mode selection

00	Port mode (serial bus interface output disabled)
01	Clocked-Synchronous 8-bit SIO mode
10	I ² C bus mode
11	(reserved)

Note1: SBI1CR2<1:0> must always be set to 00.

Note2: It is necessary to clear SBI1CR1 <BC2:0> to 000 before attempting to change the operating mode to clock synchronous 8-bit SIO mode.

Serial Bus Interface 1 Status Register

		7	6	5	4	3	2	1	0	
SBI1SR	bit Symbol	-	-	-	-	SIOF	SEF	-	-	
(017BH)	Read/Write					ı	3			İ
	After reset	-	-	-	-	0	0	-	-	İ
	Function					Serial transfer operation status monitor	Shift operation status monitor			
							Shift operat	ion status m	onitor	
							0 Shift o	peration term	ninated	
							1 Shift o	peration in pr	rogress	
						\longrightarrow	Serial transf	er operating	status monit	or
							0 Transfe	er terminated	d	

Figure 3.10.32 Registers for the SIO Mode

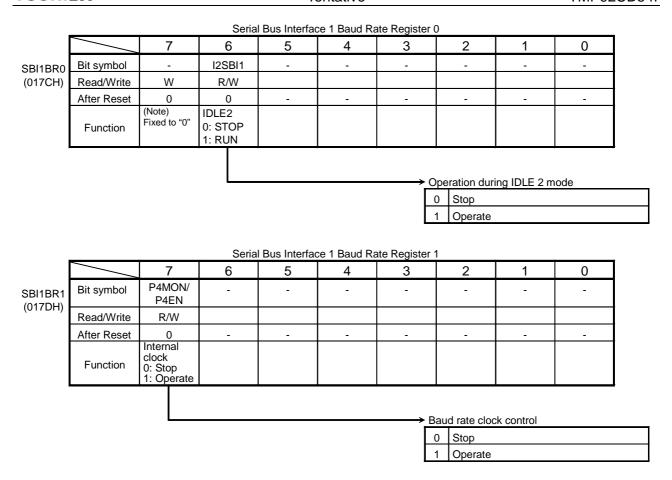
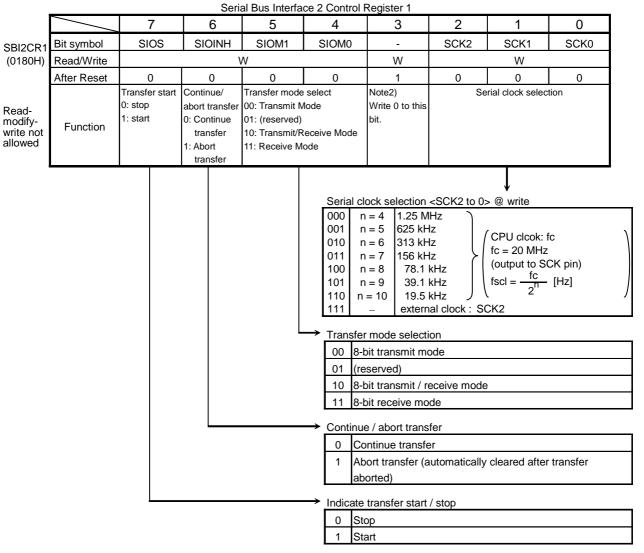



Figure 3.10.33 Registers for the SIO Mode

Note1: When using SIO mode, write a 0 to this bit.

Note2: After setting the transfer mode and serial clock, write a 1 to <SIOS> to start transfer. To set the transfer mode and serial clock, first set <SIOS> to 0 and <SIOINH> to 1.

			Seria	al Bus interfa	ce 2 Data Bu	ffer Register						
SBI2DBR		7	6	5	4	3	2	1	0			
(0181H)	Bit symbol	RB7/TB7	RB7/TB7									
Read- modify- write not	Read/Write	R (receiver) / W (transfer)										
	After Reset		Undefined									
allowed '												

Figure 3.10.34 Register for the SIO Mode

Serial Bus Interface 2 Control Register 2

Read- modify- write not Function mode selection 00: Port mode 01: SIO mode			7	6	5	4	3	2	1	0
Read-modifywrite not Read/Write W W Read-modifywrite not Function Serial bus interface operation mode selection 00: Port mode 01: SIO mode (Note2) (Note2) (Note3)	SBI2CR2	Bit symbol	-	-	-	-	SBIM1	SBIM0	-	-
Read- modify- write not Read- modify- write not Read- modify- write not Serial bus interface operation mode selection 00: Port mode 01: SIO mode (Note2) (Note2) (Note2) (Note2) (Note2)							W		W	W
Read- modify- write not Function mode selection 00: Port mode 01: SIO mode		After Reset	-	-	-	-	0	0	0	0
allowed 10: I ² C bus mode 11: (reserved)	Read- modify- write not allowed	Function					mode selection 00: Port mode 01: SIO mode 10: I ² C bus mod	·	(Note2)	(Note2)

Seri	al bus interface operation mode selection
00	Port mode (serial bus interface output disabled)

01 Clocked-Synchronous 8-bit SIO mode
10 I²C bus mode
11 (reserved)

Note1: SBI2CR2<1:0> must always be set to 00.

Note2: It is necessary to clear SBI2CR1 <BC2:0> to 000 before attempting to change the

operating mode to clock synchronous 8-bit SIO mode.

Serial Bus Interface 2 Status Register

7 6 5 4 3 2 1 0 bit Symbol SIOF SEF SBI2SR Read/Write (0183H) After reset 0 0 Serial transfer Shift operation Function operation status monitor status monitor Shift operation status monitor Shift operation terminated 1 Shift operation in progress Serial transfer operating status monitor Transfer terminated

Figure 3.10.35 Registers for the SIO Mode

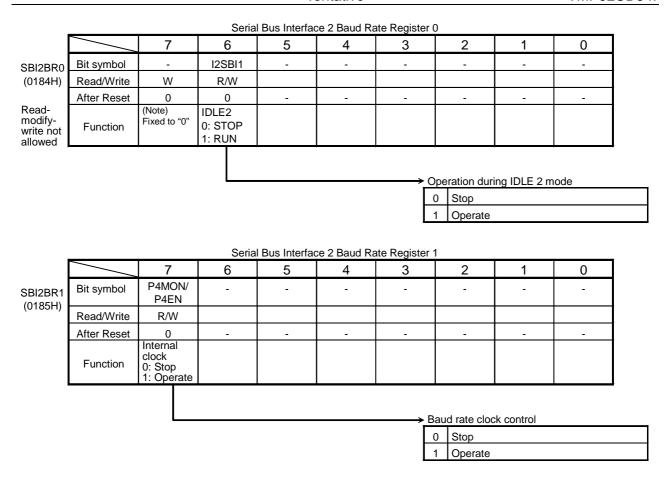


Figure 3.10.36 Registers for the SIO Mode

(1) Serial clock

a. Clock source

The following clock sources can be selected using SBIOCR1 <SCK2:0>.

Internal clock

In internal clock mode, one of seven frequencies can be selected. The serial clock is supplied to an external device through the SCK0 pin. At the start of transfer, the SCK0 pin output is High.

If a data write (for transmission) or a data read (for reception) in the program cannot keep up with the serial clock rate, the automatic wait function stops the serial clock automatically and delays the next shift operation until the processing is completed.

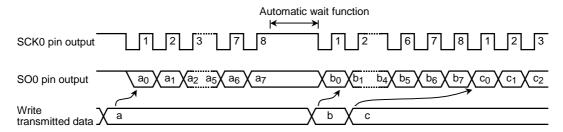


Figure 3.10.37 Automatic-wait Function

External clock (SBI0CR1 <SCK2:0> = 111)

In this mode, an external clock supplied through the SCK0 pin is used as the serial clock. To ensure that shift operation is performed normally, the High and Low widths of the serial clock must satisfy the following condition. The maximum transfer frequency is, therefore, $1.25~\mathrm{MHz}$ (when fc = $20~\mathrm{MHz}$).

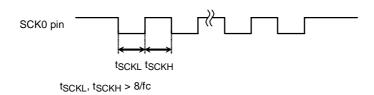


Figure 3.10.38 Maximum Data Transfer Frequency when External Clock Input

b. Shift edge

Data is transmitted using a leading-edge shift and received using a trailing-edge shift.

Leading-edge shift

Data is shifted on the leading edge of the serial clock (falling edge of the SCK0 pin input/output).

Trailing-edge shift

Data is shifted on the trailing edge of the serial clock (rising edge of the SCK0 pin input/output).

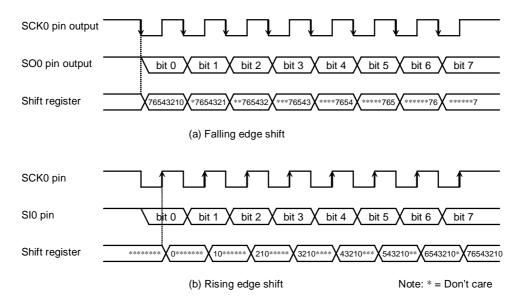


Figure 3.10.39 Shift Edge

(2) Transfer modes

The SBIOCR1 <SIOM1:0> bits select the transfer mode: transmit, receive, or transmit/receive.

a. 8-bit transmit mode

After specifying transmit mode in the control register, write transmit data to SBIODBR.

Then, setting SBI0CR1 <SIOS> to 1 causes transmission to start. The transmit data is moved from SBI0DBR to the shift register and then, in synchronization with the serial clock, output through the SO0 pin in an LSB-first manner. Once the transmit data has been moved to the shift register, SBI0DBR becomes empty, thus causing an INTSBE0 interrupt (buffer empty) to occur that requests next transmit data.

In internal clock operation, if next data is not set after all of 8-bit data has been transmitted, the serial clock is stopped for automatic wait. Writing next transmit data terminates automatic wait.

In external clock operation, data must be written to SBI0DBR before shift operation for next data starts. The transfer rate is, therefore, determined from the maximum delay between an interrupt request being issued and data being written to SBI0DBR in the interrupt handling routine.

At the beginning of transmission, the same value as the last bit of the data transmitted last is output between SBIOSR <SIOF> being set to 1 and the falling edge of SCKO.

To terminate transmission, either set SBI0CR1<SIOS> to 0 or SBI0CR1<SIOINH> to 1 in the INTSBE0 interrupt handling routine. If SBI0CR1<SIOS> is cleared, transmission is terminated once all data has been output. The program can determine the termination of transmission using SBI0SR <SIOF>. SBI0SR <SIOF> is set to 0 upon the termination of transmission. Setting SBI0CR1<SIOINH> to 1 causes transmission to be aborted immediately and SBI0CR1<SIOF> to be cleared to 0.

In external clock operation, SBI0CR1 <SIOS> must be cleared to 0 before shift operation for next transmit data starts. If SBI0CR1<SIOS> is not cleared before shift-out operation starts, the serial bus interface transmits dummy data and then stops.

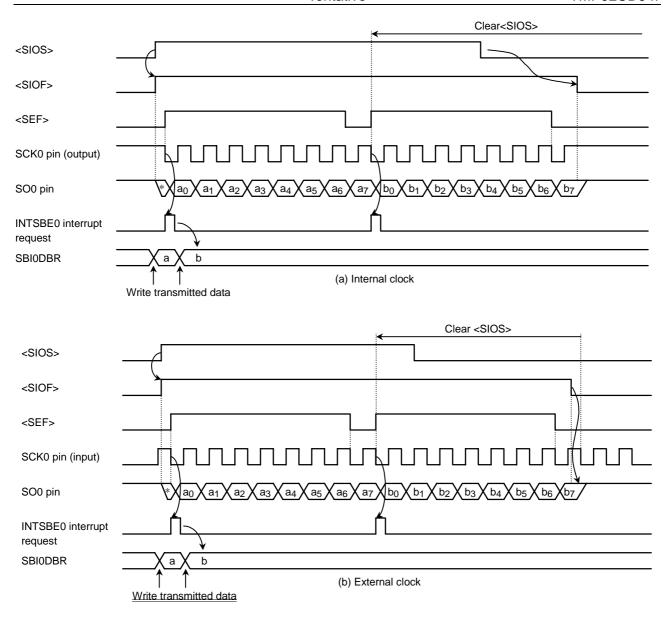


Figure 3.10.40 Transfer Mode

Example: Specifying the termination of transmission for <SIO> (when using an external clock)

STEST1: BIT 2, (SBI0SR) ; If $\langle SEF \rangle = 1$ then loop

JR NZ, STEST1

STEST2: BIT 0, (PN) ; If SCK0 = 0 then loop

JR Z, STEST2

LD (SBI0CR1), 00000111B ; $\langle SIOS \rangle \leftarrow 0$

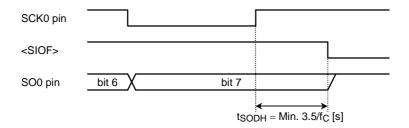


Figure 3.10.41 Transmitted Data Hold Time at End of Transmission

b. 8-bit receive mode


After specifying receive mode in the control register, write a 1 to SBI0CR1 <SIOS> to enable reception. In synchronization with the serial clock, data from the SI0 pin is captured into the shift register in an LSB-first manner. Once 8-bit data has been captured, the received data is moved from the shift register to SBI0DBR, thus causing an INTSBE0 interrupt (buffer full) to occur that requests reading the received data. The interrupt handling routine should read the received data from SBI0DBR.

In internal clock operation, the automatic wait function stops the serial clock until the received data is read from SBI0DBR.

In external clock operation, read the received data before a next serial clock is input because shift operation is synchronized with an externally supplied clock. If the received data is not read, subsequently input received data will be cancelled. The maximum transfer rate with an external clock is determined from the maximum delay between an interrupt request being issued and the received data being read.

To terminate reception, either set SBIOCR1<SIOS> to 0 or SBIOCR1<SIOINH> to 1 in the INTSBE0 interrupt handling routine. If SBIOCR1<SIOS> is cleared, reception is terminated once all bits of the data have been received and written to SBIODBR. The program can determine the termination of reception using SBIOSR <SIOF>. <SIOF> is cleared to 0 upon the termination of reception. After determining that reception has been terminated, read the last received data. Setting SBIOCR1<SIOINH> to 1 causes reception to be aborted immediately and SBIOSR<SIOF> to be cleared to 0 (the received data becomes invalid and need not be read).

Note: When the transfer mode is switched, the contents of SBI0DBR are not maintained. If it is necessary to switch the transfer mode, first write a 0 to <SIOS> to terminate transfer and read the last received data.

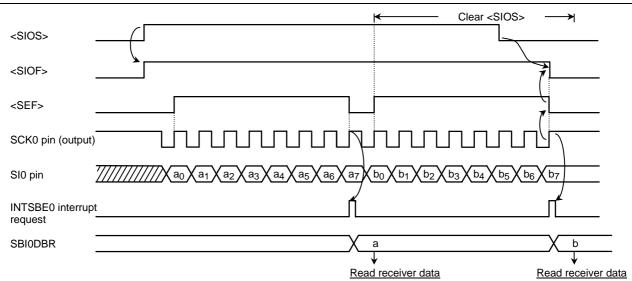
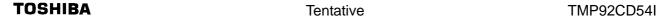


Figure 3.10.42 Receiver Mode (example: Internal clock)

c. 8-bit transmit/receive mode

After specifying transmit/receive mode in the control register, write transmit data to SBI0DBR. Then, setting SBI0CR1 <SIOS> to 1 enables transmission and reception. The transmit data is output through the SO0 pin on the rising edge of the serial clock, in an LSB-first manner, while the received data is captured from the SI0 pin on the falling edge of the clock. Once 8-bit data has been captured, the received data is moved from the shift register to SBI0DBR, thus causing an INTSBE0 interrupt request to be issued. The interrupt handling routine reads the received data from the data buffer register and then writes transmit data. Ensure that the received data is read before transmit data is written to SBI0DBR because SBI0DBR is shared for transmission and reception.


In internal clock operation, automatic wait is performed between the received data being read and next transmit data being written.

In external clock operation, it is necessary to read the received data and then write next transmit data before next shift operation starts because shift operation is synchronized with an externally supplied serial clock. The maximum transfer rate with an external clock is determined from the maximum delay between an interrupt request being issued and the received data being read, followed by transmit data being written.

At the beginning of transmission, the same value as the last bit of the data transmitted last is output between SBIOSR<SIOF> being set to 1 and the falling edge of SCKO.

To terminate transmission/reception, either set SBI0CR1<SIOS> to 0 or SBI0CR1<SIOINH> to 1 in the INTSBE0 interrupt handling routine. If SBI0CR1<SIOS> is cleared, transmission/reception is terminated once all bits of the data have been received and written to SBI0DBR. The program can determine the termination of transmission/reception using SBI0SR <SIOF>. SBI0SR <SIOF> is cleared to 0 upon the termination of transmission/reception. Setting SBI0CR1<SIOINH> to 1 causes transmission/reception to be aborted immediately and SBI0SR<SIOF> to be cleared to 0.

Note: When the transfer mode is switched, the contents of SBI0DBR are not maintained. If it is necessary to switch the transfer mode, first write a 0 to <SIOS> to terminate transfer and read the last received data.

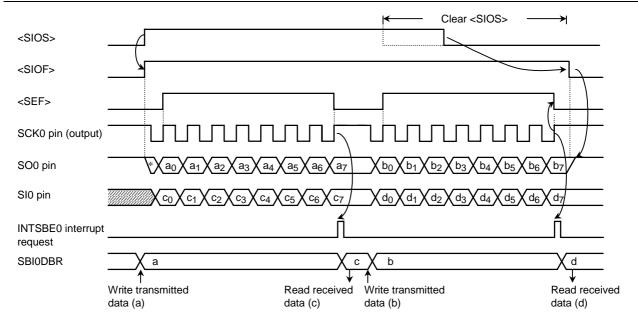


Figure 3.10.43 Transmit/Received Mode (Example: Internal clock)

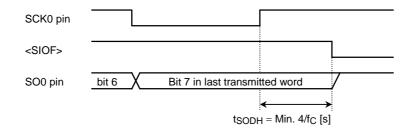


Figure 3.10.44 Transmitted Data Hold Time at End of Transmit/Receive

3.11 Serial Expansion Interface (SEI)

3.11.1 Overview

The serial expansion interface (SEI) is one of the interfaces built into the TMP92CD54I and can connect to peripheral devices using a full-duplex synchronous communication protocol. It also supports micro DMA mode, in which it transfers data using micro DMA.

The TMP92CD54I contains a single SEI channel (SEI0).

(1) Features

- The master outputs a shift clock only when data is being transferred.
- The clock polarity and phase are programmable.
- The data length is eight bits.
- MSB- or LSB-first transfer can be selected.
- Supports transfer using micro DMA (micro DMA mode).
- The master can select one of the following three transfer rates: 4 Mbps, 2 Mbps, and 500 kbps (when fc = 20 MHz)
- The error detection circuit supports the following functions:
 - a. Write collision detection: If the shift register is written during a transfer.
 - b. Overflow detection: If new data is received when the transfer completion flag is set to 1 (slave mode only).
 - c. Mode fault detection: If the input to the \overline{SS} pin is driven Low in master mode (driver output turned off immediately).

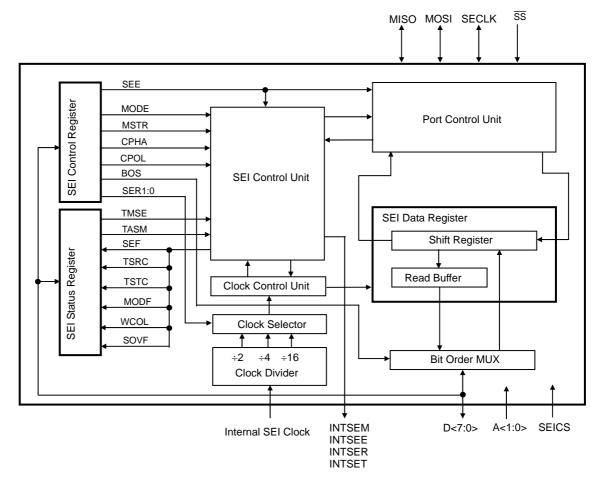


Figure 3.11.1 SEI Block Diagram

Table 3.11.1 Pin Function of SEI Channels

SEI
SS (PM0)
MOSI (PM1)
MISO (PM2)
SECLK (PM3)

3.11.2 SEI operation

During an SEI transfer, data transmission (serial shift-out) and reception (serial shift-in) are performed simultaneously. The SEI clock (SECLK) provides synchronization for shifting and sampling information on the two serial data lines (MOSI and MISO). The slave select line (\overline{SS}) selects an individual slave device. Only the selected slave device can do the SEI transfer using the SEI bus.

(1) Controlling the SEI clock phase and polarity

Four types of SEI clock can be selected by two bits in the SEI control register (SECR) that control the phase and polarity of the clock. The clock polarity is controlled with the <CPOL> bit, which selects either an active-high or active-low clock. The clock phase is controlled with the <CPHA> bit, which selects one of two different transfer formats. The clock phase and polarity must be the same between the master device and the slave device it communicates with.

(2) SEI data and clock timing

The SEI has programmable clock timing and data, which support most synchronous serial peripheral devices. See "3.11.4 SEI Transfer Format."

3.11.3 SEI pin functions

The SEI has four input and output pins for data transfer. The function of each pin depends on the SEI device mode (master or slave).

(1) SECLK pin

The SECLK pin functions as an output when the SEI is set to master mode or as an input when the SEI is set to slave mode.

When the SEI is a master, the SECLK signal is supplied from its internal SEI clock generator. Once the master has started a transfer, eight clock cycles are automatically supplied on the SECLK pin.

When the SEI is a slave, the SECLK pin functions as an input and the SECLK signal supplied from the master synchronizes data transfer between the master and slave. If the slave select pin, \overline{SS} , is driven High, the slave device ignores the SECLK signal.

Both the master and slave devices shift data on the rising or falling edge of the SECLK signal and sample data on the opposite edge. The edge polarity depends on the SEI transfer protocol.

(2) MISO and MOSI pins

The MISO and MOSI pins are used to transmit and receive serial data.

When the SEI is set to a master, the MISO turns into the input signal and the MOSI turns into the output signal.

When the SEI is set to a slave, the functions of the pins are reversed.

In SEI system, all SECLK pins are interconnected, all MOSI pins are interconnected, and all MISO pins are interconnected. See Figure 3.11.5. A single SEI device is set as a master while all other SEI devices on the SEI bus are set to slaves. The master device transmits the transfer clock and data from its SECLK and MOSI pins to the SECLK and MOSI pins of slave devices, respectively. The single selected slave device transmits data from its MISO pin to the master device's MISO pin.

The SECLK, MISO, and MOSI pins can also be programmatically set to open-drain, using the corresponding bits in the port M open-drain enable register, PMODE.

(3) \overline{SS} pin

The \overline{SS} pin functions differently depending on whether the SEI is set to a master or slave.

A slave device uses the pin to enable SEI slave transmission/reception. If its \overline{SS} pin is High (not active), the slave device ignores the SECLK clock and places its MISO output pin in high-impedance state.

A master device uses the \overline{SS} pin to detect an SEI error. If its \overline{SS} pin is driven Low when the SEI is a master, it indicates that another device on the SEI bus is attempting to become a master. The master device thus detects an error and immediately releases the SEI bus to prevent damage from a driver collision. Such an error is called a mode fault. The <MODE> bit in the SECR register enables or disables detection for a mode fault. When the <MODE> bit is set to 0, the \overline{SS} pin is enabled as a mode fault detection input. When the <MODE> bit is set to 1, mode fault detection using the \overline{SS} pin is disabled.

3.11.4 SEI transfer format

The transfer format is determined by the <CPHA> and <CPOL> bit settings in the SECR register. The <CPHA> bit selects one of two different transfer protocols.

(1) Transfer format when $\langle CPHA \rangle = 0$

Figure 3.11.2 shows the transfer format when $\langle CPHA \rangle = 0$.

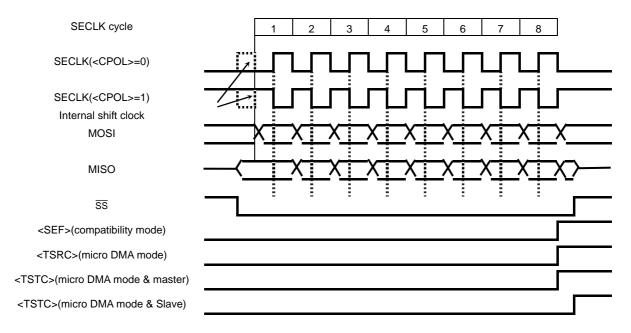


Figure 3.11.2 Transfer Format when $\langle CPHA \rangle = 0$

Table 3.11.2 Data Timing when $\langle CPHA \rangle = 0$

<	С	Р	Н	Α>	>=	0

	No communication (idle) SECLK level	Data shift	Data sampling	
<cpol>=0</cpol>	L	Shift clock falling edge	Shift clock rising edge	
<cpol>=1</cpol>	Н	Shift clock rising edge	Shift clock falling edge	

In master mode, writing new data to the SEDR register causes a data transfer to start. Data on the MOSI pin is switched a half clock cycle before the shift clock starts operating. The SECR<BOS> bit specifies whether data will be shifted out in MSB- or LSB-first manner. After the last shift cycle, the SESR <SEF> flag is set to 1 in compatibility mode or the <TSRC> and SESR<TSTC> flags are set to 1 in micro DMA mode.

In slave mode, a write to the SEDR register is prohibited while the \overline{SS} pin is Low. Writing data during that period results in a write collision, causing the <WCOL> flag in the SESR register to be set to 1. Therefore, if the SESR<SEF> or SESR <TSRC> flag is set to 1 upon the completion of data transfer, the program must wait until the \overline{SS} pin is driven back High before attempting to write next data to the SEDR register. In slave mode, if micro DMA is used to transfer data to the SEDR register, the SESR<TSTC> flag is not set until the \overline{SS} pin is driven High.

(2) Transfer format when $\langle CPHA \rangle = 1$

Figure 3.11.3 shows the transfer format when $\langle CPHA \rangle = 1$.

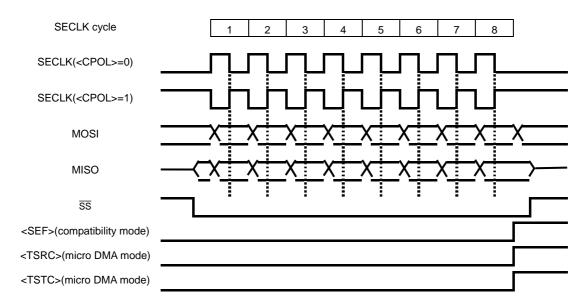


Figure 3.11.3 Transfer Format when <CPHA> = 1

Table 3.11.3 Data Timing when <CPHA> = 1

<cph< th=""><th>IA>=1</th></cph<>	IA>=1
--------------------------------------	-------

	No communication (idle) SECLK level	Data shift	Data sampling	
<cpol>=0</cpol>	L	Shift clock rising edge	Shift clock falling edge	
<cpol>=1</cpol>	Н	Shift clock falling edge	Shift clock rising edge	

In master mode, writing new data to the SEDR register causes a data transfer to start. The data on the MOSI pin is switched on the first edge of the shift clock. The SECR<BOS> bit specifies whether data will be shifted out in MSB- or LSB-first manner.

In slave mode, unlike the format used when SECR<CPHA> = 0, a write to the SEDR register is allowed even when the \overline{SS} pin is Low. In both master and slave modes, after the last shift cycle, the SESR <SEF> flag is set to 1 in compatibility mode or the SESR<TSRC> and SESR<TSTC> flags are simultaneously set to 1 in micro DMA mode.

Writing to the SEDR register during a data transfer results in a write collision. Do not write data to SEDR before the SESR<SEF> flag or the SESR<TSRC> and <TSTC> flags are set to 1.

3.11.5 Functional description

Figure 3.11.4 shows connection between master and slave on SEI system.

When the master device transmits data from its MOSI pin to the slave device's MOSI pin, the slave device transmits data from its MISO pin to the master device's MISO pin.

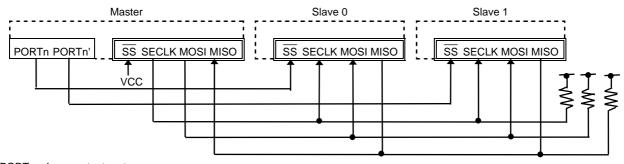

It indicates that data output and input are synchronized using the same clock signal in full-duplex communication. Upon the completion of transfer, the transmit data in the 8-bit shift register is replaced with the received data.

Figure 3.11.4 Connection between Master and Slave in SEI

Figure 3.11.5 shows an example SEI system configuration.

SEI output ports can be programmatically set to open-drain output. Multiple devices can thus be connected.

PORTn, n': any output ports

Figure 3.11.5 Configuration of SEI System (Comprised of One Master and Two Slaves)

3.11.6 Operating modes

The SEI supports two different operating modes, compatibility mode and micro DMA mode, and operates in the selected mode. These modes differ in how a flag is cleared and an interrupt is generated as well as whether micro DMA can be used.

Table 3.11.4 Differences between the Two Operation Modes

	compatibility mode	micro DMA mode
error flag clearing	Reading a register with the Status flag set, followed by SECR register or reading or writing SEDR register	Writing a "1" to the status register
transfer status flag clearing	Reading a register with the Status flag set, followed by an reading or writing to the data register	Writing a "1" to the status register or by reading or writing the data register
interrupt generation	INTSEM: <modf> INTSEE: <sef></sef></modf>	INTSEM: <modf> INTSEE: <wcol> or <sovf> INTSER: <tsrc> INTSET: <tstc></tstc></tsrc></sovf></wcol></modf>
micro DMA usage	No	yes

The SEI operating mode can be switched using SESR<TMSE> when the SEI is disabled (SECR<SEE> = 0).

3.11.7 SEI registers

The SEI can be configured using the SEI control register (SECR), SEI status register (SESR), and SEI data register (SEDR).

Note: When reading SEI registers (SECR, SESR, and SEDR) after writing to them, there must be an interval of at least four states between the write and read. The program should take that interval into account.

Programming example:

```
(SEDR), data1
                              Write to SEDR
NOP
                              NOP or other instruction not reading SEI register
NOP
LD
      A,(SESR)
                              Read from SESR
LD
      (SESR), data2
                              Write to SEDR
NOP
                              NOP or other instruction not reading SEI register
NOP
LD
      A,(SESR)
                              Read from SESR
```

(1) SEI control register (SECR)

SEI Control Register

SECR (0060H)	
Read- modify- write not allowed	

		7	6	5	4	3	2	1	0
	bit Symbol	MODE	SEE	BOS	MSTR	CPOL	CPHA	SER1	SER0
)	Read/Write	W				R/W			
	After reset	0	0	0	0	0	1	1	1
	Function	Mode fault	SEI	Bit order	Mode	Clock	Clock	SEI transfer	rate
		detection	operation	selection	selection	polarity	Phase	selection	
t		0:enabled	0:stopped	0:MSB first	0:slave	selection	selection	00: Reserve	ed
		1:disabled	1:operating	1:LSB first	1:master	see figure	see figure	01: divide-b	y- 2
						3.11.2,	3.11.2,	10: divide-b	y- 4
						3.11.3	3.11.3	11: divide-b	y-16

Figure 3.11.6 SEI Registers (SECR)

<MODE>: Mode fault detection enable

- 0: Enables mode fault detection.
- 1: Disables mode fault detection.

This bit is valid only in master mode and invalid in slave mode.

<SEE>: SEI function enable

0: Disables the SEI function. To switch between micro DMA mode and compatibility mode, first disable the SEI function. Ensure that data transfer has been completed before attempting to disable the SEI function.

Also, when using the HALT instruction to enter IDLE1, IDLE3, or STOP mode, first disable the SEI function.

1: Enables the SEI function. To use the SEI, first set the relevant ports to SEI pins.

<BOS>: Bit order selection

The <BOS> bit selects whether data will be transmitted in MSB-first or LSB-first manner.

- 0: Transmits the MSB (bit 7) of the SEDR register first.
- 1: Transmits the LSB (bit 0) of the SEDR register first.

<MSTR>: Master/slave mode selection

- 0: Sets the SEI to slave.
- 1: Sets the SEI to master.

<CPOL>: Clock polarity selection

0: Selects an active-high clock. The SECLK clock is Low when communication is not performed.

1: Selects an active-low clock. The SECLK clock is High when communication is not performed. See Figure 3.11.2 and Figure 3.11.3.

<CPHA>: Clock phase selection

The <CPHA> bit selects one of two different transfer formats.

See Figure 3.11.2 and Figure 3.11.3.

<SER1:0>: SEI bit rate selection

The following table shows the relationship between the transfer bit rate and the settings of the <SER1> and <SER0> bits when the SEI operates as the master. When the SEI operates as a slave, the serial clock is supplied from the master and the settings of the <SER1> and <SER0> bits are ignored.

Table 3.11.5 SEI Transfer Bit Rate

<ser1></ser1>	<ser0></ser0>	Divide-by-rate of internal SEI clock	Transfer rate (@ fc = 20 MHz)			
0	0	Don't use this setting.				
0	1	4	4 Mbps			
1	0	8	2 Mbps			
1	1	32	500 Kbps			

Note: internal SEI clock = $2/5 \times fc$

(2) SEI status register (SESR)

SEI Status Register (Compatibility Mode)

		7	6	5	4	3	2	1	0
SESR	bit Symbol	SEF	WCOL	SOVF	MODF	-	-	-	TMSE
(0061H)	Read/Write		F	₹					R/W
	After reset	0	0	0	0	-	-	-	0
Compati-	Function	SEI	Write	Overflow	Mode				SEI mode
bility		transfer	collision	flag	fault flag				select
mode		complete	flag	(slave)	(master)				0:compati-
		flag	1:write	1:overflow	1:fault				bility mode
		1:transfer	collided	occurred	occurred				1:micro
		completed							DMA mode

SEI Status Register (Micro DMA Mode)

		7	6	5	4	3	2	1	0
SESR	bit Symbol	-	WCOL	SOVF	MODF	TSRC	TSTC	TASM	TMSE
(0061H)	Read/Write				R/C (Note)			R/	W
	After reset	-	0	0	0	0	0	0	0
Micro	Function		Write	Overflow	Mode	SEI	SEI	SEI	SEI mode
DMA			collision	flag	fault flag	receive	transmit	automated	select
mode			flag	(slave)	(master)	complete	complete	shift mode	0:compati-
			1:write	1:overflow	1:fault	flag	flag	(master)	bility mode
Read-			collided	occurred	occurred	1:receive	1:transmit	interrupt	1:micro
modify-						completed	completed	mask	DMA mode
write not								(slave)	
allowed									

Note: R/C indicates that read access and clear (by writing a 1) from the CPU are allowed.

Figure 3.11.7 SEI Registers (SESR)

<SEF>: Transfer completion flag

Compatibility mode:

The <SEF> flag is automatically set to 1 upon the completion of data transfer. When the <SEF> flag is set to 1, reading the SESR register and reading or writing to the SEDR register causes the <SEF> flag to be automatically cleared to 0.

Micro DMA mode:

The flag value is undefined when read. A write to the flag is invalid.

<WCOL>: Write collision error flag

Compatibility mode:

The <WCOL> flag is automatically set to 1 when the SEDR register is written during data transfer. A write to the SEDR register is invalid during data transfer. When the <WCOL> flag is set to 1, reading the SESR register and reading or writing to the SEDR register causes the <WCOL> flag to be automatically cleared to 0. No interrupt occurs when the <WCOL> flag is set.

Micro DMA mode:

The <WCOL> flag is automatically set to 1 when the SEDR register is written during data transfer. A write to the SEDR register is invalid during data transfer. The <WCOL> flag is cleared to 0 only by writing a 1 to the <WCOL> bit. A write of 0 is invalid. If the <WCOL> flag changes its state from 0 to 1 when the <TASM> bit is 0 in slave mode, an INTSEE interrupt pulse is generated.

<SOVF>: Overflow error flag

Master mode:

The flag value is undefined when read. A write to the flag is invalid.

Slave mode:

Compatibility mode:

The <SOVF> flag is automatically set to 1 upon the completion of receiving next data when the <SEF> flag is set to 1. When the <SOVF> flag is set to 1, reading the SESR register and reading or writing to the SEDR register causes the <SOVF> flag to be automatically cleared to 0. The <SOVF> flag is also cleared when the operating mode is switched to master mode. In compatibility mode, no interrupt occurs when the <SOVF> flag is set.

Micro DMA mode:

The <SOVF> flag is automatically set to 1 upon the completion of receiving next data when the <TSRC> flag is set to 1. The <SOVF> flag is cleared to 0 only by writing a 1 to the <SOVF> bit. A write of 0 is invalid. If the <SOVF> flag changes its state from 0 to 1 when the <TASM> bit is 0, an INTSEE interrupt pulse is generated.

<MODF>: Mode fault error flag

Master mode:

Compatibility mode:

The <MODF> flag is set to 1 when the \overline{SS} pin is driven Low. At that time, the SEI operates as follows:

- 1. Disable the SEI output pin driver, thus placing the output pin in high-impedance state.
- 2. Clear the <MSTR> bit in the SECR register to 0.
- 3. Forcibly clear the <SEE> bit in the SECR register to 0, thus disabling the SEI system.
- 4. Generate an INTSEM interrupt pulse.

When the <MODF> flag is set to 1, reading the SESR register and writing to the SEDR register causes the <MODF> flag to be automatically cleared to 0.

Micro DMA mode:

Operation is the same as that in compatibility mode, except how the <MODF> flag is cleared. The <MODF> flag is cleared to 0 only by writing a 1 to the <MODF> bit. A write of 0 is invalid. Slave mode:

The flag value is undefined when read. A write to the flag is invalid.

<TSRC>: Receive completion flag

Compatibility mode:

The flag value is undefined when read. A write to the flag is invalid.

Micro DMA mode:

Once eight clock cycles have been shifted onto the SECLK pin, reception is completed and the <TSRC> flag is set to 1. The <TSRC> flag is cleared to 0 by reading the SEDR register, switching

to compatibility mode, or writing a 1 to the <TSRC> bit. A write of 0 to this flag is invalid. An INTSER interrupt pulse is generated when the <TSRC> flag is set.

<TSTC>: Transmit completion flag

Compatibility mode:

The flag value is undefined when read. A write to the flag is invalid.

Micro DMA mode:

The <TSTC> flag is set upon the completion of transmitting a single byte of data, but the timing is different depending on the transfer format and whether the device is a master or slave. See Figure 3.11.2 and Figure 3.11.3. The <TSTC> flag is cleared to 0 by writing to the SEDR register, switching to compatibility mode, or writing a 1 to the <TSTC> bit. A write of 0 to this flag is invalid. An INTSET interrupt pulse is generated when the <TSTC> flag is set.

<TASM>: Automatic shift mode (master) / INTSEE interrupt mask (slave)

Automatic shift mode makes micro DMA transfer cooperate with the SEI transfer. The function of this bit depends on the <MSTR> bit setting.

Compatibility mode:

The flag value is undefined when read. A write to the flag is invalid.

Micro DMA mode:

Master mode:

- 0: Disables automatic shift mode.
- 1: Enables automatic shift mode.

In this mode, reading from the SEDR register causes the following operation:

- Clear the SEDR register to 00H.
- Start next data transfer; transmit 00H and receive new 8-bit data.

By assigning INTSER interrupt as the startup of micro DMA, master device can receive the data block. When the SEI operates in slave mode, automatic shift mode is invalid.

Slave mode:

The bit functions as a mask for generating an INTSEE interrupt with the <SOVF> and <WCOL> flags.

- 0: Generates an INTSEE interrupt pulse when the <WCOL> flag is set.
- 1: Generates an INTSEE interrupt pulse when the <SOVF> flag is set.

<TMSE>: Mode selection

- 0: Selects compatibility mode.
- 1: Selects micro DMA mode.

In DMA mode, micro DMA transfer is allowed. Ensure that the SEI function is disabled before attempting to change the mode.

(3) SEI data register (SEDR)

SEI Data Register (for Reception)

SEDR (0062H) Readmodifywrite not allowed

	7	6	5	4	3	2	1	0
bit Symbol	SED7	SED6	SED5	SED4	SED3	SED2	SED1	SED0
Read/Write		R						
After reset	0	0	0	0	0	0	0	0

SEI Data Register (for Transmission)

SEDR (0062H) Readmodifywrite not allowed

	7	6	5	4	3	2	1	0
bit Symbol	SED7	SED6	SED5	SED4	SED3	SED2	SED1	SED0
Read/Write		W						
After reset	0	0	0	0	0	0	0	0

Figure 3.11.8 SEI Registers (SEDR)

The SEI data register (SEDR) is used for data transmission and reception. When the SEI is set to a master, writing data to the SEDR register starts data transfer.

Once a transfer has been started, the master device must use an interrupt or polling to ensure that the transfer completion flag is set to 1 before attempting to write new data to the SEDR register.

The SEDR register can be read or written only if the <SEE> bit in the SECR register is set to 1. If the SECR<SEE> bit is set to 0, a write to the SEDR register is ignored and reading the register always returns a value of 00H.

3.11.8 SEI system errors

The SEI device detects three types of system errors. The first type of error occurs if the input to the $\overline{\rm SS}$ pin on the master device is driven Low. This error is called a mode fault. The second type of error, a write collision, occurs if data is written to the SEDR register during data transfer. The third type of error, an overflow error, occurs if a new data byte has been shifted in before the previous data byte has been read when the SEI device is operating as a slave.

(1) Mode fault error

If more than one SEI device is set to a master, contention among drivers may occur. When an SEI device is set to a master, if its \overline{SS} pin input is driven Low, a mode fault error occurs and the device turns off its driver output. This function prevents contention among masters.

If this error occurs, the device immediately takes the following actions:

- Forcibly clear the <MSTR> bit in the SECR register to 0, thus re-setting the SEI to a slave.
- Forcibly clear the <SEE> bit in the SECR register to 0, thus disabling the SEI function.
- Set the <MODF> flag in the SESR register to 1, which generates an INTSEM interrupt pulse.
- Disable the SEI output pin driver, thus placing the output pin in high-impedance state.

Once the SESR<MODF> flag is cleared to 0 after the software has resolved the problem causing a mode fault, the SEI device can accept setup for recovering normal operation. The SECR register cannot be written if the SESR<MODF> flag is set to 1. In compatibility mode, when the SESR<MODF> flag is set to 1, reading the SESR register and writing to the SEDR register causes the SESR<MODF> flag to be cleared to 0. In micro DMA mode, write a 1 to the SESR<MODF> flag to clear it.

A mode fault error is detected only if more than one device is simultaneously selected as a master. The SEI device cannot detect a collision between MISO pins when more than one slave device is selected on the SEI system.

An open-drain option is provided to protect the device from latch-up. This option changes the SEI output driver to an open-drain driver. Each of the SECLK, MOSI, and MISO pins can be individually set to open-drain programmatically. In that case, an external pull-up resistor needs to be added.

(2) Write collision error

A write collision occurs if the SEDR register is written while data is being transferred. The SEDR register does not have a double-buffer configuration in the direction of transmission so that data written to the SEDR register before transfer is written directly to the SEI shift register. A write during a data transfer thus fails and results in a write collision error. In this case, the on-going data transfer is completed but the written data causing a write collision error is not written to the shift register.

• In slave mode

The SEDR register is written while the \overline{SS} pin is driven Low. (<CPHA> = 0)

The SEDR register is written while data is being transferred. (<CPHA> = 1)

In master mode
 The SEDR register is written while data is being transferred.

A write collision is usually an error on the slave side because a slave cannot control when the master starts a data transfer. The master, which knows when it transfers data, does not cause a write collision error although both master and slave SEI devices can detect a write collision error.

In slave mode, a write collision occurs if the master has already started a shift cycle for a next byte before the slave transfers a new data to the SEDR register.

In slave and micro DMA mode, if the SESR<WCOL> flag is set when the SESR<TASM> bit is 0, an INTSEE interrupt pulse is generated.

(3) Overflow error

The transfer bit rate on the SEI bus is determined by the master. At a high bit rate, the slave may fail to keep up with transfer from the master. Overflow occurs when the following two conditions are satisfied:

- The SEI device is set to a slave.
- A new data has been received but the previous data has not yet been read.

The SEI device can detect a data overflow using the SESR<SOVF> flag. When the SESR <SOVF> flag is set to 1, the SEDR register is overwritten with the new data byte.

In slave mode, if the SESR<SOVF> flag is set when the SESR<TASM> bit is 1, an INTSEE interrupt pulse is generated in micro DMA mode only. The SESR <TASM> bit is used as an interrupt mask bit because this error occurs in slave mode only.

3.11.9 Generating an interrupt

Interrupt handling differs between two SEI operating modes and can be selected using the SESR<TMSE> bit. The SEI generates four types of interrupts: INTSEM, INTSEE, INTSER, and INTSET.

(1) Compatibility mode

In compatibility mode, the SEI generates two types of interrupts, INTSEM and, INTSEE. An INTSEM interrupt pulse is generated if the SESR<MODF> flag changes its state from 0 to 1. An INTSEE interrupt pulse is generated if the SESR<SEF> flag changes its state from 0 to 1.

Table 3.11.6 Compatibility Mode

INTSEM	Interrupt on <modf></modf>
INTSEE	Interrupt on <sef></sef>
INTSER	Inactive
INTSET	Inactive

(2) Micro DMA mode

In micro DMA mode, all of four interrupt types are used to enable micro DMA transfer with the SEDR register. An INTSEM interrupt pulse is generated if the SESR<MODF> flag changes its state from 0 to 1. An INTSEE interrupt is generated if, in slave mode, the SESR<WCOL> flag changes its state from 0 to 1 when the SESR <TASM> bit is set to 0. It is also generated if, in slave mode, the SESR<SOVF> flag changes its state from 0 to 1 when the SESR <TASM> bit is set to 1.

Upon the completion of transfer, both the SESR<TSRC> and <TSTC> flags are set to 1 simultaneously, except when SECR<CPHA> is set to 0 in slave mode. See "3.11.4(1) Format when <CPHA> = 0." Those flags trigger the generation of INTSER and INTSET interrupt pulses, respectively.

An INTSER interrupt pulse is generated if the SESR<TSRC> flag changes its state from 0 to 1. The SESR <TSRC> flag is cleared to 0 by reading the SEDR register or writing a 1 to the SESR <TSRC> bit.

An INTSET interrupt pulse is generated if the SESR<TSTC> flag changes its state from 0 to 1. The SESR <TSTC> flag is cleared to 0 by writing to the SEDR register or writing a 1 to the SESR <TSTC> bit.

When using micro DMA transfer to and from the SEDR register, use INTSER and INTSET interrupts as triggers for micro DMA transfer.

INTSER interrupt: Use as a trigger to read the SEDR register.

INTSET interrupt: Use as a trigger to write to the SEDR register.

Next data transfer is started that way.

Table 3.11.7 Compatibility Mode

INTSEM	Interrupt on <modf></modf>
INTSEE	Interrupt on <wcol>¹⁾ or <sovf>²⁾</sovf></wcol>
INTSER	Interrupt on <tsrc></tsrc>
INTSET	Interrupt on <tstc></tstc>

Note 1: When SESR <TASM> = 0 in slave mode

Note 2: When SESR <TASM> = 1 in slave mode

Each interrupt handling should be enabled or disabled using the interrupt controller. (See 3.4.3.)

3.11.10 Using micro DMA with the SEI (micro DMA mode)

Micro DMA improves the SEI transfer speed by:

- taking the load off the CPU for interrupt handling, and
- reducing the time interval between transfers.

Micro DMA transfer is used in both master and slave modes.

(1) Micro DMA transfer (read/write)

In this mode, set the <TMSE> bit in the SESR register to 1 to select micro DMA mode. Two micro DMA channels are used. One channel is used to transfer received data from the SEDR register to a specified RAM area while the other channel is used to transfer transmit data from a specified RAM area to the SEDR register. Data transfer is completely under the control of the micro DMA controller.

a. Initialization

Two micro DMA channels are used for SEI transfer. One micro DMA channel is set to be activated with an INTSER interrupt pulse and transfer received data from the SEDR register to memory. The other channel is set to be activated with an INTSET interrupt pulse and transfer new data from memory to the SEDR register. In master mode, data transfer is restarted with those initial settings.

Set the micro DMA channel having the smaller channel number to an INTSER interrupt. This ensures that received data is read before a write to the SEDR register to start new data transfer.

In master mode, writing to the SEDR register starts the first data transfer. In slave mode, write data to the SEDR register as a preparation for transfer started from the connected master. Subsequent transfers are automatically performed by the micro DMA controller.

Table 3.11.8 SEI Setting when Micro DMA Transfer (Read/Write)

<see></see>	<mstr></mstr>	<tasm></tasm>	<tmse></tmse>
1	0:Slave	INTSEE interrupt mask	4
	1:Master	0	1

b. Micro DMA transfer

Once initialized, micro DMA waits for a data transfer completion trigger. Upon the completion of transfer, the <TSRC> and <TSTC> flags are set to 1, thus causing an SEI reception completion interrupt (INTSER) pulse and SEI transmission completion interrupt (INTSET) pulse to be generated. The micro DMA channel having the smaller channel number is processed first. Therefore, read processing with micro DMA transfer caused by reception completion is performed before write processing with micro DMA transfer caused by transmission completion. Read processing with micro DMA transfer consists of reading the SEDR register and writing to the address specified with the micro DMA transfer destination address register. In addition, read the SEDR register and clear the <TSRC> flag to 0. Then, for write processing with micro DMA transfer source address register and write to the SEDR register. In addition, read the SEDR register and clear the <TSTC> flag to 0. If the SEI is the master, start a new data transfer.

After each micro DMA transfer, decrement the transfer count register for both micro DMA transfers. The above procedure continues until the transfer count register becomes 0. Once the transfer count register becomes 0, a micro DMA transfer completion interrupt occurs. The service routine for a micro DMA transfer completion interrupt is used to reinitialize micro DMA transfer

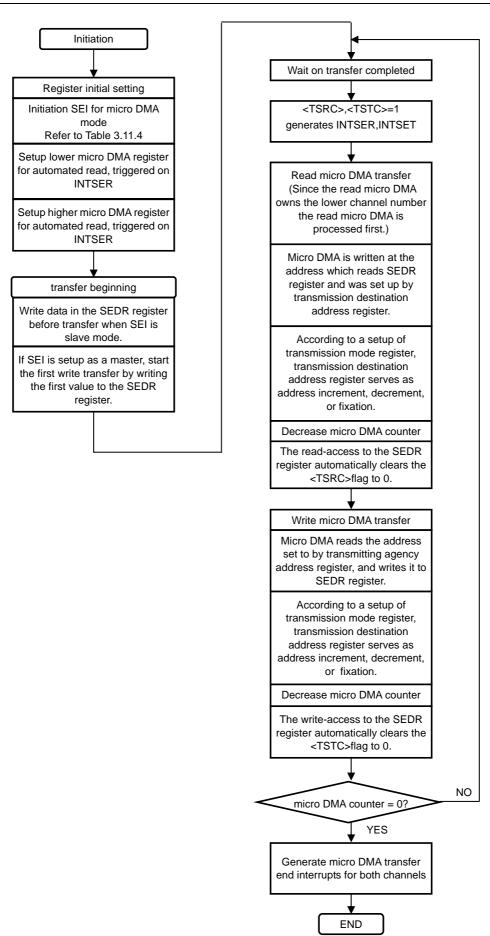


Figure 3.11.9 Flowchart for Micro DMA Read/Write Transfer

(2) Micro DMA transfer (read only)

This mode is used to receive a data block (for example, to read data from serial E²PROM). Meaningless data is transmitted simultaneously. A single micro DMA channel is used to read received data from the SEDR register and store it in a specified RAM area.

a. Initialization

In this mode, set the <TMSE> bit in the SESR register to 1 to select micro DMA mode. The SESR<TASM> bit is used as an automatic shift enable bit while the SEI is operating as a master. One micro DMA channel is set to be activated with an INTSER interrupt pulse and transfer received data from the SEDR register to memory. An INTSER interrupt activates micro DMA transfer. An INTSET interrupt must be disabled using the interrupt controller. When the SEI is a master, writing data to the SEDR register starts the first data transfer. (When the SEI is a slave, it waits until it receives data transmitted from the master.)

Table 3.11.9 SEI Setting when Micro DMA Transfer (Read)

<see></see>	<mstr></mstr>	<tasm></tasm>	<tmse></tmse>
1	0: Slave	INTSEE interrupt mask	4
	1: Master	1	1

b. Micro DMA transfer

After starting the first data transfer, micro DMA waits until the data transfer is completed. Upon the completion of data transfer, both <TSRC> and <TSTC> flags in the SESR register are set to 1. An INTSER interrupt pulse caused by the SESR<TSRC> flag being set activates micro DMA transfer. The SESR <TSTC> flag is also set to 1 simultaneously and remains set until the block transfer is completed.

Micro DMA reads the received data from the SEDR register and writes it to the memory address specified with the micro DMA transfer destination address register. After each data transfer, the micro DMA transfer count register is decremented. Reading the SEDR register causes it to be automatically cleared to 00H because the SESR <TASM> bit is set to 1. At that time, a new data transfer starts automatically. The above processing continues until the micro DMA transfer count register becomes 0. Once the transfer count register becomes 0, a micro DMA transfer completion interrupt occurs.

After the first data transfer is completed, the SESR <TSTC> flag remains set to 1 unless it is explicitly cleared.

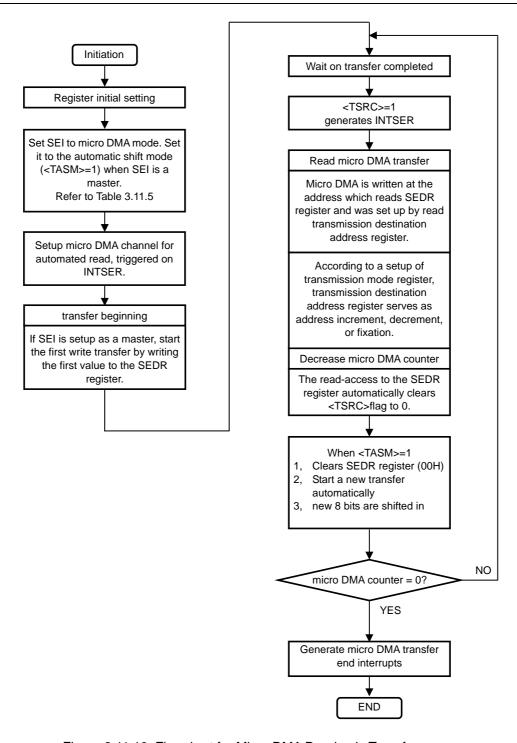


Figure 3.11.10 Flowchart for Micro DMA Read only Transfer

(3) Micro DMA transfer (write only)

This mode is used to transmit a data block. Received data is ignored. Only a single micro DMA channel is used to read data from the memory address specified with the micro DMA transfer source address register and write new data to the SEDR register.

a. Initialization

In this mode, set the <TMSE> bit in the SESR register to 1 to select micro DMA mode. One micro DMA channel is set to transfer transmit data from the memory address specified with the micro DMA transfer source address register to the SEDR register. An INTSET interrupt activates this micro DMA transfer. An INTSER interrupt must be disabled using the interrupt controller. When the SEI is a master, writing data to the SEDR register starts the first transfer. (When the SEI is a slave, it waits until it receives data transmitted from the master.)

Table 3.11.10 SEI setting when micro DMA transfer (write)

<see></see>	<mstr></mstr>	<tasm></tasm>	<tmse></tmse>
1	0: Slave	INTSEE interrupt mask	4
	1: Master	0	1

b. Micro DMA transfer

After starting the first data transfer, micro DMA waits until the data transfer is completed. Upon the completion of data transfer, both <TSRC> and <TSTC> flags in the SESR register are set to 1. Ignore the SESR <TSRC> and SESR <SOVF> flags because reception is not performed. After the first transfer is completed, the SESR <TSRC> flag remains set to 1 unless it is explicitly cleared. The SESR <SOVF> flag, once set, also remains set to 1 unless it is explicitly cleared. An INTSET interrupt pulse caused by the SESR<TSTC> flag being set activates micro DMA transfer.

Micro DMA reads transmit data from the memory address specified with the micro DMA transfer source address register and writes it to the SEDR register. A write to the SEDR register causes the SESR <TSTC> flag to be cleared to 0 and, if the SEI is the master, a new data transfer to start. After each data transfer, the micro DMA transfer count register is decremented. The above processing continues until the micro DMA transfer count register becomes 0. Once the transfer count register becomes 0, a micro DMA transfer completion interrupt occurs.

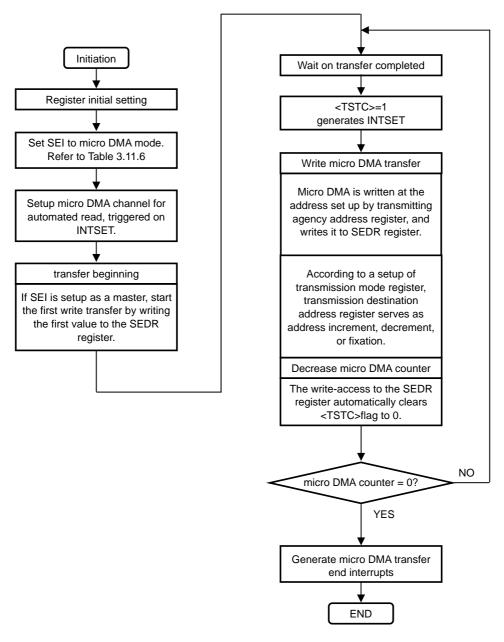


Figure 3.11.11 Flowchart for Micro DMA Write only Transfer

3.12 CAN Controller

- (1) Overview
 - Complies with CAN version 2.0B.
 - Supports the standard and extended formats.
 - Supports data and remote frames in each format.
 - 16 mailboxes (15 shared for transmission and reception, and 1 for reception only)
 - CAN bus baud rate: Up to 1 Mbps (when operating frequency fc = 20 MHz)
 - Programmable baud rate using bit time parameters
 - Built-in baud rate prescaler
 - Two types of internal arbitration to select the order of message transmission:
 - a. Ascending order of mailbox number
 - b. Descending order of ID priority
 - Timestamp for message transmission/reception
 - · Operating modes
 - a. Normal operation mode
 - b. Configuration mode
 - c. Sleep mode (can wake up upon detection of CAN bus active state or upon CPU access)
 - d. Halt mode
 - e. Test loopback mode (stand-alone operation possible with self-acknowledge)
 - f. Test error mode (can write to error counter)
 - Two types of message reception masking
 - a. Programmable global reception mask (common to mailboxes 0 to 14)
 - b. Programmable local reception mask (dedicated to mailbox 15)
 - Reception mask bit for ID extension bit
 - Flexible interrupt structure (three interrupt signals)
 - a. INTCR: Reception completion interrupt
 - b. INTCT: Transmission completion interrupt
 - c. INTCG: Global interrupt (with eight interrupt sources, including warning level, error passive, and bus off)

(2) Legend

- R/W CPU read and write access allowed
- R Only CPU read access allowed
- W Only CPU write access allowed
- R/S CPU read access and setting (by writing a 1) allowed
- R/C CPU read access and clearing (by writing a 1) allowed
- For a mailbox, a dash "\" in the bit symbol field indicates an empty bit. Its state is undefined when read.
- For a mailbox, a dash "-" in the "Upon reset" field indicates that the initial value is undefined.
- For a control register, a dash "\" in the bit symbol field indicates a reserved bit. Its state is undefined when read. When writing to the register, write a 0 to that bit.

(3) Architecture

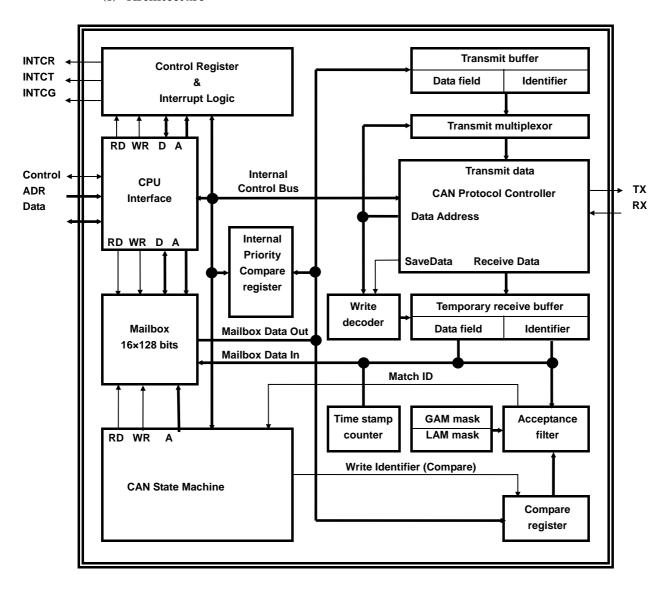


Figure 3.12.1 Block Diagram of CAN Controller

(4) CAN input/output pins

The CAN controller uses RX and TX as its input and output pins, respectively. It should connect to the CAN bus through a CAN transceiver (complying with ISO/DIS 11898).

3.12.1 Memory map

The mailboxes and control registers used for CAN are mapped to the following areas:

Table 3.12.1 CAN Mailboxes and Control Registers

Address	Register	Description
000200H *	MB0MI0	
000202H *	MB0MI1	Mailbox
:	:	Wallbox
0002FEH *	MB15TSV	
000300H	MC	Mailbox Configuration Register
000302H	MD	Mailbox Direction Register
000304H *	TRS	Transmit Request Set Register
000306H *	TRR	Transmit Request Reset Register
000308H *	TA	Transmission Acknowledge Register
00030AH *	AA	Abort Acknowledge Register
00030CH *	RMP	Receive Message Pending Register
00030EH *	RML	Receive Message Lost Register
000310H	LAM0 (high)	Local Acceptance Mask Register 0 (bit 28 to 16)
000312H	LAM1 (low)	Local Acceptance Mask Register 1 (bit 15 to 0)
000314H	GAM0 (high)	Global Acceptance Mask Register 0 (bit 28 to 16)
000316H	GAM1 (low)	Global Acceptance Mask Register 1 (bit 15 to 0)
000318H	MCR	Master Control Register
00031AH	GSR	Global Status Register
00031CH	BCR1	Bit Configuration Register 1
00031EH	BCR2	Bit Configuration Register 2
000320H *	GIF	Global Interrupt Flag Register
000322H	GIM	Global Interrupt Mask Register
000324H *	MBTIF	Mailbox Transmit Interrupt Flag Register
000326H *	MBRIF	Mailbox Receive Interrupt Flag Register
000328H	MBIM	Mailbox Interrupt Mask Register
00032AH	CDR	Change Data Request Register
00032CH *	RFP	Remote Frame Pending Register
00032EH *	CEC	CAN Error Counter Register
000330H	TSP	Time Stamp Counter Prescaler Register
000332H *	TSC	Time Stamp Counter Register

Note: RMW prohibited: A read-modify-write operation should not be used.

3.12.2 Mailboxes

A mailbox consists of registers for storing an ID and transmit/receive data and is accessed from the CAN controller or CPU. The CPU controls the CAN controller by modifying the contents of mailboxes and control registers. The contents of mailboxes and control registers are used for reception filtering, message transmission and interrupt handling.

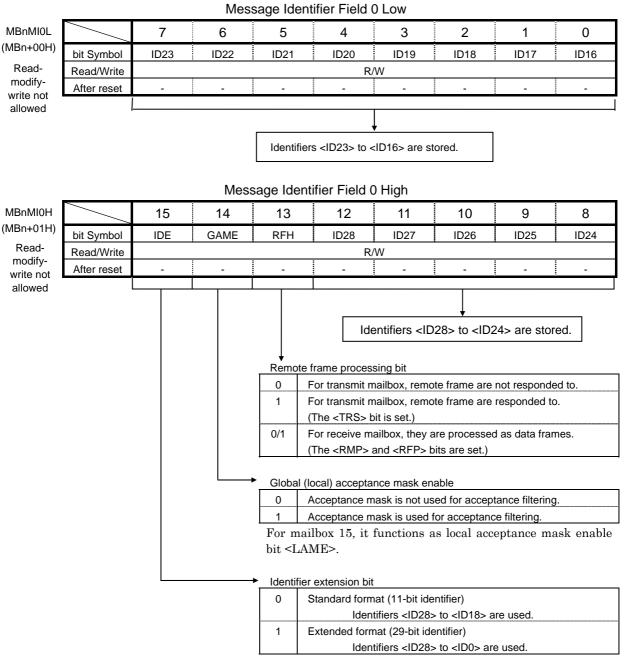
To start transmission, set the corresponding transmission request bit. Subsequently, the CAN controller performs all transmission procedures and error handling, as required, without the intervention of the CPU. If a mailbox is set for reception, the CPU can use a read instruction to read data from the mailbox. A mailbox can also be set to issue an interrupt to the CPU every time a message has been transmitted or received successfully.

There are 16 mailbox, each of which contains 8-byte data, a 29-bit ID and several control bits. Each mailbox can be set for either transmission or reception, except the last one. Mailbox 15 is a receive-only mailbox that has been designed to receive a different group of message IDs using a reception mask different from the one used for mailboxes 0 to 14. A single mailbox consists of 16 bytes.

Address	Mailboxes			
0200H to 020FH	MB0 (Used for transmit/receive)			
0210H to 021FH	MB1 (Used for transmit/receive)			
:	:			
:	:			
02E0H to 02EFH	MB14 (Used for transmit/receive)			
02F0H to 02FFH	MB15 (Used for receive-only)			

Figure 3.12.2 Mailbox Address

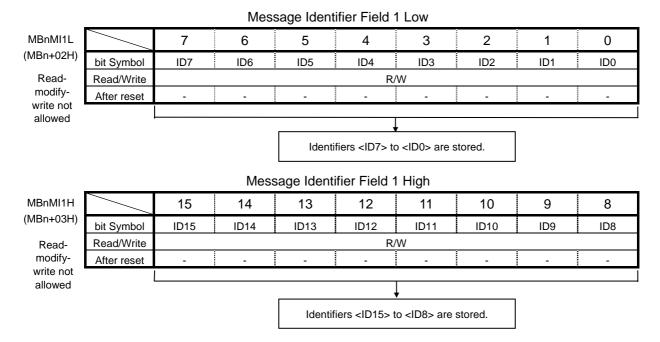
Each mailbox has the following structure:


(Mailbox "n")	b15	b0	_
MBn + 00H	MI	10	(Message identifier field 0)
02H	MI	(Message identifier field 1)	
04H	MC	(Message control field)	
06H	D1	D0	(Data field 0,1)
08H	D3	D2	(Data field 2,3)
0AH	D5	D4	(Data field 4,5)
0CH	D7	D6	(Data field 6,7)
0EH	TS	(Time stamp value)	

Note: $MBn = 0200H + n \times 10H$, n = 0, 1, 2, ..., 15

Figure 3.12.3 Mailbox Structure

The following describes the components of each mailbox.


Message ID field 0 (MI0)

Note: If the received remote frame has the same ID as that of a transmit mailbox for which <RFH>=1 and <GAME>=1, that mailbox is overwritten with the remote frame ID and automatically responds with the overwritten ID.

Figure 3.12.4 Message ID Field 0

Message ID field 1 (MI1)

Note: For standard format (11-bit ID), bits <ID17> to <ID0> are undefined.

Figure 3.12.5 Message ID Field 1

A message ID has a higher priority when it contains a longer sequence of zeros from the most significant bit (<ID28>).

Mailbox IDs should be registered as part of initialization. If the message ID field for the mailbox needs to be modified after the mailbox has been enabled, first clear the MC<MCn> bit to 0 to disable the mailbox for the CAN controller before writing a new ID.

Message control field (MCF)

The MCF register consists of the remote transmission request bit (RTR) and data length code (DLC).

A receive mailbox does not need initialization. When a received message is stored into the mailbox, RTR and DLC are also stored into the control field. A transmit mailbox needs initialization.

If the control field for a transmit mailbox for which <RFH> = 1 needs to be modified after the mailbox has been enabled, first clear the MC<MCn> bit to 0 to disable the mailbox for the CAN controller before writing new RTR and DLC. The control field for a transmit mailbox for which <RFH> = 0 can be modified regardless of the <MCn> setting. It is, however, necessary to ensure that the TRS<TRSn> bit is 0 before writing to new RTR and DLC.

Message Control Field Low

MBnMCFL		7	6	5	4	3	2	1	0
(MBn+04H)	bit Symbol				RTR	DLC3	DLC2	DLC1	DLC0
Read-	Read/Write						R/W		
modify- write not	After reset				-	-	-	-	-
allowed				I					

Remote transmit request bit +

0	Data frame
1	Remote fame

Data length code +

<dlc3:0></dlc3:0>	Data Bytes	Corresponding Mailbox Data			
0000	0 byte	None			
0001	1 byte	D0			
0010	2 bytes	D1, D0			
0011	3 bytes	D2, D0, D0			
0100	4 bytes	D3, D2, D1, D0			
0101	5 bytes	D4, D3, D2, D1, D0			
0110	6 bytes	D5, D4, D3, D2, D1, D0			
0111	7 bytes	D6, D5, D4, D3, D2, D1, D0			
1000	8 bytes	D7, D6, D5, D4, D3, D2, D1, D0			

Note: Any data length code other than the above should not be used.

Message Control Field High

MBnMCFH
(MBn+05H)
Read-
modify-
write not
allowed

	15	14	13	12	11	10	9	8
bit Symbol								
Read/Write								
After reset								

Figure 3.12.6 Message Control Field Register

Data field (D0-D7)

Read/Write

After reset

modify-

write not allowed

This read/write register contains up to eight bytes of data to be transmitted or received. For a receive mailbox, however, the data field should not be written. A write may result in received data being inconsistent.

For transmission, a number of bytes specified with the DLC in the mailbox will be transmitted.

For reception, the data length code in the received message is copied to the DLC in the mailbox and only that number of data bytes are valid.

To update the data field in a transmission mailbox for which <RFH> = 1, first set CDR<CDRn> to 1 to suspend transmission requests before writing new data. To update the data field in a transmission mailbox for which <RFH> = 0, first ensure that TRS<TRSn> bit is 0 before writing new data.

Data Field 0 MBnD0 5 7 6 4 3 2 1 0 (MBn+06H) D05 bit Symbol D07 D06 D04 D03 D02 D01 D00 Read-Read/Write R/W modify-After reset write not allowed Data Field 1 MBnD1 14 9 15 13 12 11 10 8 (MBn+07H) bit Symbol D17 D16 D15 D14 D13 D12 D11 D10 Read-Read/Write R/W modify-After reset write not allowed Data Field 2 MBnD2 7 6 5 4 3 2 1 0 (MBn+08H) bit Symbol D27 D26 D25 D24 D23 D22 D21 D20 Read-Read/Write R/W modify-After reset write not allowed Data Field 3 MBnD3 15 14 13 12 11 10 9 8 (MBn+09H) bit Symbol D37 D36 D35 D34 D33 D32 D31 D30 Read-Read/Write R/W modify-After reset write not allowed Data Field 4 MBnD4 7 6 5 4 3 2 1 0 (MBn+0AH) bit Symbol D47 D46 D45 D44 D43 D42 D41 D40 Read-Read/Write modify-After reset write not allowed Data Field 5 MBnD5 14 15 13 12 11 10 9 8 (MBn+0BH) bit Symbol D57 D56 D55 D54 D53 D52 D51 D50 Read-

R/W

				Data	Field 6				
MBnD6		7	6	5	4	3	2	1	0
(MBn+0CH)	bit Symbol	D67	D66	D65	D64	D63	D62	D61	D60
Read-	Read/Write				R/	W			
modify- write not	After reset	-	-	-	-	-	-	-	-
allowed									
Data Field 7									
MBnD7		15	14	13	12	11	10	9	8
(MBn+0DH) Read-	bit Symbol	D77	D76	D75	D74	D73	D72	D71	D70
	Read/Write		R/W						
modify- write not	After reset	-	-	-	-	-	-	-	-
allowed					•				

Figure 3.12.7 Data Field Register

Timestamp value (TSV)

This 16-bit register is loaded with the value of the timestamp counter when data has been transmitted or received successfully.

It is not loaded if transmission or reception fails.

Time Stamp Value Low

M	Bn'	TS	VL	-
(M	Bn-	+0I	ΞΗ	I)

	7	6	5	4	3	2	1	0
bit Symbol	TSV7	TSV6	TSV5	TSV4	TSV3	TSV2	TSV1	TSV0
Read/Write	R							
After reset	=	-	-	-	-	-	-	-

Time Stamp Value High

MBnTSVH (MBn+0FH)

	15	14	13	12	11	10	9	8
bit Symbol	TSV15	TSV14	TSV13	TSV12	TSV11	TSV10	TSV9	TSV8
Read/Write	R							
After reset	-	-	-	-	-	-	-	-

Figure 3.12.8 Timestamp Value Register

3.12.3 Control registers

(1) Mailbox control registers

Mailbox configuration register (MC)

Mailbox Configuration Register Low

MCL (0300H)

	7	6	5	4	3	2	1	0
bit Symbol	MC7	MC6	MC5	MC4	MC3	MC2	MC1	MC0
Read/Write				R	W			
After reset	0	0	0	0	0	0	0	0

Mailbox Configuration Register High

MCH (0301H)

	15	14	13	12	11	10	9	8
bit Symbol	MC15	MC14	MC13	MC12	MC11	MC10	MC9	MC8
Read/Write				R	W			
After reset	0	0	0	0	0	0	0	0

Figure 3.12.9 Mailbox Configuration Register

Bits 0 to 15 in this register corresponds to mailboxes 0 to 15, respectively.

Each mailbox can be either enabled or disabled.

- 1) When <MCn> = 1, access to mailbox n is enabled for the CAN controller.
- 2) When <MCn> = 0, access to mailbox n is disabled for the CAN controller.

A write of 0 or 1 is immediately reflected in the state of the <MCn> bit.

To change the state of <MCn> from 1 (access enabled) to 0 (access disabled), first ensure that the corresponding TRS<TRSn> bit is 0 before writing a 0 to <MCn>.

The control field in a transmit mailbox for which MBnMI0H <RFH> = 1 and the message ID field can only be written after the <MCn> bit is cleared to 0.

The data and control fields in a transmit mailbox for which $\langle RFH \rangle = 0$ can be written regardless of whether access to the mailbox is enabled or disabled (if $\langle MCn \rangle = 1$, however, it is necessary to ensure that the TRS $\langle TRSn \rangle$ bit is 0 before writing to the register).

If <MCn> is cleared to 0 while the CAN controller is receiving data, it stops receiving that frame immediately. When the CAN controller is transmitting data (TRS<TRSn> = 1), do not clear <MCn> to 0 before the transmission is completed (TRS <TRSn> = 0).

Mailbox direction register (MD)

Mailbox Direction Register Low

MDL (0302H)

	7	6	5	4	3	2	1	0
bit Symbol	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0
Read/Write				R	W			
After reset	0	0	0	0	0	0	0	0

Mailbox Direction Register High

MDH (0303H)

	15	14	13	12	11	10	9	8
bit Symbol	MD15	MD14	MD13	MD12	MD11	MD10	MD9	MD8
Read/Write	R				R/W			
After reset	1	0	0	0	0	0	0	0

Figure 3.12.10 Mailbox Direction Register

Bits 0 to 15 in this register corresponds to mailboxes 0 to 15, respectively. Each mailbox can be specified as either a transmit or receive mailbox.

Setting <MDn> to 0 causes mailbox n to be used as a transmit mailbox.

Setting <MDn> to 1 causes mailbox n to be used as a receive mailbox.

The <MD15> bit is read only and fixed to 0 because mailbox 15 is used only for reception. The MD register should be set as part of initialization. To modify settings in the MD register, first set the corresponding <MCn> bit to 0.

(2) Transmission control registers

When data and an ID have been written to mailbox n which has been set as a transmit mailbox (MD<MDn> = 0) and the access to mailbox n is enabled (MC <MCn> = 1), setting the TRS<TRSn> bit to 1 causes a message in the mailbox to be transmitted. If there is more than one transmit request, messages are transmitted sequentially. The order in which messages are transmitted depends on bit 3 (<MTOS>) in the master control register, MCR.

If the MCR<MTOS> bit is set to 1, a message is transmitted from the mailbox having the ID assigned the highest priority among the mailboxes with transmission requests. After the occurrence of arbitration lost, a message is also transmitted from the mailbox having the ID assigned the highest priority among the mailboxes for which transmission requests are pending at that time.

If the MCR<MTOS> bit is set to 0, mailboxes having smaller mailbox numbers have higher priority. For example, if MB0, MB2 and MB5 are specified as transmit mailboxes with their TRS<TRSn> bits set to 1, messages are transmitted in the following order: MB0, MB2 and MB5. If a new transmit request is set for MB0 while a message from MB2 is being processed, the next internal arbitration process selects MB0 for a next transmit message, and starts transmitting an MB0 message after completing transmission for MB2. This procedure also applies if arbitration lost occurs during message transmission for MB2. A message for MB0 is transmitted in place of that for MB2.

Transmit request set register (TRS)

Transmit Request Set Register Low

TRSL (0304H) Readmodifywrite not allowed

	7	6	5	4	3	2	1	0
bit Symbol	TRS7	TRS6	TRS5	TRS4	TRS3	TRS2	TRS1	TRS0
Read/Write				R	/S			
After reset	0	0	0	0	0	0	0	0

Transmit Request Set Register High

TRSH (0305H) Readmodifywrite not allowed

	15	14	13	12	11	10	9	8
bit Symbol		TRS14	TRS13	TRS12	TRS11	TRS10	TRS9	TRS8
Read/Write					R/S			
After reset		0	0	0	0	0	0	0

Figure 3.12.11 Transmit Request Set Register

Bits 0 to 15 in this register corresponds to mailboxes 0 to 15, respectively. The register does not have bit 15 because mailbox 15 is receive-only.

The TRS<TRSn> bit is cleared to 0 if transmission is successful or if the transmission request is reset by setting the TRR<TRRn> bit to 1. If transmission fails, transmission is retried until if it is successful or if the transmission request is reset by setting the TRR<TRRn> bit to 1. Mailbox n should not be written when the TRS<TRSn> bit is set to 1. If mailbox n is set as a receive mailbox, the CPU cannot set the TRS<TRSn> bit.

If mailbox n is set as a transmit mailbox, the TRS<TRSn> bit is set to 1 when the CPU writes a 1 to it and cleared to 0 by the internal logic. A write of 0 by the CPU is invalid.

Transmit request reset register (TRR)

Transmit Request Reset Register Low

TRRL (0306H) Readmodifywrite not allowed

	7	6	5	4	3	2	1	0
bit Symbol	TRR7	TRR6	TRR5	TRR4	TRR3	TRR2	TRR1	TRR0
Read/Write		R/S						
After reset	0	0	0	0	0	0	0	0

Transmit Request Reset Register High

TRRH (0307H) Readmodifywrite not allowed

	15	14	13	12	11	10	9	8
bit Symbol		TRR14	TRR13	TRR12	TRR11	TRR10	TRR9	TRR8
Read/Write					R/S			
After reset		0	0	0	0	0	0	0

Figure 3.12.12 Transmit Request Reset Register

Bits 0 to 15 in this register corresponds to mailboxes 0 to 15, respectively. The register does not have bit 15 because mailbox 15 is receive-only.

Setting the <TRRn> bit to 1 cancels the transmit request set with the corresponding TRS<TRSn> bit. The operation, however, depends on which of the following three conditions applies:

a. If the transmission of a message has not yet started, the message transmission request is canceled.

(TRS < TRSn > = 0, TRR < TRRn > = 0, and AA < AAn > = 1)

- b. If a message is currently being transmitted and if arbitration lost or an error is detected, the message transmission request is cleared and the transmission is stopped.
 (TRS<TRSn> = 0, TRR<TRRn> = 0, and AA<AAn> = 1)
- c. If a message is currently being transmitted without arbitration lost or an error being detected, the message transmission request is not cleared and the transmission is completed.

(TRS < TRSn > = 0, TRR < TRRn > = 0, and TA < TAn > = 1)

Mailbox n should not be written when the TRR<TRRn> bit is set to 1.

If mailbox n is set as a receive mailbox, the CPU cannot set the TRR<TRRn> bit.

If mailbox n is set as a transmit mailbox, the TRR<TRRn> bit is set to 1 when the CPU writes a 1 to it and cleared to 0 by the internal logic when transmission is either successful or aborted. A write of 0 by the CPU is invalid.

Transmit acknowledge register (TA)

Transmit Acknowledge Register Low

TAL (0308H) Readmodifywrite not allowed

	7	6	5	4	3	2	1	0
bit Symbol	TA7	TA6	TA5	TA4	TA3	TA2	TA1	TA0
Read/Write				R	/C			
After reset	0	0	0	0	0	0	0	0

Transmit Acknowledge Register High

TAH (0309H) Readmodifywrite not allowed

	15	14	13	12	11	10	9	8
bit Symbol		TA14	TA13	TA12	TA11	TA10	TA9	TA8
Read/Write					R/C			
After reset		0	0	0	0	0	0	0

Figure 3.12.13 Transmit Acknowledge Register

Bits 0 to 15 in this register corresponds to mailboxes 0 to 15, respectively. The register does not have bit 15 because mailbox 15 is receive-only.

If a message in mailbox n has been transmitted successfully, the <TAn> bit is set to 1 and a transmission completion interrupt (INTCT) occurs if it is enabled.

The <TAn> bit is cleared to 0 when the CPU writes a 1 to the <TAn> or TRS<TRSn> bit. A write of 0 by the CPU is invalid.

Abort acknowledge register (AA)

Abort Acknowledge Register Low

AAL (030AH) Readmodifywrite not allowed

	7	6	5	4	3	2	1	0	
bit Symbol	AA7	AA6	AA5	AA4	AA3	AA2	AA1	AA0	
Read/Write		R/C							
After reset	0	0	0	0	0	0	0	0	

Abort Acknowledge Register High

AAH (030BH) Readmodifywrite not allowed

	15	14	13	12	11	10	9	8
bit Symbol		AA14	AA13	AA12	AA11	AA10	AA9	AA8
Read/Write					R/C			
After reset		0	0	0	0	0	0	0

Figure 3.12.14 Transmit Acknowledge Register

Bits 0 to 15 in this register corresponds to mailboxes 0 to 15, respectively. The register does not have bit 15 because mailbox 15 is receive-only.

If message transmission for mailbox n has been canceled, the <AAn> bit and the <TRMABF> bit in the global interrupt flag register (GIF) are set to 1. At that time, a global interrupt (transmission abort), INTCG, occurs if a transmission abort interrupt has been enabled by setting the GIM <TRMABM> bit to 1.

The <AAn> bit is cleared to 0 when the CPU writes a 1 to the <AAn> or TRS <TRSn> bit. A write of 0 by the CPU is invalid.

Change data request register (CDR)

Change Data Request Register Low

CDRL (032AH)

	7	6	5	4	3	2	1	0
bit Symbol	CDR7	CDR6	CDR5	CDR4	CDR3	CDR2	CDR1	CDR0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

Change Data Request Register High

CDRH (032BH)

	15	14	13	12	11	10	9	8	
bit Symbol		CDR14	CDR13	CDR12	CDR11	CDR10	CDR9	CDR8	
Read/Write			R/W						
After reset		0	0	0	0	0	0	0	

Figure 3.12.15 Change Data Request Register

Bits 0 to 15 in this register corresponds to mailboxes 0 to 15, respectively. The register does not have bit 15 because mailbox 15 is receive-only.

A transmission request for mailbox n is ignored if the <CDRn> bit is set to 1. In other words, if the TRS<TRSn> and <CDRn> bits are set to 1 for mailbox n, a transmission request for the mailbox is temporarily held and a message is not transmitted unless transmission has already been started. Once the <CDRn> bit is cleared, mailbox n is again subject to internal arbitration.

The function of the <CDRn> bit is valid when updating data fields in a transmission mailbox for which automatic response to a remote frame is enabled (MBnMI0H<RFH> = 1). Using the automatic response function may result in a data field being updated during transmission because data transmission is started in response to a remote frame (in that case, updated data is output from an intermediate point during transmission). To prevent such an update to a data field, the <CDRn> bit can be set to 1 to temporarily hold data transmission.

(3) Reception control registers

The ID of a received message is compared with the ID of a mailbox specified as a receive mailbox. The comparison of IDs depends on the values of the global/local receive mask enable bits (MBnMI0H<GAME>/<LAME>) in the mailbox and the data stored in the global/local receive mask registers (GAM/LAM).

If a match is detected, the received ID, control bits and data bytes are written to the matched mailbox. At this time, the corresponding received message pending bit (RMP<RMPn>) is set to 1 and a reception completion interrupt (INTCR) occurs if it is enabled. Once a match is detected, IDs are not compared subsequently.

If a match is not detected, the message is rejected with the mailbox left intact.

Receive-only mailbox

If the ID of the received message does not match any of the IDs of mailboxes 0 to 14, it is then compared with the ID of receive-only mailbox 15. If a match is detected, the contents of the received message are stored into mailbox 15.

Received message pending register (RMP)

Received Message Pending Register Low

RMPL
(030CH)
Read-
modify-
write not
allowed

	7	6	5	4	3	2	1	0	
bit Symbol	RMP7	RMP6	RMP5	RMP4	RMP3	RMP2	RMP1	RMP0	
Read/Write		R/C							
After reset	0	0	0	0	0	0	0	0	

Received Message Pending Register High

RMPH
(030DH)
Read-
modify-
write no
allowed

	15	14	13	12	11	10	9	8	
bit Symbol	RMP15	RMP14	RMP13	RMP12	RMP11	RMP10	RMP9	RMP8	
Read/Write		R/C							
After reset	0	0	0	0	0	0	0	0	

Figure 3.12.16 Received Message Pending Register

Bits 0 to 15 in this register corresponds to mailboxes 0 to 15, respectively.

The <RMPn> bit is set to 1 once a message has been received and its contents stored in mailbox n.

After reading the received data, write a 1 to the RMP<RMPn> bit to clear the bit. If the mailbox receives a next message with the RMP<RMPn> bit still set to 1, the corresponding <RMLn> bit in the received message lost register (RML) is set to 1. In such a case, the data stored in mailbox n is overwritten with new data. A global interrupt (received message lost), INTCG, also occurs if a received message lost interrupt has been enabled by setting the GIM <RMLIF> bit to 1.

The <RMPn> bit is set to 1 by the internal logic and cleared to 0 when the CPU writes a 1 to the <RMPn> bit. A write of 0 to the <RMPn> bit by the CPU is invalid.

Received message lost register (RML)

Received Message Lost Register Low

RMLL (030EH)

	7	6	5	4	3	2	1	0
bit Symbol	RML7	RML6	RML5	RML4	RML3	RML2	RML1	RML0
Read/Write	R							
After reset	0	0	0	0	0	0	0	0

Received Message Lost Register High

RMLH (030FH)

	15	14	13	12	11	10	9	8	
bit Symbol	RML15	RML14	RML13	RML12	RML11	RML10	RML9	RML8	
Read/Write		R							
After reset	0	0	0	0	0	0	0	0	

Figure 3.12.17 Received Message Lost Register

Bits 0 to 15 in this register corresponds to mailboxes 0 to 15, respectively.

If a mailbox for which the RMP<RMPn> bit is set to 1 receives a next message, the mailbox is overwritten with the new data and the <RMLn> bit set to 1.

The <RMLn> bit is set to 1 by the internal logic. It is cleared to 0 by the internal logic when the CPU writes a 1 to the RMP<RMPn> bit. A write of 1 or 0 to the <RMLn> bit by the CPU is invalid.

Table 3.12.2 Operation when Message is Received

ID	Before	Af	ter	Operation			
ID	<rmp></rmp>	<rmp></rmp>	<rml></rml>	Operation			
Unmatched	Don't care	No change	No change	The data in receive buffer hasn't been transferred to any mailbox.			
Matchaul	0	1	No change	The data in receive buffer is transferred to a mailbox which matched the identifier of incoming message. (Old data in the mailbox was read out, and cleared <rmp> to 0. Then, the mailbox is written with new data; RECEIVE MESSAGE PENDING BIT is set.)</rmp>			
Matched	1	1	1	The data in receive buffer is transferred to a mailbox which matched the identifier of incoming message (Old data is in the mailbox. Then, the mailbox is overwritten with new data; RECEIVE MESSAGE LOST BIT and RECEIVE MESSAGE PENDING BIT are set).			

(4) Remote frame control registers

When a remote frame is received, it is compared with the IDs of all mailboxes. The comparison of IDs depends on the values of the global/local receive mask enable bits (MBnMI0L <GAME>/<LAME>) in the mailbox and the data stored in the global/local receive mask registers (GAM/LAM).

If it matches the ID of transmit mailbox n for which the MBnMI0H<RFH> bit is set to 1, the TRS<TRSn> bit is set to 1 to transmit a message in response to the remote message. A transmit mailbox with the MBnMI0H<RFH> bit set to 0 does not response to the remote frame even if it has the matched ID.

If the ID matches that of a receive mailbox, the remote frame is handled as a data frame and the RMP<RMPn> and RFP<RFPn> bits are set to 1.

Once a match is detected, subsequent IDs are not compared.

ID	Mailbox	<rfh> bit</rfh>	Handling of Remote Frame
Matched	Transmit	0	Not responded to.
		1	Responded to. (<trs> bit is set) *Note</trs>
	Receive	1/0	Not responded to. Processed as data frame. (<rmp> and <rfp> bits are set.)</rfp></rmp>
Unmatched	Transmit/Receive	1/0	Not responded to.

Table 3.12.3 Operation when Remote Frame is Received

Note: If the ID matches that of a mailbox with MBnMI0L<GAME>=1, the ID of the mailbox is overwritten with the remote frame ID and automatic response is performed with that ID. Therefore, a response may be made to more than one ID for a single mailbox.

Remote frame pending register (RFP)

Remote Frame Pending Register Low

RFPL (032CH)

	7	6	5	4	3	2	1	0
bit Symbol	RFP7	RFP6	RFP5	RFP4	RFP3	RFP2	RFP1	RFP0
Read/Write		R						
After reset	0	0	0	0	0	0	0	0

Remote Frame Pending Register High

RFPH (032DH)

	15	14	13	12	11	10	9	8
bit Symbol	RFP15	RFP14	RFP13	RFP12	RFP11	RFP10	RFP9	RFP8
Read/Write		R						
After reset	0	0	0	0	0	0	0	0

Figure 3.12.18 Remote Frame Control Register

If mailbox n that is set as a receive mailbox receives a remote frame, the <RFPn> and RMP<RMPn> bits are set to 1. The <RFPn> bit is cleared to 0 when the CPU writes a 1 to the <RMPn> bit. A write of 0 is invalid. The <RFPn> bit is also cleared to 0 if mailbox n that has received a remote frame receives a data frame and is overwritten.

(5) Receive filter registers

The global receive mask registers, GAM0 and GAM1, are used to filter messages when the MBnMI0H <GAME> bit is set to 1 for mailboxes 0 to 14. The received message is stored into the first mailbox with its ID matched. Only if the ID does not match any of mailboxes 0 to 14, the received message is compared with receive-only mailbox 15. The local receive mask registers, LAM0 and LAM1, are used to filter messages when the MBnMI0H <LAME> bit is set to 1 for mailbox 15.

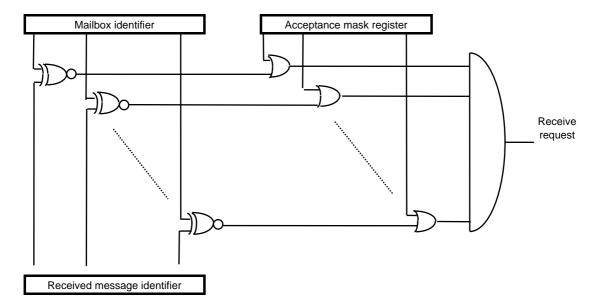


Figure 3.12.19 Acceptance Filter

Local receive mask registers (LAM0 and LAM1)

Local Receive Mask Register 0 Low

LAM0L (0310H)

	7	6	5	4	3	2	1	0
bit Symbol	LAM23	LAM22	LAM21	LAM20	LAM19	LAM18	LAM17	LAM16
Read/Write				R	W			
After reset	0	0	0	0	0	0	0	0

Local Receive Mask Register 0 High

LAM0H (0311H)

	15	14	13	12	11	10	9	8
bit Symbol	LAMI			LAM28	LAM27	LAM26	LAM25	LAM24
Read/Write	R/W					R/W		
After reset	0			0	0	0	0	0

Local Receive Mask Register 1 Low

LAM1L (0312H)

	7	6	5	4	3	2	1	0
bit Symbol	LAM7	LAM6	LAM5	LAM4	LAM3	LAM2	LAM1	LAM0
Read/Write				R	W			
After reset	0	0	0	0	0	0	0	0

Local Receive Mask Register 1 High

LAM1H (0313H)

	15	14	13	12	11	10	9	8
bit Symbol	LAM15	LAM14	LAM13	LAM12	LAM11	LAM10	LAM9	LAM8
Read/Write				R	W			
After reset	0	0	0	0	0	0	0	0

Figure 3.12.20 Local Receive Mask Register

The LAM0 and LAM1 registers are only used to filter messages for mailbox 15. These registers allow the user to locally mask any ID bits of a received message for mailbox 15. A received message is first checked with mailboxes 0 to 14 for a match before compared with mailbox 15.

If the <LAMn> bit is set to 0, a message is received only when the corresponding bit of the received message ID matches the corresponding bit of the mailbox ID. If the <LAMn> bit is set to 1, a message is received regardless of whether the corresponding bit of the received message ID is 0 or 1. The GAM0 and GAM1 register do not affect mailbox 15.

For the extended format, the MBnMI0H <IDE> bit and all 29 bits of the ID are compared. For the standard format, the MBnMI0H <IDE> bit and the first 11 bits of the ID (<ID28> to <ID18>) are compared.

The <LAMI> bit (local receive mask ID extension bit) is a mask bit for the MB15MI0H <IDE> bit for mailbox 15.

If the <LAMI> bit is set to 0, messages in either the standard or extended format is received depending on the MB15MI0H <IDE> bit for mailbox 15.

If the <LAMI> bit is set to 1, messages in the standard and extended formats are received regardless of the value of the MB15MI0H <IDE> bit for mailbox 15. For messages in the extended format, all 29 bits of the mailbox ID and all 29 mask bits in the LAM register are used for filtering. For messages in the standard format, only the first 11 bits of the mailbox ID (<ID28> to <ID18>) and the first 11 bits in the LAM register (<LAM28> to <LAM18>) are used.

The LAM0 and LAM1 registers can only be set during initialization and should not be modified during operation. If their settings are modified during reception, modified receive mask information becomes valid for message ID comparison halfway through the reception.

Global receive mask registers (GAM0 and GAM1)

Global Receive Mask Register 0 Low

GAM0L (0314H)

	7	6	5	4	3	2	1	0
bit Symbol	GAM23	GAM22	GAM21	GAM20	GAM19	GAM18	GAM17	GAM16
Read/Write				R/	W			
After reset	0	0	0	0	0	0	0	0

Global Receive Mask Register 0 High

GAM0H (0315H)

	15	14	13	12	11	10	9	8
bit Symbol	GAMI			GAM28	GAM27	GAM26	GAM25	GAM24
Read/Write	R/W					R/W		
After reset	0			0	0	0	0	0

Global Receive Mask Register 1 Low

GAM1L (0316H)

	7	6	5	4	3	2	1	0
bit Symbol	GAM7	GAM6	GAM5	GAM4	GAM3	GAM2	GAM1	GAM0
Read/Write				R	W			
After reset	0	0	0	0	0	0	0	0

Global Receive Mask Register 1 High

GAM1H (0317H)

	15	14	13	12	11	10	9	8
bit Symbol	GAM15	GAM14	GAM13	GAM12	GAM11	GAM10	GAM9	GAM8
Read/Write				R/	W			
After reset	0	0	0	0	0	0	0	0

Figure 3.12.21 Global Receive Mask Register

The GAM0 and GAM1 registers are used to filter messages for mailboxes 0 to 14.

The GAM0 and GAM1 registers are used for received messages when the MBnMI0H <GAME> bit is set to 1 for mailboxes 0 to 14. The received message is stored only into the first mailbox with its ID matched.

If the MBnMI0H <GAMn> bit is set to 0, a message is received only when the corresponding bit of the received message ID matches the corresponding bit of the mailbox ID. If the MBnMI0H <GAMn> bit is set to 1, a message is received regardless of whether the corresponding bit of the received message ID is 0 or 1.

For the extended format, the MBnMI0H <IDE> bit and all 29 bits of the ID are compared. For the standard format, the MBnMI0H <IDE> bit and the first 11 bits of the ID (<ID28> to <ID18>) are compared.

The <GAMI> bit (global receive mask ID extension bit) is a mask bit for the MBnMI0H <IDE> bit for mailboxes 0 to 14.

If the <GAMI> bit is set to 0, messages in either the standard or extended format is received depending on the MBnMI0H <IDE> bit for mailboxes 0 to 14.

If the <GAMI> bit is set to 1, messages in the standard and extended formats are received regardless of the value of the MBnMI0H <IDE> bit for mailboxes 0 to 14. For

messages in the extended format, all 29 bits of the mailbox ID and all 29 mask bits in the GAM register are used for filtering. For messages in the standard format, only the first 11 bits of the mailbox ID (<ID28> to <ID18>) and the first 11 bits in the GAM register (<GAM28> to <GAM18>) are used.

The GAM0 and GAM1 registers can only be set during initialization and should not be modified during operation. If their settings are modified during reception, modified receive mask information becomes valid for message ID comparison halfway through the reception.

(6) Control registers

Master control register (MCR)

Master Control Register Low

MCRL (0318H)

	7	6	5	4	3	2	1	0
bit Symbol	CCR	SMR	HMR	WUBA	MTOS		TSCC	SRES
Read/Write			R/W				V	V
After reset	1	0	0	0	0		0	0

Master Control Register High

MCRH (0319H)

	15	14	13	12	11	10	9	8
bit Symbol							TSTLB	TSTERR
Read/Write							R/	W
After reset							0	0

Figure 3.12.22 Master Control Register

TSTLB: Test loopback

- 0: Cancels test loopback mode. (Normal operation)
- 1: Requests test loopback mode.

This mode supports stand-alone operation.

TSTERR: Test error

- 0: Cancels test error mode. (Normal operation)
- 1: Requests test error mode.

This mode enables a write to the error counter register (CEC).

CCR: Change configuration request

- 0: Cancels configuration mode. (Normal operation)
- 1: Requests configuration mode.

This mode enables a write to the bit configuration registers (BCR1 and BCR2).

SMR: Sleep mode request

- 0: Releases sleep mode. (Normal operation)
- Requests sleep mode.
 In this mode, the CAN controller clock is stopped and the error counter and transmit requests are reset.

HMR: Halt mode request

- 0: Releases halt mode. (Normal operation)
- 1: Requests halt mode.

In this mode, the CAN controller does not transmit or receive messages. It only transmits error flags and acknowledge flags.

WUBA: Wakeup on bus activity

0: Wakes up only with write access to the MCR register.

1: Wakes up either upon the detection of a bus active state or with write access to the MCR register.

MTOS: Mailbox transmission order select

0: Transmits messages in ascending order of the mailbox number.

1: Transmits messages in the order of the message ID priority.

TSCC: Timestamp counter clear

0: Invalid

1: Clears the timestamp counter to 0.

Note 1: This bit is write-only. When read, it always returns 0.

Note 2: The timestamp counter is also cleared with a write to the TSP register or a write of 0 to the timestamp counter (TSC).

SRES: Software reset

0: Invalid

1: Applies a software reset to the CAN controller. It initializes all the registers.

Note 1: This bit is write-only. When read, it always returns 0.

Bit configuration register 1 (BCR1)

Bit Configuration Register 1 Low

BCR1L	
031CH)	

	7	6	5	4	3	2	1	0
bit Symbol	BRP7	BRP6	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0
Read/Write				R/	W			
After reset	0	0	0	0	0	0	0	0

<BRP7:0> specify the value of the baud rate prescaler. A value of 0 to 255 can be set.

Bit Configuration Register 1 High

BCR1H (031DH)

	15	14	13	12	11	10	9	8
bit Symbol								
Read/Write								
After reset								

Figure 3.12.23 Bit Configuration Register 1

Bit configuration register 2 (BCR2)

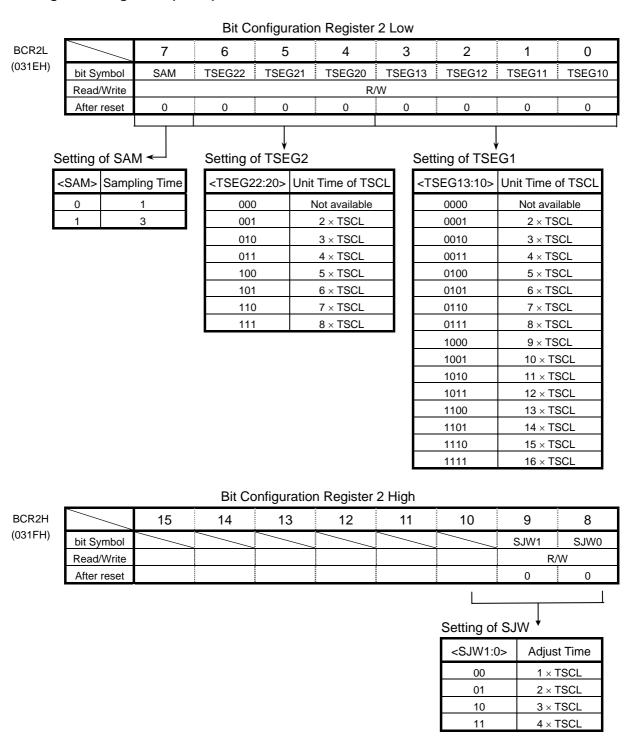


Figure 3.12.24 Bit Configuration Register 2

The bit length is determined from the parameters in BCR2L<TSEG1n>, <TSEG2n>, and BCR1L<BRPn>. All CAN controllers on the CAN bus must operate at the same baud rate. If the operating frequency differs between CAN controllers, adjust the baud rate using the above parameters. The bit timing circuit provides requested bit timings by converting parameters appropriately. The BCR1 and BCR2 registers contain data related to bit timings.

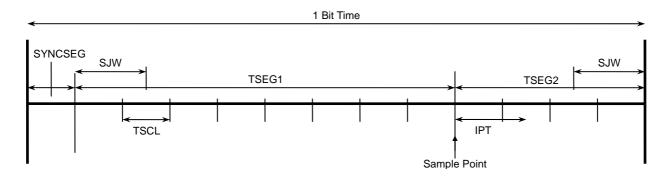


Figure 3.12.25 Bit Timing

The value of TSCL is obtained from the following expression:

$$TSCL = (+ 1)/f_{IO}$$

(where fIO is a clock obtained by halving an external clock.)

fIO is the input clock for the CAN controller.

The single-bit length is determined from the following expression:

The single-bit length should be set so that it is greater than or equal to 10/f_{IO}.

The length of the synchronization segment (SYNCSEG) is always $1 \times TSCL$.

For TSEG1, specify a value of TSEG2 or greater.

$$TSEG1 \ge TSEG2$$

The baud rate is obtained from the following expression:

Baud rate =
$$f_{IO} \div [(\langle BRP7:0 \rangle + 1) \times ((\langle TSEG13:10 \rangle + 1) + (\langle TSEG22:20 \rangle + 1) + 1)]$$

IPT (information processing time) is a time segment starting from the sample point and represents the time required to process a bit read.

$$IPT = 3 / f_{IO}$$

SJW indicates the TSCL time by which the bit length can be increased or reduced during resynchronization. Timing is always synchronized on the rising edge of a signal on the bus. For SJW, specify a value of TSEG2 or less.

$$SJW \leq TSEG2$$

Setting the <SAM> bit enables multisampling on the bus according to the bit timing. The level is determined based on majority rule from three sampled values. If <BRP7:0> < 4, three samples cannot be used.

If $\langle BRP7:0 \rangle < 4$, only a single sampling is performed regardless of the $\langle SAM \rangle$ bit setting.

The following restrictions are imposed on the baud rate prescaler:

Table 3.12.4 Baud Rate Prescaler

<brp7:0></brp7:0>	TSCL length (CAN clock cycles : f _{IO})	IPT length (CAN clock cycles : f _{IO})	TSEG2 minimum length (TSCL)
0	1	3	3
1	2	3	2
> 1	<brp7:0>+1</brp7:0>	3	2

Example 1: Setting a baud rate of 1 Mbps (1-bit length = $1 \mu s$)

CAN clock frequency: f_{IO} = 10 MHz

Baud rate prescaler: BCR1L<BRP7:0> = 00H

Since TSCL = 0.1 μ s, the single-bit length for data transmission should be programmed with 10 \times TSCL. The following shows example parameter settings for that purpose. Program TSEG1 + TSEG2 = 9 \times TSCL because SYNCSEG = 1 \times TSCL.

 $BCR2L < TSEG13:10 > = 0100B (5 \times TSCL)$

 $BCR2L < TSEG22:20 > = 011B (4 \times TSCL)$

Multisampling on the bus cannot be used because $\langle BRP7:0 \rangle = 00H$, which is less than 4. Therefore, set the $\langle SAM \rangle$ bit to 0.

SJW cannot be set to a value greater than TSEG2. In this case, however, SJW can be set to the maximum value.

 $BCR2H < SJW1:0 > = 11B (4 \times TSCL)$

Example 2: Setting a baud rate of 500 kbps (1-bit length = $2 \mu s$)

Sample point: 80%

CAN clock frequency: fio = 10 MHz

(a) When BCR1L < BRP7:0 > = 00H

$$TSCL = (\langle BRP7:0 \rangle + 1) / f_{IO} = 1 / 10 \text{ MHz} = 0.1 \text{ } \mu\text{s}$$

Therefore, the single-bit length for data transmission should be programmed with $20 \times TSCL$. To set the sample point to 80%:

$$TSEG2 = (20 \times TSCL) \times 0.2 = 4 \times TSCL$$

Therefore, the BCR2L register bits are set as follows:

 $BCR2L < TSEG13:10 > = 1110B (15 \times TSCL)$

 $BCR2L < TSEG22:20 > = 011B (4 \times TSCL)$

(b) When BCR1L<BRP7:0> = 01H

$$TSCL = (\langle BRP7:0 \rangle + 1) / f_{IO} = 2 / 10 \text{ MHz} = 0.2 \text{ } \mu\text{s}$$

Therefore, the single-bit length for data transmission should be programmed with $10 \times TSCL$. To set the sample point to 80%:

$$TSEG2 = (10 \times TSCL) \times 0.2 = 2 \times TSCL$$

Therefore, the BCR2L register bits are set as follows:

 $BCR2L < TSEG13:10 > = 0110B (7 \times TSCL)$

 $BCR2L < TSEG22:20 > = 001B (2 \times TSCL)$

Example 3: Setting a baud rate of 500 kbps (1-bit length = $2 \mu s$)

Sample point: 85%

CAN clock frequency: fIO = 10 MHz

(a) When BCR1L<BRP7:0> = 00H

$$TSCL = (\langle BRP7:0 \rangle + 1) / f_{IO} = 1 / 10 \text{ MHz} = 0.1 \text{ } \mu\text{s}$$

Therefore, the single-bit length for data transmission should be programmed with 20 \times TSCL. To set the sample point to 85%:

$$TSEG2 = (20 \times TSCL) \times 0.15 = 3 \times TSCL$$

Therefore, the BCR2L register bits are set as follows:

 $BCR2L < TSEG13:10 > = 1111B (16 \times TSCL)$

 $BCR2L < TSEG22:20 > = 010B (3 \times TSCL)$

Timestamp function

The CAN controller has a 16-bit free-running timestamp counter, TSC, to determine the time at which a message was transmitted or received. Upon the completion of storing a received message or transmitting a message, the value of the TSC is written to the timestamp value, TSV, for the corresponding mailbox.

The bit clock on the CAN bus line is supplied through the prescaler to the TSC. The TSC is stopped in configuration mode or sleep mode. Upon reset, the TSC is cleared to 0 by a write to the timestamp counter prescaler register, TSP. The CPU can read and write to the TSC in configuration mode or normal operation mode.

Timestamp counter register (TSC)

Time Stamp Counter Register Low

TSCL
(0332H)
Read- modify-
write not allowed

	7	6	5	4	3	2	1	0
bit Symbol	TSC7	TSC6	TSC5	TSC4	TSC3	TSC2	TSC1	TSC0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

Time Stamp Counter Register High

ISCH
(0333H)
Poad-

Readmodifywrite not allowed

	15	14	13	12	11	10	9	8
bit Symbol	TSC15	TSC14	TSC13	TSC12	TSC11	TSC10	TSC9	TSC8
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

Figure 3.12.26 Timestamp Counter Register

A TSC overflow can be detected using the <TSO> flag in the GSR register and the <TSOIF> flag in the GIF register. Both flags are cleared to 0 by a write of a 1 to the <TSOIF> flag in the GIF register.

A 4-bit prescaler is provided for the TSC. The value to be reloaded to the prescaler is specified with the timestamp counter prescaler register, TSP. Upon a reset, the TSP is cleared to 0 and the prescaler is also loaded with 0. The following shows the count-up period, TTSC, for the TSC:

 $TTSC = TBIT \times (\langle TSP3:0 \rangle + 1)$ (where TBIT is a bit period)

Timestamp counter prescaler register (TSP)

TSPL

Time Stamp Counter Prescaler Register Low 7 6 5 3 2 1 0 (0330H)bit Symbol TSP3 TSP2 TSP1 TSP0 Read/Write R/W After reset 0

Time Stamp Counter Prescaler Register High **TSPH** 15 12 10 9 13 8 (0331H)bit Symbol Read/Write After reset

Figure 3.12.27 Timestamp Counter Register

A hold register is implemented to prevent the value of the TSC from varying during a mailbox write cycle. When a message has been transmitted or received successfully, the value of the TSC is copied to the hold register, from which it is written to the mailbox. Reception is successful for the receiver if the message does not contain an error except for the last end-of-frame bit. Transmission is successful for the transmitter if the message does not contain an error including the last end-of-frame bit.

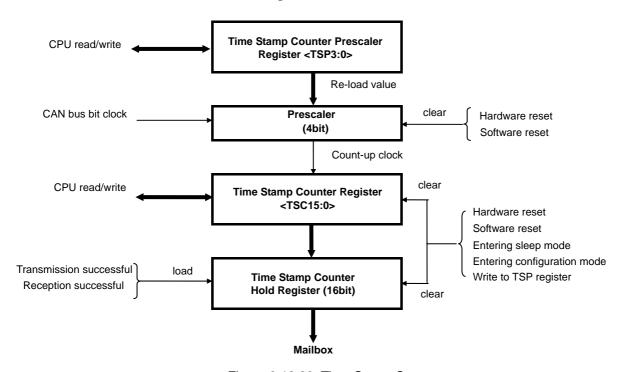


Figure 3.12.28 Time Stamp Counter

The timestamp counter register (TSC) and timestamp hold register are cleared under the following conditions:

- Upon a reset (hardware/software)
- When the device enters configuration mode
- When the device enters sleep mode
- When write access is performed to the TSP register

(7) Status registers

Global status register (GSR)

Global Status Register Low

GSRL (031AH)

	7	6	5	4	3	2	1	0
bit Symbol	CCE	SMA	HMA		TSO	во	EP	EW
Read/Write		R				I	3	
After reset	1	0	0		0	0	0	0

Global Status Register High

GSRH (031BH)

	15	14	13	12	11	10	9	8
bit Symbol		MsglnS	lot<3:0>		RM	TM		
Read/Write		R						
After reset	1	1	1	1	0	0		

Figure 3.12.29 Global Status Register

If mailbox n that is set as a receive mailbox receives a remote frame, the <RFPn> and RMP<RMPn> bits are set to 1. The <RFPn> bit is cleared to 0 when the CPU writes a 1 to the <RMPn> bit. A write of 0 is invalid. The <RFPn> bit is also cleared to 0 if mailbox n that has received a remote frame receives a data frame and is overwritten.

MsgInSlot: Message in slot

Indicates the message contained in the transmit buffer.

0000: Message from mailbox 0 0001: Message from mailbox 1

1110: Message from mailbox 14

1111: No message contained in the transmit buffer

RM: Receive mode

0: The CAN controller is not receiving a message.

1: The CAN controller is receiving a message.

TM: Transmit mode

0: The CAN controller is not transmitting a message.

1: The CAN controller is transmitting a message.

CCE: Change configuration enable

0: The CAN controller is not placed in configuration mode. (Normal operation)

1: The CAN controller is placed in configuration mode.

SMA: Sleep mode acknowledge

0: The CAN controller is not placed in sleep mode. (Normal operation)

1: The CAN controller is placed in sleep mode.

HMA: Halt mode acknowledge

0: The CAN controller is not placed in halt mode. (Normal operation)

1: The CAN controller is placed in halt mode.

TSO: Timestamp overflow flag

- 0: The timestamp counter has not overflowed.
- 1: The timestamp counter has overflowed at least once after this bit was cleared to 0. To clear the bit to 0, clear the <TSOIF> bit in the GIF register to 0.

BO: Bus-off status

- 0: Bus-on state (Normal operation)
- 1: Bus-off state

The CAN controller enters the bus-off state if the transmit error counter (TEC) reaches a limit of 256 due to abnormally frequent occurrence of errors on the CAN bus. In the bus-off state, messages cannot be transmitted or received. The error counter is undefined in that state. A bus-off recovery sequence causes the CAN controller to enter the bus-on state automatically.

EP: Error passive status

- 0: The CAN controller is placed in error active mode.

 The values of the transmit error counter (TEC) and receive error counter (REC) are both less than 128
- 1: The CAN controller is placed in error passive mode.
 It indicates that either or both of the transmit error counter (TEC) and receive error counter (REC) have reached 128, which indicates the error passive limit.

EW: Warning status

- 0: The values of the transmit error counter (TEC) and receive error counter (REC) are both less than or equal to 96.
- 1: It indicates that either or both of the transmit error counter (TEC) and receive error counter (REC) have exceeded 96, which indicates a warning level.

CAN error counter register (CEC)

CAN Error Counter Register Low

CECL
(032EH)
Read-
modify-
write not
allowed

	7	6	5	4	3	2	1	0
bit Symbol	REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

CAN Error Counter Register High

CECH (032FH) Readmodifywrite not allowed

	15	14	13	12	11	10	9	8
bit Symbol	TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0
Read/Write	R/W							
After reset	0	0	0	0	0	0	0	0

Figure 3.12.30 CAN Error Counter Register

The CAN controller has two error counters, the receive error counter (REC) and transmit error counter (TEC). The CPU can read the values of both error counters. Error counters can only be written in test error mode (when the <TSTERR> bit in the MCR register is set to 1). When writing to the CEC register, writing a value to the lower eight bits (CECL) causes the same value to be also written to the upper eight bits (CECH). A write to the upper eight bits (CECH) is invalid. Error counters are incremented or decremented according to CAN version 2.0B.

The CAN controller is placed in one of the following three states depending on the values of REC and TEC:

(1) Error active status (if TEC < 128 and REC < 128)

The CAN controller enters this state upon a reset release. In this state, it transmits an active error flag if it detects an error.

(2) Error passive status (if TEC \geq 128 or REC = 128)

In this state, the CAN controller transmits a passive error flag if it detects an error.

(3) Bus-off state (if TEC \geq 256)

In this state, the CAN controller cannot transmit or receive messages.

The value of REC does not exceed the error passive limit (128). When REC = 128, a successful reception of another message causes the REC to be set back to a value of between 119 and 127. When the CAN controller enters the bus-off state, both of the count values become undefined.

Once placed in the bus-off state, the CAN controller automatically returns to the error active state if it detects a sequence of eleven recessive bits 128 times.

Both error counters are cleared to 0 when the CAN controller enters configuration mode. For details, see "3.12.4(1) Configuration mode."

(8) Interrupt control registers

The CAN controller supports the following interrupt sources:

• Transmit interrupt

Occurs upon the completion of message transmission.

• Receive interrupt

Occurs upon the completion of message reception.

• Remote frame receive interrupt

Occurs when a remote frame is received.

Wakeup interrupt

Occurs upon a wakeup from sleep mode.

Received message lost interrupt

Occurs upon the detection of received message lost.

• Transmission abort interrupt

Occurs when message transmission is aborted (when a bit in the AA register is set to 1).

• Timestamp counter overflow interrupt

Occurs when the timestamp counter overflows.

• Bus-off interrupt

Occurs when the CAN controller enters the bus-off state.

Error passive interrupt

Occurs when the CAN controller enters the error passive state.

• Warning interrupt

Occurs when either of the two error counters has exceeded 96, reaching a warning level.

These interrupt sources are classified into the following three groups:

- Reception completion interrupt (INTCR)
 Transmission completion interrupt (INTCT)

 Mailbox interrupts
- Global interrupt (INTCG)

Each interrupt group has a single interrupt output signal assigned. An INTCR interrupt occurs upon the completion of reception. An INTCT interrupt occurs upon the completion of transmission. An INTCG interrupt occurs for any other reasons.

Global interrupt

Global interrupt, INTCG is provided by any interrupt reasons except a mailbox transmission completion and a mailbox reception completion. The global interrupt flag register, GIF, is provided for global interrupt. The global interrupt mask register, GIM, is also provided to enable or disable global interrupt.

Global interrupt flag register (GIF)

Global Interrupt Flag Register Low

GIFL
(0320H)
Read-
modify-
write not
allowed

	7	6	5	4	3	2	1	0
bit Symbol	RFPF	WUIF	RMLIF	TRMABF	TSOIF	BOIF	EPIF	WLIF
Read/Write		R/C						
After reset	0	0	0	0	0	0	0	0

Global Interrupt Flag Register High

GIFH
(0321H)
Read-
modify-
write not
allowed

	15	14	13	12	11	10	9	8
bit Symbol								
Read/Write								
After reset								

Figure 3.12.31 Global Interrupt Flag Register

Each interrupt flag in the global interrupt flag register (GIF) is set if the corresponding global interrupt condition is satisfied. A global interrupt flag being set to 1 causes a global interrupt pulse, INTCG, to be generated if the corresponding bit in the interrupt mask register (GIM) is set to 1 (interrupt enabled). If the interrupt condition for the same source is satisfied subsequently, a global interrupt pulse (INTCG) is not generated as long as the interrupt flag in the GIF register is set to 1.

When global interrupt flag is cleared to 0, if another flag has been set to 1, new global interrupt pulse (INTCG) is generated.

Each interrupt flag in the GIF register which is set to 1 is cleared to 0 when the CPU writes a 1 to the flag. A write of 0 is invalid.

RFPF: Remote frame pending flag

- 0: A remote frame has not been received.
- 1: A remote frame has been received (to a receive mailbox).

 The <RFPF> bit is not, however, set to 1 if the ID matches that of a transmit mailbox for which the <RFH> bit is set to 1.

WUIF: Wakeup interrupt flag

- 0: The CAN controller is placed in either sleep mode or normal operation mode.
- 1: The CAN controller has woken up from sleep mode.

RMLIF: Received message lost interrupt flag

- 0: Received message lost has not occurred.
- 1: Received message lost has occurred in at least one receive mailbox. At least one bit in the RML register is set to 1.

TRMABF: Transmission abort flag

- 0: Transmission abort has not occurred.
- 1: Transmission abort has occurred. At least one bit in the AA register is set to 1.

TSOIF: Timestamp counter overflow interrupt flag

- 0: No timestamp counter overflow has occurred since this bit was cleared.
- 1: A timestamp counter overflow has occurred at least once since this bit was cleared.

BOIF: Bus-off interrupt flag

- 0: The CAN controller is placed in bus-on mode.
- 1: The CAN controller is placed in bus-off mode.

EPIF: Error passive interrupt flag

- 0: The CAN controller is placed in error active mode.
- 1: The CAN controller is placed in error passive mode.

WLIF: Warning level interrupt flag

- 0: No error counter has reached a warning level.
- 1: At least one of the error counters has reached a warning level.

Global interrupt mask register (GIM)

Global Interrupt Mask Register Low

GIML (0322H)

	7	6	5	4	3	2	1	0
bit Symbol	RFPM	WUIM	RMLIM	TRMABM	TSOIM	BOIM	EPIM	WLIM
Read/Write		R/W						
After reset	0	0	0	0	0	0	0	0

Global Interrupt Mask Register High

GIMH (0323H)

	15	14	13	12	11	10	9	8
bit Symbol								
Read/Write								
After reset								

Figure 3.12.32 Global Interrupt Mask Register

The global interrupt mask register (GIM) enables or disables global interrupts for each interrupt condition in the GIF register. Global interrupts for an interrupt condition are disabled when the corresponding bit in the GIM register is set to 0 and enabled when it is set to 1. Upon a reset, all bits in the register are cleared to 0, thus disabling global interrupts.

Mailbox interrupts

Besides global interrupts, interrupts for mailboxes are provided. They include a mailbox transmission completion interrupt, INTCT, and a mailbox reception completion interrupt, INTCR, which depend on mailbox settings. The mailbox transmit interrupt flag register, MBTIF, is provided for mailbox transmission completion interrupts. The mailbox receive interrupt flag register, MBRIF, is provided for mailbox reception completion interrupts. The mailbox interrupt mask register, MBIM, is also provided to enable or disable each mailbox interrupt.

Mailbox interrupt mask register (MBIM)

Mailbox Interrupt Mask Register Low

MBIML (0328H)

	7	6	5	4	3	2	1	0
bit Symbol	MBIM7	MBIM6	MBIM5	MBIM4	MBIM3	MBIM2	MBIM1	MBIM0
Read/Write		R/W						
After reset	0	0	0	0	0	0	0	0

Mailbox Interrupt Mask Register High

MBIMH (0329H)

	15	14	13	12	11	10	9	8
bit Symbol	MBIM15	MBIM14	MBIM13	MBIM12	MBIM11	MBIM10	MBIM9	MBIM8
Read/Write		R/W						
After reset	0	0	0	0	0	0	0	0

Figure 3.12.33 Mailbox Interrupt Mask Register

Bits 0 to 15 in the MBIM register corresponds to mailboxes 0 to 15, respectively. The MBIM register enables or disables an interrupt for each mailbox.

If the <MBIMn> bit is 0, an interrupt for the corresponding mailbox is disabled. If the <MBIMn> bit is 1, an interrupt for the corresponding mailbox is enabled.

Mailbox transmit interrupt flag register (MBTIF)

Mailbox Transmit Interrupt Flag Register Low

MBTIFL (0324H) Readmodifywrite not allowed

	7	6	5	4	3	2	1	0	
bit Symbol	MBTIF7	MBTIF6	MBTIF5	MBTIF4	MBTIF3	MBTIF2	MBTIF1	MBTIF0	
Read/Write	R/C								
After reset	0	0	0	0	0	0	0	0	

Mailbox Transmit Interrupt Flag Register High

MBTIFH (0325H) Readmodifywrite not allowed

	15	14	13	12	11	10	9	8			
bit Symbol		MBTIF14	MBTIF13	MBTIF12	MBTIF11	MBTIF10	MBTIF9	MBTIF8			
Read/Write			R/C								
After reset		0	0	0	0	0	0	0			

Figure 3.12.34 Mailbox Transmit Interrupt Flag Register

The mailbox transmit interrupt flag register, MBTIF, is provided for mailbox transmission completion interrupts. Bits 0 to 15 in this register corresponds to mailboxes 0 to 15, respectively. The MBTIF register does not have bit 15 <MBTIF15> because mailbox 15 is receive-only. If mailbox n is set as a receive mailbox, the corresponding interrupt flag <MBTIFn> in the MBTIF register is always read as 0.

When a message in mailbox n has been transmitted, the <MBTIFn> flag is set to 1 and a mailbox transmission completion interrupt pulse (INTCT) is generated if the corresponding mask bit <MBIMn> in the MBIM register is set to 1 (interrupt enabled).

If the corresponding mask bit in the MBIM register is set to 0, the completion of message transmission does not result in the <MBTIF> flag being set or an INTCT interrupt being generated. To determine whether transmission has been completed, it is necessary to read the TA register.

An INTCT interrupt pulse is generated when an interrupt flag in the MBTIF register is set to 1. If another mailbox transmission completion interrupts condition occurs before that flag is cleared to 0, the corresponding interrupt flag in the MBTIF register is set to 1 but an INTCT interrupt pulse is not generated.

If an interrupt flag in the MBTIF register is cleared to 0 with another interrupt flag still set to 1, an INTCT interrupt pulse is generated.

An interrupt flag in the MBTIF register is cleared to 0 when the CPU writes a 1 to the flag. A write of 0 is invalid.

Mailbox receive interrupt flag register (MBRIF)

Mailbox Receive Interrupt Flag Register Low

MBRIFL (0326H) Readmodifywrite not allowed

	7	6	5	4	3	2	1	0	
bit Symbol	MBRIF7	MBRIF6	MBRIF5	MBRIF4	MBRIF3	MBRIF2	MBRIF1	MBRIF0	
Read/Write	R/C								
After reset	0	0	0	0	0	0	0	0	

Mailbox Receive Interrupt Flag Register High

MBRIFH (0327H) Readmodifywrite not

allowed

	15	14	13	12	11	10	9	8		
bit Symbol	MBRIF15	MBRIF14	MBRIF13	MBRIF12	MBRIF11	MBRIF10	MBRIF9	MBRIF8		
Read/Write	R/C									
After reset	0	0	0	0	0	0	0	0		

Figure 3.12.35 Mailbox Receive Interrupt Flag Register

The mailbox receive interrupt flag register, MBRIF, is provided for mailbox reception completion interrupts. Bits 0 to 15 in this register corresponds to mailboxes 0 to 15, respectively. If mailbox n is set as a transmit mailbox, the corresponding interrupt flag <MBRIFn> in the MBRIF register is always read as 0.

When a message for mailbox n has been received, the <MBRIFn> flag is set to 1 and a mailbox reception completion interrupt pulse (INTCR) is generated if the corresponding mask bit <MBIMn> in the MBIM register is set to 1 (interrupt enabled).

If the corresponding mask bit in the MBIM register is set to 0, the completion of message reception does not result in the <MBRIF> flag being set or an INTCR interrupt being generated. To determine whether reception has been completed, it is necessary to read the RMP register.

An INTCR interrupt pulse is generated when an interrupt flag in the MBRIF register is set to 1. If another mailbox reception completion interrupts condition occurs before that flag is cleared to 0, the corresponding interrupt flag in the MBRIF register is set to 1 but an INTCR interrupt pulse is not generated.

If an interrupt flag in the MBRIF register is cleared to 0 with another interrupt flag still set to 1, an INTCR interrupt pulse is generated.

An interrupt flag in the MBRIF register is cleared to 0 when the CPU writes a 1 to the flag. A write of 0 is invalid.

3.12.4 Description of operating modes

(1) Configuration mode

The CAN controller requires initialization (by setting the bit configuration registers, BCR1 and BCR2) before it can start operation. The BCR1 and BCR2 registers can be written in configuration mode only. Upon a reset, the CAN controller enters configuration mode if the <CCR> bit in the MCR register and the <CCE> bit in the GSR register are set to 1. Writing a 0 to the MCRL<CCR> bit places the controller in normal operation mode. When the CAN controller exits from configuration mode, the GSRL <CCE> bit is set to 0 and a power-up sequence starts. In the power-up sequence, the CAN controller detects a sequence of eleven recessive bits on the CAN bus. It then enters the bus-on state and is ready to start operation.

Writing a 1 to the MCRL<CCR> bit causes the CAN controller to exit from normal operation mode and enter configuration mode. When it enters configuration mode, the GSRL <CCE> bit is set to 1.

Figure 3.12.36 shows a CAN initialization flowchart.

In configuration mode, the error counter (CEC), timestamp counter (TSC), and timestamp hold register are cleared.

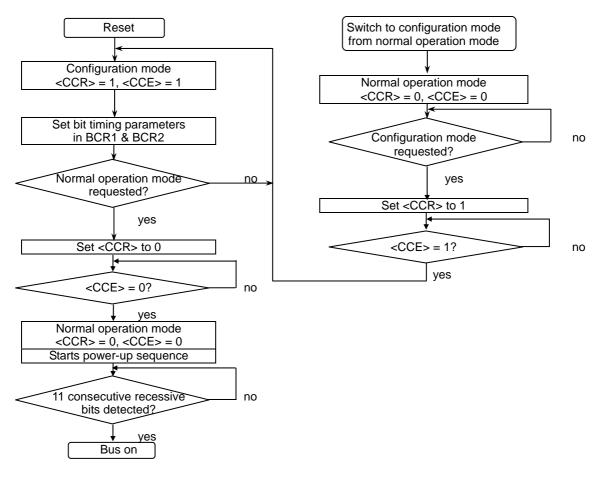


Figure 3.12.36 Flowchart of CAN Initialization

(2) Sleep mode

Writing a 1 to the <SMR> bit in the MCR register request a transition to sleep mode. When the CAN controller enters sleep mode, the <SMA> bit in the GSR register is set to 1.

In sleep mode, the clock for the CAN controller is stopped and only the wakeup circuit is active. The GSR register returns a value of F040H when it is read. It indicates that the transmit buffer contains no message and that sleep mode is active with the GSRL<SMA> bit set to 1. All other registers are read as 0000H. Write access is disabled for all registers other than MCR.

If the CAN controller detects write access to the MCR register or detects a bus active state on the CAN bus when the <WUBA> bit in the MCR register is set to 1, it releases sleep mode (wakes up) and starts a power-up sequence. It waits until a sequence of eleven recessive bits are detected on the RX input pin and then enters a bus active state. The first message that has triggered a transition to a bus active state cannot be received.

In sleep mode, the CAN error counter and all transmit request set (TRS<TRSn>) bits and transmission request reset (TRR<TRRn>) bits are cleared to 0. When the CAN controller exits from sleep mode, the <SMR> bit in the MCR register and the <SMA> bit in the GSR register are cleared to 0.

If sleep mode is requested (MCR<SMR>=1) when the CAN controller is transmitting a message, it enters the sleep mode after either condition as follows:

- The CAN controller completes the transmission successfully.
- After arbitration lost, the CAN controller completes the reception of a message successfully.
- After arbitration lost, the CAN controller detects an error on the CAN bus during the reception of a message.

(3) Halt mode

Writing a 1 to the <HMR> bit in the MCR register request a transition to halt mode. When the CAN controller enters halt mode, the <HMA> bit in the GSR register is set to 1. In halt mode, the CAN controller transmits or receives no messages but it is still active on the CAN bus and can transmit error flags and acknowledge signals. Resetting the MCR<HMR> bit to 0 causes the CAN controller to exit from halt mode.

If halt mode is requested (MCR<HMR>=1) when the CAN controller is transmitting a message, it enters the halt mode after either condition as follows:

- The CAN controller completes the transmission successfully.
- The CAN controller detects arbitration lost.

(4) Test loopback mode

In this mode, the CAN controller receives a message it has transmitted and also generates acknowledge signals. This mode requires only connection to the RX and TX pins and no other CAN devices. The CAN controller transmits a message from one mailbox and receives it to another mailbox. Mailbox settings are the same as those used in normal operation mode.

Test loopback mode can only be enabled or disabled in configuration mode. See the flowchart for setting test loopback and test error modes in Figure 3.12.37.

(5) Test error mode

The error counter can be written in this mode only. The values of the lower eight bits are written to both TEC and REC simultaneously. The maximum value that can be written is 255. A count value of 256, which places the CAN controller in the bus-off mode, cannot be written.

Test error mode can only be enabled or disabled in configuration mode. See the flowchart for setting test loopback and test error modes in Figure 3.12.37.

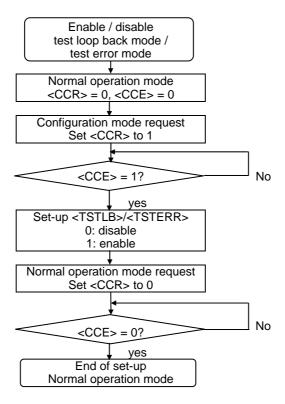


Figure 3.12.37 Flowchart of the Test Loop Back Mode / the Test Error Mode Set-up

3.12.5 Description of operation

(1) Transmission mode

Figure 3.12.38 shows an example message transmission flowchart using a transmission completion interrupt, INTCT.

Polling can also be used in place of an interrupt. In that case, the step "Transmit interrupt occurred?" is replaced with "<TAn> = 1?" and the steps "Write 1 to <MBIMn>" and "Clear <MBTIFn>" are not required.

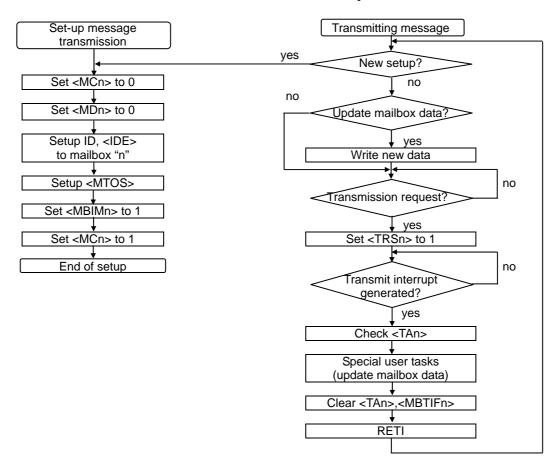
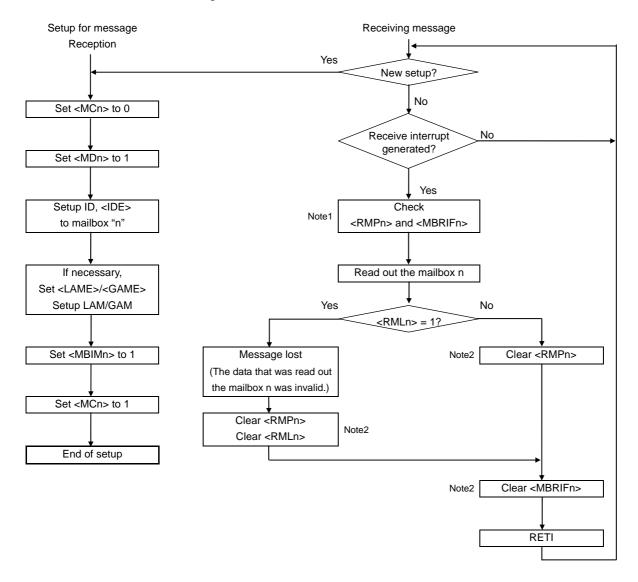


Figure 3.12.38 Flowchart of Message Transmission (Example)

(2) Reception mode

When the CAN controller receives a message on the CAN bus, it stores the message into the receive buffer. The ID of the message stored in the receive buffer is compared with the IDs of mailboxes. If the MBnMI0H<GAME>/<LAME> bit is set to 1, they are compared using the global/local receive mask register, GAM/LAM. If one of the following conditions is satisfied, subsequent IDs are not compared:

- A data frame matches the ID of the receive mailbox.
- A remote frame matches the ID of the receive mailbox.
- A remote frame matches the ID of the transmit mailbox for which the <RFH> bit is set to 1.


The minimum time between the RMP<RMPn> bit being set to 1 and a next receive message being stored into a mailbox depends on the bit time setting. If the data length code is 0, the minimum time is as follows:

• Standard format: 47-bit time – 16 f_{IO}

• Extended format: 67-bit time – 16 f_{IO}

a Data frame

Figure 3.12.39 shows an example message reception flowchart using a reception completion interrupt, INTCR. Polling can also be used in place of an interrupt. In that case, the step "Receive interrupt occurred?" is replaced with "<RMPn> = 1?" and the steps "Write 1 to <MBIMn>" and "Clear <MBRIFn>" are not required.

Note 1: Always check <RMPn> and <MBRIFn>.

Note 2: After the step "Clear <RMPn>", if a message is received in mailbox n before <MBRIFn> is cleared, <RMPn> may be set back to 1 (<MBRIFn> = 0).

Figure 3.12.39 Flowchart of Message Reception (Example)

b Remote frame

Figure 3.12.40 shows an example flowchart for processing a remote frame using the automatic response function. This function is enabled when the <RFH> bit for a transmit mailbox is set to 1. To prevent a data mismatch, update data in the mailbox by using the CDR register to control transmission.

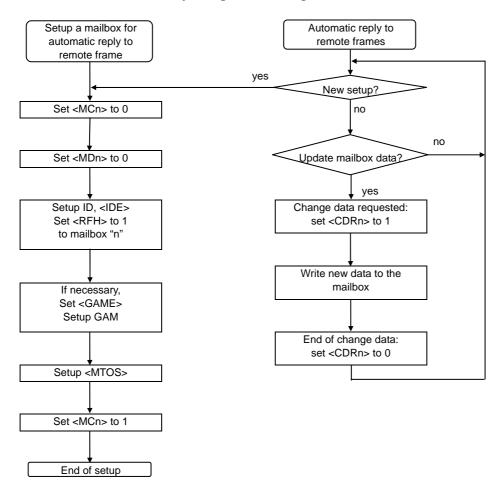


Figure 3.12.40 Flowchart of Remote Frame Handling with the Automatic Reply Feature (Example)

3.13 Analog-to-Digital Converter

The TMP92CD54I incorporates a 10-bit successive approximation analog-to-digital converter (AD converter) with 12 analog input channels.

The following shows a block diagram of the AD converter.

The 12 analog input pins (AN0-AN11) are shared with input-only ports G and L so that they can also be used as input ports.

Note: To reduce supply current in IDLE2, IDLE1, IDLE3, or STOP mode, ensure that the AD converter is not operating before attempting to execute the HALT instruction because the device may enter a standby mode with the internal comparator still enabled depending on the timing.

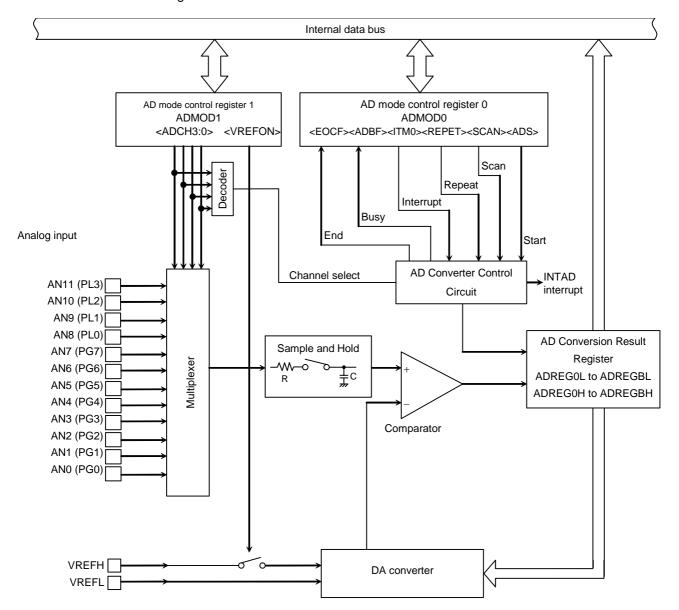


Figure 3.13.1 Block Diagram of AD Converter

3.13.1 Analog-to-digital converter registers

The AD converter is controlled using two AD mode control registers (ADMOD0 and ADMOD1). The results of AD conversion are stored in 12 pairs of AD conversion result upper/lower registers (ADREG0H/L to ADREGBH/L). The following describes the registers related to the AD converter.

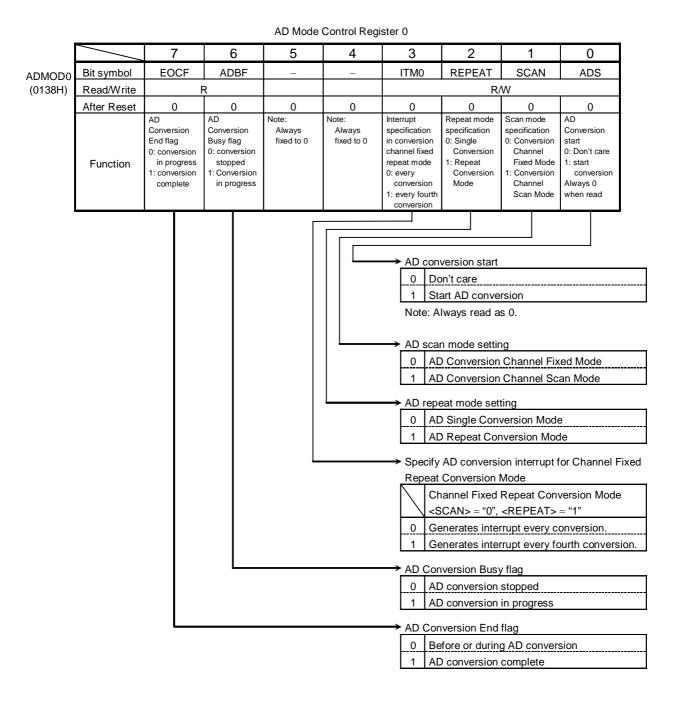


Figure 3.13.2 AD Converter Related Register

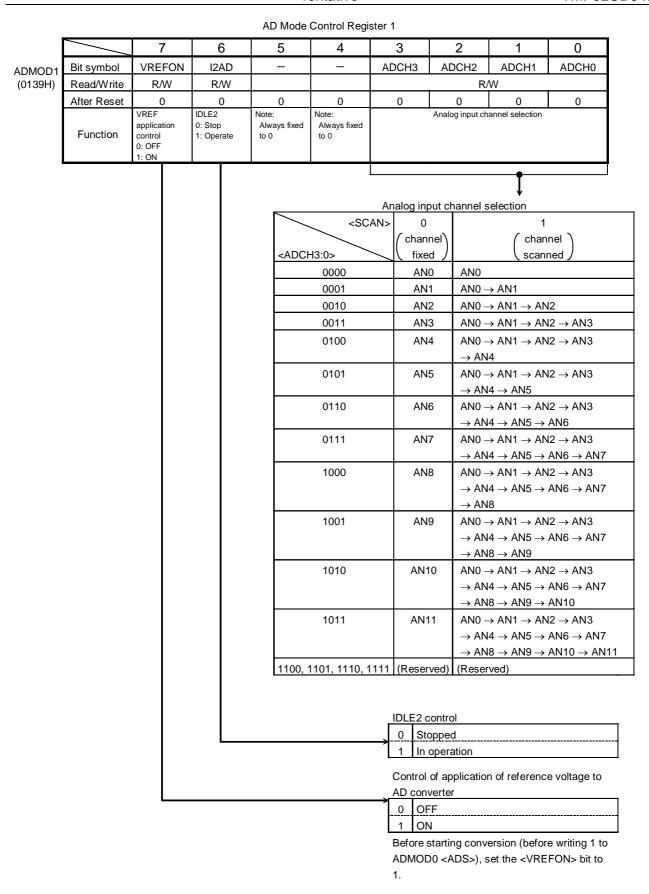


Figure 3.13.3 AD Converter Related Register

AD Conversion Result Register 0 Low

ADREG0L (0120H)

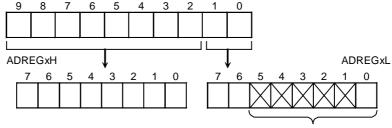
	7	6	5	4	3	2	1	0
Bit symbol	ADR01	ADR00						ADR0RF
Read/Write	F	R						R
After Reset	Unde	Undefined		-	-	-	-	0
Function		Stores lower 2 bits of AD conversion result						AD Conversion Data Storage flag 1: Conversion result stored

AD Conversion Result Register 0 High

ADREG0H (0121H)

	7	6	5	4	3	2	1	0			
Bit symbol	ADR09	ADR09 ADR08 ADR07 ADR06 ADR05 ADR04 ADR03 ADR02									
Read/Write		R									
After Reset		Undefined									
Function		Stores upper eight bits AD conversion result.									

AD Conversion Result Register 1 Low


ADREG1L (0122H)

	7	6	5	4	3	2	1	0
Bit symbol	ADR11	ADR10						ADR1RF
Read/Write	R							R
After Reset	Undefined		-	-	-	-	ı	0
Function	stores lower 2 bits of AD conversion result							AD Conversion Result flag 1: Conversion result stored

AD Conversion Result Register 1 High

ADREG1H (0123H)

	7	6	5	4	3	2	1	0		
Bit symbol	ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12		
Read/Write	R									
After Reset		Undefined								
Function	Stores upper eight bits of AD conversion result.									

- Bits 5 to 1 are always read as 1.
- Bit 0 is the AD conversion storage flag <ADRxRF>. It is set to 1 when a AD conversion value has been stored. Reading either of the registers (ADREGxH or ADREGxL) causes the corresponding flag to be creared to 0.

Figure 3.13.4 AD Converter Related Registers

AD Conversion Result Register 2 Low

ADREG2L (0124H)

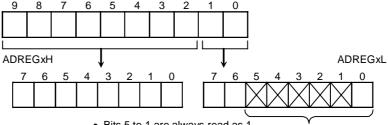
	7	6	5	4	3	2	1	0
Bit symbol	ADR21	ADR20						ADR2RF
Read/Write	R Undefined							R
After Reset			-	-	-	-	-	0
Function	Stores lower 2 bits of AD conversion result.							A/D conversion data storage flag 1: Conversion result stored

AD Conversion Result Register 2 High

ADREG2H (0125H)

		7	6	5	4	3	2	1	0		
4	Bit symbol	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22		
	Read/Write	R									
	After Reset		Undefined								
	Function		Stores upper eight bits of AD conversion result.								

AD Conversion Result Register 3 Low


ADREG3L (0126H)

	7	6	5	4	3	2	1	0
Bit symbol	ADR31	ADR30						ADR3RF
Read/W rite	F	R Undefined Stores lower 2 bits of AD conversion result.						R
After Reset	Unde			-	-	-	ı	0
Function								AD Conversion Data Storage flag 1: conversion result stored

AD Conversion Result Register 3 High

ADREG3H (0127H)

		7	6	5	4	3	2	1	0		
١	Bit symbol	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32		
	Read/Write	R									
	After Reset	Undefined									
	Function	Stores upper eight bits of AD conversion result.									

- Bits 5 to 1 are always read as 1.
- Bit 0 is the AD conversion result storage flag <ADRxRF>. It is set to 1
 when a AD conversion value has been stored. Reading either of the
 registers (ADREGxH or ADREGxL) causes the corresponding flag
 to be cleared to 0.

Figure 3.13.5 AD Converter Related Registers

AD Conversion Result Register 4 Low

ADREG4L (0128H)

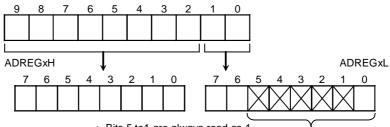
	7	6	5	4	3	2	1	0
Bit symbol	ADR41	ADR40						ADR4RF
Read/Write	F	₹						R
After Reset	Unde	efined	-	-	-	-	-	0
Function	Stores lower 2 bits of AD conversion result.							A/D conversion data storage flag 1: Conversion result stored

AD Conversion Result Register 4 High

ADREG4H (0129H)

		7	6	5	4	3	2	1	0			
ı	Bit symbol	ADR49	ADR48	ADR47	ADR46	ADR45	ADR44	ADR43	ADR42			
	Read/Write		R									
	After Reset		Undefined									
	Function		Stores upper eight bits of AD conversion result.									

AD Conversion Result Register 5 Low


ADREG5L (012AH)

	7	6	5	4	3	2	1	0
Bit symbol	ADR51	ADR50						ADR5RF
Read/Write	F	₹						R
After Reset	Unde	Undefined		-	-	-	-	0
Function	Stores lower 2 bits of AD conversion result.							AD Conversion Data Storage flag 1: conversion result stored

AD Conversion Result Register 5 High

ADREG5H (012BH)

	7	6	5	4	3	2	1	0			
Bit symbol	ADR59	DR59 ADR58 ADR57 ADR56 ADR55 ADR54 ADR53 ADR52									
Read/Write		R									
After Reset		Undefined									
Function	Stores upper eight bits of AD conversion result.										

- Bits 5 to1 are always read as 1.
- Bit 0 is the AD conversion result storage flag <ADRxRF>. It is set to 1
 when a AD conversion value has been stored. Reading either of the
 registers (ADREGxH or ADREGxL) causes the corresponding flag
 to be cleared to 0.

Figure 3.13.6 AD Converter Related Registers

AD Conversion Result Register 6 Low

ADREG6L (012CH)

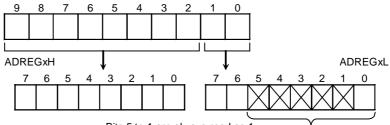
	7	6	5	4	3	2	1	0
Bit symbol	ADR61	ADR60						ADR6RF
Read/Write	F	₹						R
After Reset	Unde	fined	-	-	-	-	-	0
Function	Stores lower 2 bits of AD conversion result.							A/D conversion data storage flag 1: Conversion result stored

AD Conversion Result Register 6 High

ADREG6H (012DH)

	7	6	5	4	3	2	1	0			
Bit symbol	ADR69	ADR68	ADR67	ADR66	ADR65	ADR64	ADR63	ADR62			
Read/Write		R									
After Reset		Undefined									
Function		Stores upper eight bits of AD conversion result.									

AD Conversion Result Register 7 Low


ADREG7L (012EH)

	7	6	5	4	3	2	1	0
Bit symbol	ADR71	ADR70						ADR7RF
Read/Write	F	₹						R
After Reset	Unde	Undefined		-	-	-	-	0
Function	Stores lower 2 bits of AD conversion result.							AD Conversion Data Storage flag 1: conversion result stored

AD Conversion Result Register 7 High

ADREG7H (012FH)

	7	6	5	4	3	2	1	0			
Bit symbol	ADR79	DR79 ADR78 ADR77 ADR76 ADR75 ADR74 ADR73 ADR72									
Read/Write		R									
After Reset		Undefined									
Function		Stores upper eight bits of AD conversion result.									

- Bits 5 to 1 are always read as 1.
- Bit 0 is the AD conversion result storage flag <ADRxRF>. It is set to 1
 when a AD conversion value has been stored. Reading either of the
 registers (ADREGxH or ADREGxL) causes the corresponding flag
 to be cleared to 0.

Figure 3.13.7 AD Converter Related Registers

AD Conversion Result Register 8 Low

ADREG8L (0130H)

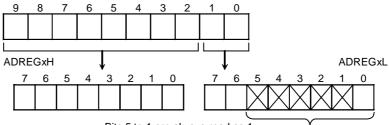
	7	6	5	4	3	2	1	0
Bit symbol	ADR81	ADR80						ADR8RF
Read/Write	F	₹						R
After Reset	Unde	efined	-	-	-	-	-	0
Function	Stores lower 2 bits of AD conversion result.							A/D conversion data storage flag 1: Conversion result stored

AD Conversion Result Register 8 High

ADREG8H (0131H)

	7	6	5	4	3	2	1	0			
Bit symbol	ADR89	DR89 ADR88 ADR87 ADR86 ADR85 ADR84 ADR83 ADR82									
Read/Write		R									
After Reset		Undefined									
Function		Stores upper eight bits of AD conversion result.									

AD Conversion Data Register 9 Low


ADREG9L (0132H)

	7	6	5	4	3	2	1	0
Bit symbol	ADR91	ADR90						ADR9RF
Read/Write	F	₹						R
After Reset	Unde	Undefined		-	-	-	-	0
Function	Stores lower 2 bits of AD conversion result.							AD Conversion Data Storage flag 1: conversion result stored

AD Conversion Result Register 9 High

ADREG9H (0133H)

	7	6	5	4	3	2	1	0			
Bit symbol	ADR99	DR99 ADR98 ADR97 ADR96 ADR95 ADR94 ADR93 ADR92									
Read/Write		R									
After Reset		Undefined									
Function	Stores upper eight bits of AD conversion result.										

- Bits 5 to 1 are always read as 1.
- Bit 0 is the AD conversion result storage flag <ADRxRF>. It is set to 1
 when a AD conversion value has been stored. Reading either of the
 registers (ADREGxH or ADREGxL) causes the corresponding flag
 to be cleared to 0.

Figure 3.13.8 AD Converter Related Registers

AD Conversion Result Register A Low

ADREGAL (0134H)

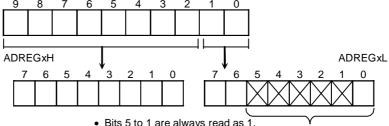
	7	6	5	4	3	2	1	0
Bit symbol	ADRA1	ADRA0						ADRARF
Read/Write	F	₹						R
After Reset	Unde	fined	-	-	-	-	-	0
Function		er 2 bits of sion result.						A/D conversion data storage flag 1: Conversion result stored

AD Conversion Result Register A High

ADREGAH (0135H)

		7	6	5	4	3	2	1	0
4	Bit symbol	ADRA9	ADRA8	ADRA7	ADRA6	ADRA5	ADRA4	ADRA3	ADRA2
	Read/Write		R						
	After Reset		Undefined						
	Function		Stores upper eight bits of AD conversion result.						

AD Conversion Result Register B Low


ADREGBL (0136H)

	7	6	5	4	3	2	1	0
Bit symbol	ADRB1	ADRB0						ADRBRF
Read/Write	R							R
After Reset	Unde	fined	-	-	-	-	-	0
Function		er 2 bits of sion result.						AD Conversion Data Storage flag 1: conversion result stored

AD Conversion Result Register B High

ADREGBH (0137H)

	7	6	5	4	3	2	1	0
Bit symbol	ADRB9	ADRB8	ADRB7	ADRB6	ADRB5	ADRB4	ADRB3	ADRB2
Read/Write		R						
After Reset		Undefined						
Function		Stores upper eight bits of AD conversion result.						

- Bits 5 to 1 are always read as 1.
- Bit 0 is the AD conversion result storage flag <ADRxRF>. It is set to 1 when a AD conversion value has been stored. Reading either of the registers (ADREGxH or ADREGxL) causes the corresponding flag to be cleared to 0.

Figure 3.13.9 AD Converter Related Registers

3.13.2 Description of operation

(1) Analog reference voltage

The high level of the analog reference voltage is applied to the VREFH pin and the low level applied to the VREFL pin. The reference voltage across VREFH and VREFL is divided by 1024 using string resistors. The divided voltages are compared with the analog input voltage to perform AD conversion.

Writing a 0 to the ADMOD1<VREFON> bit causes the switch between VREFH and VREFL to be turned off. To start AD conversion when the switch is turned off, first write a 1 to <VREFON>, then wait for 3 µs (independent of the system clock frequency fc) until the internal reference voltage settles before writing a 1 to ADMOD0<ADS>.

(2) Selecting an analog input channel

How to select an analog input channel depends on the AD converter operating mode.

- When using a fixed analog input channel (ADMOD0<SCAN> = 0)
 Use settings in ADMOD1<ADCH3:0 > to select one of the AN0 to AN11 analog input pins.
- When scanning through analog input channels (ADMOD0<SCAN> = 1)
 Use settings in ADMOD1<ADCH3:0> to select one of the 12 scan modes.

Table 3.13.1 shows the selection of analog input channels in each operating mode.

Upon a reset, ADMOD0<SCAN> and ADMOD1<ADCH3:0> are initialized to 0 and 0000, respectively, so that channel fixed input using the AN0 pin is selected. Pins that are not used as an analog input channel can be used as ordinary input ports. (See "3.5.7 Port G" and "3.5.8 Port L.")

<adch3:0></adch3:0>	Channel fixed <scan> = "0"</scan>	Channel scan <scan> = "1"</scan>
0000	AN0	AN0
0001	AN1	$ANO \rightarrow AN1$
0010	AN2	$ANO \rightarrow AN1 \rightarrow AN2$
0011	AN3	$ANO \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$
0100	AN4	$AN0 \to AN1 \to AN2 \to AN3 \to AN4$
0101	AN5	$AN0 \to AN1 \to AN2 \to AN3 \to AN4 \to AN5$
0110	AN6	$AN0 \to AN1 \to AN2 \to AN3 \to AN4 \to AN5 \to AN6$
0111	AN7	$AN0 \to AN1 \to AN2 \to AN3 \to AN4 \to AN5 \to AN6 \to AN7$
1000	AN8	$AN0 \to AN1 \to AN2 \to AN3 \to AN4 \to AN5 \to AN6 \to AN7 \to AN8$
1001	AN9	$AN0 \to AN1 \to AN2 \to AN3 \to AN4 \to AN5 \to AN6 \to AN7 \to AN8 \to AN9$
1010	AN10	$AN0 \to AN1 \to AN2 \to AN3 \to AN4 \to AN5 \to AN6 \to AN7 \to AN8 \to AN9 \to AN10$
1011	AN11	$AN0 \to AN1 \to AN2 \to AN3 \to AN4 \to AN5 \to AN6 \to AN7 \to AN8 \to AN9 \to AN10 \to AN11$
1100~1111	Invalid	Invalid

Table 3.13.1 Analog Input Channel Selection

(3) Starting AD conversion

Setting ADMODO<ADS> to 1 starts AD conversion. Once AD conversion has started, the AD conversion BUSY flag (ADMODO<ADBF>) is set to 1, indicating that AD conversion is currently in progress.

(4) AD conversion mode and AD conversion end interrupt

The following four AD conversion modes are supported:

- Channel-fixed single conversion mode
- Channel-scanned single conversion mode
- Channel-fixed repetitive conversion mode
- Channel-scanned repetitive conversion mode

The AD conversion mode is selected using AD mode control register 0, ADMOD0<REPEAT, SCAN>.

Upon the completion of AD conversion, an AD conversion end interrupt, INTAD is issued. The ADMOD0<EOCF> bit, which indicates the end of AD conversion, is also set to 1.

a. Channel-fixed single conversion mode

Setting ADMOD0<REPEAT, SCAN> to 00 selects channel-fixed single conversion mode.

In this mode, the AD converter performs conversion only once for the selected single channel. Upon the completion of conversion, ADMOD0<EOCF> is set to 1, ADMOD0<ADBF> is cleared to 0, and an INTAD interrupt request is issued.

b. Channel-scanned single conversion mode

Setting ADMOD0<REPEAT, SCAN> to 01 selects channel-scanned single conversion mode.

In this mode, the AD converter performs conversion once for each of the selected scan channels. Upon the completion of conversion for all selected channels, ADMOD0<EOCF> is set to 1, ADMOD0<ADBF> is cleared to 0, and an INTAD interrupt request is issued.

c. Channel-fixed repetitive conversion mode

Setting ADMOD0<REPEAT, SCAN> to 10 selects channel-fixed repetitive conversion mode.

In this mode, the AD converter repeatedly performs conversion for the selected single channel. Upon the completion of conversion, ADMOD0<EOCF> is set to 1. ADMOD0<ADBF> is not, however, cleared to 0 and maintains the state of 1. The INTAD interrupt request timing can be selected using the setting of ADMOD0<ITM0>.

Setting <ITM0> to 0 causes an interrupt request to be issued upon the completion of every single AD conversion. Setting <ITM0> to 1 causes an interrupt request to be issued upon the completion of every four AD conversions.

d. Channel-scanned repetitive conversion mode

Setting ADMOD0<REPEAT, SCAN> to 11 selects channel-scanned repetitive conversion mode.

In this mode, the AD converter repeatedly performs conversion for the selected scan channels. Upon the completion of a single conversion, ADMOD0<EOCF> is set to 1 and an INTAD interrupt request is issued. ADMOD0<ADBF> is not cleared to 0 and maintains the state of 1.

To stop operation in a repetitive conversion mode (c or d), write a 0 to ADMODO<REPEAT>. Once the conversion currently being executed is completed, the repetitive conversion mode terminates and ADMODO<ADBF> is cleared to 0.

When ADMOD1<I2AD> is cleared to zero, causing a transition to halt mode, the AD converter immediately stops operation even if AD conversion is still in progress. When the AD converter exits from a halt, it starts AD conversion from the beginning if it operates in a repetitive conversion mode (c or d). In a single conversion mode (a or b), it does not restart conversion (remains stopped).

Table 3.13.2 shows the relationship between the AD conversion mode and the occurrence of an interrupt request.

Table 3.13.2 Relationship Between AD Conversion Modes and Interrupt Requests

Mode	Interrupt Request	ADMOD0		
Mode	Generation	<itm0></itm0>	<repet></repet>	<scan></scan>
Channel Fixed Single Conversion Mode	After completion of conversion	Х	0	0
Channel Scan Single Conversion Mode	After completion of scan conversion	X	0	1
Channel Fixed Repeat	Every conversion	0	1	0
Conversion Mode	Every forth conversion	1		U
Channel Scan Repeat Conversion Mode	After completion of every scan conversion	X	1	1

X: Don't care

(5) AD conversion time

An AD conversion for a single channel requires 160 states (8 μ s when f_c = 20 MHz).

(6) Storing and reading the results of AD conversion

The results of AD conversion are stored in the AD conversion result upper/lower registers (ADREG0H/L to ADREGBH/L), which are read-only.

In channel-fixed repetitive conversion mode, the results of AD conversion are stored sequentially in ADREG0H/L through ADREG3H/L. In other modes, the results of conversion for channels AN0 to AN11 are stored in ADREG0H/L to ADREGBH/L, respectively.

Table 3.13.3 shows the correspondence between the analog input channels and the AD conversion result registers.

Table 3.13.3 Correspondence Between Analog Input Channels and AD Conversion Result Registers

	AD Conversion	Result Register
Analog input channel (PortG/PortL)	Conversion modes other than at right	Channel fixed repeat conversion mode (every 4 th conversion)
AN0	ADREG0H/L	
AN1	ADREG1H/L	
AN2	ADREG2H/L	
AN3	ADREG3H/L	ADREG0H/L ←
AN4	ADREG4H/L	↓
AN5	ADREG5H/L	ADREG1H/L
AN6	ADREG6H/L	↓
AN7	ADREG7H/L	ADREG2H/L
AN8	ADREG8H/L	ADREG3H/L —
AN9	ADREG9H/L	
AN10	ADREGAH/L	
AN11	ADREGBH/L	

The AD conversion result storage flag, ADREGxL<ADRxRF>, is bit 0 in the AD conversion result lower register and indicates whether the corresponding AD conversion result registers have been read. This flag is set to 1 when a converted value is stored into the AD conversion result registers and cleared to 0 when either of the AD conversion result registers (ADREGxH or ADREGxL) is read.

Reading the results of AD conversion causes the AD conversion end flag, ADMOD0<EOCF>, to be cleared to 0.

Example settings:

a. When performing AD conversion for analog input voltage on the AN3 pin and using the AD interrupt (INTAD) handling routine to write the converted value to memory address 0800H

Settings in main routine

```
7 6 5 4 3 2 1 0
INTE0AD
            ← 1 1 0 0 - - - -
                                        Enable INTAD and set the interrupt level to 4.
ADMOD1
            ← 1 1 0 0 0 0 1 1
                                        Set the analog input channel to AN3.
ADMOD0
            ← X X 0 0 0 0 0 1
                                         Start conversion in channel-fixed single conversion mode.
Example processing in interrupt routine
WA
           ← ADREG3
                                         Read the values of ADREG3L and ADREG3H into general
                                        register WA (16 bits).
WΑ
           > > 6
                                         Shift the contents of WA six times to the right and pad the upper
                                        bits with 0s.
                                        Write the contents of WA to address 0800H.
```

b. When continuously performing AD conversion for analog input voltages on three pins, AN0 to AN2, in channel-scanned repetitive conversion mode

X = Don't care "-" = No change

3.14 Watchdog Timer (Runaway Detection Timer)

The TMP92CD54I contains a watchdog timer for runaway detection.

The watchdog timer (WDT) is designed to detect any malfunction (runaway) of the CPU due to noise or for other reasons and help the CPU recover its normal operating status. If the watchdog timer detects a runaway, it issues a nonmaskable INTWD interrupt to notify the CPU.

This watchdog timer output can also be connected to the reset input (within the chip) to forcibly apply a reset.

3.14.1 Configuration

Figure 3.14.1 shows a block diagram of the watchdog timer.

Figure 3.14.1 Block Diagram of Watchdog Timer

The watchdog timer consists of a 22-stage binary counter that uses ϕ (2/fc) as an input clock. The binary counter outputs 2^{16} /fc, 2^{18} /fc, 2^{20} /fc, and 2^{22} /fc. With one of those outputs selected using WDMOD<WDTP1:0>, a watchdog timer interrupt occurs if an overflow occurs for that output, as shown in Figure 3.14.2. To continue using the watchdog timer after an INTWD request is issued, write a clear code (4EH) to the WDCR register to clear the binary counter.

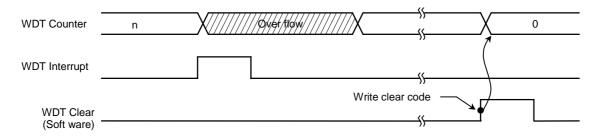


Figure 3.14.2 Normal Mode

The result of runaway detection can also be internally connected to the reset pin.

In that case, a reset is applied for a period of between 44×4 /fc and 58×4 /fc system clock cycles (8.8 to 11.6 μ s when fC = 20 MHz), as shown in Figure 3.14.3.

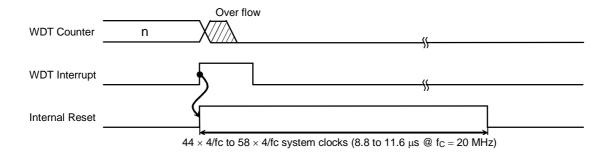


Figure 3.14.3 Reset Mode

3.14.2 Control registers

The watchdog timer (WDT) is controlled using three control registers: WDMOD, WDCR, and CLKMOD.

- (1) Watchdog timer mode register (WDMOD)
 - a. Setting the watchdog timer detection time <WDTP1:0>

This 2-bit register specifies a watchdog timer interrupt time for runaway detection. Upon a reset, the WDMOD<WDTP1:0> bits are initialized to 00 so that the detection time is 2^{16} /fc [s] (approximately 65,536 system clock cycles).

b. Enabling/disabling the watchdog timer <WDTE>

Upon a reset, WDMOD<WDTE> is initialized to 1 so that the watchdog timer is enabled.

Disabling the watchdog timer requires writing a disable code (B1H) to the WDCR register in addition to clearing this bit to 0. This dual configuration makes it difficult for the watchdog timer to be disabled due to a runaway.

Enabling the disabled watchdog timer requires only setting the <WDTE> bit to 1.

c. Connecting the watchdog timer output to a reset <RESCR>

This register specifies whether the watchdog timer resets itself when it detects a runaway. Upon a reset, WDMOD<RESCR> is initialized to 0 so that the watchdog timer output is not used to reset itself.

(2) Watchdog timer control register (WDCR)

This register controls disabling the watchdog timer and clearing the binary counter.

Controlling disable

After clearing WDMOD<WDTE> to 0, writing a disable code (B1H) to the WDCR register disables the watchdog timer.

• Controlling enable

Set WDMOD<WDTE> to 1.

• Controlling watchdog timer clear

Writing a clear code (4EH) to the WDCR register causes the binary counter to be cleared and restart counting. To continue using the watchdog timer after an INTWD interrupt is issued, write a clear code to the WDCR register to clear the binary counter.

```
WDCR \leftarrow 0 1 0 0 1 1 1 0 Write clear code (4EH).
```

(3) Clock mode register (CLKMOD)

This register controls the output signal on the CLK pin.

Writing a 0 to the CLKMOD<CLKOE> bit causes the CLK pin output to be stopped. The output on the CLK pin can be selected from one of fc and 2/5 fc by setting CLKMOD<CLKM1:0>.

The CLKMOD<HALTM1:0> bits specify the halt mode as IDLE2, IDLE1, IDLE3, or STOP.

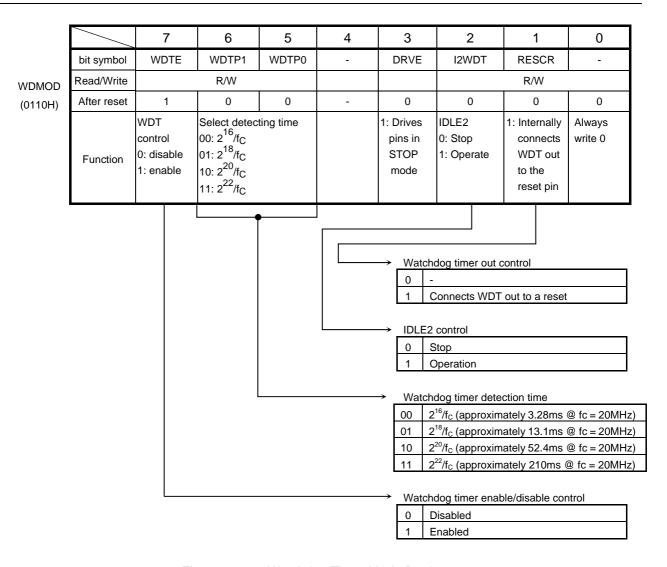


Figure 3.14.4 Watchdog Timer Mode Register

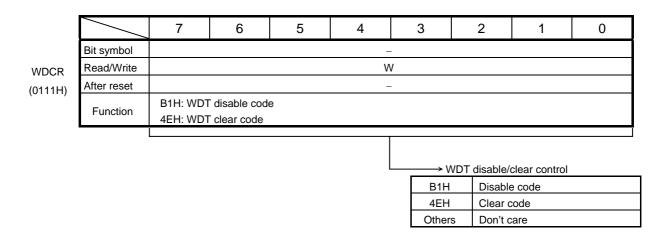


Figure 3.14.5 Watchdog Timer Control Register

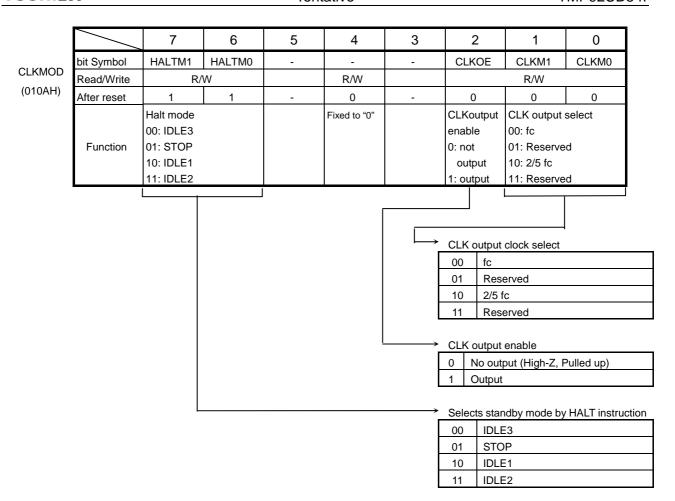


Figure 3.14.6 Clock Mode Register

3.14.3 Description of operation

The watchdog timer issues an INTWD interrupt when the detection time specified with the WDMOD<WDTP1:0> bits has elapsed. The software (instruction) should clear the binary counter for the watchdog timer to 0 before an INTWD interrupt occurs. If the CPU is malfunctioning due to noise or for other reasons (runaway), it fails to execute an instruction for clearing the binary counter, which will overflow and cause an INTWD interrupt to occur. Once an INTWD interrupt occurs, indicating that the CPU is malfunctioning (runaway), the runaway handling program can restore it to normal condition.

The watchdog timer starts operation immediately after a reset is released.

In IDLE1, IDLE3, or STOP mode, the watchdog timer is reset and stopped.

In IDLE2 mode, its state depends on the setting of WDMOD<I2WDT>. Set WDMOD<I2WDT>, as required, before entering IDLE2 mode.

Example: a. Clear the binary counter.

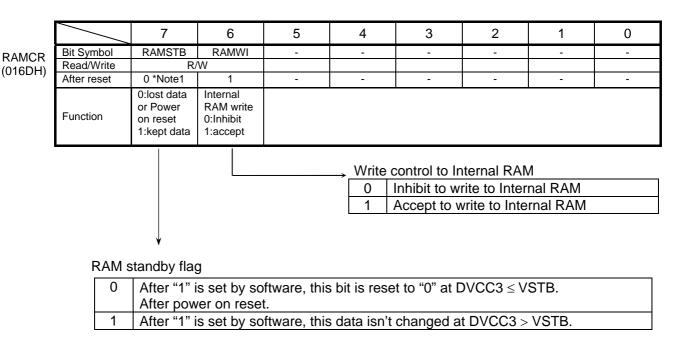
a. Clear the binary counter.

```
WDCR \leftarrow 0 1 0 0 1 1 1 0 Write clear code (4EH).
```

b. Set the watchdog timer detection time to 218/fC.

```
WDMOD ← 1 0 1 - - - -
```

c. Disable the watchdog timer.


3.15 RAM Controller

The RAM controller enables/disables writes to the built-in RAM and detects a low supply voltage to DVCC3. DVCC3 is a voltage supplied to the built-in RAM and internal logic. If DVCC3 falls below the VSTB level, the built-in RAM may not be able to maintain data.

The RAMCR<RAMSTB> flag, which detects a low voltage, is always written with a 1. A write of 0 to this flag is invalid. The flag is cleared to 0 if DVCC3 falls below the VSTB level (including a power-on reset). It is not cleared by a transition to halt mode or a warm reset.

This flag can be read to determine a reset status (warm reset or power-on reset) and RAM data status (maintained or lost). The flag returns a 1 for a warm reset and a 0 for a power-on reset. It returns a 1 when RAM data is maintained and a 0 if it may be lost.

The <RAMWI> bit controls data writes to the built-in RAM. Upon a reset, <RAMWI> is set to 1 so that writes to the built-in RAM are enabled. Clearing <RAMWI> to 0 disables writes to the built-in RAM.

- Note 1: It is initialized to 0 upon a power-on reset but not affected by a warm reset. The software should first write a 1 to the flag before using it. A write of 0 to this flag is invalid.
- Note 2: If the device enters a halt mode (STOP/IDLE3) with <RAMSTB> set to 1, current consumption is not sufficiently reduced due to a current that flows through resistance within the voltage detection circuit. In a system for which low power dissipation is required, the voltage detection circuit can be disabled to suppress current consumption.
- Note 3: A period of eight states is required between a 1 being written to <RAMSTB> and the voltage detection circuit starting operation (when fc = 20 MHz). Do not execute the HALT instruction during a warm-up period of the voltage detection circuit.
- Note 4: The emulator does not support the RAM controller function.

Figure 3.15.1 RAM Control Register

3.16 Real-Time Clock (RTC)

The TMP92CD54I contains a real-time clock, which is dedicated to measuring a specified time. The real-time clock issues INTRTC interrupts at regular intervals. The interrupt interval can be selected from among $0.0625 \, \text{s}$, $0.125 \, \text{s}$, $0.25 \, \text{s}$, $0.50 \, \text{s}$, $1 \, \text{s}$, and $2 \, \text{s}$ (when $6 \, \text{s}$ is $6 \, \text{s}$).

The TMP92CD54I supports a low current consumption mode in which only the real-time clock operates, called IDLE3 mode. It also operates in IDLE1 and IDLE2 modes and can release each hold mode upon the occurrence of an INTRTC interrupt request.

3.16.1 Block diagram

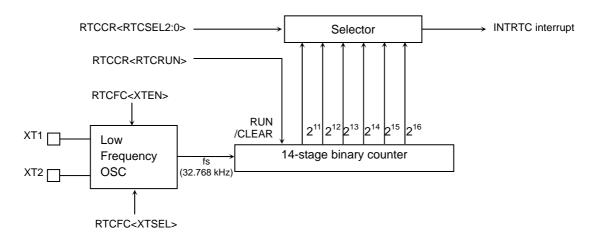
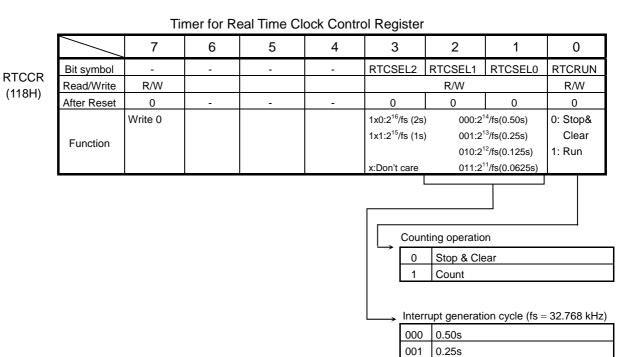


Figure 3.16.1 Block Diagram for Timer for Real-time Clock

3.16.2 Registers


Two registers are provided to control the real-time clock and low-speed oscillator.

The real-time clock control register, RTCCR, controls the real-time clock. The RTCCR <RTCSEL2:0> bits specify one of six intervals for INTRTC interrupt requests.

The real-time clock function register, RTCFC, controls the low-speed oscillator. Either a crystal or CR oscillator can be used for the low-speed oscillator. Set RTCFC <XTSEL> according to the oscillator to be used.

The RTCFC register is initialized when the device recovers from STOP mode with an interrupt. It is, therefore, necessary to re-set RTCFC after a halt release. (The RTCFC register is not initialized upon a recovery from IDLE3, IDLE1, or IDLE2 mode.)

Figure 3.16.2 and Figure 3.16.3 show register tables.

010 0.125s 011 0.0625s 1x0 2s 1x1 1s

Low frequency oscillator (fs=32.768 kHz)

Stop Oscillation

Figure 3.16.2 Timer for Real Time Clock Control Register

7 2 5 3 1 6 4 0 Bit symbol XTSEL XTEN Read/Write R/W R/W After Reset 0 0 I ow Type of low Frequency frequency oscillator (fs) **Function** oscillator(fs) 0:Stop 0: Crystal 1:Oscillation 1: CR

Timer for Real Time Clock Function Register

RTCFC

(119H)

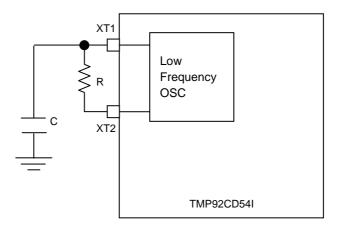
Note 1: Setting RTCFC<XTEN> to 1 causes the low-speed oscillator to start oscillation but it requires a wait time until oscillation is stabilized. For the value of tSTA for a crystal resonator, contact the manufacturer of the resonator.

Note 2: This register is initialized when the device recovers from STOP mode with an interrupt. It is, therefore, necessary to re-set the register after a halt release. (It is not initialized upon a recovery from IDLE3, IDLE1, or IDLE2 mode.)

Figure 3.16.3 Timer for Real Time Clock Function Register

Example of register setting:

LD (RTCFC), 01h ; Start low-speed oscillation. : Oscillator stabilization time


LD (RTCCR), 03h; INTRTC interrupt occurs every 2¹³/fs.

3.16.3 CR oscillation

Either a crystal or CR oscillator can be used for the low-speed oscillator. Set RTCFC <XTSEL> according to the oscillator to be used.

When using CR oscillation, connect a resistor and capacitor to the XT1 and XT2 pins.

Figure 3.16.4 shows a recommended CR oscillation circuit.

Example constants for 32.768 kHz:

$$R = 40 \text{ k}\Omega$$
, $C = 470 \text{ pF}$
 $R = 82 \text{ k}\Omega$, $C = 220 \text{ pF}$

Note: The above combination of constants has been tested under room temperature conditions. The values should be adjusted according to the end product considering the characteristics of the capacitor and resistor.

Figure 3.16.4 A External Circuit for CR Oscillation

3.17 Power Regulator

The TMP92CD54I contains a 3-V output regulator for internal logic power supplies. Connecting each DVCC3 pin to the regulator output pin, REGOUT, enables the regulator to supply power to internal logic circuits.

Table 3.17.1 REGOUT output by REGEN setting

REGEN input	REGOUT output
"H"	3V output for internal logic
"OPEN" Note)	3V output for internal logic

Note 1: The REGEN pin has a pull-up resistor connected internally and thus can be left open. It is recommended to leave it open to ensure a rise time for the REGEN signal.

3.17.1 Block diagram

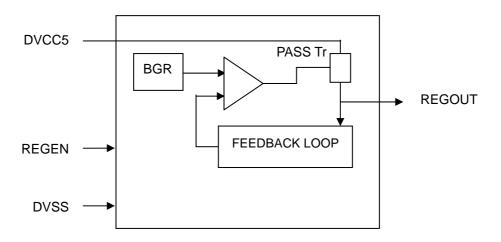


Figure 3.17.1 Regulator Block

3.17.2 External connection

To prevent the output voltage from oscillating, connect a stabilizing capacitor (Cs) to a point between REGOUT and DVSS as close to them possible. Depending on the board capacitance, a resistor in series with Cs (ESR) may also be necessary, as shown in Figure 3.17.2.

It is recommended to use a capacitor having good temperature characteristics because variations in internal resistance with temperature may cause the regulator output to be unstable.

A bypass capacitor (Cb) between DVCC3 and DVSS is also recommended to improve noise immunity of the REGOUT output.

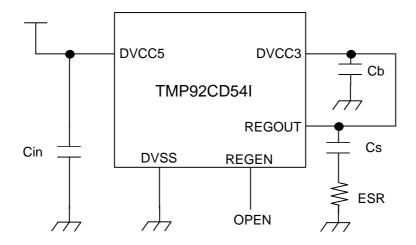


Figure 3.17.2 Regulator Connection

3.17.3 Handling precautions

1. Application

This regulator is designed for the TMP92CD54I. The output from REGOUT must not be connected to anywhere other than the DVCC3 pin on the TMP92CD54I.

2. Power-on and REGEN input signal timing

When the device is powered on, the REGEN pin should be left open or an enable signal (High level) should be input to the pin at least 1 µs after the power-on.

3. Constant settings (Cin, Cs, Cb, ESR)

The characteristics of stray capacitance or parasitic capacitance according to the module configuration may affect the regulator characteristics. When using the device, investigate static and transient characteristics based on the actual operating conditions to set constants with sufficient margins.

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a moment. Do not exceed any of these ratings. Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or combustion. The equipment manufacturer should design so that no maximum rating value is exceeded.

Parameter	Symbol	Rating	Unit
Power Supply Voltage	V _{CC5}	-0.5 to 6.0	V
Input Voltage	V_{IN}	-0.5 to VCC5 + 0.5	V
Output Current (total)	ΣI_{OL}	100	mA
Output Current (total)	ΣI _{OH}	-100	mA
Power Dissipation (Ta=85°C)	P_{D}	600	mW
Soldering Temperature (10s)	T _{SOLDER}	260	°C
Storage Temperature	T _{STG}	-65 to 150	°C
Operation Temperature	T _{OPR}	-40 to 85	°C

Solderability

Test parameter	Test condition	Note
Solderability	(1) Use of Sn-37Pb solder bath Solder bath temperature = 230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux	Pass: Solderability rate until forming ≥ 95%
	(2) Use of Sn-3.0Ag-0.5Cu solder bath Solder bath temperature = 245°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux	

4.2 DC Electrical Characteristics

 V_{CC5} = 4.5V to 5.25V / fc = 16 to 20MHz / Ta = -40 to 85 $^{\circ}C$

Parameter	Symbol	Condition	Min	Max	Unit
Supply Voltage	V_{CC5}		4.5	5.25	V
Input Low Voltage P00 to P07(D0 to 7) PG0 to PG7 PL0 to PL3	V _{ILO}		-0.3	0.8	V
Input Low Voltage P00 to P07(PORT) P40 to P47	V _{IL1}		-0.3	0.3 × V _{CC5}	V
Input Low Voltage INT0 NMI RESET P70, P71, P73 to P75 PC0 to PC5 PD0 to PD7 PF0 to PF7	V _{IL2}		-0.3	0.25 × V _{CC5}	V
PM0 to PM4 P72, PN0 to PN6	V _{IL6}		-0.3	0.2 × 1/	V
Input Low Voltage AM0 to AM1 TEST0 to TEST1	V _{IL3}		-0.3	0.3 × V _{CC5}	V
Input Low Voltage X1, XT1 (Crystal)	V_{IL4}	Vcc3 = 3.3V	-0.3	0.2 × VCC3	V
Input Low Voltage XT1 (CR)	V _{IL5}	Vcc3 = 3.3V	-0.3	0.2 × VCC3	V
Input High Voltage P00 to P07(D0 to 7) PG0 to PG7 PL0 to PL3	V _{IHO}		2.2	V _{CC5} + 0.3	V
Input High Voltage P00 to P07 P40 to P47	V _{IH1}		0.7 × V _{CC5}	V _{CC5} + 0.3	V
Input High Voltage INT0 NMI RESET P70, P71, P73 to P75 PC0 to PC5 PD0 to PD7 PF0 to PF7 PM0 to PM4	V _{IH2}		0.75 × V _{CC5}	V _{CC5} + 0.3	٧
P72, PN0 to PN6	V _{IH6}		0.7 × V _{CC5}	$V_{CC5} + 0.3$	V
Input High Voltage AM0 to AM1 TEST0 to TEST1	V _{IH3}		V _{CC5} - 0.3	V _{CC5} + 0.3	V
Input High Voltage X1, XT1 (Crystal)	V _{IH4}	Vcc3 = 3.3V	0.8 × VCC3	VCC3+0.3	V
Input High Voltage XT1 (CR)	V _{IH5}	Vcc3 = 3.3V	0.7 × VCC3	VCC3+0.3	V

 V_{CC5} = 4.5V to 5.25V / fc = 16 to 20MHz / Ta = -40 to 85 $^{\circ}C$

Parameter	Symbol		Condition	Min	Max	Unit
Output Low Voltage	V_{OL}	$I_{OL} = 3$	3.0 mA		0.4	V
	V _{OH0}	I _{OH} = -	-400 μΑ	2.4		
	V _{OH1}	I _{OH} = -	-100 μΑ	0.75 × V _{CC5}		
Output High Voltage	V _{OH2}	I _{OH} = -	-20 μΑ	0.9 × V _{CC5}		V
	V _{OHn}	I _{OH} = -	-200 μA, PF6(TX) pin only	0.82 × V _{CC5}		
Input Leakage Current	ILI	0.0 ≤ \	/in ≤ V _{CC5} , Vin: Input voltage	0.02 (typ.)	± 5	μА
Output Leakage Current	I _{LO}	0.2 ≤ \	/in ≤ V _{CC5} -0.2, Vin: Input voltage	0.05 (typ.)	± 10	μА
Operating Current (Single Chip) (Note1)	I _{CC5}	V _{CC5} =	5.25V , X1=10MHz(Internal 20MHz)	70 (typ)	100	mA
	I _{CC5IDLE2}	IDLE2 Mode	V _{CC5} =5.25V, X1=10MHz (Internal 20MHz)		90	- mA
Operating Current	I _{CC5IDLE1}	IDLE1 Mode	V _{CC5} =5.25V, X1=10MHz (Internal 20MHz)		30	IIIA
(Stand-by) (Note2)	I _{CC5IDLE3}	IDLE3 Mode	V _{CC5} =5.25V, Ta = -40 to 85 °C V _{CC5} =5.25V, Ta = -10 to 55 °C		220 140	μА
	I _{CC5STOP}	STOP Mode	V _{CC5} =5.25V, Ta = -40 to 85 °C V _{CC5} =5.25V, Ta = -10 to 55 °C		200 120	μА
Stand-by Voltage	V _{STB5}		< V _{CC5} , V _{CC5} , V _{IH2} < V _{CC5} , V _{IH3} < V _{CC5}	3.0	5.25	V
	R _{RST}	RESE	T			
Pull-up Resistor	R _{CLK}	CLK		60	220	ΚΩ
	R _{REGEN}	REGE	N	<u> </u>		
Schmitt Width	V _{TH}		NMI , RESET , P70 to P75, PC0 to PC5, pPD7, PF0 to PF7, PM0 to PM4, PN0 to	0.4	1.0 (typ.)	V

Note 1: Value when the external bus is not operating.

Note 2: $I_{CC5IDLE3}$ and $I_{CC5STOP}$ are values when the voltage detection circuit for the RAM controller is not operating. (RAMCR <RAMSTB> = 0)

4.3 AC Electrical Characteristics

Read Cycle

 V_{CC5} = 4.5 to 5.25 V / fc = 16 to 20 MHz / Ta = -40 to 85°C

No.	Parameter	Symbol	Min	Max	20MHz	16MHz	Unit
1	Oscillator frequency (X1/X2)	tosc	100	125	100	125	ns
2	System clock cycle period (= T)	tcyc	50	62.5	50	62.5	ns
3	CLK pulse width low	t _{CL}	0.5 × T – 15		10	16	ns
4	CLK pulse width high	t _{CH}	0.5 × T – 15		10	16	ns
5-1	A0-A23 transition to D0-D7 data in at 0 wait state	t _{AD}		2.0 × T – 50	50	75	ns
5-2	A0-A23 transition to D0-D7 data in at 1 wait state	t _{AD3}		3.0 × T – 50	100	138	ns
6-1	RD asserted to D0-D7 data in at 0 wait state	t _{RD}		1.5 × T – 45	30	49	ns
6-2	RD asserted to D0-D7 data in at 1 wait state	t _{RD3}		$2.5\times T-45$	80	111	ns
7-1	RD pulse width low at 0 wait state	t _{RR}	1.5 × T – 20		55	74	ns
7-2	RD pulse width low at 1 wait state	t _{RR3}	$2.5\times T-20$		105	136	ns
8	A0-A23 valid to RD asserted	t _{AR}	$0.5 \times T - 20$		5	11	ns
9	RD asserted to CLK low	t _{RK}	$0.5 \times T - 20$		5	11	ns
10	A0-A23 transition to D0-D7 hold	t _{HA}	0		0	0	ns
11	RD negated to D0-D7 hold	tHR	0		0	0	ns
12	WAIT setup time	t _{TK}	15		15	15	ns
13	WAIT hold time	t _{KT}	5		5	5	ns

Write Cycle

 $V_{CC5} = 4.5 \text{ to } 5.25 \text{ V} / \text{fc} = 16 \text{ to } 20 \text{ MHz} / \text{Ta} = -40 \text{ to } 85^{\circ}\text{C}$

No.	Parameter	Symbol	Min	Max	20MHz	16MHz	Unit
1	Oscillator frequency (X1/X2)	tosc	100	125	100	125	ns
2	System clock cycle period	tcyc	50	62.5	50	62.5	ns
3	CLK pulse width low	t _{CL}	0.5×T – 15		10	16	ns
4	CLK pulse width high	t _{CH}	0.5 × T – 15		10	16	ns
5-1	D0-D7 valid to WR negated at 0 wait state	t _{DW}	1.25 × T – 35		28	43	ns
5-2	D0-D7 valid to WR negated at 1 wait state	t _{DW3}	$2.25\times T-35$		78	106	ns
6-1	WR pulse width low at 0 wait state	t _{WW}	$1.25\times T-30$		33	48	ns
6-2	WR pulse width low at 1 wait state	t _{WW3}	$2.25\times T-30$		83	111	ns
7	A0-A23 transition to WR asserted	t _{AW}	$0.5\times T-20$		5	11	ns
8	WR asserted to CLK low	twĸ	$0.5 \times T - 20$		5	11	ns
9	WR negated to A0-A23 hold	t _{WA}	$0.25 \times T - 5$		8	11	ns
10	WR negated to D0-D7 hold	t _{WD}	$0.25 \times T - 5$		8	11	ns
11	WAIT setup time	t _{TK}	15		15	15	ns
12	WAIT hold time	tĸT	5		5	5	ns
13	RD negated to D0-D7 out	t _{RDO}	1.25 × T – 35		20	26	ns

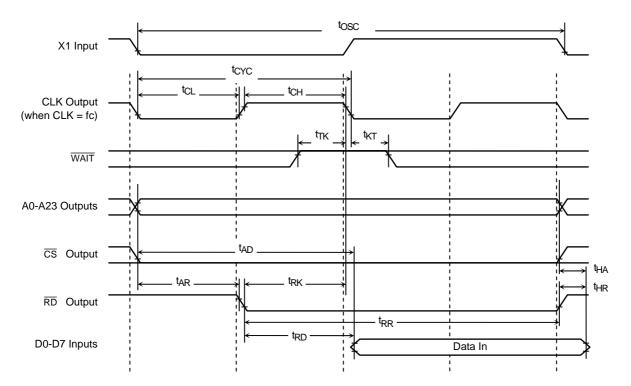
AC test conditions:

Output conditions of the D0 to D7, A0 to A7, A8 to A15, A16 to A23, $\overline{\text{RD}}$ and $\overline{\text{WR}}$ pins:

High = 2.0 V, Low = 0.8 V, CL = 50 pF

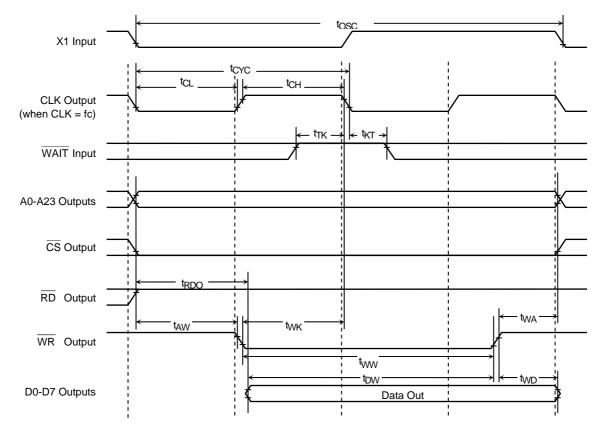
Output conditions of pins other than the above-mentioned ones:

High = 2.0 V, Low = 0.8 V, CL = 50 pF

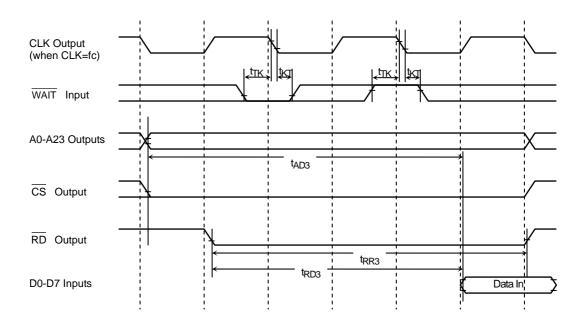

Input conditions of the P00 to P07 (D0 – D7) pins:

High = 2.4 V, Low = 0.45 V, CL = 50 pF

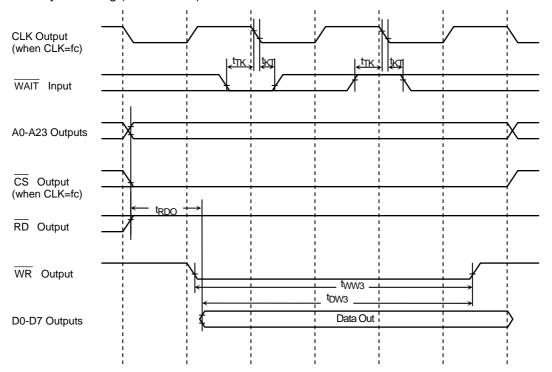
Input conditions of pins other than the above-mentioned ones:


 $High = 0.8 \times V_{CC5}$, $Low = 0.2 \times V_{CC5}$, CL = 50 pF

(1) Read Cycle Timing (0 Wait State)


Note: The signals other than the X1 signal are derived from the X1 signal. Thus, certain timing delays occur in the generation of these signals. Since these delay times vary depending on each sample device, the phase differences between the X1 signal and the other signals cannot be specified. The phase relationship shown in the above timing diagram is only an example.

(2) Write Cycle Timing (0 Wait State)



Note: The signals other than the X1 signal are derived from the X1 signal. Thus, certain timing delays occur in the generation of these signals. Since these delay times vary depending on each sample device, the phase differences between the X1 signal and the other signals cannot be specified. The phase relationship shown in the above timing diagram is only an example.

(3) Read Cycle Timing (1 Wait State)

(4) Write Cycle Timing (1 Wait State)

4.4 AD Converter Characteristics

 V_{CC5} = 4.5V to 5.25V / fc = 16 to 20MHz / Ta = -40 to 85 °C

Parameter	Symbol	Min	Тур.	Max	Unit
Analog reference voltage (+)	V_{REFH}	V _{CC5} - 0.2	V _{CC5}	V _{CC5}	
Analog reference voltage (-)	V_{REFL}	GND	GND	GND	
Supply voltage for AD converter	AV _{CC}	V _{CC5} - 0.2	V _{CC5}	V _{CC5}	V
Ground for AD converter	AVSS	GND	GND	GND	
Analog input voltage	AVIN	V_{REFL}		V _{REFH}	
Supply current for analog reference voltage <vrefon> = 1</vrefon>			0.8	1.2	mA
Supply current for analog reference voltage <vrefon> = 0</vrefon>	REF		0.02	5	μА
Total error (excluding quantization error)	E _T			±3.0	LSB

Note: "LSB" is a unit that represents the resolution of the AD converter.

 ± 3 LSB = $3 \times (V_{REFH} - V_{REFL})/1024 \approx \pm 15$ mV $(V_{REFH} = 5.0 \text{ V}, V_{REFL} = 0.0 \text{ V})$

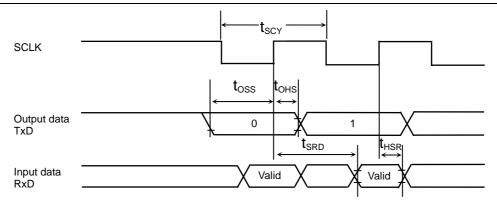
4.5 Event Counters (TI0, TI4, TI8, TI9, TIA, TIB)

 $V_{CC5} = 4.5V$ to 5.25V / fc = 16 to 20MHz / Ta = -40 to 85 °C

Parameter	Symbol	Variable		20MHz		16MHz		Unit
Faiametei	Symbol	Min	Max	Min	Max	Min	Max	Offic
Clock cycle period	t_{VCK}	8T + 100		500		600		ns
Clock pulse width low	t _{VCKL}	4T + 40		240		290		ns
Clock pulse width high	t _{VCKH}	4T + 40		240		290		ns

4.6 Serial Channel Timing

(1) SCLK Input mode (I/O Interface mode)


 $V_{CC5} = 4.5 \text{ V}$ to 5.25 V / fc = 16 to 20 MHz / Ta = -40 to 85°C

Parameter	Symbol	Variable		20MHz		16N	Unit	
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Offic
SCLK Cycle	t _{SCY}	16T		8.0		1.0		μS
Output Data → SCLK Rise	t _{OSS}	t _{SCY} /2-4T -110		90		140		
SCLK Rise → Output Data Hold	t _{OHS}	t _{SCY} /2+2T		500		625		ns
SCLK Rise → Input Data Hold	t _{HSR}	3T+10		160		197		
SCLK Rise → Input Data Valid	t _{SRD}		t _{SCY}		800		1000	

(2) SCLK output mode (I/O interface mode)

 V_{CC5} = 4.5 V to 5.25 V / fc = 16 to 20 MHz / Ta = -40 to 85°C

Parameter	Symbol	Vari	20MHz		16MHz		Unit	
raiametei	Symbol	Min	Max	Min	Max	Min	Max	Offic
SCLK Cycle (programmable)	t _{SCY}	16T	8192T	0.8	409.6	1.0	512	μS
Output Data → SCLK Rise	toss	t _{SCY} / 2 – 40		360		460		
SCLK Rise → Output Data Hold	tons	t _{SCY} / 2 – 40		360		460		ns
SCLK Rise → Input Data Hold	t _{HSR}	0		0		0		115
SCLK Rise → Input Data Valid	t _{SRD}		t _{SCY} -T-180		570		758	

(3) SCLK input mode (UART mode)

 V_{CC5} = 4.5 V to 5.25 V / fc = 16 to 20 MHz / Ta = -40 to 85°C

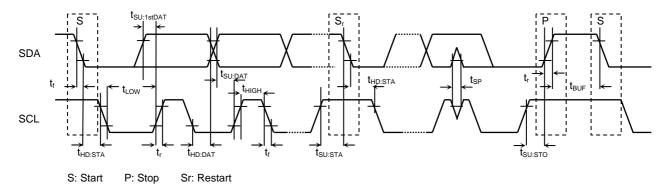
Parameter	Symbol	Vari	20M	Hz	16N	Unit		
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Offic
SCLK Cycle	T_{SCY}	4T + 20		220		270		
SCLK Low level Pulse width	T _{SCYL}	2T + 5		105		130		ns
SCLK High level Pulse width	T _{SCYH}	2T + 5		105		130		

4.7 Interrupt Operation

 V_{CC5} = 4.5 V to 5.25 V / fc = 16 to 20 MHz / Ta = -40 to 85°C

Parameter	Symbol	Variable		20MHz		16MHz		Unit
rarameter	Syllibol	Min	Max	Min	Max	Min	Max	Offic
NMI , INTO Low Width	T _{INTAL}	4T		200		250		
NMI , INTO High Width	T _{INTAH}	4T		200		250		
WUINT0 to WUINT7, INT1 to INT7 Low Width	T _{INTBL}	8T + 100		500		600		ns
WUINT0 to WUINT7, INT1 to INT7 High Width	T _{INTBH}	8T + 100		500		600		

4.8 Serial Bus Interface


 V_{CC5} = 4.5 V to 5.25 V / fc = 16 to 20 MHz / Ta = -40 to 85°C

				fc = 2	20 MHz			
Parameter	Symbol		KHz 0>=1000		KHz 0>=1111	<sck3:0>=0</sck3:0>	(Note 2)	Unit
		Min	Max	Min	Max	Min	Max	
SCL clock frequency	f_{SCL}	0	400	0	100	0	fc/(2 ⁿ +8)	KHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD:STA}	650		4500		2 ^{n_1} /fc		
Low period of the SCL clock	t_{LOW}	1300		4700		2 ^{n_1} /fc		
High period of the SCL clock	t _{HIGH}	600		4000		(2 ⁿ⁻¹ +8)/fc		
Set-up time for a repeated START condition	t _{SU:STA}	By so	ftware	By so	ftware	By so	ftware	
Data hold time	t _{HD:DAT}	0	900	0	3450	0	6/fc	
Data set-up time	t _{SU:DAT}	100		250		(2 ⁿ⁻¹ -6)/fc		ns
Data set-up time (The case in the first bit after transfer)	t _{SU:1stDAT}	100		250		(2 ⁿ⁻¹ -12)/fc		113
Rise time of both SDA and SCL signals (Note 1)	t _r		300 (Receive)		1000 (Receive)		-	
Fall time of both SDA and SCL signals	t _f		300		300		_	
Set-up time for STOP condition	t _{SU:STO}	950		4200		$(2^{n-1}+12)/fc$		
Bus free time between a STOP and START condition	t _{BUF}	By so	ftware	By so	ftware	By sof	ftware	
Capacitive load for each bus line	C _b		400		400		400	pF
Noise margin at the Low level for each connected device (including hysteresis)	V_{nL}	0.2×V _{CC5}		0.2×V _{CC5}		0.2×V _{CC5}		V
Noise margin at the High level for each connected device (including hysteresis)	V_{nH}	0.2×V _{CC5}		0.2×V _{CC5}		0.2×V _{CC5}		V
Pulse width of spikes which must be suppressed by the input filter	t _{SP}	0	50	n/a	n/a	n/a	n/a	ns

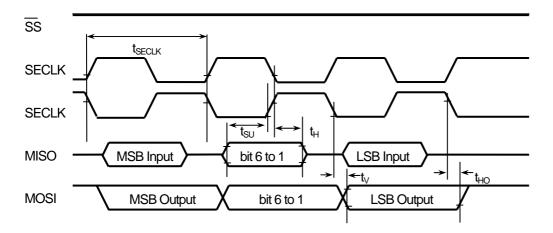
Note 1: The above values are referred to $V_{\mbox{\scriptsize IHmin}}$ and $V_{\mbox{\scriptsize ILmax}}.$

Note 2: The values for $\langle SCK | 3:0 \rangle = 0011$ to 0110 (n = 8 to 11) include the t_f f and t_r periods.

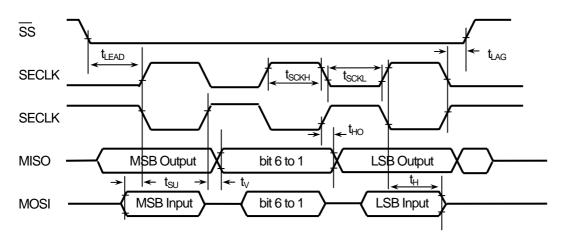
Note 3: n/a: Not defined

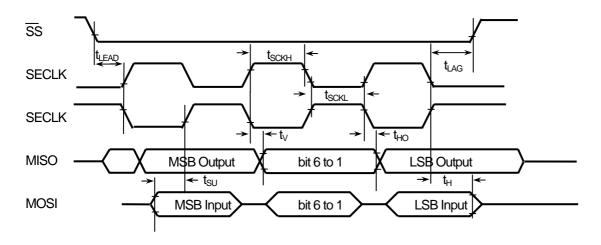


4.9 Serial Expansion Interface (SEI)

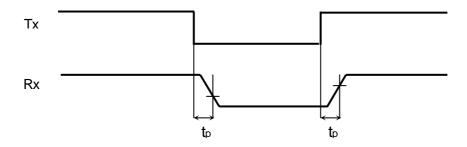

 V_{CC5} = 4.5 V to 5.25 V / fc = 16 to 20 MHz / Ta = -40 to $85^{\circ}C$

Symbol	Parameter	Varia	able	20N	lHz	Unit
Symbol	i didilietei	Min	Max	Min	Max	Offic
t SECLK	SECLK Cycle	5T	40T	250	2000	ns
t LEAD	SS fall → SECLK	4T		200		ns
t _{LAG}	SECLK → SS rise	4T		200		ns
t SCKH	SECLK High Pulse Width	t SECLK /2-9		116		ns
t SCKL	SECLK Low Pulse Width	t SECLK /2-9		116		ns
t _{SU}	Input Data Set-up	t SECLK /4-10		52		ns
t _H	Input Data Hold	t SECLK /4		62		ns
t _V	Output Data Valid		t SECLK /4		62	ns
t _{HO}	Output Data Hold	0		0		ns


a) SEI master (CPHA = 0)

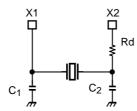

b) SEI master (CPHA = 1)

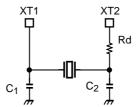
c) SEI slave (CPHA = 0)


d) SEI slave (CPHA = 1)

4.10 CAN Controller

 V_{CC5} = 4.5 V to 5.25 V / fc = 16 to 20 MHz / Ta = -40 to $85^{\circ}C$


Symbol	Parameter	Vari	able	20MHz		Unit
	raiametei	Min	Max	Min	Max	Offic
t _{CCLK}	CAN Clock period	2T		100		ns
t_P	Tx edge → Rx Input		2t _{CCLK} -20		180	ns



4.11 Recommended Oscillator Circuits

The following shows recommended oscillator circuits for the TMP92CD54I.

(1) Example resonator connections

- (a) Connection with High-frequency oscillator
- (b) Connection with Low-frequency oscillator

Figure 4.11.1 Oscillation Circuits

Note: The load capacitance on the oscillator connection pins is the sum of C1 and C2 in the oscillator circuit (or incorporated in a resonator) and stray board capacitance. Since the total load capacitance varies with the board layout, the resonator might fail to work properly. To prevent this problem, the board traces near the oscillator circuit should be as short as possible. It is recommended to evaluate the oscillator using the actual application board.

(2) Recommended ceramic resonators

The TMP92FD54AI high-frequency oscillator circuit has been evaluated by Murata Manufacturing Co., Ltd. For details, please contact your Murata representative.

Figure 4.11.1 shows the recommended circuit constants for the ceramic resonator manufactured by Murata.

Table 4.11.1 Recommended ceramic resonator for the TMP92CD54AI (manufactured by Murata))

Oscillation				Parar	meter		Operating	Condition	
Frequency [MHz]	Re	esonator Part Number	C1 [pF] (Note 1)	C2 [pF] (Note 1)	Rf [Ω]	Rd [Ω]	Voltage [V]	Temperature [°C]	
8.0	SMD	CSTCE8M00G15C()-R0	(33)	(33)	Open	330	4.5 to 5.25	40 to 95	
10.0	SMD	CSTCE10M0G15C()-R0	(33)	(33)	Open	330	4.5 to 5.25	–40 to 85	

Note 1: Enclosed in parentheses are the built-in load capacitor values.

Note 2: Part numbers and specifications of resonators manufactured by Murata are subject to change without notice. For details, please visit Murata's website at http://www.murata.co.jp.

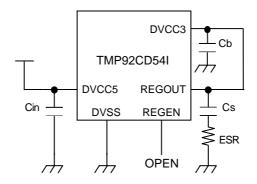
4.12 Voltage Regulator

 V_{CC5} = 4.5 V to 5.25 V / fc = 16 to 20 MHz / Ta = -40 to $85^{\circ}C$

Parameter Symbol		Symbol	Condition	Min.	Тур.	Max.	Unit
Input \	/oltage	V_{CC5}	Include ripple fluctuation voltage defined as Vp-p	4.5	5.0	5.25	V
	Peak-to-Peak	Vp-p	Ripple frequency ≤ 100Hz (Sine-wave)	-	0	0.75	V
	voltage		Ripple frequency > 100Hz (Sine-wave)	=	0	0.3	V
	(ripple fluctuation voltage) Note)		All Ripple frequency (except for Sine-wave)	-	0	0.2	V
Output Voltage REGOUT		REGOUT	$4.5 \le Vin \le 5.25$, ILoad = 100mA (Vin = V_{CC5}) Ta = -40 to 85°C	3.0	3.3	3.6	V
Output Current Iro		Iro	Vin – REGOUT = 1.0 V Ta = –40 to 85°C	0	-	150	mA
Quieso	cent Current	Iq	ILoad ≤ 10μA, Ta = −40 to 85°C	-	-	100	μΑ
lq1		lq1	10μA < ILoad < 100mA, Ta = 25°C	-	-	800	μΑ
		lop	ILoad = 150mA, Ta = -40 to 85°C	-	-	10	mA
Standby Current Is R		Is	REGEN = 0 (Regulator Only)	-	0.1	0.2	μΑ

$0.5[\Omega] \leq \text{ESR} \leq 5.0[\Omega]$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Stabilization capacitor	Cs	Cb = 10 μ F, ESR = 4.7 Ω	0.1	=	10	μF
Bypass capacitor	Cb	Cs = 10 μ F, ESR = 4.7 Ω (Cs \geq Cb)	0.1	_	10	μF
Input capacitor	Cin (Note)	Cs = 10 μ F, ESR = 4.7 Ω	4.7	_	22	μF
Equivalent Series Resistor	ESR	Cs = 10 μ F, Cb = 0.1 μ F	0.5	-	5	Ω


$0.5[\Omega] \leq \text{ESR} \leq 50[\Omega]$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Stabilization capacitor	Cs	Cb = 0.6 μ F, ESR = 47 Ω	0.1	-	10	μF
Bypass capacitor	Cb	Cs = 10 μ F, ESR = 47 Ω (Cs \geq Cb)	0.6	_	10	μF
Input capacitor	Cin (Note)	Cs = 10 μ F, ESR = 47 Ω	4.7	-	22	μF
Equivalent Series Resistor	ESR	$Cs = 10 \mu F, Cb = 0.6 \mu F$	0.5	=	50	Ω

$0.5[\Omega] \leq \text{ESR} \leq 100[\Omega]$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Stabilization capacitor	Cs	Cb = 1.0 μ F, ESR = 100 Ω	0.1	=	10	μF
Bypass capacitor	Cb	Cs = 10 μ F, ESR = 100 Ω (Cs \geq Cb)	1.0	_	10	μF
Input capacitor	Cin (Note)	Cs = 10 μ F, ESR = 100 Ω	4.7	-	22	μF
Equivalent Series Resistor	ESR	Cs = 10 μF, Cb = 1.0 μF	0.5	-	100	Ω

Note: Tantalum capacitors are recommended.

5. Summary of Special Function Registers

Special function registers (SFRs) are control registers for input/output ports and peripheral units. They are allocated to 1024-byte address space from 000000H to 0003FFH.

- (1) Input/output ports
- (2) 8-bit timers
- (3) 16-bit timers
- (4) Serial channels
- (5) Serial expansion interface
- (6) Interrupt controller
- (7) DMA controller
- (8) Control registers
- (9) AD converter
- (10) Memory controller
- (11) Serial bus interface controller
- (12) CAN controller
- (13) RTC controller

Table format

Symbol	Name	Address	7	6	5	4	3	2	1	0	
											→ Bit Symbol
											→ Read/Write
											→ Initial value after reset
											→ Remarks

Symbol definitions

R/W: CPU read and write access allowed
R: Only CPU read access allowed
W: Only CPU write access allowed

R/S: CPU read access and setting(Note) allowed R/C: CPU read access and clearing(Note) allowed

RMW-prohibited: Read-modify-write not allowed

(Prohibited instructions: RES/SET/TSET/CHG/STCF/ANDCF/ORCF/XORCF/etc.)

(Reserved): Cannot be set

Note: R/S and R/C bits are set or cleared when the CPU writes a 1 to them.

Table 5.1 I/O Register Address Maps (1)

[1] Port

ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME
0000H	P0	0010H	P4	0020H	(Reserved)	0030H	PC
1H	(Reserved)	11H	(Reserved)	21H	(Reserved)	31H	(Reserved)
2H	P0CR	12H	P4CR	22H	(Reserved)	32H	PCCR
3H	P0FC	13H	P4FC	23H	(Reserved)	33H	PCFC
4H	(Reserved)	14H	(Reserved)	24H	(Reserved)	34H	PD
5H	(Reserved)	15H		25H	(Reserved)	35H	(Reserved)
6H	(Reserved)	16H		26H	(Reserved)	36H	PDCR
7H	(Reserved)	17H		27H	(Reserved)	37H	PDFC
8H	(Reserved)	18H	(Reserved)	28H	(Reserved)	38H	(Reserved)
9H	(Reserved)	19H	(Reserved)	29H	(Reserved)	39H	(Reserved)
AH	(Reserved)	1AH	(Reserved)	2AH	(Reserved)	3AH	(Reserved)
BH	(Reserved)	1BH	(Reserved)	2BH	(Reserved)	3BH	(Reserved)
CH	(Reserved)	1CH	P7	2CH		3CH	PF
DH	(Reserved)	1DH	(Reserved)	2DH	(Reserved)	3DH	(Reserved)
EH	(Reserved)	1EH	P7CR	2EH	(Reserved)	3EH	PFCR
FH	(Reserved)	1FH	P7FC	2FH	(Reserved)	3FH	PFFC

[2] SEI

ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME
0040H	PG	0050H	(Reserved)	0060H	SECR0	0070H	(Reserved)
41H	(Reserved)	51H	(Reserved)	61H	SESR0	71H	(Reserved)
42H	(Reserved)	52H	(Reserved)	62H	SEDR0	72H	(Reserved)
43H	(Reserved)	53H	(Reserved)	63H	(Reserved)	73H	(Reserved)
44H	(Reserved)	54H	PL	64H	(Reserved)	74H	(Reserved)
45H	(Reserved)	55H	(Reserved)	65H	(Reserved)	75H	(Reserved)
46H	(Reserved)	56H	(Reserved)	66H	(Reserved)	76H	(Reserved)
47H	(Reserved)	57H	(Reserved)	67H	(Reserved)	77H	(Reserved)
48H	(Reserved)	58H	PM	68H	(Reserved)	78H	(Reserved)
49H	(Reserved)	59H	PMODE	69H	(Reserved)	79H	(Reserved)
4AH	(Reserved)	5AH	PMCR	6AH	(Reserved)	7AH	(Reserved)
4BH	(Reserved)	5BH	PMFC	6BH	(Reserved)	7BH	(Reserved)
4CH	(Reserved)	5CH	PN	6CH	(Reserved)	7CH	(Reserved)
4DH	(Reserved)	5DH	PNODE	6DH	(Reserved)	7DH	(Reserved)
4EH	(Reserved)	5EH	PNCR	6EH	(Reserved)	7EH	(Reserved)
4FH	(Reserved)	5FH	PNFC	6FH	(Reserved)	7FH	(Reserved)

Note: Do not access reserved registers.

Table 5.2 I/O Register Address Map (2)

[3] 8-bit timers:

[4] 16-bit timers:

[0] 0 5.0	
ADDRESS	NAME
0080H	TRUN01
81H	(Reserved)
82H	TREG0
83H	TREG1
84H	TMOD01
85H	TFFCR1
86H	(Reserved)
87H	(Reserved)
88H	TRUN23
89H	(Reserved)
8AH	TREG2
8BH	TREG3
8CH	TMOD23
8DH	TFFCR3
8EH	(Reserved)
8FH	(Reserved)

ADDRESS	NAME
0090H	TRUN45
91H	(Reserved)
92H	TREG4
93H	TREG5
94H	TMOD45
95H	TFFCR5
96H	(Reserved)
97H	(Reserved)
98H	TRUN67
99H	(Reserved)
9AH	TREG6
9BH	TREG7
9CH	TMOD67
9DH	TFFCR7
9EH	(Reserved)
9FH	(Reserved)

ADDRESS	NAME
00A0H	TRUN8
A1H	(Reserved)
A2H	TMOD8
A3H	TFFCR8
A4H	(Reserved)
A5H	(Reserved)
A6H	(Reserved)
A7H	(Reserved)
A8H	TREG8L
A9H	TREG8H
AAH	TREG9L
ABH	TREG9H
ACH	CAP8L
ADH	CAP8H
AEH	CAP9L
AFH	CAP9H

ADDRESS	NAME
00B0H	TRUNA
B1H	(Reserved)
B2H	TMODA
взн	TFFCRA
B4H	(Reserved)
B5H	(Reserved)
В6Н	(Reserved)
B7H	(Reserved)
B8H	TREGAL
В9Н	TREGAH
BAH	TREGBL
BBH	TREGBH
BCH	CAPAL
BDH	CAPAH
BEH	CAPBL
BFH	CAPBH

[5] SIO:

[6] INTC:

ADDRESS	NAME
00C0H	SC0BUF
C1H	SC0CR
C2H	SC0MOD0
C3H	BR0CR
C4H	BR0ADD
C5H	SC0MOD1
C6H	(Reserved)
C7H	(Reserved)
C8H	SC1BUF
C9H	SC1CR
CAH	SC1MOD0
CBH	BR1CR
CCH	BR1ADD
CDH	SC1MOD1
CEH	(Reserved)
CFH	(Reserved)

ADDRESS	NAME
00D0H	INTE12
D1H	INTE34
D2H	INTE56
D3H	INTE7
D4H	INTET01
D5H	INTET23
D6H	INTET45
D7H	INTET67
D8H	INTET89
D9H	INTETAB
DAH	INTETO8A
DBH	INTES0
DCH	INTES1
DDH	INTECRT
DEH	INTECG
DFH	INTESEE0

ADDRESS	NAME
00E0H	INTESED0
E1H	INTERTC
E2H	INTESB2
E3H	INTESB0
E4H	INTESB1
E5H	INTMK0
E6H	INTMK1
E7H	INTMK2
E8H	INTMK3
E9H	INTMK4
EAH	INTMK5
EBH	(Reserved)
ECH	WUPFLAG
EDH	WUPMOD
EEH	WUPEDGE
EFH	WUPMASK

ADDRESS	NAME
00F0H	INTE0AD
F1H	INTETC01
F2H	INTETC23
F3H	INTETC45
F4H	INTETC67
F5H	(Reserved)
F6H	IIMC
F7H	INTNMWDT
F8H	INTCLR
F9H	(Reserved)
FAH	(Reserved)
FBH	(Reserved)
FCH	(Reserved)
FDH	(Reserved)
FEH	(Reserved)
FFH	(Reserved)

Table 5.3 I/O Register Address Map (3)

[6] INTC:

[7] WDT:

[8] 10-bit ADC:

ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME
0100H	DMA0V	0110H	WDMOD	0120H	ADREG0L	0130H	ADREG8L
101H	DMA1V	111H	WDCR	121H	ADREG0H	131H	ADREG8H
102H	DMA2V	112H	(Reserved)	122H	ADREG1L	132H	ADREG9L
103H	DMA3V	113H	(Reserved)	123H	ADREG1H	133H	ADREG9H
104H	DMA4V	114H	(Reserved)	124H	ADREG2L	134H	ADREGAL
105H	DMA5V	115H	(Reserved)	125H	ADREG2H	135H	ADREGAH
106H	DMA6V	116H	(Reserved)	126H	ADREG3L	136H	ADREGBL
107H	DMA7V	117H	(Reserved)	127H	ADREG3H	137H	ADREGBH
108H	DMAB	118H	RTCCR	128H	ADREG4L	138H	ADMOD0
109H	DMAR	119H	RTCFC	129H	ADREG4H	139H	ADMOD1
10AH	CLKMOD	11AH	(Reserved)	12AH	ADREG5L	13AH	(Reserved)
10BH	(Reserved)	11BH	(Reserved)	12BH	ADREG5H	13BH	(Reserved)
10CH	(Reserved)	11CH	(Reserved)	12CH	ADREG6L	13CH	(Reserved)
10DH	(Reserved)	11DH	(Reserved)	12DH	ADREG6H	13DH	(Reserved)
10EH	(Reserved)	11EH	(Reserved)	12EH	ADREG7L	13EH	(Reserved)
10FH	(Reserved)	11FH	(Reserved)	12FH	ADREG7H	13FH	(Reserved)

[9] MEMC:

[10] SBI:

ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME
0140H	(Reserved)	0150H	(Reserved)	0160H	(Reserved)	0170H	SBI0CR1
141H	(Reserved)	151H	(Reserved)	161H	(Reserved)	171H	SBI0DBR
142H	(Reserved)	152H	(Reserved)	162H	(Reserved)	172H	I2C0AR
143H	(Reserved)	153H	(Reserved)	163H	(Reserved)	173H	SBI0CR2 /SBI0SR
144H	(Reserved)	154H	(Reserved)	164H	(Reserved)	174H	SBI0BR0
145H	(Reserved)	155H	(Reserved)	165H	(Reserved)	175H	SBI0BR1
146H	(Reserved)	156H	(Reserved)	166H	(Reserved)	176H	(Reserved)
147H	(Reserved)	157H	(Reserved)	167H	(Reserved)	177H	(Reserved)
148H	BCSL	158H	(Reserved)	168H	(Reserved)	178H	SBI1CR1
149H	BCSH	159H	(Reserved)	169H	(Reserved)	179H	SBI1DBR
14AH	MAMR	15AH	(Reserved)	16AH	(Reserved)	17AH	I2C1AR
14BH	MSAR	15BH	(Reserved)	16BH	FSWE ^(Noté2)	17BH	SBI1CR2 /SBI1SR
14CH	(Reserved)	15CH	(Reserved)	16CH	(Reserved)	17CH	SBI1BR0
14DH	(Reserved)	15DH	(Reserved)	16DH	RAMCR	17DH	SBI1BR1
14EH	(Reserved)	15EH	(Reserved)	16EH	FLSR ^(Note2)	17EH	(Reserved)
14FH	(Reserved)	15FH	(Reserved)	16FH	(Reserved)	17FH	(Reserved)

Note: This register is contained only in the TMP92FD54AI. It does not exist in the TMP92CD54I.

Table 5.4 I/O Register Address Map (4)

[10] SBI:

ADDRESS	NAME	ADDRESS	NAME	ADDRESS	N/
0180H	SBI2CR1	0190H	(Reserved)	01A0H	(Reser
181H	SBI2DBR	191H	(Reserved)	1A1H	(Reser
182H	I2C2AR	192H	(Reserved)	1A2H	(Reser
183H	SBI2CR2 /SBI2SR	193H	(Reserved)	1A3H	(Reser
184H	SBI2BR0	194H	(Reserved)	1A4H	(Reser
185H	SBI2BR1	195H	(Reserved)	1A5H	(Reser
186H	(Reserved)	196H	(Reserved)	1A6H	(Reser
187H	(Reserved)	197H	(Reserved)	1A7H	(Reser
188H	(Reserved)	198H	(Reserved)	1A8H	(Reser
189H	(Reserved)	199H	(Reserved)	1A9H	(Reser
18AH	(Reserved)	19AH	(Reserved)	1AAH	(Reser
18BH	(Reserved)	19BH	(Reserved)	1ABH	(Reser
18CH	(Reserved)	19CH	(Reserved)	1ACH	(Reser
18DH	(Reserved)	19DH	(Reserved)	1ADH	(Reser
18EH	(Reserved)	19EH	(Reserved)	1AEH	(Reser
18FH	(Reserved)	19FH	(Reserved)	1AFH	(Reser

ADDRESS	NAME
01A0H	(Reserved)
1A1H	(Reserved)
1A2H	(Reserved)
1A3H	(Reserved)
1A4H	(Reserved)
1A5H	(Reserved)
1A6H	(Reserved)
1A7H	(Reserved)
1A8H	(Reserved)
1A9H	(Reserved)
1AAH	(Reserved)
1ABH	(Reserved)
1ACH	(Reserved)
1ADH	(Reserved)
1AEH	(Reserved)
1AFH	(Reserved)

ADDRESS	NAME
01B0H	(Reserved)
1B1H	(Reserved)
1B2H	(Reserved)
1B3H	(Reserved)
1B4H	(Reserved)
1B5H	(Reserved)
1B6H	(Reserved)
1B7H	(Reserved)
1B8H	(Reserved)
1B9H	(Reserved)
1BAH	(Reserved)
1BBH	(Reserved)
1BCH	(Reserved)
1BDH	(Reserved)
1BEH	(Reserved)
1BFH	(Reserved)

ADDRESS	NAME
01C0H	(Reserved)
1C1H	(Reserved)
1C2H	(Reserved)
1C3H	(Reserved)
1C4H	(Reserved)
1C5H	(Reserved)
1C6H	(Reserved)
1C7H	(Reserved)
1C8H	(Reserved)
1C9H	(Reserved)
1CAH	(Reserved)
1CBH	(Reserved)
1CCH	(Reserved)
1CDH	(Reserved)
1CEH	(Reserved)
1CFH	(Reserved)

ADDRESS	NAME
01D0H	(Reserved)
1D1H	(Reserved)
1D2H	(Reserved)
1D3H	(Reserved)
1D4H	(Reserved)
1D5H	(Reserved)
1D6H	(Reserved)
1D7H	(Reserved)
1D8H	(Reserved)
1D9H	(Reserved)
1DAH	(Reserved)
1DBH	(Reserved)
1DCH	(Reserved)
1DDH	(Reserved)
1DEH	(Reserved)
1DFH	(Reserved)

ADDRESS	NAME
01E0H	(Reserved)
1E1H	(Reserved)
1E2H	(Reserved)
1E3H	(Reserved)
1E4H	(Reserved)
1E5H	(Reserved)
1E6H	(Reserved)
1E7H	(Reserved)
1E8H	(Reserved)
1E9H	(Reserved)
1EAH	(Reserved)
1EBH	(Reserved)
1ECH	(Reserved)
1EDH	(Reserved)
1EEH	(Reserved)
1EFH	(Reserved)

ADDRESS	NAME
01F0H	(Reserved)
1F1H	(Reserved)
1F2H	(Reserved)
1F3H	(Reserved)
1F4H	(Reserved)
1F5H	(Reserved)
1F6H	(Reserved)
1F7H	(Reserved)
1F8H	(Reserved)
1F9H	(Reserved)
1FAH	(Reserved)
1FBH	(Reserved)
1FCH	(Reserved)
1FDH	(Reserved)
1FEH	(Reserved)
1FFH	(Reserved)

Table 5.5 I/O Register Address Map (5)

[11] CAN:

ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME
0200H	MB0MI0L	0210H	MB1MI0L	0220H	MB2MI0L	0230H	MB3MI0L
201H	MB0MI0H	211H	MB1MI0H	221H	MB2MI0H	231H	MB3MI0H
202H	MB0MI1L	212H	MB1MI1L	222H	MB2MI1L	232H	MB3MI1L
203H	MB0MI1H	213H	MB1MI1H	223H	MB2MI1H	233H	MB3MI1H
204H	MB0MCFL	214H	MB1MCFL	224H	MB2MCFL	234H	MB3MCFL
205H	MB0MCFH	215H	MB1MCFH	225H	MB2MCFH	235H	MB3MCFH
206H	MB0D0	216H	MB1D0	226H	MB2D0	236H	MB3D0
207H	MB0D1	217H	MB1D1	227H	MB2D1	237H	MB3D1
208H	MB0D2	218H	MB1D2	228H	MB2D2	238H	MB3D2
209H	MB0D3	219H	MB1D3	229H	MB2D3	239H	MB3D3
20AH	MB0D4	21AH	MB1D4	22AH	MB2D4	23AH	MB3D4
20BH	MB0D5	21BH	MB1D5	22BH	MB2D5	23BH	MB3D5
20CH	MB0D6	21CH	MB1D6	22CH	MB2D6	23CH	MB3D6
20DH	MB0D7	21DH	MB1D7	22DH	MB2D7	23DH	MB3D7
20EH	MB0TSVL	21EH	MB1TSVL	22EH	MB2TSVL	23EH	MB3TSVL
20FH	MB0TSVH	21FH	MB1TSVH	22FH	MB2TSVH	23FH	MB3TSVH

ADDRESS	NAME
0240H	MB4MI0L
241H	MB4MI0H
242H	MB4MI1L
243H	MB4MI1H
244H	MB4MCFL
245H	MB4MCFH
246H	MB4D0
247H	MB4D1
248H	MB4D2
249H	MB4D3
24AH	MB4D4
24BH	MB4D5
24CH	MB4D6
24DH	MB4D7
24EH	MB4TSVL
24FH	MB4TSVH

ADDRESS	NAME
0250H	MB5MI0L
251H	MB5MI0H
252H	MB5MI1L
253H	MB5MI1H
254H	MB5MCFL
255H	MB5MCFH
256H	MB5D0
257H	MB5D1
258H	MB5D2
259H	MB5D3
25AH	MB5D4
25BH	MB5D5
25CH	MB5D6
25DH	MB5D7
25EH	MB5TSVL
25FH	MB5TSVH

ADDRESS	NAME
0260H	MB6MI0L
261H	MB6MI0H
262H	MB6MI1L
263H	MB6MI1H
264H	MB6MCFL
265H	MB6MCFH
266H	MB6D0
267H	MB6D1
268H	MB6D2
269H	MB6D3
26AH	MB6D4
26BH	MB6D5
26CH	MB6D6
26DH	MB6D7
26EH	MB6TSVL
26FH	MB6TSVH

ADDRESS	NAME
0270H	MB7MI0L
271H	MB7MI0H
272H	MB7MI1L
273H	MB7MI1H
274H	MB7MCFL
275H	MB7MCFH
276H	MB7D0
277H	MB7D1
278H	MB7D2
279H	MB7D3
27AH	MB7D4
27BH	MB7D5
27CH	MB7D6
27DH	MB7D7
27EH	MB7TSVL
27FH	MB7TSVH

Table 5.6 I/O Register Address Map (6)

[11] CAN:

ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME
0280H	MB8MI0L	0290H	MB9MI0L	02A0H	MB10MI0L	02B0H	MB11MI0L
281H	MB8MI0H	291H	MB9MI0H	2A1H	MB10MI0H	2B1H	MB11MI0H
282H	MB8MI1L	292H	MB9MI1L	2A2H	MB10MI1L	2B2H	MB11MI1L
283H	MB8MI1H	293H	MB9MI1H	2A3H	MB10MI1H	2B3H	MB11MI1H
284H	MB8MCFL	294H	MB9MCFL	2A4H	MB10MCFL	2B4H	MB11MCFL
285H	MB8MCFH	295H	MB9MCFH	2A5H	MB10MCFH	2B5H	MB11MCFH
286H	MB8D0	296H	MB9D0	2A6H	MB10D0	2B6H	MB11D0
287H	MB8D1	297H	MB9D1	2A7H	MB10D1	2B7H	MB11D1
288H	MB8D2	298H	MB9D2	2A8H	MB10D2	2B8H	MB11D2
289H	MB8D3	299H	MB9D3	2A9H	MB10D3	2B9H	MB11D3
28AH	MB8D4	29AH	MB9D4	2AAH	MB10D4	2BAH	MB11D4
28BH	MB8D5	29BH	MB9D5	2ABH	MB10D5	2BBH	MB11D5
28CH	MB8D6	29CH	MB9D6	2ACH	MB10D6	2BCH	MB11D6
28DH	MB8D7	29DH	MB9D7	2ADH	MB10D7	2BDH	MB11D7
28EH	MB8TSVL	29EH	MB9TSVL	2AEH	MB10TSVL	2BEH	MB11TSVL
28FH	MB8TSVH	29FH	MB9TSVH	2AFH	MB10TSVH	2BFH	MB11TSVH

ADDRESS	NAME
02C0H	MB12MI0L
2C1H	MB12MI0H
2C2H	MB12MI1L
2C3H	MB12MI1H
2C4H	MB12MCFL
2C5H	MB12MCFH
2C6H	MB12D0
2C7H	MB12D1
2C8H	MB12D2
2C9H	MB12D3
2CAH	MB12D4
2CBH	MB12D5
2CCH	MB12D6
2CDH	MB12D7
2CEH	MB12TSVL
2CFH	MB12TSVH

ADDRESS	NAME
02D0H	MB13MI0L
2D1H	MB13MI0H
2D2H	MB13MI1L
2D3H	MB13MI1H
2D4H	MB13MCFL
2D5H	MB13MCFH
2D6H	MB13D0
2D7H	MB13D1
2D8H	MB13D2
2D9H	MB13D3
2DAH	MB13D4
2DBH	MB13D5
2DCH	MB13D6
2DDH	MB13D7
2DEH	MB13TSVL
2DFH	MB13TSVH

ADDRESS	NAME
02E0H	MB14MI0L
2E1H	MB14MI0H
2E2H	MB14MI1L
2E3H	MB14MI1H
2E4H	MB14MCFL
2E5H	MB14MCFH
2E6H	MB14D0
2E7H	MB14D1
2E8H	MB14D2
2E9H	MB14D3
2EAH	MB14D4
2EBH	MB14D5
2ECH	MB14D6
2EDH	MB14D7
2EEH	MB14TSVL
2EFH	MB14TSVH

ADDRESS	NAME
02F0H	MB15MI0L
2F1H	MB15MI0H
2F2H	MB15MI1L
2F3H	MB15MI1H
2F4H	MB15MCFL
2F5H	MB15MCFH
2F6H	MB15D0
2F7H	MB15D1
2F8H	MB15D2
2F9H	MB15D3
2FAH	MB15D4
2FBH	MB15D5
2FCH	MB15D6
2FDH	MB15D7
2FEH	MB15TSVL
2FFH	MB15TSVH

Table 5.7 I/O Register Address Map (7)

[11] CAN:

ADDRESS	NAME	ADDRESS	NAME	ADDRESS	NAME
0300H	MCL	0310H	LAMOL	0320H	GIFL
301H	MCH	311H	LAM0H	321H	GIFH
302H	MDL	312H	LAM1L	322H	GIML
303H	MDH	313H	LAM1H	323H	GIMH
304H	TRSL	314H	GAM0L	324H	MBTIFL
305H	TRSH	315H	GAM0H	325H	MBTIFH
306H	TRRL	316H	GAM1L	326H	MBRIFL
307H	TRRH	317H	GAM1H	327H	MBRIFH
308H	TAL	318H	MCRL	328H	MBIML
309H	TAH	319H	MCRH	329H	MBIMH
30AH	AAL	31AH	GSRL	32AH	CDRL
30BH	AAH	31BH	GSRH	32BH	CDRH
30CH	RMPL	31CH	BCR1L	32CH	RFPL
30DH	RMPH	31DH	BCR1H	32DH	RFPH
30EH	RMLL	31EH	BCR2L	32EH	CECL
30FH	RMLH	31FH	BCR2H	32FH	CECH

ADDRESS	NAME
0320H	GIFL
321H	GIFH
322H	GIML
323H	GIMH
324H	MBTIFL
325H	MBTIFH
326H	MBRIFL
327H	MBRIFH
328H	MBIML
329H	MBIMH
32AH	CDRL
32BH	CDRH
32CH	RFPL
32DH	RFPH
32EH	CECL
32FH	CECH

ADDRESS	NAME
0330H	TSPL
331H	TSPH
332H	TSCL
333H	TSCH
334H	(Reserved)
335H	(Reserved)
336H	(Reserved)
337H	(Reserved)
338H	(Reserved)
339H	(Reserved)
33AH	(Reserved)
33BH	(Reserved)
33CH	(Reserved)
33DH	(Reserved)
33EH	(Reserved)
33FH	(Reserved)

ADDRESS	NAME
0340H)
to	≻ (Reserved)
3FFH	J

(1) Input/output ports

Port0

Symbol	Name	Address	7	6	5	4	3	2	1	0		
			P07	P06	P05	P04	P03	P02	P01	P00		
DO	Port 0	00H				R	W					
P0	Register	ООП	0	0	0	0	0	0	0	0		
						Input/	Output					
	David O		P07C	P06C	P05C	P04C	P03C	P02C	P01C	P00C		
P0CR	Port 0	02H		W								
PUCK	Control	(no RMW)	0	0	0	0	0	0	0	0		
	Register	Register				0:Input	1:Output					
	D. II.		-	-	-	-	-	-	-	P0F		
DOEC	Port 0	03H								W		
P0FC	Function	(no RMW)	-	-	-	-	-	-	-	0		
	Register				0:F	ORT 1:Data	Bus(D7 to I	D0)				

Port4

Symbol	Name	Address	7	6	5	4	3	2	1	0			
			P47	P46	P45	P44	P43	P42	P41	P40			
P4	Port 4	10H		R/W									
P4	Register	100	0	0	0	0	0	0	0	0			
				Input/Output									
	Dord 4		P47C	P46C	P45C	P44C	P43C	P42C	P41C	P40C			
D40D	Port 4	I 12H		W									
P4CR	Control	(no RMW)	0	0	0	0	0	0	0	0			
	Register			0:Input 1:Output									
			P47F	P46F	P45F	P44F	P43F	P42F	P41F	P40F			
	Port 4	4011				\	N						
P4FC	Function	13H	0	0	0	0	0	0	0	0			
	Register	(no RMW)	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port			
			1:A7	1:A6	1:A5	1:A4	1:A3	1:A2	1:A1	1:A0			

P4CR	P4FC	P47	P46	P45	P44	P43	P42	P41	P40
0	0				Input	Port			
1	0				Outpu	ıt Port			
1	1				(Rese	erved)			
0	1		•		A7 t	o A0	•		•

Port7

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			-	-	P75	P74	P73	P72	P71	P70	
P7	Port 7	1CH					R	W			
Ρ/	Register	ICH	-	-	0	1	1	1	1	1	
							Input/	Output			
	Dawt 7		-	-	P75C	P74C	P73C	P72C	P71C	P70C	
Port 7					W						
P7CR	Control Register	(no RMW)	-	-	0	1	1	0	1	1	
	Register						0:Input	1:Output			
			-	-	P75F	P74F	P73F	P72F	P71F	P70F	
	Port 7						١	V			
P7FC	Function	1FH	-	-	0	0	0	0	0	0	
F1FC	Register	(no RMW)			0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	
	register				1: WAIT		1: CS	1:SI2	1: WR	1: RD	
								SCL2 Note			

Note: To switch the P72 output from C-MOS to open-drain output, set PNODE<ODE72> to 1.

PortC

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	-	PC5	PC4	PC3	PC2	PC1	PC0
PC	Port C	30H					R	W		
FC	Register	30П	-	-	0	0	0	0	0	0
							Input/	Output	_	
	David C		-	-	PC5C	PC4C	PC3C	PC2C	PC1C	PC0C
PCCR	Port C	32H			W					
PCCR	Control Register	(no RMW)	-	-	0	0	0	0	0	0
	Register						0:Input	1:Output	_	
			-	-	PC5F	PC4F	PC3F	PC2F	PC1F	PC0F
	Port C						١	V		
PCFC	Function	33H	-	-	0	0	0	0	0	0
FUFU	Register	(no RMW)			0:Port	0:Port	0:Port	0:Port	0:Port	0:Port
	Register				INT4	1:TO5	INT3	INT2	1:TO1	INT1
					1:TO7		TI4	1:TO3		TI0

PortD

Symbol	Name	Address	7	6	5	4	3	2	1	0
Symbol	INAITIC	Address	,	U	3	7	3		ı	U
			PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
PD	Port D	34H				R/	W			
PD	POILD	34⊓	0	0	0	0	0	0	0	0
						Input/0	Output			
	0 . 0		PD7C	PD6C	PD5C	PD4C	PD3C	PD2C	PD1C	PD0C
DDOD	Port D	36H				V	٧			
PDCR	Control	(no RMW)	0	0	0	0	0	0	0	0
	Register					0:Input	1:Output			
			PD7F	PD6F	PD5F	PD4F	PD3F	PD2F	PD1F	PD0F
			W							
	Dawt D		0	0	0	0	0	0	0	0
PDFC	Port D Function	37H	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port
PDFC	Register	(no RMW)	WUINT7	WUINT6	TIB	INT7	WUINT3	WUINT2	INT6	INT5
	Register		1:TOB	1:TOA	WUINT5	TIA	1:TO9	1:TO8	TI9	TI8
			A23	A22	1:A21	WUINT4	A19	A18	WUINT1	WUINT0
						1:A20			1:A17	1:A16

PDCR	PDFC	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
0	0	Input Port, WUINT7	Input Port, WUINT6	Input Port, TIB, WUINT5	Input Port, INT7, TIA, WUINT4	Input Port, WUINT3	Input Port, WUINT2	Input Port, INT6, TI9, WUINT1	Input Port, INT5, TI8, WUINT0
1	0				Outpu	ıt Port			
1	1	ТОВ	ТОА	TIB, WUINT5	TIA, INT7, WUINT4	TO9	TO8	TI9, INT6, WUINT1	TI8, INT5, WUINT0
0	1	A23	A22	A21	A20	A19	A18	A17	A16

PortF

Symbol	Name	Address	7	6	5	4	3	2	1	0		
			PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0		
PF	Port F	3CH				R/	W					
PF	POILE	зсп	0	0	0	0	0	0	0	0		
						Input/0	Output					
	Dawl E		PF7C	PF6C	PF5C	PF4C	PF3C	PF2C	PF1C	PF0C		
PFCR	Port F	3EH		W								
PFCR	Control Register	(no RMW)	0	0	0	0	0	0	0	0		
	Register			0:Input 1:Output								
			PF7F	PF6F	PF5F	PF4F	PF3F	PF2F	PF1F	PF0F		
	5 . 5		W									
DEEC	Port F	3FH	0	0	0	0	0	0	0	0		
PFFC	Function	(no RMW)	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port		
	Register		1:RX	1:TX	CTS1	1:RXD1	1:TXD1	CTS0	1:RXD0	1:TXD0		
					1:SCLK1			1:SCLK0				

PFCR	PFFC	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
0	0	Input Port, RX	Input Port	Input Port, SCLK1 (Input), CTS1	Input Port, RXD1	Input Port	Input Port, SCLK0 (Input), CTS0	Input Port, RXD0	Input Port
1	0				Outpu	ut Port			
1	1	RX	TX	SCLK1 (Output)	RXD1	TXD1	SCLK0 (Output)	RXD0	TXD0
0	1	RX	TX	Don't use this setting	RXD1	TXD1 (Open -Drain)	Don't use this setting	RXD0	TXD0 (Open -Drain)

PortG

Symbol	Name	Address	7	6	5	4	3	2	1	0		
	Dort C		PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0		
PG Port G	40H		R									
	Register					Inp	out					

PortL

Symbol	Name	Address	7	6	5	4	3	2	1	0
			ı	-	-	-	PL3	PL2	PL1	PL0
PL	Port L	54H						F	₹	
	Register		ı	-	ı	Ü		Inp	out	

PortM

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	-	-	PM4	PM3	PM2	PM1	PM0
DM	Port M	5011		•	•			R/W		•
PM	POR IVI	58H	ı	-	-	0	0	0	0	0
								Input/Outpu	t	
			-	-	-	-	ODEM3	ODEM2	ODEM1	-
	Port M							R/W		
	Open		-	-	-	-	0	0	0	-
PMODE	Drain	59H					PM3	PM2	PM1	
TWODE	Enable	3311					Output	Output	Output	
	Register						0:CMOS	0:CMOS	0:CMOS	
	rtogiotoi						1:Open	1:Open	1:Open	
							Drain	Drain	Drain	
	Port M		-	-	-	PM4C	PM3C	PM2C	PM1C	PM0C
PMCR	Control	5AH		1	T			W	1	T
· more	Register	(no RMW)	-	-	-	0	0	0	0	0
	. rog.oro.			1	I		0:	Input 1:Outp	out	ı
			-	-	-	PM4F	PM3F	PM2F	PM1F	PM0F
	Port M			1	T		1	W		1
PMFC	Function	5BH	-	-	-	0	0	0	0	0
I IVII C	Register	(no RMW)				0:Port	0:Port	0:Port	0:Port	0:Port
	register					1:SCK2	1:SECLK	1:MISO	1:MOSI	1: SS
							A11	A10	A9	A8

PMCR	PMFC	-	-	-	PM4	PM3	PM2	PM1	PM0
0	0	,	-	-	Input Port, SCK2 (Input)	Input Port	Input Port	Input Port	Input Port, SS
1	0		-				Output Port		
1	1	-	-	-	SCK2 (Output)	SECLK	MISO	MOSI	SS
0	1	-	-	-	Don't use this setting	A11	A10	A9	A8

PortN

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	PN6	PN5	PN4	PN3	PN2	PN1	PN0
PN	PORTN	5011					R/W			
PN	PORTN	5CH	ı	0	0	0	0	0	0	0
							Input/Outpu	t		
			ODE72	ODEN6	ODEN5	ODEN4	-	ODEN2	ODEN1	-
	Port N			R	W			R/	W	
	Open		0	0	0	0	-	0	0	-
PNODE	Drain	5DH	P72	PN6	PN5	PN4		PN2	PN1	
TNODE	Enable	JDIT	Output	Output	Output	Output		Output	Output	
	Register		0:CMOS	0:CMOS	0:CMOS	0:CMOS		0:CMOS	0:CMOS	
	rtogiotor		1:Open	1:Open	1:Open	1:Open		1:Open	1:Open	
			Drain	Drain	Drain	Drain		Drain	Drain	
	Port N	5EH	-	PN6C	PN5C	PN4C	PN3C	PN2C	PN1C	PN0C
PNCR	Control	SEIT			1	1	W	1	1	1
TNOK	Register	(no RMW)	-	0	0	0	0	0	0	0
	rtogiotor	(110 1111111)				0:1	nput 1:Out	put	1	,
			-	PN6F	PN5F	PN4F	PN3F	PN2F	PN1F	PN0F
				W			١	N		
	Port N	5FH	-	0	0	0	0	0	0	0
PNFC	Function			0:Port	0:Port	0:Port	0:Port	0:Port	0:Port	0:Port
	Register	(no RMW)		1:SO2	SI1	1:SO1	1:SCK1	SI0	1:SO0	1:SCK0
				SDA2	1:SCL1	SDA1	A12	1:SCL0	SDA0	
				A15	A14	A13				

PNCR	PNFC	1	PN6	PN5	PN4	PN3	PN2	PN1	PN0
0	0	-	Input Port	Input Port, SI1	Input Port	Input Port, SCK1 (Input)	Input Port, SI0	Input Port	Input Port, SCK0 (Input)
1	0	-				Output Port			
1	1	-	SO2/SD A2	SCL1	SO1/SD A1	SCK1 (Output)	SCL0	SO0/SD A0	SCK0 (Output)
0	1	-	A15	A14	A13	A12	Don'	t use this se	tting.

Note: To switch the P72 output from C-MOS to open-drain output, set PNODE<ODE72> to 1.

(2) 8-bit timers

8-bit timers 01, 23, 45, and 67

Symbol	Name	Address	7	6	5	4	3	2	1	0
			T0RDE	-	-	-	I2T01	T01PRUN	T1RUN	T0RUN
			R/W				R/W		R/W	
	8-bit		0	-		1	0	0	0	0
TRUN01	Timer01	80H	Double				IDLE2	8-bit Timer	Run/Stop Co	
	Run Register		Buffer				0:Stop	0:Stop & Cl	•	
	Register		0:Disable				1:Operate	1:Run (Cou		
			1:Enable				'	,	.,	
							-			
TREG0	8-bit Timer	82H				\ \				
	Register 0	(no RMW)				Unde	efined			
Ì							_			
TREG1	8-bit Timer	83H	***************************************				V			
	Register 1	(no RMW)				Unde	efined			
			T01M1	T01M0	PWM01	PWM00	T1CLK1	T1CLK0	T0CLK1	T0CLK0
	8-bit		1011111	R/W					TOOLIT	1002110
	Timer0,1		0	0	0	0	0	0	0	0
	Source		Operate mo		PWM cycle	U	Timer1 sou		Timer0 sou	
TMOD01	CLK	84H	00:8-bit Tim		00:reserved		00:T0TRG	ice clock	00:TI0	CE CIOCK
	& MODE		01:16-bit Tir		01:2 ⁶		00:1011KG 01:φT1		00.110 01: φT1	
	Register		10:8-bit PP0		10:2 ⁷		10: φT16		10: φT4	
			11:8-bit PW		11:2 ⁸		11: φT256		11: φT16	
Ì			-	-	-	-	TFF1C1	TFF1C0	TFF1IE	TFF1IS
								W		W
	Timer1	0511	-	-	-	-	1	1	0	0
TFFCR1	Flip-Flop Control	85H					00:Invert TFF1		TFF1	TFF1
	Register	(no RMW)					01:Set TFF		Invert	Invert
	rvegister						10:Clear TF	F1	0:Disable	0:Timer0
							11:Don't	are	1:Enable	1:Timer1
			T2RDE	-	-	-	I2T23	T23PRUN	T3RUN	T2RUN
	0.1.1		R/W				R/W		R/W	
	8-bit Timer23		0	-	-	-	0	0	0	0
TRUN23	Run	88H	Double				IDLE2	8-bit Timer	Run/Stop Co	ntrol
	Register		Buffer				0:Stop	0:Stop & Cl		
	rtogiotoi		0:Disable				1:Operate	1:Run (Cou	nt up)	
			1:Enable							
	8-bit Timer	8AH					-			
TREG2	Register 2	(no RMW)				V	٧			
	rtogiotoi 2	(no rawy)				Unde	efined			
	Q hit Timor	8BH	-							
TREG3	8-bit Timer Register 3	(no RMW)				١	V			
	rregister 5	(110 IXIVIVV)				Unde	efined			
			T23M1	T23M0	PWM21	PWM20	T3CLK1	T3CLK0	T2CLK1	T2CLK0
	8-bit			T	,	R	W	T	T	
	Timer2,3		0	0	0	0	0	0	0	0
TMOD23	Source	8CH	Operate mo	de	PWM cycle		Timer3 sou	rce clock	Timer2 source clock	
	CLK	, , , ,	00:8-bit Tim		00:reserved					l
	& MODE		01:16-bit Tir		01:26		01: φT1		01: φT1	
	Register		10:8-bit PP0		10:2 ⁷		10: φT16		10: φT4	
			11:8-bit PWM 11:2 ⁸ 11: φT256					11: φT16		

Symbol	Name	Address	7	6	5	4	3	2	1	0				
			-	-	-	-	TFF3C1	TFF3C0	TFF3IE	TFF3IS				
							R	W	R/	W				
	Timer3	8DH	=	-	-	-	1	1	0	0				
TFFCR3	Flip-Flop Control	(no					00:Invert TF		TFF3	TFF3				
	Register	RMW)					01:Set TFF	3	Invert	Invert				
	rtogiotoi						10:Clear TF	F3	0:Disable	0:Timer2				
							11:Don't Ca	are	1:Enable	1:Timer3				
			T4RDE	-	-	-	I2T45	T45PRUN	T5RUN	T4RUN				
	8-bit		R/W				R/W		R/W					
	Timer45		0	-	-	-	0	0	0	0				
TRUN45	Run	90H	Double				IDLE2		Run/Stop Co	ntrol				
	Register		Buffer				0:Stop	0:Stop & Cl						
			0:Disable											
		0.011	1:Enable	Enable -										
TREG4	8-bit Timer	92H (no		W										
TKLG4	Register 4	RMW)		W Undefined										
		93H	-											
TREG5	8-bit Timer	93FI (no		W										
TINEOS	Register 5	RMW)	Undefined											
		,	T45M1	T45M0	PWM41	PWM40	T5CLK1	T5CLK0	T4CLK1	T4CLK0				
	8-bit		1431011	1431010	F VVIVI4 I	•	/W	IJOLINO	14CLN1	14CLN0				
	Timer4,5		0	0	0	0	0	0	0	0				
	Source		Operate mode		PWM cycl		Timer5 sou		Timer4 source clock					
TMOD45	CLK	94H	00:8-bit Tim		00:reserved		00:T4TRG	ICE CIOCK	00:TI4	CE CIOCK				
	& MODE		01:16-bit Ti		01:2 ⁶	•	01: φT1		01: φT1					
	Register						10:8-bit PP	G	10:2 ⁷		10: φT16		10: φT4	
			11:8-bit PW	M	11:2 ⁸		11: φT256		11: φT16					
			-	-	-	-	TFF5C1	TFF5C0	TFF5IE	TFF5IS				
	Timer5						R	W	R/	W				
	Flip-Flop	95H	-	-	-	-	1	1	0	0				
TFFCR5	Control	(no					00:Invert TF	FF5	TFF5	TFF5				
	Register	RMW)					01:Set TFF		Invert	Invert				
							10:Clear TF		0:Disable	0:Timer4				
			Tc5.5.				11:Don't ca		1:Enable	1:Timer5				
			T6RDE	-	-	-	I2T67	T67PRUN	T7RUN	T6RUN				
	8-bit		R/W				R/W		R/W	•				
TRUN67	Timer67	98H	0	-	-	-	0	0	0	0				
1 KONO7	Run	3011	Double				IDLE2		Run/Stop Co	ntrol				
	Register		Buffer 0:Disable				0:Stop 1:Operat	0:Stop & Cl 1:Run (Cou						
			1:Enable				e 1.Operat	1.1.011 (000	. π up)					
		9AH					-							
TREG6	8-bit Timer	(no				\	N							
	Register 6	RMW)					efined							
		9BH					-							
TREG7	8-bit Timer	(no												
	Register 7	RMW)	`											
) Undefined											

Symbol	Name	Address	7	6	5	4	3	2	1	0
			T67M1	T67M0	PWM61	PWM60	T7CLK1	T7CLK0	T6CLK1	T6CLK0
	8-bit					R	W			
	Timer6,7		0	0	0	0	0	0	0	0
TMOD67	Source	9CH	Operate mode		PWM cycle		Timer7 sou	rce clock	Timer6 sou	rce clock
TWODO	CLK	CLK	00:8-bit Timer		00:reserved		00:T6TRG		00:reserved	
	& MODE		01:16-bit Timer		01:2 ⁶		01: φT1		01: φΤ1	
	Register		10:8-bit PPG		10:2 ⁷		10: φT16		10:	
			11:8-bit PW	M	11:2 ⁸		11: φT256		11: φT16	
			ı	-	-	-	TFF7C1	TFF7C0	TFF7IE	TFF7IS
	Timer7						R/	W	R/	W
	Timer7	9DH	-	-	-	-	1	1	0	0
TFFCR7	Flip-Flop (no						00:Invert TF	F7	TFF7	TFF7
	Register	RMW)					01:Set TFF	7	Invert	Invert
							10:Clear TF	F7	0:Disable	0:Timer6
							11:Don't Ca	are	1:Enable	1:Timer7

(3) 16-bit timers

16-bit timers 8 and A

Symbol	Name	Address	7	6	5	4	3	2	1	0
			T8RDE	-	-	-	I2T8	T8PRUN	-	T8RUN
	40.11		R/W	R/W			R/W	R/W		R/W
	16-bit Timer8		0	0	-	-	0	0	-	0
TRUN8	Run	A0H	Double	Fix to "0"			IDLE2	16-bit Time	r Run/Stop C	ontrol
	Register		Buffer				0:Stop	0:Stop & Cl		
	Register		0:Disable				1:Operate	1:Run (Cou		
			1:Enable				-			
			CAP9T9	EQ9T9	CAP8IN	CAP89M1	CAP89M0	T8CLE	T8CLK1	T8CLK0
	16-bit		R/	W	W			R/W		
	Timer8		0	0	1	0	0	0	0	0
TMOD8	Source CLK	A2H	TFF9 invert	trigger	0:Soft	Capture Tin	ning	1:UC8	Source Clo	ck
TIMOBO	& Mode	, 1211	0: Disable							
	Register		1: Enable							
	· ·				care		T8 ↓		10: φT4	
				11:TFF1 ↑ TFF1 ↓ 11: φT16						
			TFF9C1							
	16-bit		V				W		V	
TEECDO	Timer8	A 01.1	1	1	0	0	0	0	1	1
TFFCR8	Flip-Flop Control	АЗН	00:Invert TF		TFF8 invert	trigger			00:Invert TF	
	Register		01:Set TFF		0: Disable				01:Set TFF	
	rregister		10:Clear TF		1: Enable				10:Clear TF	
	40.11.	4.01.1	11:Don't Ca	ire					11:Don't Ca	ire
TREG8L	16-bit Timer Register 8	A8H (no				· ·	- V			
TREGGE	Low	RMW)					efined			
	16-bit Timer	A9H				5.1.4 5	-			
TREG8H	Register 8	(no				V	٧			
	High	RMW)				Unde	efined			
	16-bit Timer	AAH					-			
TREG9L	Register 9	(no				V	V			
	Low	RMW)				Unde	efined			
	16-bit Timer	ABH					-			
TREG9H	Register 9	(no				V	٧			
	High	RMW)				Unde	efined			
	Capture						-			
CAP8L	Register 8	ACH				F	₹			
	Low			Undefined						
	Capture		<u>-</u>							
CAP8H	Register 8	ADH					₹			
	High					Unde	efined			
	Capture						-			
CAP9L	Register 9	AEH					₹			
	Low						efined			
	Capture						-			
CAP9H	Register 9	AFH	R							
	High			Undefined						

Symbol	Name	Address	7	6	5	4	3	2	1	0
			TARDE	-	-	-	I2TA	TAPRUN	-	TARUN
	40.1.4		R/W	R/W			R/W	R/W		R/W
	16-bit TimerA		0	0	-	-	0	0	_	0
TRUNA	Run	ВОН	Double	Fix to "0"			IDLE2	16-bit Time	r Run/Stop C	ontrol
	Register		Buffer				0:Stop	0:Stop & CI	•	
			0:Disable				1:Operate	1:Run (Cou	ınt up)	
			1:Enable						T	
			CAPBTB	EQBTB	CAPAIN	CAPABM1	CAPABM0	TACLE	TACLK1	TACLK0
	16-bit		R/	W	W		ı	R/W	1	
	TimerA		0	0	1	0	0	0	0	0
TMODA	Source CLK	B2H	TFFB invert	t trigger	0:Soft	Capture Tin	ning	1:UCA	Source Clo	ck
	& Mode		0: Disable		Capture	00:disable	TID A	Clear	00:TIA	
	Register		1: Enable		1:Don't	01:TIA ↑ -		Enable	01: φT1 10: φT4	
				care 10:TIA ↑ TIA ↓ 11:TFF1 ↑ TFF1 ↓					10. <i>Φ</i> 14 11: <i>Φ</i> T16	
			TEEBC1	TFFBC1 TFFBC0 CAPBTA CAPATA EQBTA EQATA					TFFAC1	TFFAC0
	16-bit			W CAPBTA CAPATA EQBTA EQATA W R/W						V
	TimerA		1							1
TFFCRA	Flip-Flop	взн	00:Invert TF	I .	TFFA inver		<u> </u>	ı	1 00:Invert Ti	
	Control		01:Set TFF		0: Disable	990.			01:Set TFF	
	Register		10:Clear TF	01:Set IFFB 0: Disable 10:Clear TFFB 1: Enable						FA
			11:Don't Ca	are					11:Don't Ca	are
	16-bit	B8H					-			
TREGAL	Timer	(no				V	V			
	Register A	RMW)				Unde	efined			
	Low 16-bit						-			
	Timer	В9Н					- V			
TREGAH	Register A	(no RMW)								
	High	KIVIVV)				Unde	efined			
	16-bit	BAH					-			
TREGBL	Timer	(no				V	N			
	Register B Low	RMW)				Unde	efined			
	16-bit						_			
TDEODU	Timer	BBH				V	V			
TREGBH	Register B	(no RMW)								
	High	TXIVIVV)				Unde	efined			
	Capture						-			
CAPAL	Register A	BCH					₹			
	Low					Unde	efined			
	Capture									
CAPAH	Register A	BDH					₹			
	High						efined			
	Capture						-			
CAPBL	Register B	BEH					3			
	Low						efined			
0.4.55	Capture						-			
САРВН	Register B	BFH					٦			
	High		Undefined							

(4) Serial channels

Symbol	Name	Address	7	6	5	4	3	2	1	0	
	Serial	, tadi oco	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	
SC0BUF	Channel 0	C0H	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0	
	Buffer	(no	R(Receiving) / W(Transmission)								
	Register	RMW)	Undefined								
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC	
			R	R	W	R (Cl	ear 0 after rea	ading)	R/	W	
	Serial		Undefined	0	0	0	0	0	0	0	
SC0CR	Channel 0	C1H	Receive	Parity	Parity		1:Error		0:SCLK0	0:Baud	
	Control		data	0:Odd	0:Disable	Overrun	Parity	Framing	1	Rate	
	Register		bit 8	1:Even	1:Enable				1:SCLK0	Generator	
									↓	1:SCLK0	
-			TDO	OTOF	DVE	14/11	CN44	CMO	004	Pin Input	
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0	
			l la dafia a d	0	0	0	W	0	0	0	
	Serial		Undefined Transmiss	0 0:CTS	0 0:Receive	Wake up	0 00:1/O Intori	0	0 00:TimerTC	_	
SC0MOD0	Channel 0	C2H	ion	Disable	U.Receive	0:Disable	00:70 Inten	terface Mode 00:TimerTC JART Mode 01:Baud Ra		_	
	Mode 0		Data bit 8	1:CTS	Disable	1:Enable	10:8bit UAF		Generator		
	Register			Enable	1:Receive		11:9bit UAF		10:Internal clock φ1		
					Enable				11:External clock		
								ſ	(SCLK0 Input)		
DD00D	Serial		-	BR0ADDE	BR0CK1	BR0CK0	BR0S3	BR0S2	BR0S1	BR0S0	
	Channel 0 Baud Rate Control Register				I	I	R/W		I	1	
		СЗН	0	0	0	0	0	0	0	0	
BR0CR			Fix to "0"	(16-K)/16	00: φT0		Set the frequency divisor "N"				
				divided 0:Disable	01: φ T2 10: φ T8		0 to F				
				1:Enable	10. <i>ψ</i> 18 11: <i>φ</i> T32						
	Coriol		_	-	-	_	BR0K3	BR0K2	BR0K1	BR0K0	
	Serial Channel 0 K setting Register	tting C4H					Briorio		/W	Bitoito	
BR0ADD			_	_	-	_	0	0	0	0	
								r "K" (1 to F)			
	Serial Channel 0 Mode 1		12\$0	FDPX0	-	-	-	-	-	-	
			R/W	R/W							
			0	0	-	-	-	-	-	-	
			IDLE2	I/O							
SC0MOD1		C5H	0:Stop	Interface							
SSGWISDT		CSH	1:Operate	mode							
	Register			1:Full							
				duplex							
				0:Half							
				duplex							

Symbol	Name	Address	7	6	5	4	3	2	1	0		
SC1BU	Serial Channel 1	C8H	RB7 TB7	RB6 TB6	RB5 TB5	RB4 TB4	RB3 TB3	RB2 TB2	RB1 TB1	RB0 TB0		
F	Buffer	(no RMW)	R(Receiving) / W(Transmission)									
	Register	TXIVIVV)		Undefined								
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC		
			R	R	W	R (Cl	ear 0 after rea	ading)	R	W		
	Serial		Undefined	0	0	0	0	0	0	0		
SC1CR	Channel 1	С9Н	Receive	Parity	Parity		1:Error		0:SCLK1	0:Baud		
	Control Register		Data bit 8	0:Odd 1:Even	0:Disable 1:Enable	Overrun	Parity	Framing	↑ 1:SCLK1 ↓	Rate Generator 1:SCLK1 Pin Input		
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0		
						R	W					
	Serial		Undefined	0	0	0	0	0	0	0		
SC1MO D0	Channel 1 Mode 0 Register	CAH	Transmiss ion data bit 8	0:CTS Disable 1:CTS Enable	0:Receive Disable 1:Receive Enable	Wake up 0:Disable 1:Enable	01:7bit UAR 10:8bit UAR	00:I/O Interface Mode 01:7bit UART Mode 10:8bit UART Mode 11:9bit UART Mode		oTRG ate ator clock \$\phi\$1 clock Input)		
BR1CR			-	BR1ADD E	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0		
	Serial Channel 1 Baud Rate Control Register			<u> </u>			R/W		l	l		
		СВН	0	0	0	0	0	0	0	0		
			Fix to "0"	(16-K)/16 divided 0:Disable 1:Enable	00: φ T0 01: φ T2 10: φ T8 11: φ T32		Set the freq 0 to F	uency diviso	r "N"			
	Serial		-	-	-	-	BR1K3	BR1K2	BR1K1	BR1K0		
BR1AD D	Channel 1 K setting Register	etting CCH						R	W	T		
			-	-	-	-	0	0	0	0		
							Set the freq	uency diviso	r "K" (1 to F)			
			I2S1	FDPX1	-	-	-	-	-	-		
			R/W	R/W								
SC1MO D1	Serial Channel 1 Mode 1 Register	CDH	0 IDLE2 0:Stop 1:Operate	0 I/O Interface mode 1:Full duplex 0:Half	-	-	-	-	-	-		

(5) Serial expansion interface (SEI)

Symbol	Name	Address	7	6	5	4	3	2	1	0		
			MODE	SEE	BOS	MSTR	CPOL	CPHA	SER1	SER0		
			W	R/W								
			0	0	0	0	0	1	1	1		
SECR	SEI Control Register	60H	SEI0 MODF Detection 0:Enable	SEI System Enable 0:Stop	Bit Order Selectbit 0:MSB 1:LSB	Master Select bit 0:Slave 1:Master	Clock polarity selection See	Clock Phase Selection See	SEI Transfe Select 00:reserved 01:Divided	I		
			1:Disable	1:Run			figure 3.11.2, 3.11.3	figure 3.11.2, 3.11.3	10:Divided	-		
SESR			SEF	WCOL	SOVF	MODF	-	-	-	TMSE		
				·	?	ı				R/W		
			0	0	0	0	-	-	-	0		
			SEI Transfer	WCOL Flag	SOVF Flag	MODF Flag				SEI Mode Select		
	SEI Status		0:busy or Stop 1:End	1:Error	(Slave) 1:Error	(Master) 1:Error				0:Compati bility Mode		
		61H	1.LIIG							1:Micro DMA Mode		
	Register		=	WCOL	SOVF	MODF	TSRC	TSTC	TASM	TMSE		
						R/C			R/	W		
			-	0	0	0	0	0	0	0		
				WCOL Flag 1:Error	SOVF Flag (Slave) 1:Error	MODF Flag (Master) 1:Error	SEI Receive 1:End	SEI Transfer 1:End	Auto Shift Enable (Master) INTSEE0 Mask (Slave)	SEI Mode Select 0:Compati bility Mode 1:Micro DMA Mode		
			SED7	SED6	SED5	SED4	SED3	SED2	SED1	SED0		
0555	SEI Data	0011			R((Reception)/V	V(Transmissio	on)				
SEDR	Register	62H	0	0	0	0	0	0	0	0		
					R	eceive Data	/ Transfer Da	ta				

(6) Interrupt controller

INTEOAD INTO & INTAD INTO INTO INTO INTAD INTA	-		Addiess	'			7		_		0	
INTEODD INTAD Enable Register Foh Enab		I INTO &			INIT	\D	l		15.1	TO	ŭ	
NTEOAD Register Foh R R/W R R/W R R/W Register				1450			IADA40	100			10110	
Register	INTE0AD		F0h		IADM2		IADMO		IOM2		IOM0	
INTE INTE					_				-			
INTE12				0	•	•	0	0			0	
NTE12			-									
NTET24 Register	INTE12		D0h		12M2		12M0		I1M2		I1M0	
INTEGRAPH INTE					_		_		_		_	
INTE34				0	•	•	0	0		l .	0	
NTE34	INTE34							10.0			101.10	
NTE56 Register 0			D1h		14M2		14M0		13M2		I3M0	
INTE56			-		_		_		_			
INTE56 Enable Register				0	•	l .	0	0		l .	0	
INTE36					i '	, , , , , , , , , , , , , , , , , , ,	101.1-	1-6	,	,	1-17-	
Register	INTE56		D2h		16M2	•	16M0		15M2		I5M0	
INTT INTT Enable D3h Register D3h INTT1(Timer1) INTT0(Timer0) INTT2 & INTT2 & INTT3 Enable Register D5h Register D					_		_		_		_	
INTEGENERAL D3h Register D3h Register D3h Register D3h Register Regi		Register		0	0	0	0	0			0	
INTE7	INTE7	INT7										
INTT0 & INTT0 & INTT1 IT1M2 IT1M1 IT1M0 IT0C IT0M2 IT0M1 IT0 INTT2 IT1M2 IT1M1 IT1M0 IT0C IT0M2 IT0M1 IT0 IT0M2 IT0M1 IT0 IT0M2 IT0M1 IT0M2 IT0M1 IT0M2 IT0M2 IT0M1 IT0M2 IT0M2 IT0M2 IT0M1 IT0M2 IT0M2 IT0M2 IT0M1 IT0M2 IT0M1 IT0M2 IT0M2 IT0M2 IT0M2 IT0M2 IT0M2 IT0M2 IT0M1 IT0M2 IT0M2 IT0M2 IT0M2 IT0M2 IT0M2 IT0M2 IT0M1 IT0M2			D3h	-	-	-	-		17M2		17M0	
INTTO & INTTO INTTO INTTO INTTO INTTO INTTO ITO												
INTET01				-	1		-	0		l .	0	
NTE101	INTET01			`					i i i			
R			D4h		IT1M2	•	IT1M0		IT0M2		ITOMO	
INTT2 & INTT3 IT3M2 IT3M1 IT3M0 IT2C IT2M2 IT2M1 IT2 IT3M2 IT3M1 IT3M0 IT3M2 IT3M1 IT3M2 IT3					-							
INTER INTE				0	•	•	0	0		•	0	
INTET23	INTET23			1=0.0			JT01:-	1700			J=01.5	
Register			D5h		113M2		11 ⁻ 3M0		1 [2M2		IT2M0	
INTT4 & INTT5(Timer5) INTT4(Timer4)					_				-			
		_		0	•	•	U	U		l .	0	
I INITE I ITCO I ITCANO I ITCANA I ITCANO I ITCANO I ITCANO I ITCANO I ITCONI	INTET45			ITEO			ITEN 40	IT 40	,	, , , , , , , , , , , , , , , , , , ,	IT 48.40	
INTET45 D6h			D6h		115M2		115M0		114M2		IT4M0	
					_	i	_		_	i	_	
				U			Ü	Ü		•	0	
		INTT6 &					ITOO	,	<i>'</i>	ITC. 40		
INTEREST DATE OF THE PROPERTY	INTET67		INTT7 Enable	D7h		117M2		117M0		116M2		IT6M0
				Ü		•	U	U	•	•	0	
INTTR8 & INTTR9(Timer8) INTTR8(Timer8)				ITOC	,	<i>'</i>	ITOM 40	ITOC			ITOM 40	
INTEL89 I D8n I D8	INTET89	INTTR9	I 1)8h		119M2		119M0		118W2		IT8M0	
							0					
		-		U		l .	U	U		•	0	
INTTRA & INTTRB(TimerA) INTTRA(TimerA)	INTETAB			ITDC	,	, , , , , , , , , , , , , , , , , , ,	ITDM40	ITAC			IT A B 4 O	
INTETABLE D9h			D9h		I I BIVIZ	•	LIRIVIO		TTAIVI2		ITAM0	
											_	
		-		Ü	1		U	U			0	
INTERNAL INT				ITOAC			ITO ANAO	ITOOC			ITOON 40	
INTTO8 & INTTOA ITOAMS ITOAMS ITOAMS ITOAMS ITOAMS ITOAMS ITOAMS ITOAMS ITOAMS ITOAMS ITOAMS ITOAMS ITOAMS				HUAG	LLOAM2	TTUAMT	TTUAMU	HOSC	11081812	LINANII	ITO8M0	
INTETO8 INTOA ITOAC ITOAM2 ITOAM1 ITOAM0 ITO8C ITO8M2 ITO8M1 ITO			DAh			D/M		D		$D \Lambda M$		
INTETO8 A (Overflow) DAh R R/W R R/W		(Overflow)	DAh	R			0		0		0	

Symbol	Name	Address	7	6	5	4	3	2	1	0
	INTRX0 &			INT	TX0	L		INT	RX0	
	INTTX0		ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0
INTES0	Enable	DBh	R		R/W		R		R/W	•
	Register		0	0	0	0	0	0	0	0
	INTRX1 &			INT	TX1	•		INT	RX1	
	INTTX1		ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
INTES1	Enable	DCh	R		R/W		R		R/W	
	Register		0	0	0	0	0	0	0	0
	INTCR &			INT	СТ			INT	CR	
NITEODT	INTCT	D D1	ICTC	ICTM2	ICTM1	ICTM0	ICRC	ICRM2	ICRM1	ICRM0
INTECRT	Enable	DDh	R		R/W		R		R/W	
	Register		0	0	0	0	0	0	0	0
								INT	-CG	
INITECO	INTCG	Dah	-	-	-	-	ICGC	ICGM2	ICGM1	ICGM0
INTECG	Enable Register	Deh					R		R/W	
	Register		-	-	-	-	0	0	0	0
				INTS	SEE0			INTS	SEM0	
INTESEE	INTSEM0 &	DFh	ISEE0C	ISEE0M2	ISEE0M1	ISEE0M0	ISEM0C	ISEM0M 2	ISEM0M 1	ISEM0M 0
0	Enable		R		R/W		R		R/W	
	Register		0	0	0	0	0	0	0	0
	INTSER0 &			INTS	SET0			INTS	SER0	
INTESED	INTSET0	Fol	ISET0C	ISET0M2	ISET0M1	ISET0M0	ISER0C	ISER0M2	ISER0M1	ISER0M0
0	Enable	E0h	R		R/W		R		R/W	
	Register		0	0	0	0	0	0	0	0
								INT	RTC	
INTERTO	INTRTC	E1h	-	-	-	-	IRTCC	IRTCM2	IRTCM1	IRTCM0
IIII C	Enable	2			ı	ı	R		R/W	T
			-	-	-	-	0	0	0	0
	INTSBE2 &			INTS	SBS2	I		INTS	SBE2	T
INTESB2	INTSBS2	E2h	ISBS0C	ISBS0M2	ISBS0M1	ISBS0M0	ISBE0C	ISBE0M2	ISBE0M1	ISBE0M0
	Enable		R		R/W	ı	R		R/W	
	Register		0	0	0	0	0	0	0	0
	INTSBE0 &				SBS0	ı			SBE0	I
INTESB0	INTSBS0	E3h	ISBS0C	ISBS0M2	ISBS0M1	ISBS0M0	ISBE0C	ISBE0M2	ISBE0M1	ISBE0M0
	Enable		R		R/W	I	R		R/W	
	Register		0	0	0	0	0	0	0	0
	INTSBE1 &		1050:5		SBS1	1050	1055:5	INTS		105=:::
INTESB1	INTSBS1 Enable	E4h	ISBS1C	ISBS1M2	ISBS1M1	ISBS1M0	ISBE1C	ISBE1M2	ISBE1M1	ISBE1M0
	Register		R		R/W		R		R/W	_
			0	0	0	0	0	0	0	0
	0			h 41 41 -	B			MKI2	1 1/1/2/14	MKI0
	_		MKI7	MKI6	MKI5	MKI4	MKI3	IVIIXIZ	MKI1	
INITMKO	Interrupt	Esh		<u> </u>	<u> </u>	R	W			
INTMKO	Interrupt Mask	E5h	1	1	1	R/	W 1	1	1	1
INTMKO	Interrupt	E5h	1 0: Mask	1 0: Mask	1 0: Mask	1 0: Mask	W 1 0: Mask	1 0: Mask	1 0: Mask	1 0: Mask
INTMK0	Interrupt Mask	E5h	1 0: Mask 1: Enable							
INTMK0	Interrupt Mask Control 0	E5h	1 0: Mask 1: Enable MKIT7	1 0: Mask 1: Enable MKIT6	1 0: Mask 1: Enable MKIT5	1 0: Mask 1: Enable MKIT4	1 0: Mask 1: Enable MKIT3	1 0: Mask 1: Enable MKIT2	1 0: Mask 1: Enable MKIT1	1 0: Mask 1: Enable MKIT0
	Interrupt Mask Control 0		1 0: Mask 1: Enable MKIT7 R/W	1 0: Mask 1: Enable MKIT6 R/W	1 0: Mask 1: Enable MKIT5 R/W	1 0: Mask 1: Enable MKIT4 R/W	1 0: Mask 1: Enable MKIT3 R/W	1 0: Mask 1: Enable MKIT2 R/W	1 0: Mask 1: Enable MKIT1 R/W	1 0: Mask 1: Enable MKIT0 R/W
INTMK0	Interrupt Mask Control 0	E5h E6h	1 0: Mask 1: Enable MKIT7	1 0: Mask 1: Enable MKIT6	1 0: Mask 1: Enable MKIT5	1 0: Mask 1: Enable MKIT4	1 0: Mask 1: Enable MKIT3	1 0: Mask 1: Enable MKIT2	1 0: Mask 1: Enable MKIT1	1 0: Mask 1: Enable MKIT0

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	MKIRTC	MKITDA	MKITD	MKITRB	MKITRA	MKITR9	MKITR8
	Interrupt			R/W	R/W	R/W	R/W	R/W	R/W	R/W
INTMK2	Mask	E7h	-	1	1	1	1	1	1	1
	Control 2			0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask
				1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable
			-	MKICG	MKICT	MKICR	MKITX1	MKIRX1	MKITX0	MKIRX0
	Interrupt			R/W	R/W	R/W	R/W	R/W	R/W	R/W
INTMK3	Mask	E8h	-	1	1	1	1	1	1	1
	Control 3			0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask
				1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable
			-	-	-	-	MKISET	MKISER	MKISEE	MKISEM
	Interrupt						0	0	0	0
INTMK4	Mask	E9h					R/W	R/W	R/W	R/W
	Control 4		-	-	-	-	1	1	1	1
							0: Mask	0: Mask	0: Mask	0: Mask
							1: Enable	1: Enable	1: Enable	1: Enable
			-	MKISBS2	MKISBE2	MKIAD	MKISBE 1	MKISBE 1	MKISBS 0	MKISBE 0
	Interrupt			R/W	R/W	R/W	R/W	R/W	R/W	R/W
INTMK5	Mask	EAh	_	1	1	1	1	1	1	1
	Control 5			0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask	0: Mask
				1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable	1: Enable
			WFLG7	WFLG6	WFLG5	WFLG4	WFLG3	WFLG2	WFLG1	WFLG0
			20.	200	200	F		202	20.	200
	Wake-up		0	0	0	0	0	0	0	0
WUPFLAG	flag	ECh	WUINT7	WUINT6	WUINT5	WUINT4	WUINT3	WUINT2	WUINT1	WUINT0
	Control Register		0:No-	0:No-	0:No-	0:No-	0:No-	0:No-	0:No-	0:No-
	Register		request	request	request	request	request	request	request	request
			1:request	1:request	1:request	1:request	1:request	1:request	1:request	1:request
			WMD7	WMD6	WMD5	WMD4	WMD3	WMD2	WMD1	WMD0
						R/	W			
			0	0	0	0	0	0	0	0
	Wake-up		WUINT7	WUINT6	WUINT5	WUINT4	WUINT3	WUINT2	WUINT1	WUINT0
WUPMOD	Mode	EDh	0:Falling	0:Falling	0:Falling	0:Falling	0:Falling	0:Falling	0:Falling	0:Falling
	Control Register		& Rising	& Rising	_	_	& Rising	_	& Rising	& Rising
	rregister		Edge	Edge	Edge	Edge	Edge	Edge	Edge	Edge
			1:Falling or Rising	1:Falling or Rising	1:Falling or Rising	1:Falling or Rising	1:Falling or Rising	1:Falling or Rising	1:Falling or Rising	1:Falling or Rising
			Edge	Edge	Edge	Edge	Edge	Edge	Edge	Edge
			WED7	WED6	WED5	WED4	WED3	WED2	WED1	WED0
						R/				
			0	0	0	0	0	0	0	0
	Wake-up		WUINT7	WUINT6	WUINT5	WUINT4	WUINT3	WUINT2	WUINT1	WUINT0
WUPEDGE	Edge select Register	EEh	0:Falling	0:Falling	0:Falling	0:Falling	0:Falling	0:Falling	0:Falling	0:Falling
	regiotel		Edge	Edge	Edge	Edge	Edge	Edge	Edge	Edge
			1:Rising	1:Rising	1:Rising	1:Rising	1:Rising	1:Rising	1:Rising	1:Rising
			Edge	Edge	Edge	Edge	Edge	Edge	Edge	Edge
			WMK7	WMK6	WMK5	WMK4	WMK3	WMK2	WMK1	WMK0
	Wake-up					R/	W			
WUPMASK	Mask	EFh	0	0	0	0	0	0	0	0
	Register		WUINT7	WUINT6	WUINT5	WUINT4	WUINT3	WUINT2	WUINT1	WUINT0
	-		0:Disable	0:Disable	0:Disable	0:Disable	0:Disable	0:Disable	0:Disable	0:Disable
			1:Enable	1:Enable	1:Enable	1:Enable	1:Enable	1:Enable	1:Enable	1:Enable

Symbol	Name	Address	7	6	5	4	3	2	1	0
	INTTC0 &			INTTC1(DMA1)			INTTC	(DMA0)	
INITETOOA	INTTC1	E41.	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
INTETC01	Enable	F1h	R		R/W		R		R/W	
	Register		0	0	0	0	0	0	0	0
	INTTC2 &			INTTC3(DMA3)			INTTC2	(DMA2)	
INTETC23	INTTC3	F2h	ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	ITC2M2	ITC2M1	ITC2M0
INTETC23	Enable	FZII	R		R/W		R		R/W	
	Register		0	0	0	0	0	0	0	0
	INTTC4 &			INTTC5(DMA5)			INTTC4	(DMA4)	
INTETC45	INTTC5	F3h	ITC5C	ITC5M2	ITC5M1	ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0
INTETC45	Enable	F3N	R		R/W		R		R/W	
	Register		0	0	0	0	0	0	0	0
	INTTC6 &			INTTC7(DMA7)			INTTC6	(DMA6)	
INTETC67	INTTC7	F4h	ITC7C	ITC7M2	ITC7M1	ITC7M0	ITC6C	ITC6M2	ITC6M1	ITC6M0
INTETCO/	Enable	F4II	R		R/W		R		R/W	
	Register		0	0	0	0	0	0	0	0
	NMI &			NM	11			INT	WD	
INTNMWDT	INTWD	F7h	INMIC	-	-	-	IWDC	-	-	-
IINTINIVIVI	Enable	1711	R				R			
	Register		0	-	-	-	0	-	-	-
			=	-	-	-	-	-	IOLE	NMIREE
									R	W
	Interrupt		=	-	-	=	-	-	0	0
	Input Mode	F6h							0:INT0	1:Operate
IIMC	Control	(no							edge	even at
	Register	RMW)							mode	NMI rise
									1:INT0	Edge
									level	
									mode	
	Interrupt	F8h	-	-	-	-	-	-	-	-
INTCLR	Clear	(no		I	T	W		I	I	I
	Control	RMW)	0	0	0	0	0	0	0	0
	Register	,				Interrupt	Vector			

(7) DMA controller

	DMA contr		_	<u> </u>	l _		l <u>-</u>	_		_
Symbol	Name	Address	7	6	5	4	3	2	1	0
	DMAG OL- II	4001					DMA0 St	art Vector		
DMA0V	DMA0 Start Vector	100h (no	-	-	DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DIVIAUV	Register	RMW)					R/	W		
	Register	TXIVIVV)	ı	-	0	0	0	0	0	0
							DMA1 St	art Vector		
D1444)/	DMA1 Start	101h	-	-	DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	Vector	(no					R	W	•	
	Register	RMW)	-	-	0	0	0	0	0	0
							DMA2 St	art Vector	•	
	DMA2 Start	102h	-	-	DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	Vector	(no					R	W	•	
	Register	RMW)	-	-	0	0	0	0	0	0
							DMA3 St	art Vector	•	
	DMA3 Start	103h	-	-	DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DMA3V	Vector	(no					R	W	•	
	Register	RMW)	-	-	0	0	0	0	0	0
							DMA4 St	art Vector	•	
	DMA4 Start	104h	-	-	DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0
DMA4V	Vector	(no						W	I .	
	Register	RMW)	_	_	0	0	0	0	0	0
					Ů		_	art Vector	, ,	
	DMA5 Start	105h	_	_	DMA5V5	DMA5V4	DMA5V3	DMA5V2	DMA5V1	DMA5V0
DMA5V	Vector	(no			2	2		W		2
	Register	RMW)	_	_	0	0	0	0	0	0
					U	U		art Vector	U	U
	DMA6 Start	106h	_	_	DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0
DMA6V	Vector	(no			DIVINOVO	DIVINOVA		W	DIVINOVI	DIVINOVO
	Register	RMW)	-	_	0	0	0	0	0	0
					Ŭ	Ŭ		art Vector	Ŭ	Ŭ
	DMA7 Start	107h	_	_	DMA7V5	DMA7V4	DMA7V3	DMA7V2	DMA7V1	DMA7V0
DMA7V	Vector	(no			DIVIT VO	DIVI) (1 V 4		W	DIVITAT	DIVITAT VO
	Register	RMW)	-	_	0	0	0	0	0	0
			-		U		Burst	U	U	0
	DMA Burst	108h	DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0
DMAB	Register	(no	וופטט	DB310	DB313		/W	DB312	וופטט	סוכמט
	. togiotoi	RMW)	0	0	0	0	0	0	0	0
			U	Į U	Į U			U	Į U	U
	DMA	109h	DDE07	DDEOC	DDEOG		Request	DDEOC	DDEO4	DDEOC
DMAR	Request	(no	DREQ7	DREQ6	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1	DREQ0
	Register	RMW)		_			W I			
			0	0	0	0	0	0	0	0

(8) Control registers

Symbol	Name	Address	7	6	5	4	3	2	1	0
			HALTM1	HALTM0	-	-	-	CLKOE	CLKM1	CLKM0
			R/	W		R/W			R/W	
			1	1	-	0	-	0	0	0
CLKMOD	Clock Mode	10AH	HALT mod	-		Fixed to		CLK	00:fc outpu	
CLINIOD	Register	IOAII	00:IDLE3 r 01:STOP r			"0"		Output Enable	01:(reserve	
			10:IDLE1 r 11:IDLE2 r					0 : High-z (Pull up)	11:(reserve	ed)
				T				1 : Output		
			WDTE	WDTP1	WDTP0	-	DRVE	I2WDT	RESCR	-
				R/W				R	W	
	Watchdog		1	0	0	-	0	0	0	0
WDMOD	Timer Mode Register	110H	1:WDT Enable	00: 2 ¹⁶ /fc 01: 2 ¹⁸ /fc 10: 2 ²⁰ /fc 11: 2 ²² /fc			1:Drive pin in STOP mode	IDLE2 0:Stop 1:Operat e	1:Reset connect internally WDT out to RESET pin	Fix to "0"
							-			
	Watchdog Timer					V	V			
WDCR	Control	111H					-			
	Register		B1H: WD							

(9) AD converter

Symbol	Name	Address	7	6	5	4	3	2	1	0
			EOCF	ADBF	-	-	ITM0	REPET	SCAN	ADS
			F	₹				R	W	
			0	0	0	0	0	0	0	0
ADMOD0	AD Mode Control Register 0	138H	AD conversion End flag 1:END	AD conversion BUSY flag 1:Busy	Fix to "0"	Fix to "0"	0: Every 1 time 1: Every 4 times	Repeat mode 0:Single mode 1:Repeat mode	Scan mode 0:Fixed channel mode 1:Channel scan mode	AD Conversi on start 1:Start Always read as "0"
			VREFON	I2AD	-	-	ADCH3	ADCH2	ADCH1	ADCH0
			R/W	R/W				R	W	
	AD Mode		0	0	0	0	0	0	0	0
ADMOD1	Control Register 1	139H	String resistance 0:OFF 1:ON	IDLE2 0:Stop 1:Operate	Fix to "0"	Fix to "0"	Input chan 0000: AN0 : 1011: AN11 1100, 1101	ANO :	1→AN2→ : Reserved	→ AN11
	AD Result		ADR01	ADR00	-	-	-	ı	-	ADR0RF
ADREG0L	Register 0	120H	F	₹					R	R
	Low		Unde	efined	-	-	-	-	-	0
ADREG0H	AD Result Register 0	121H	ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
	High					Unde	efined			
	AD Result		ADR11	ADR10	-	-	-	-	-	ADR1RF
ADREG1L	Register 1	122H	F	₹						R
	Low		Unde	efined	-	-	-	-	-	0
	AD Result		ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
ADREG1H	Register 1	123H				ı	₹			
	High			ı	ı	Unde	efined		1	ı
	AD Result		ADR21	ADR20	-	-	-	-	-	ADR2RF
ADREG2L	_	124H	F	₹						R
	Low			fined	-	-	-	-	-	0
	AD Result		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
ADREG2H	•	125H					3			
	High					Unde	efined		ı	
	AD Result		ADR31	ADR30	-	-	-	-	-	ADR3RF
ADREG3L	Register 3	126H		₹						R
	Low			efined	-	-	-	-	-	0
ADDECC	AD Result	46711	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32
ADREG3H	Register 3 High	127H					? .			
	riigii					Unde	efined			

Symbol	Name	Address	7	6	5	4	3	2	1	0
	AD Result		ADR41	ADR40	-	-	-	-	-	ADR4RF
ADREG4L	Register 4	128H	F	₹						R
	Low		Unde	efined	-	-	-	-	-	0
	AD Result		ADR49	ADR48	ADR47	ADR46	ADR45	ADR44	ADR43	ADR42
ADREG4H	Register 4	129H				F	₹			
	High					Unde	fined			
	AD Result		ADR51	ADR50	-	-	-	-	-	ADR5RF
ADREG5L	Register 5	12AH	F	₹						R
	Low		Unde	efined	-	-	-	-	-	0
	AD Result		ADR59	ADR58	ADR57	ADR56	ADR55	ADR54	ADR53	ADR52
ADREG5H	Register 5	12BH				ı	₹			
	High				1	Unde	fined			
	AD Result		ADR61	ADR60	-	-	-	-	-	ADR6RF
ADREG6L	Register 6	12CH	F	₹						R
	Low		Unde	efined	-	-	-	-		0
	AD Result		ADR69	ADR68	ADR67	ADR66	ADR65	ADR64	ADR63	ADR62
ADREG6H	Register 6	12DH				F	₹			
	High			I	I	Unde	fined	I	I	
	AD Result		ADR71	ADR70	-	-	-	-	-	ADR7RF
ADREG7L	Register 7	12EH		₹						R
	Low			efined	-	-	-	-	-	0
	AD Result		ADR79	ADR78	ADR77	ADR76	ADR75	ADR74	ADR73	ADR72
ADREG7H	Register 7	12FH					₹			
	High						fined			
4005001	AD Result	40011	ADR81	ADR80	-	-	-	-	-	ADR8RF
ADREG8L	Register 8 Low	130H		₹ 						R
	_		Unde		- ADD07	- ADD00	- ADD05	- ADD04	- ADD00	0
ADREG8H	AD Result Register 8	131H	ADR89	ADR88	ADR87	ADR86	ADR85	ADR84	ADR83	ADR82
ADICEGOIT	High	13111					fined			
			ADR91	ADR90		Unde	ililea		_	ADR9RF
ADREG9L	AD Result Register 9	132H		R ADR90	-	-	-	-	-	R
ABINEOSE	Low	10211		efined	_	_	_	_	_	0
	AD Result		ADR99	ADR98	ADR97	ADR96	ADR95	ADR94	ADR93	ADR92
ADREG9H	Register 9	133H	ABITOO	ADITOO	ADITO		? ?	/IDITO+	7101100	ADITOL
	High						fined			
	AD Result		ADRA1	ADRA0	_	_	_	_	_	ADRARF
ADREGAL	Register A	134H		3						R
	Low			efined	-	-	-	-	-	0
	AD Result	Ì	ADRA9	ADRA8	ADRA7	ADRA6	ADRA5	ADRA4	ADRA3	ADRA2
ADREGAH		135H	-		•		₹	•		•
	High						fined			
	AD Result		ADRB1	ADRB0	-	-	-	_	-	ADRBRF
ADREGBL	Register B	136H		₹						R
	Low			efined	_	-				0
	AD Result		ADRB9	ADRB8	ADRB7	ADRB6	ADRB5	ADRB4	ADRB3	ADRB2
ADREGBH	Register B	137H					₹			
	High						fined			

(10) Memory controller

Symbol	Name	Address	7	6	5	4	3	2	1	0
Ĺ			-	BWW2	BWW1	BWW0	-	BWR2	BWR1	BWR0
	BLOCK				W				W	
	CS/WAIT		-	0	1	0	-	0	1	0
BCSL	Control Register Low	148H				1:Nwait				l1:Nwait
			BE	BM	-	-	BOM1	вом0	BBUS1	BBUS0
	BLOCK		W	W			V	٧	V	٧
	CS/WAIT		1	0	0	0	0	0	0	0
BCSH	Control Register High	149H	CS select 0:Disable 1:Enable	0:16MB 1:Sets area	Fix to "0"	Fix to "0"	00:SRAM/ 01,10,11:F		00:8bit 01,10,11:re	eserved
			MV22	MV21	MV20	MV19	MV18	MV17	MV16	MV15
MAMR	Memory	14AH		ı	ı		<u>/W</u>	I	ı	I
1411	Register	,	1	1	1	1	1	1	1	1
ļ				T		are enable	1:Compare		T	T
	Memory		MS23	MS22	MS21	MS20	MS19	MS18	MS17	MS16
MSAR	Start	14BH		I	ı		W I	I	ı	I
	Address		1	1	1	1	1	1	1	1
	Register			I			ess A23 to A		I	I
	Flash		=	-	-		-	-	-	-
(Note2)	Security		_	<u> </u>	<u> </u>		/W I -	<u> </u>	<u> </u>	<u> </u>
FSWE	Write	16BH	0	0	0	0	0	0	0	0
	Enable Register			Chip Erase to Chip Eras						
			RAMSTB	RAMWI	-	=	-	=	-	=
			R	W						
			0 (Note1)	1	-	-	-	-	-	-
RAMCR	RAM Write Control Register	16DH	O:lost data or Power on reset 1:kept data	RAM write 0:Disable 1:Enable						
			-	-	-	-	-	R/BSY	-	-
			R/W	R/W	R/W	R/W		R		
			0	0	0	0	-	1	-	-
(Note2) FLSR	Flash Status Register	16EH	Set to 0.	Set to 0.	Set to 0.	Set to 0.		Ready /Busy flag 0:Busy (auto ope -ration in progress) 1:Ready (auto operation finished)		

Note1: This register is contained only in the TMP92FD54AI. It does not exist in the TMP92CD54I.

Note2: This bit is initialized to 0 upon a power-on reset but not affected by a warm reset (a reset applied when the power is on).

(11) Serial bus interface (SBI)

		1			Ì		I			
Symbol	Name	Address	7	6	5	4	3	2	1	0
			BC2	BC1	BC0	ACK	SCK3	SCK2	SCK1	SWRMON/ SCK0
		17011		W		R/W		W		R/W
		170H (no RMW)	0	0	0	0	1	0	0	1/0
SBI0CR1	SBI0 Control	I2C mode			011:3 111:7	Acknowled ge mode 0:Disable 1:Enable	0001:- 0	010: – 001 [.] 0110:11 10	ue "n" / fast / 1: 8 0100: 9 00:fast 111)
SDIUCKI	Register 1		SIOS	SIOINH	SIOM1	SIOM0	-	SCK2	SCK1	SCK0
				V	v		W		W	
		170H	0	0	0	0	1	0	0	0
		(no RMW)	Transfer	Transfer	Transfer mo		Note)	_	ne divide valu	
		SIO mode	0:Stop	0:Continue	00:8bit tran	smit	Write 0 to		:5 010:6	011:7
			1:Start	1:Abort	10:8bit transm	it/receive	this bit in SIO mode.	100:8 101	:9 110:10 al clock SCK(1
					11:8bit rece		SIO IIIOGE.	111.externa	ai ciuck schi	,
	SBI0	171H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0
SBI0DBR	Buffer	(no			R(I	Receiving)/W	/(Transmissi	on)		
	Register	RMW)		I	T	Und	1	T	T	
			SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS
	I2CBUS0	172H				V				
I2C0AR	Address	(no	0	0	0	0	0	0	0	0 Addross
	Register	RMW)			Setti	ng Slave Add	dress			Address recognition 0:Enable
	-		MOT	TDV	DD	DIN	CDIMA	CDIMO	CM/DCT4	1:Disable
			MST	TRX	BB	PIN V	SBIM1 v	SBIM0	SWRST1	SWRST0
		173H	0	0	0	1	0	0	0	0
	1	I								U
	ī	(no RMW)	0:Slave	0:Receive	Start/stop	INTSBE0	Operation me	ode selection		
		(no RMW) I2C mode	0:Slave 1:Master	0:Receive 1:Transmit	Start/stop generation	INTSBE0 interrupt	· ·	ode selection e 10:I2C mode	Software re	set generate
	SBI0				generation 0:Stop	interrupt 0:Request	00:Port mode		Software re write "10" an an internal r	set generate
SBI0CR2	Control		1:Master	1:Transmit	generation 0:Stop 1:Start	interrupt 0:Request 1:Cancel	00:Port mode	e 10:I2C mode e 11:reserved	Software re write "10" an an internal re generated.	set generate nd "01", then eset signal is
SBI0CR2					generation 0:Stop	interrupt 0:Request	00:Port mode 01:SIO mode SBIM1	e 10:I2C mode e 11:reserved SBIM0	Software re write "10" an an internal regenerated.	set generate nd "01", then eset signal is
SBI0CR2	Control	I2C mode	1:Master	1:Transmit	generation 0:Stop 1:Start	interrupt 0:Request 1:Cancel	00:Port mode 01:SIO mode SBIM1	e 10:I2C mode e 11:reserved SBIM0	Software re write "10" an an internal re generated.	set generate nd "01", then eset signal is - W
SBI0CR2	Control	173H (no RMW)	1:Master	1:Transmit	generation 0:Stop 1:Start	interrupt 0:Request 1:Cancel	00:Port mode 01:SIO mode SBIM1	e 10:I2C mode e 11:reserved SBIM0 V 0	Software re write "10" at an internal re generated. - W 0	set generate nd "01", then eset signal is
SBI0CR2	Control	I2C mode	1:Master	1:Transmit	generation 0:Stop 1:Start	interrupt 0:Request 1:Cancel	00:Port mode 01:SIO mode SBIM1 0 Operation me	e 10:I2C mode e 11:reserved SBIM0	Software re write "10" at an internal regenerated.	set generate nd "01", then eset signal is - W
SBI0CR2	Control	173H (no RMW)	1:Master	1:Transmit	generation 0:Stop 1:Start	interrupt 0:Request 1:Cancel	00:Port mode 01:SIO mode SBIM1 0 Operation mode 00:Port mode	e 10:12C mode e 11:reserved SBIM0 V 0 ode selection	Software re write "10" at an internal regenerated.	set generate nd "01", then eset signal is - W
SBI0CR2	Control	173H (no RMW)	1:Master	1:Transmit	generation 0:Stop 1:Start	interrupt 0:Request 1:Cancel PIN	00:Port mode 01:SIO mode SBIM1 0 Operation mode 00:Port mode 01:SIO mode	SBIMO V 0 ode selection e 10:12C mode	Software re write "10" at an internal regenerated.	set generate nd "01", then eset signal is - W
SBI0CR2	Control	173H (no RMW) SIO mode	1:Master MST	1:Transmit	generation 0:Stop 1:Start BB	interrupt 0:Request 1:Cancel PIN	00:Port mode 01:SIO mode SBIM1 0 Operation mode 00:Port mode 01:SIO mode AL	SBIMO V 0 ode selection e 10:I2C mode s 11:reserved AAS	Software re write "10" at an internal re generated. - W 0 Fix to "00"	set generate nd "01", then eset signal is - W 0
SBI0CR2	Control	173H (no RMW) SIO mode	1:Master MST	1:Transmit TRX	generation 0:Stop 1:Start BB	interrupt 0:Request 1:Cancel PIN 1	00:Port mode 01:SIO mode SBIM1 0 Operation mode 01:SIO mode AL	s 10:I2C mode a 11:reserved SBIMO V 0 ode selection a 10:I2C mode a 11:reserved AAS 0	Software re write "10" at an internal regenerated.	set generate nd "01", then eset signal is
SBI0CR2	Control	173H (no RMW) SIO mode 173H (no RMW)	1:Master MST 0 0:Slave	1:Transmit TRX 0 0:Receive	generation 0:Stop 1:Start BB 0 Bus status	PIN PIN 1 INTSBE0	00:Port mode 01:SIO mode SBIM1 0 Operation mode 01:SIO mode AL R 0 Arbitration lost	SBIMO V 0 ode selection e 10:I2C mode AAS 0 Slave address	Software re write "10" an an internal regenerated.	set generate nd "01", then eset signal is
SBI0CR2	Control	173H (no RMW) SIO mode	1:Master MST	1:Transmit TRX	generation 0:Stop 1:Start BB 0 Bus status Monitor	PIN 1 INTSBE0 interrupt	00:Port mode 01:SIO mode SBIM1 0 Operation me 00:Port mode 01:SIO mode AL R 0 Arbitration	se 10:12C mode a 11:reserved SBIMO V 0 ode selection a 10:12C mode a 11:reserved AAS OSlave address match detection	Software re write "10" an an internal regenerated.	set generate and "01", then eset signal is
	Control	173H (no RMW) SIO mode 173H (no RMW)	1:Master MST 0 0:Slave	1:Transmit TRX 0 0:Receive	generation 0:Stop 1:Start BB 0 Bus status Monitor 0:Free	PIN PIN 1 INTSBE0	00:Port mode 01:SIO mode SBIM1 0 Operation mode 01:SIO mode AL 0 Arbitration lost detection	s 10:I2C mode a 11:reserved SBIMO V 0 ode selection a 10:I2C mode a 11:reserved AAS 0 Slave address match detection monitor	Software re write "10" at an internal re generated.	set generate nd "01", then eset signal is
SBIOCR2	Control Register 2 SBI0 Status	173H (no RMW) SIO mode 173H (no RMW)	1:Master MST 0 0:Slave	1:Transmit TRX 0 0:Receive	generation 0:Stop 1:Start BB 0 Bus status Monitor	Interrupt 0:Request 1:Cancel - - PIN INTSBE0 interrupt 0:Request	00:Port mode 01:SIO mode SBIM1 0 Operation mode 00:Port mode 01:SIO mode AL R 0 Arbitration lost detection monitor	se 10:12C mode a 11:reserved SBIMO V 0 ode selection a 10:12C mode a 11:reserved AAS OSlave address match detection	Software re write "10" an an internal regenerated.	set generate and "01", then eset signal is
	Control Register 2	173H (no RMW) SIO mode 173H (no RMW)	1:Master MST 0 0:Slave 1:Master	1:Transmit TRX 0 0:Receive 1:transmit	generation 0:Stop 1:Start BB 0 Bus status Monitor 0:Free 1:Busy	interrupt 0:Request 1:Cancel PIN 1 INTSBE0 interrupt 0:Request 1:Cancel	00:Port mode 01:SIO mode SBIM1 0 Operation mode 01:SIO mode AL C Arbitration lost detection monitor 1:Detect	se 10:12C mode se 11:reserved se 11:reserved se 11:reserved se 10:12C mode se 11:reserved se 11:	Software re write "10" an an internal regenerated.	set generate and "01", then eset signal is
	Control Register 2 SBI0 Status	173H (no RMW) SIO mode 173H (no RMW)	1:Master MST 0 0:Slave 1:Master	1:Transmit TRX 0 0:Receive 1:transmit	generation 0:Stop 1:Start BB 0 Bus status Monitor 0:Free 1:Busy	interrupt 0:Request 1:Cancel PIN 1 INTSBE0 interrupt 0:Request 1:Cancel	00:Port mode 01:SIO mode SBIM1 0 Operation mode 01:SIO mode 01:SIO mode AL 0 Arbitration lost detection monitor 1:Detect SIOF	se 10:12C mode se 11:reserved se 11:reserved se 11:reserved se 10:12C mode se 11:reserved se 11:	Software re write "10" an an internal regenerated.	set generate and "01", then eset signal is
	Control Register 2 SBI0 Status	173H (no RMW) SIO mode 173H (no RMW) I2C mode	1:Master MST 0 0:Slave 1:Master	1:Transmit TRX 0 0:Receive 1:transmit	generation 0:Stop 1:Start BB 0 Bus status Monitor 0:Free 1:Busy -	interrupt 0:Request 1:Cancel PIN 1 INTSBE0 interrupt 0:Request 1:Cancel -	00:Port mode 01:SIO mode SBIM1 0 Operation me 00:Port mode 01:SIO mode AL R 0 Arbitration lost detection monitor 1:Detect SIOF 0 Transfer	s 10:I2C mode a 11:reserved SBIMO V 0 ode selection a 10:I2C mode a 11:reserved AAS OSlave address match detection monitor 1:Detect SEF	Software re write "10" at an internal regenerated.	set generate and "01", then eset signal is
	Control Register 2 SBI0 Status	173H (no RMW) SIO mode 173H (no RMW) I2C mode	1:Master MST 0 0:Slave 1:Master	1:Transmit TRX 0 0:Receive 1:transmit	generation 0:Stop 1:Start BB 0 Bus status Monitor 0:Free 1:Busy -	interrupt 0:Request 1:Cancel PIN 1 INTSBE0 interrupt 0:Request 1:Cancel -	00:Port mode 01:SIO mode SBIM1 0 Operation mode 01:SIO mode AL 0 Arbitration lost detection monitor 1:Detect SIOF 0 Transfer status	se 10:12C mode se 11:reserved se 11:reserved se 11:reserved se 11:reserved se 10:12C mode se 11:reserved se 11:	Software re write "10" at an internal regenerated.	set generate and "01", then eset signal is
	Control Register 2 SBI0 Status	173H (no RMW) SIO mode 173H (no RMW) I2C mode	1:Master MST 0 0:Slave 1:Master	1:Transmit TRX 0 0:Receive 1:transmit	generation 0:Stop 1:Start BB 0 Bus status Monitor 0:Free 1:Busy -	interrupt 0:Request 1:Cancel PIN 1 INTSBE0 interrupt 0:Request 1:Cancel -	00:Port mode 01:SIO mode SBIM1 0 Operation me 00:Port mode 01:SIO mode AL R 0 Arbitration lost detection monitor 1:Detect SIOF 0 Transfer	se 10:12C mode se 11:reserved se 11:reserved se 11:reserved se 10:12C mode se 11:reserved se 11:	Software re write "10" at an internal regenerated.	set generate and "01", then eset signal is

Symbol	Name	Address	7	6	5	4	3	2	1	0
			BC2	BC1	BC0	ACK	SCK3	SCK2	SCK1	SWRMON/
				١٨/		D/M		10/		SCK0
		178H	0	W 0	0	R/W 0	1	0 0	0	1/0
		(no RMW)		transfer bits	U	Acknowled		ne divide valu		
		I2C mode			011:3	ge mode	_	010: - 001°		
	SBI1		100:4 10		111:7	0:Disable	0101: 10		00:fast 111	
SBI1CR1	Control			T	ı	1:Enable	other: Rese	rved		ı
	Register 1		SIOS	SIOINH	SIOM1	SIOM0	-	SCK2	SCK1	SCK0
					V		W		W	
		178H	0	0	0	0	1	0	0	0
		(no RMW)	Transfer	Transfer	Transfer mo		Note)	_	ne divide valu	
		SIO mode	0:Stop 1:Start	0:Continue 1:Abort	00:8bit tran 10:8bit	Smit	Write 0 to this bit in	100:4 001	:5 010:6 :9 110:10	011:7
			1.Otart	1.Abort		it/receive	SIO mode.		al clock SCK	1
					11:8bit rece	eive				T
	SBI1	179H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0
SBI1DBR	Buffer	(no			R(I		/(Transmissi	on)		
	Register	RMW)	040	045	0.4.4	1	efine	0.4.4	040	41.0
			SA6	SA5	SA4	SA3	SA2 V	SA1	SA0	ALS
	I2CBUS1	17AH	0	0	0	0	0	0	0	0
I2C1AR	Address	(no	0	0	0	0	0	U	0	Address
	Register	RMW)								recognition
					Settii	ng Slave Add	dress			0:Enable
				ı	ſ	ſ	ſ			1:Disable
			MST	TRX	BB	PIN	SBIM1	SBIM0	SWRST1	SWRST0
		47011					V 			
		17BH (no RMW)	0	0	0	1	0	0	0	0
		I2C mode	0:Slave 1:Master	0:Receive 1:Transmit	Start/stop generation	INTSBE1 interrupt	· '	ode selection e 10:I2C mode		set generate nd "01", then
	SBI1		1.IVIGSICI	1. Hansilit	0:Stop	0:Request	01:SIO mode			eset signal is
SBI1CR2	Control				1:Start	· ·			generated.	ŭ
						1:Cancel			generated.	
l	Register 2		-	-	-	-	SBIM1	SBIM0	-	-
	Register 2	17RH	-	-	-		SBIM1		<u> </u>	- W
	Register 2	17BH (no RMW)	-	-	-				-	
	Register 2	17BH (no RMW) SIO mode	-			-	0 Operation me	V 0 ode selection	- W	W
	Register 2	(no RMW)	-			-	0 Operation mode	V 0 ode selection e 10:I2C mode	- W 0	W
	Register 2	(no RMW)	-	-	-	-	0 Operation mode 00:Port mode 01:SIO mode	V 0 ode selection e 10:I2C mode e 11:reserved	- W 0 Fix to "00"	W 0
	Register 2	(no RMW)	- - MST			- - PIN	0 Operation me 00:Port mode 01:SIO mode	V 0 ode selection e 10:I2C mode	- W 0	W
	Register 2	(no RMW)	-	-	-	- - PIN	0 Operation mode 00:Port mode 01:SIO mode	V 0 ode selection e 10:I2C mode e 11:reserved	- W 0 Fix to "00"	W 0
	Register 2	(no RMW) SIO mode 17BH (no RMW)	- MST	- TRX	- BB	- - PIN	O Operation me 00:Port mode 01:SIO mode AL C O Arbitration	0 ode selection e 10:12C mode selection AAS	W 0 Fix to "00" AD0	W 0 LRB 0 Last receive
	Register 2	(no RMW) SIO mode	- MST	TRX	- BB	- PIN	O Operation me 00:Port mode 01:SIO mode AL R O Arbitration lost detection	0 Ode selection of 10:12C mode selection of 10:12C mode selection of 11:reserved AAS	W 0 Fix to "00"	W 0 LRB 0 Last receive bit monitor
		(no RMW) SIO mode 17BH (no RMW)	MST 0 0:Slave	TRX 0 0:Receive	BB 0 Bus status Monitor 0:Free	PIN INTSBE1in terrupt 0:Request	O Operation me 00:Port mode 01:SIO mode AL R O Arbitration lost	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W 0 Fix to "00" AD0 General call detection	W 0 LRB 0 Last receive
SBI1SR	Register 2 SBI1 Status	(no RMW) SIO mode 17BH (no RMW)	MST 0 0:Slave	TRX 0 0:Receive	BB 0 Bus status Monitor	PIN 1 INTSBE1in terrupt	Operation model on SIO model AL Operation model on SIO model AL Operation model AL Operation model on SIO	0 ode selection e 10:12C mode selection AAS 0 Slave address match detection monitor 1:Detect	W 0 Fix to "00" AD0 General call	W 0 LRB 0 Last receive bit monitor 0: "0"
SBI1SR	SBI1	(no RMW) SIO mode 17BH (no RMW)	MST 0 0:Slave	TRX 0 0:Receive	BB 0 Bus status Monitor 0:Free	PIN INTSBE1in terrupt 0:Request	Operation model 01:SIO model AL COMPOSE AL COMPOSE AL COMPOSE	0 ode selection e 10:12C mode e 11:reserved AAS 0 Slave address match detection monitor 1:Detect SEF	W 0 Fix to "00" AD0 General call detection	W 0 LRB 0 Last receive bit monitor 0: "0"
SBI1SR	SBI1 Status	(no RMW) SIO mode 17BH (no RMW) I2C mode	MST 0 0:Slave 1:Master	TRX 0 0:Receive	BB 0 Bus status Monitor 0:Free 1:Busy	PIN INTSBE1in terrupt 0:Request	Operation model on the state of	0 ode selection e 10:12C mode e 11:reserved AAS O Slave address match detection monitor 1:Detect SEF	W 0 Fix to "00" AD0 General call detection	W 0 LRB 0 Last receive bit monitor 0: "0"
SBI1SR	SBI1 Status	(no RMW) SIO mode 17BH (no RMW) I2C mode	MST 0 0:Slave	TRX 0 0:Receive	BB 0 Bus status Monitor 0:Free	PIN INTSBE1in terrupt 0:Request	O Operation me 00:Port mode 01:SIO mode AL O Arbitration lost detection monitor 1:Detect SIOF 0	0 ode selection e 10:I2C mode e 11:reserved AAS 0 Slave address match detection monitor 1:Detect SEF R 0	W 0 Fix to "00" AD0 General call detection	W 0 LRB 0 Last receive bit monitor 0: "0"
SBI1SR	SBI1 Status	(no RMW) SIO mode 17BH (no RMW) I2C mode	MST 0 0:Slave 1:Master	TRX 0 0:Receive	BB 0 Bus status Monitor 0:Free 1:Busy	PIN INTSBE1in terrupt 0:Request	Operation model on the state of	0 ode selection e 10:I2C mode e 11:reserved AAS 0 Slave address match detection monitor 1:Detect SEF	W 0 Fix to "00" AD0 General call detection	W 0 LRB 0 Last receive bit monitor 0: "0"
SBI1SR	SBI1 Status	(no RMW) SIO mode 17BH (no RMW) I2C mode 17BH (no RMW)	MST 0 0:Slave 1:Master	TRX 0 0:Receive	BB 0 Bus status Monitor 0:Free 1:Busy	PIN INTSBE1in terrupt 0:Request	O Operation m 00:Port mode 01:SIO mode AL O Arbitration lost detection monitor 1:Detect SIOF O Transfer	0 ode selection e 10:I2C mode e 11:reserved AAS 0 Slave address match detection monitor 1:Detect SEF R 0	W 0 Fix to "00" AD0 General call detection	W 0 LRB 0 Last receive bit monitor 0: "0"

Symbol	Name	Address	7	6	5	4	3	2	1	0
			BC2	BC1	BC0	ACK	SCK3	SCK2	SCK1	SWRMON/ SCK0
				W		R/W		W		R/W
		180H	0	0	0	0	1	0	0	1/0
	SBI2	(no RMW) I2C mode	Number of	transfer bits	011:3 111:7	Acknowled ge mode 0:Disable 1:Enable	Setting of the control of the contro	ne divide vali 010: – 001 0110:11 10	ue "n" / fast / 1: 8	standard 9
SBI2CR1	Control		SIOS	SIOINH	SIOM1	SIOM0	-	SCK2	SCK1	SCK0
	Register 1		0.00		V	Cicino	W	00112	W	00110
		180H	0	0	0	0	1	0	0	0
		(no RMW) SIO mode	Transfer 0:Stop 1:Start	Transfer 0:Continue 1:Abort	Transfer mo 00:8bit tran 10:8bit transm 11:8bit rece	smit	Note) Write 0 to this bit in SIO mode.	000:4 001 100:8 101	ne divide valu 1:5 010:6 1:9 110:10 al clock SCK	011:7
	SBI2	181H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0
SBI2DBR	Buffer	(no			R(Receiving)/V	/(Transmissi	on)		
	Register	RMW)				Und	efine			
			SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS
				1			N I			<u> </u>
I2C2AR	I2CBUS2 Address	182H (no	0	0	0	0	0	0	0	0
IZOZAN	Register	RMW)	Setting Sla	ve Address						Address recognition 0:Enable 1:Disable
			MST	TRX	BB	PIN	SBIM1	SBIM0	SWRST1	SWRST0
		183H	0	0	0	1	N 0	0	0	0
		(no RMW)	0:Slave	0:Receive	Start/stop	INTSBE2		ode selection	_	set generate
SBI2CR2	SBI2 Control	I2C mode	1:Master	1:Transmit	generation 0:Stop 1:Start		00:Port mode	e 10:I2C mode e 11:reserved	write "10" a an internal r	nd "01", then reset signal is
SDIZUNZ	Register 2		_	_	1.5tart	-	SBIM1	SBIM0	generated.	_
							V		W	W
		183H	_	-	-	-	0	0	0	0
		(no RMW) SIO mode						ode selection e 10:I2C mode e 11:reserved	Fix to "00"	
			MST	TRX	BB	PIN	AL	AAS	AD0	LRB
							?			
	SBI2	183H (no RMW) I2C mode	0 0:Slave 1:Master	0 0:Receive 1:transmit	0 Bus status Monitor 0:Free 1:Busy	1 INTSBE2 interrupt 0:Request 1:Cancel	O Arbitration lost detection monitor 1:Detect	O Slave address match detection monitor 1:Detect	0 General call detection 1:Detect	0 Last receive bit monitor 0: "0" 1: "1"
SBI2SR	Status		-	-	-	-	SIOF	SEF	-	-
	Register							₹		
		183H	-	-	-	-	0	0	-	-
		(no RMW) SIO mode					Transfer status 0:Stopped 1:In progress	Shift status 0:Stopped 1:In progress		

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	I2SBI0	-	-	-	-	-	-
	ODIO		W	R/W						
SBI0BR0	SBI0 Baud rate	174H	0	0	ı	-	-	-	-	-
SDIODKO	Register 0	17411	Fix to "0"	IDLE2						
				0:Abort						
				1:Operate						
			P4EN	-	-	-	-	-	-	-
			R/W							
	SBI0		0	-	-	-	-	-	-	-
SBI0BR1	Baud rate	175H	Baud rate							
	Register 1		control							
			circuit							
			0:Abort							
			1:Operate							
			-	I2SBI0	-	-	-	-	-	-
	SBI1		W	R/W						
SBI1BR0	Baud rate	17CH	0	0	-	-	-	-	-	-
	Register 0		Fix to "0"	IDLE2						
				0:Abort						
			P4EN	1:Operate						
				-	-	-	-	-	-	-
			R/W							
	SBI1		0	-	-	-	-	-	-	-
SBI1BR1	Baud rate	17DH	Baud rate control							
	Register 1		circuit							
			0:Abort							
			1:Operate							
			-	12SBI0	-	-	-	-	-	-
			W	R/W						
ODIODDO	SBI2	40411	0	0		-	-	-	-	-
SBI2BR0	Baud rate	184H	Fix to "0"	IDLE2						
	Register 0			0:Abort						
				1:Operate						
			P4EN	-	=	-	-	-	-	-
			R/W							
	SBI2		0	-	_	-	-	-	_	-
SBI2BR1	Baud rate	185H	Baud rate							
SPIZBI	Register 1	10011	control							
	. togiotor i		circuit							
			0:Abort							
			1:Operate							

(12) CAN controller (1/5)

Name	Address	7	6	5	4	3	2	1	0
Message	ssage	ID23	ID22	ID21	ID20	ID19	ID18	ID17	ID16
Identifier					R/	W			
0L	(I IO KIVIVV)	-	-	-	-	-	-	-	-
Message	ifier MBn*+01H	IDE	GAME	RFH	ID28	ID27	ID26	ID25	ID24
Identifier			1		R/	/W	T		1
	,	-	-	-	-	-	ID18 ID18 ID26 ID26 ID20 ID10 -	-	
Message 1L Identifier	MBn* + 02H	ID7	ID6	ID5	ID4		ID2	ID1	ID0
	(no RMW)						1		_
									ID8
_	MBn* + 03H	פוטו	1014	נוטו			וטוט	ID9	IDO
MI1H Identifier 1H	(no RMW)	-	-	=	-	-	-	-	_
Message		-	-	-	RTR	DLC3	DLC2	DLC1	DLC0
Control						•	R/W		•
Field L	(LIO LIVIVV)	-	-	-	-	-	-	-	-
Message	MBn*+05H	-	-	-	-	-	-	-	-
Message MCFH Control Field H	(no RMW)								
			-	-	-	-			-
Doto 0	MBn* + 06H	D07	D06	D05	l .		D02	D01	D00
IBnD0 Data 0	(no RMW)					/vv			
		D17				D13			D10
Data 1	ta 1 MBn*+07H (no RMW)	R/W							
		-	-	-	-	-	-	-	-
	MBn* + 08H	D27	D26	D25	D24	D23	D22	D21	D20
Data 2					R/	W			
	(HOTAWW)	-	-	-	-	-	-	-	-
	MRn* + 09H	D37	D36	D35	D34	D33	D32	D31	D30
Data 3	(no RMW)		<u> </u>				I		1
									-
Data 4	MBn*+0AH	D47	D46	D45			D42	D41	D40
Dala 4	(no RMW)	_	_	_			l <u>-</u>	_	_
									D50
Data 5	MBn*+0BH		200	200		•		20.	
	(no RMW)	-	-	=	-	-	D12 D11 D22 D21 D32 D31 D42 D41 D52 D51	-	=
	MD * OOL	D67	D66	D65	D64	D63	D62	D61	D60
Data 6					R/	W	1		1
	(IIOTUVV)	-	-	-	-	-	-	-	-
	MRn* ± ∩∩⊔	D77	D76	D75	D74	D73	D72	D71	D70
.	MBn*+0DH				R/	W			
Data 7	MBn*+0DH (no RMW)								
		-	- T0\/0	-	-	-		-	- TOV/0
Time	(no RMW)	- TSV7	- TSV6	- TSV5	- TSV4	- TSV3		- TSV1	- TSV0
Time Stamp		TSV7	TSV6	TSV5	- TSV4	TSV3	TSV2	TSV1	TSV0
Time Stamp Value L	(no RMW)	TSV7	TSV6	TSV5	TSV4	TSV3	TSV2	TSV1	TSV0
Time Stamp	(no RMW)	TSV7	TSV6	TSV5	TSV4 F TSV12	TSV3	TSV2	TSV1	TSV0
	Message Identifier OL Message Identifier OH Message Identifier 1L Message Identifier 1L Message Identifier 1H Message Control Field L Message Control Field H Data 0 Data 1 Data 2 Data 3 Data 4	Message Identifier OL Message Identifier OH Message Identifier OH Message Identifier IL Message Identifier IL Message Identifier IH Message Identifier IH Message Control Field L Message Control Field H Message Control Fiel	Message Identifier OL MBn*+00H (no RMW) ID23 Message Identifier OH MBn*+00H (no RMW) IDE Message Identifier OH MBn*+02H (no RMW) ID7 Message Identifier 1L MBn*+02H (no RMW) ID7 Message Identifier 1H MBn*+03H (no RMW) ID15 Message Control Field L MBn*+04H (no RMW) - Message Control Field H MBn*+05H (no RMW) - Data 0 MBn*+06H (no RMW) - Data 1 MBn*+07H (no RMW) - Data 2 MBn*+08H (no RMW) - Data 3 MBn*+09H (no RMW) - Data 4 MBn*+0AH (no RMW) - Data 5 MBn*+0BH (no RMW) - Data 6 MBn*+0CH (no RMW) -	Message Identifier OL MBn* + 00H (no RMW) ID23 ID22 Message Identifier OH MBn* + 01H (no RMW) IDE GAME Message Identifier 1L MBn* + 02H (no RMW) ID7 ID6 Message Identifier 1H MBn* + 02H (no RMW) ID15 ID14 Message Identifier 1H MBn* + 03H (no RMW) ID15 ID14 Message Control Field L MBn* + 04H (no RMW) ID7 ID6 Message Control Field H MBn* + 05H (no RMW) ID7 ID6 Data 0 MBn* + 06H (no RMW) ID7 ID6 Data 1 MBn* + 06H (no RMW) ID7 ID6 Data 2 MBn* + 07H (no RMW) ID7 ID6 Data 3 MBn* + 08H (no RMW) ID27 ID26 Data 3 MBn* + 09H (no RMW) ID47 ID46 Data 4 MBn* + 09H (no RMW) ID47 ID46 Data 5 MBn* + 0BH (no RMW) ID57 ID56 MBn* + 0BH (no RMW) ID57 ID56	Message Identifier OL	Message Identifier OL	Message Identifier OL	Message Identifier OL Message Identifier OL Message Identifier (no RMW)	Message Identifier OL

Note: $MBn = 200H + n \times 10H$, n = 0 to 15

CAN controller (2/5)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Mailbox		MC7	MC6	MC5	MC4	MC3	MC2	MC1	MC0
MCL	Configuration	300H				R/	W			
	Register L		0	0	0	0	0	MC3 MC2 0 0 0 MC11 MC10 0 0 0 MD3 MD2 0 0 0 MD11 MD10 R/W 0 0 0 TRS3 TRS2 0 0 0 TRS11 TRS10 R/S 0 0 0 TRR11 TRR10 R/S 0 0 0 TRR11 TRR10 R/S 0 0 0 TRA11 TRR10 R/S 0 0 0 TA11 TA10 R/C 0 0 0 AA3 AA2 0 AA11 AA10 R/C 0 0 0 RMP3 RMP2	0	0
	Mailbox		MC15	MC14	MC13	MC12	MC11	MC10	MC9	MC8
MCH	J	301H				R/	W			
	Register H		0	0	0	0	0	MC3 MC2 0 0 MC11 MC10 0 0 MD3 MD2 0 0 MD11 MD10 R/W 0 0 TRS3 TRS2 0 0 0 TRS11 TRS10 R/S 0 0 0 TRR11 TRR10 R/S 0 0 0 TRA3 TA2 0 0 0 TA11 TA10 R/C 0 0 0 AA11 AA10 R/C 0 0 0 RMP3 RMP2 0 0 0 RML3 RML2	0	0
	Mailbox		MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0
MDL	Direction Register L	302H		I	I		W	1	1	1
	_		0	0	0	0			0	0
MDII	Mailbox	20211	MD15	MD14	MD13	MD12		MD10	MD9	MD8
MDH	Direction Register H	303H	R 1	0	0	0				
	_	20411		0	0 TD05	0			0	0
TRSL	Transmission Request Set	304H (no	TRS7	TRS6	TRS5	TRS4		TR52	TRS1	TRS0
INOL	Register L	RMW)	0	0	0	0		0	0	0
	Transmission	305H	-	TRS14	TRS13	TRS12			TRS9	TRS8
TRSH	Request Set			111011	111010	111012		11.010	11100	11100
	Register H	RMW)	-	0	0	0		0	0	0
	Transmission	306H	TRR7	TRR6	TRR5	TRR4	TRR3	TRR2	TRR1	TRR0
TRRL	Request	(no				R	/S			
TIXIXE	Reset	RMW)	0	0	0	0	0	0	0	0
	Register L	,								
	Transmission	307H (no	-	TRR14	TRR13	TRR12		TRR10	TRR9	TRR8
TRRH	Request Reset						R/S			
	Register H	RMW)	-	0	0	0	0	0	0	0
	Transmission	308H	TA7	TA6	TA5	TA4	TA3	TA2	TA1	TA0
TAL	Acknowledge					R	/C	•	•	•
	Register L	RMW)	0	0	0	0	0	0	0	0
	Transmission	309H	-	TA14	TA13	TA12	TA11	TA10	TA9	TA8
TAH	Acknowledge	(no			T	T		1	1	1
	Register H	RMW)	-	0	0	0			0	0
	Abort	30AH	AA7	AA6	AA5	AA4		AA2	AA1	AA0
AAL	Acknowledge	(no		_	_		<u>C</u>	_	_	_
	Register L	RMW)	0	0	0	0			0	0
AAH	Abort Acknowledge	30BH (no	-	AA14	AA13	AA12		AA10	AA9	AA8
AAH	Register H	RMW)		0	0	0		0	0	0
	Receive		RMP7	RMP6	RMP5	RMP4			RMP1	RMP0
DMD	Message	30CH	TXIVII 7	TAIVII O	TAIWII 3	R,		TAIVII Z	TXIVII	TXIVII O
RMPL	Pending	(no RMW)								
	Register L	KIVIVV)	0	0	0	0	0	0	0	0
	Receive	30DH	RMP15	RMP14	RMP13	RMP12	RMP11	RMP10	RMP9	RMP8
KIVIPH I	Message	(no		T	T	R,	/C	1	1	1
	Pending	RMW)	0	0	0	0	0	0	0	0
	Register H Receive		RML7	RML6	RML5	RML4	BMI 3	RMI 2	RML1	RML0
RMLL	Message Lost	30EH	INIVIL <i>I</i>	INIVILO	CHINIX		RIVILO	INIVILZ	IXIVIL I	INIVILU
	Register L	1 - 7 - 7	0	0	0	0		0	0	0
	Receive		RML15	RML14	RML13	RML12			RML9	RML8
RMLH	Message Lost	30FH					₹			
	Register H		0	0	0	0	0	0	0	0

CAN controller (3/5)

	I	ontroller (l <u>-</u>						
Symbol	Name	Address	7	6	5	4	3	2	1	0	
	Local Accept			LAM23	LAM22	LAM21	LAM20	LAM19	LAM18	LAM17	LAM16
LAM0L	-ance Mask	310H	_	<u> </u>	<u> </u>		/W I -	_	<u> </u>	_	
	Register 0L		0	0	0	0	0		0	0	
LAMOLI	Local Accept H -ance Mask	24411	LAMI	-	-	LAM28	LAM27	l .	LAM25	LAM24	
LAM0H	-ance Mask Register 0H	311H	R/W			0	0			0	
			0	- LAME	- 1 AME	0	0		0	0	
LAM1L	Local Accept -ance Mask	312H	LAM7	LAM6	LAM5	LAM4	LAM3 W	LAIVIZ	LAM1	LAM0	
	Register 1L		0	0	0	0	0	0	0	0	
	Local Accept -ance Mask		LAM15	LAM14	LAM13	LAM12	LAM11		LAM9	LAM8	
LAM1H		313H		I.	I.		w	l .	I.	l .	
	Register 1H		0	0	0	0	0	0	0	0	
	Global		GAM23	GAM22	GAM21	GAM20	GAM19	GAM18	GAM17	GAM16	
GAM0L	Acceptance	314H		T	T	R	W	T	T	T	
	Mask Register		0	0	0	0	0	0	0	0	
	0L		0.4841			0.44400				0.4140.4	
	Global		GAMI R/W	-	-	GAM28	GAM27		GAM25	GAM24	
GAM0H	Acceptance Mask Registe 0H	315H	0	-	-	0	0	0	0	0	
	Global		GAM7	GAME	GAME	GAMA	GAM3	GAM2	GAM1	GAMO	
	Acceptance		GAM7 GAM6 GAM5 GAM4 GAM3 GAM2 GAM1 GAM0 R/W								
GAM1L	Mask Register	316H									
	1L		0	0	0	0	0	0	0	0	
	Global	317H	GAM15	GAM14	GAM13	GAM12	GAM11	GAM10	GAM9	GAM8	
GAM1H	Acceptance			T	T	R/	/W	T	T	T	
	Mask Register		0	0	0	0	0	0	0	0	
	Marian		CCR	SMR	HMR	WUBA	MTOS	-	TSCC	SRES	
MCRL	Master Control Register L	318H			R/W				٧	V	
	rtogistor L		1	0	0	0	0	-	0	0	
	Master Contro		-	-	-	-	-	-	TSTLB	TSTERR	
MCRH	Register H	319H						GAM18 0 GAM26 R/W 0 GAM2 0 GAM10 0 -		W	
			-	-	-	-	-		0	0	
GSRL	Global Status	24 411	CCE	SMA	HMA	-	TSO		EP	EW	
GSKL	Register L	31AH	1	R 0	0	-	0		0	0	
			ı	•	lot<3:0>	-	RM		-	-	
GSRH	Global Status	31BH		Magnio		₹	IXIVI	1 101	_	_	
	Register H		1	1	1	1	0	0	-	_	
	Bit		BRP7	BRP6	BRP5	BRP4	BRP3		BRP1	BRP0	
BCR1L	Configuration	31CH			<u>. </u>	•	W				
	Register 1L		0	0	0	0	0	0	0	0	
	Bit		-	-	-	-	-	-	-	-	
BCR1H	Configuration	31DH									
	Register 1H		-	-	-	-	-	-	-	-	
	Bit		SAM	TSEG22	TSEG21	TSEG20	TSEG13	TSEG12	TSEG11	TSEG10	
BCR2L	Configuration	31EH		T	Π		<u>/W</u>		T		
	Register 2L		0	0	0	0	0		0	0	
DCD0L1	Bit	2451	-	-	-	-	-	-	SJW1	SJW0	
BCR2H	Configuration Register 2H	31FH								W L	
	Negistei ZII			-	-	-	-	-	0	0	

CAN controller (4/5)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Global	320H	RFPF	WUIF	RMLIF	TRMABF	TSOIF	BOIF	EPIF	WLIF
GIFL	Interrupt Flag	(no					/C	•	•	•
	L	RMW)	0	0	0	0	0	0	0	0
	Global	321H	-	-	-	-	-	-	-	-
GIFH	Interrupt Flag	(no								
	Н	RMW)	-	-	-	-	-	-	-	-
GIML	Global Interrupt	322H	RFPM	WUIM	RMLIM	TRMAB M	TSOIM	BOIM	EPIM	WLIM
OIIIL	Mask L	OLL!!		T	T		/W	1	ı	I
			0	0	0	0	0	0	0	0
011411	Global	00011	-	-	-	-	-	-	-	-
GIMH	Interrupt Mask H	323H								
		20411	MDTIEZ	MOTIFO	- MDTIES	- MDTIE4	- MDTIES	- MDTIFO	- MDTIE4	- MDTIFO
MBTIFL	Mailbox Transmit Int.	324H (no	MBTIF7	MBTIF6	MBTIF5	MBTIF4	MBTIF3 /C	MBTIF2	MBTIF1	MBTIF0
IVIDTII L	Flag L	RMW)	0	0	0	0	0	0	0	0
	Mailbox	325H	<u>-</u>	MBTIF14	MBTIF13	MBTIF12	MBTIF11	MBTIF10	MBTIF9	MBTIF8
MBTIFH	Transmit Int.	(no		1010111111	101211110	101011112	R/C	100011110	IIID I II O	
	H Transmit Int. Flag H	RMW)	-	0	0	0	0	0	0	0
	Mailbox	326H	MBRIF7	MBRIF6	MBRIF5	MBRIF4	MBRIF3	MBRIF2	MBRIF1	MBRIF0
MBRIFL	Receive Int.	(no				R	/C			
	Flag L	RMW)	0	0	0	0	0	0	0	0
	Mailbox	327H	MBRIF15	MBRIF14	MBRIF13	MBRIF12	MBRIF11	MBRIF10	MBRIF9	MBRIF8
MBRIFH	Receive Int.	`		Γ	T	R	/C	T	ı	ı
	Flag H	RMW)	0	0	0	0	0	0	0	0
	Mailbox	328H	MBIM7	MBIM6	MBIM5	MBIM4	MBIM3	MBIM2	MBIM1	MBIM0
MBIML	Interrupt Flag			I	I		/W	I	I	I
	L		0	0	0	0	0	0	0	0
MOIMI	Mailbox	22011	MBIM15	MBIM14	MBIM13	MBIM12	MBIM11	MBIM10	MBIM9	MBIM8
MBIMH	Interrupt Flag H	329H		0	0		<u>W</u>		0	0
			0 CDD7	0 CDR6	0	0 CDB4	0	0 CDR2	0 CDB4	0 CDR0
CDRL	Change Data Request	32AH	CDR7	CDR6	CDR5	CDR4	CDR3 W	CDRZ	CDR1	CDRU
ODIKE	Register L	02/11	0	0	0	0	0	0	0	0
	Change Data		-	CDR14	CDR13	CDR12	CDR11	CDR10	CDR9	CDR8
CDRH	Request	32BH		221117	1 021110	221112	R/W	221110	1 32.10	1 32.10
	Register H		-	0	0	0	0	0	0	0
	Remote		RFP7	RFP6	RFP5	RFP4	RFP3	RFP2	RFP1	RFP0
RFPL	Frame	32CH				ſ	₹			
10.12	Pending Register L	02011	0	0	0	0	0	0	0	0
	Remote		RFP15	RFP14	RFP13	RFP12	RFP11	RFP10	RFP9	RFP8
RFPH	Frame	32DH					?			
	Pending Register H		ī	-	-	-	-	-	-	-
	CAN F==	32EH	REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
CECL	CAN Error Counter L	(no				R	w			
	Journal L	RMW)	0	0	0	0	0	0	0	0
	CAN Error	32FH	TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0
CECH	Counter H	(no		Γ			/W	1	Ι	ı
		RMW)	0	0	0	0	0	0	0	0

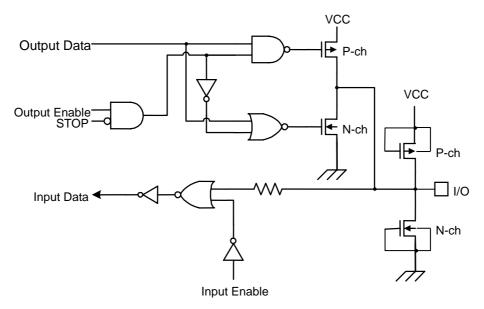
CAN controller (5/5)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			ı	-	ı	ı	TSP3	TSP2	TSP1	TSP0
TSPL	Time Stamp	330H						R/	W	
	Prescaler L		-	-	i	ı	0	0	0	0
	: O:		-	-	-	-	-	-	-	-
TSPH	Time Stamp Prescaler H	331H								
	Prescaler n		•	-	-	-	-	-	-	-
	Ti Ot	332H	TSC7	TSC6	TSC5	TSC4	TSC3	TSC2	TSC1	TSC0
TSCL	Time Stamp Counter L	(no				R	W			
	Counter L	RMW)	0	0	0	0	0	0	0	0
		333H	TSC15	TSC14	TSC13	TSC12	TSC11	TSC10	TSC9	TSC8
TSCH	Time Stamp	(no				R	TSC11 TSC1		•	•
	Counter H	RMW)	0	0	0	0	0	0	0	0

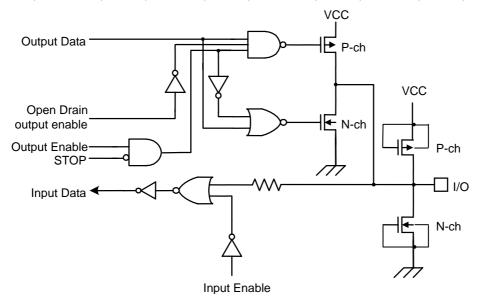
(13) RTC

Symbol	Name	Address	7	6	5	4	3	2	1	0
RTC			-	-	-	-	RTCSEL2	RTCSEL1	RTCSEL0	RTCRUN
			R/W					R/W		R/W
		0	-	-	-	0	0	0	0	
RTCCR	Control Register	118h	Write to "0"				1x0: 2 ¹⁶ /fs 1x1: 2 ¹⁵ /fs	00: 2 ¹⁴ /fs 01: 2 ¹³ /fs 10: 2 ¹² /fs 11: 2 ¹¹ /fs		0: Stop & Clear 1: Run
			XTSEL	-	-	-	-	-	-	XTEN
			R/W							R/W
	RTC		0	-	-	-	-	-	-	0
RTCFC	Function Control Register	119h	0:Crystal 1:CR							Low frequency Oscillator (fs) 1:oscillation

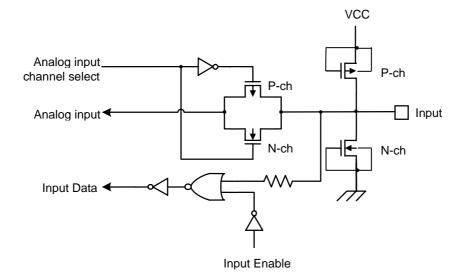
6. Port Equivalent Circuits

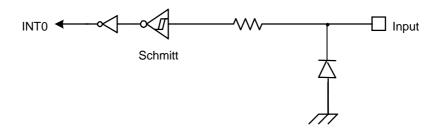

· Circuit diagram convention

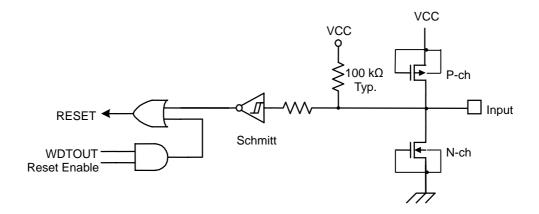
Basically, the circuit diagrams use the same gate symbols as those used for the 74HCXX standard CMOS logic IC series.

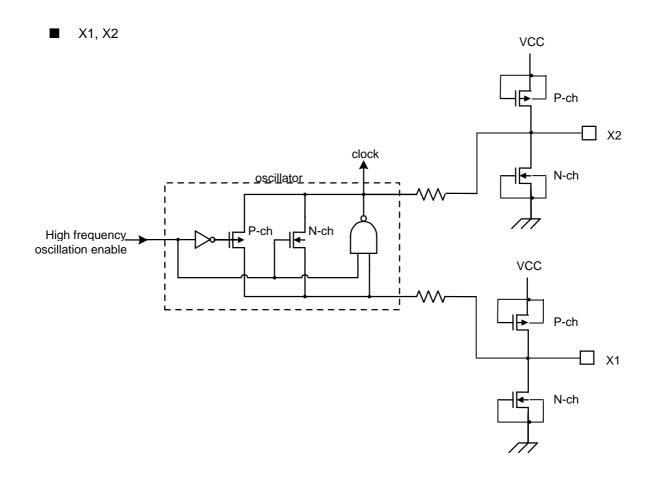

A special signal name is as follows:

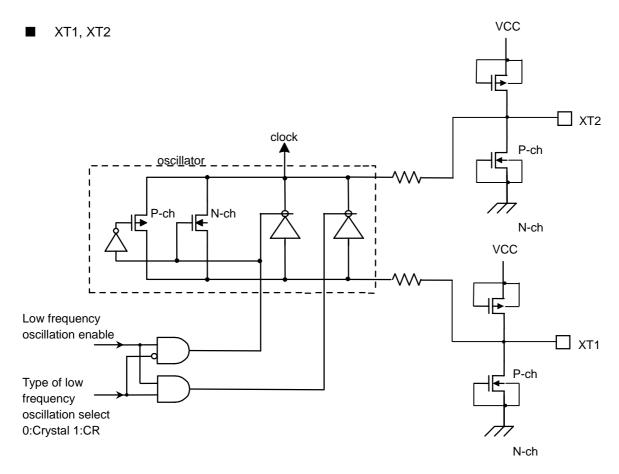
STOP: This signal is activated (set to 1) when the CPU executes the HALT instruction with STOP mode specified in the halt mode setup register (CLKMOD<HALTM1: 0> = 0, 1). The STOP signal, however, remains set to 0 if the driver enable bit, WDMOD<DRVE>, is set to 1.

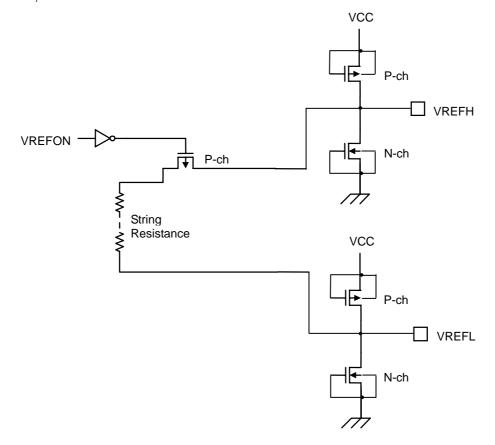

- Input protection resistance is approximately several tens of ohms to several hundreds of ohms.
- P0 (D0 to D7), P4 (A0 to A7), P70, P71, P73 to P75, PC0 to PC5, PD0 to PD7, PF1(RXD0), PF2 (CTS0, SCLK0), PF4 (RXD1), PF5 (CTS1, SCLK1), PF6 (TX), PF7 (RX), PM0 (SS, PN0 (SCK0), PN3 (SCK1), PM4 (SCK2)

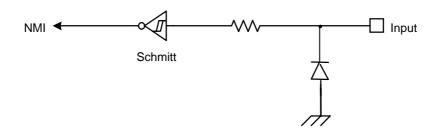

■ P72 (SI2/SCL2), PF0 (TXD0), PF3 (TXD1), PM1 (MOSI), PM2 (MISO), PM3 (SECLK), PN1 (SO0/SDA0), PN2 (SI0/SCL0), PN4 (SO1/SDA1), PN5 (SI1/SCL1), PN6 (SO2/SDA2)

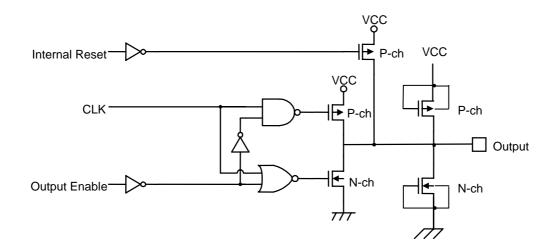

■ PG(AN0 to 7), PL0 to 3(AN8 to 11)

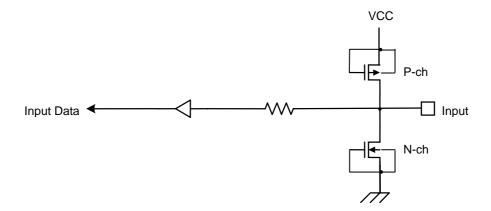


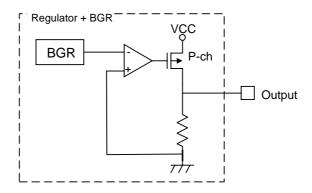

■ INT0

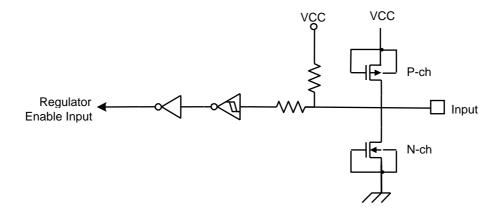

■ RESET




■ VREFH, VREFL


■ NMI


■ CLK


■ AM0 to 1, TEST0 to 1

■ REGOUT

■ REGEN

7. Handling Precautions and Restrictions

- (1) Special representations and terms
 - 1. Description of built-in I/O register: register-symbol
bit-symbol>

Example: TRUN01<T0RUN> indicates bit T0RUN in register TRUN.

2. Read-modify-write instruction (RMW)

A read-modify-write instruction is a single instruction executed by the CPU that reads data from a memory address, manipulates the data and then writes the data back to the same memory address.

Example 1: SET 3, (TRUN01) ... Sets bit 3 in the TRUN01 register.

Example 2: INC 1, (100H) ... Increments data at address 100H by one.

• Read-modify-write instructions in TLCS-900

Exchange instruction

EX (mem), R

Arithmetic instructions

ADD	(mem), R/#	ADC	(mem), R/#
SUB	(mem), R/#	SBC	(mem), R/#
INC	#3. (mem)	DEC	#3. (mem)

Logical operation

```
AND (mem), R/# OR (mem), R/#
```

XOR (mem), R/#

XOR (mem), R/#

Bit manipulation

```
STCF #3/A, (mem) RES #3, (mem)
SET #3, (mem) CHG #3, (mem)
TSET #3, (mem)
```

Rotate and shift

RLC	(mem)	RRC	(mem)
RL	(mem)	RR	(mem)
SLA	(mem)	SRA	(mem)
SLL	(mem)	SRL	(mem)
RLD	(mem)	RRD	(mem)

(2) Handling precautions and restrictions

a) Watchdog timer

Upon a reset, the watchdog timer is enabled. It should be disabled if it is not used for operation.

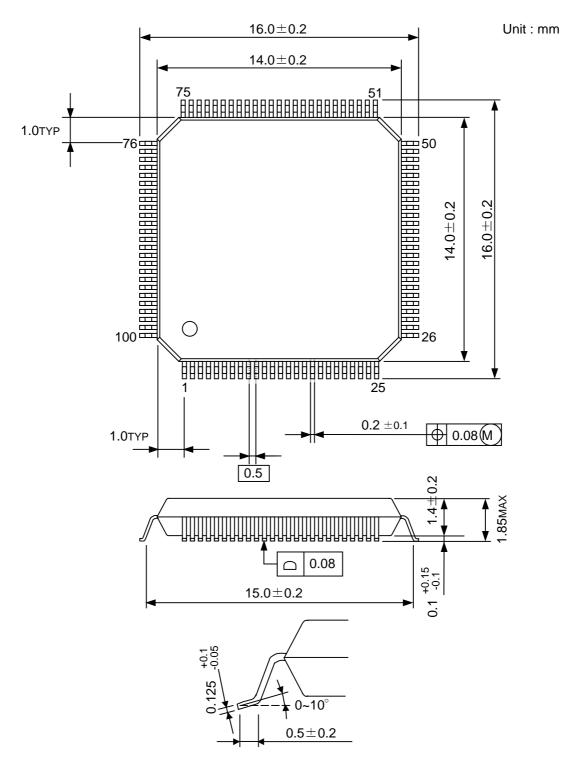
b) Clock settling time

After an external reset is released, the device waits during the settling time for the clock multiplier within the device before starting operation. For details, see "3.1.2 Reset." When the device is restored from STOP standby mode with an interrupt, an oscillator settling time and other intervals are automatically inserted before the internal circuitry starts operation. For details, see "④ STOP mode" in "(3) Operation in each mode" in Section 3.4, "Standby Controller."

c) Undefined SFR bits

Undefined bits in special function registers (SFRs) return undefined values when read. The program should not depend on the states of those bits.

d) Reserved areas in address space


The 16-byte space from FFFFF0H to FFFFFFH is reserved as an internal area and cannot be used. When an emulator is used, 64 Kbytes of the 16-Mbyte space are used to control the emulator and not available to the user.

e) POP SR instruction

The POP SR instruction should be executed in DI (interrupt disabled) state.

8. Package

Package Dimensions: LQFP100-P-1414-0.50F

Note1: The drawings shown may not accurately represent the actual shape or dimensions.

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.