

74LCX541

Low Voltage Octal Buffer/Line Driver with 5V Tolerant Inputs and Outputs

General Description

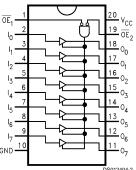
The LCX541 is an octal buffer/line driver designed to be employed as memory and address drivers, clock drivers and bus oriented transmitter/receivers. The LCX541 is a noninverting option of the LCX540.

This device is similar in function to the LCX244 while providing flow-through architecture (inputs on opposite side from outputs). This pinout arrangement makes this device especially useful as an output port for microprocessors, allowing ease of layout and greater PC board density.

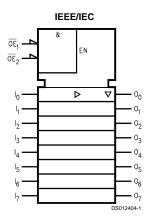
The LCX541 is designed for low voltage (3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment. The LCX541 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant input and outputs
- 6.5 ns t_{PD} max, 10 µA l_{CCQ} max
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal
- 2.0V-3.6V V_{CC} supply operation
- ±24 mA output drive
- Implements patented noise/ EMI reduction circuitry
- Functionally compatible with 74 series 541
- Latch-up performance exceeds 500 mA
- ESD performance:
 - Human body model > 2000V Machine model > 200V


Ordering Code:

Order Number	Package Number	Package Description			
74LCX541WM	M20B	20-Lead (0.300" Wide) Molded Small Outline, SOIC, JEDEC			
74LCX541SJ	M20D	20-Lead Molded Small Outline, SOIC, EIAJ			
74LCX541MSA	MSA20	20-Lead Molded Shrink Small Outline, SSOP Type II			
74LCX541MTC	MTC20	20-Lead Thin Shrink Small Outline, TSSOP, JEDEC			


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Pin Assignment for SOIC, SSOP and TSSOP

Logic Symbol

Truth Tables

	Inputs	Outputs	
ŌE ₁	OE ₂	ı	Outputs
L	L	Н	Н
Н	Χ	Χ	Z
X	Н	Χ	Z
L	L	L	L

H = HIGH Voltage Level
X = Immaterial
L = LOW Voltage Level
Z = High Impedance

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to V _{CC} + 0.5	Output in High or Low State (Note 2)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	
Io	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 3)

Symbol	Parameter	Min	Max	Units	
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	
V _I	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V$		±24	mA
		$V_{CC} = 2.7V$		±12	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V-2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: I_O Absolute Maximum Rating must be observed.

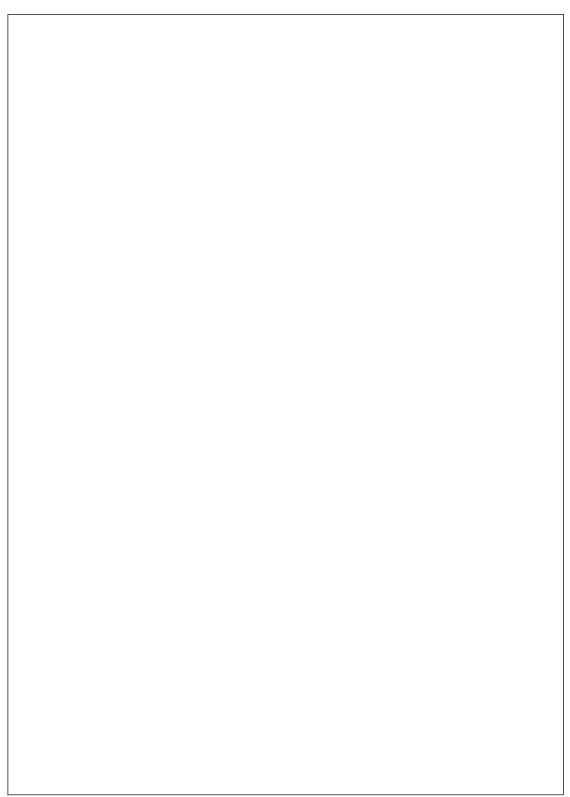
Note 3: Unused inputs or I/O's must be held HIGH or LOW. They may not float.

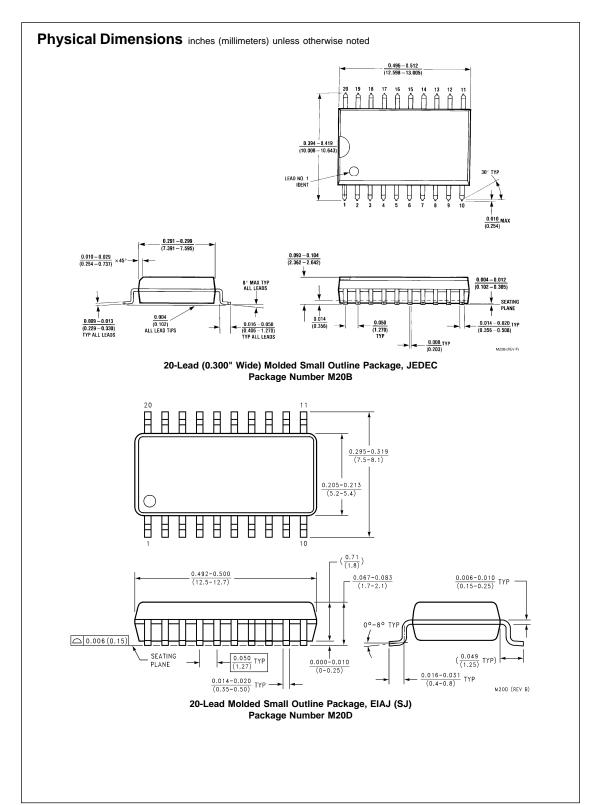
DC Electrical Characteristics

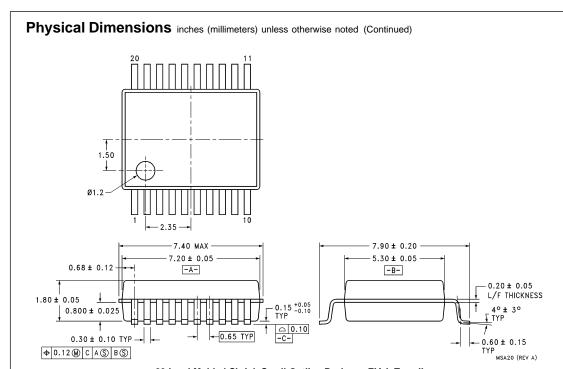
Symbol	Parameter	Conditions	V _{cc}	V_{CC} $T_A = -40^\circ$		Units
			(V)	Min	Max	
V _{IH}	HIGH Level Input Voltage		2.7-3.6	2.0		V
V _{IL}	LOW Level Input Voltage		2.7-3.6		0.8	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7-3.6	V _{CC} - 0.2		V
		I _{OH} = -12 mA	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		V
		I _{OH} = -24 mA	3.0	2.2		V
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7-3.6		0.2	V
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	V
		I _{OL} = 24 mA	3.0		0.55	V
-I _I	Input Leakage Current	$0 \le V_I \le 5.5V$	2.7-3.6		±5.0	μA
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.7-3.6		±5.0	μA
		$V_I = V_{IH}$ or V_{IL}				
l _{OFF}	Power-Off Leakage Current	V _I or V _O = 5.5V	0		10	μA
I _{CC}	Quiescent Supply Current	V _I = V _{CC} or GND	2.7-3.6		10	μA
		$3.6V \le V_{I}, \ V_{O} \le 5.5V$	2.7-3.6		±10	μA
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7-3.6		500	μA

AC Electrical Characteristics

Symbol	Parameter	$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $C_L = 50$ pF, $R_L = 500 \Omega$				Units
		V _{CC} = 3	.3V ±0.3V	V _{cc} =	= 2.7V	1
		Min	Max	Min	Max	1
t _{PHL}	Propagation Delay	1.5	6.5	1.5	7.5	ns
t _{PLH}		1.5	6.5	1.5	7.5	
t _{PZL}	Output Enable Time	1.5	8.5	1.5	9.5	ns
t_{PZH}		1.5	8.5	1.5	9.5	
t _{PLZ}	Output Disable Time	1.5	7.5	1.5	8.5	ns
t _{PHZ}		1.5	7.5	1.5	8.5	
toshl	Output to Output Skew		1.0			ns
t _{OSLH}	(Note 4)		1.0			


Note 4: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}).


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{cc}	T _A = 25°C	Units
			(V)	Typical	
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	C _L = 50 pF, V _{IH} = 3.3V, V _{IL} = 0V	3.3	-0.8	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = Open, V_{I} = 0V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_{I} = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	V_{CC} = 3.3V, V_{I} = 0V or V_{CC} , f = 10 MHz	25	pF

20-Lead Molded Shrink Small Outline Package, EIAJ, Type II Package Number MSA20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) DIMENSIONS METRIC ONLY 7.72 4.16 (1.78 TYP) 6.5 ± 0.1 - A -0.42 TYP 0.65 TYP LAND PATTERN RECOMMENDATION GAGE PLANE 6.4 4.4 ± 0.1 -B-3.2 SEATING PLANE 0.6 ± 0.1 DETAIL A △ 0.2 C B A TYPICAL SEE DETAIL D ALL LEAD TIPS (0.90)□ 0.1 C ALL LEAD TIPS -C-0.65 TYP 0.09-0.20 0.10 ± 0.05 TYP 0.19 - 0.30 TYP 0.13 M Α B (S) c (S) MTC20 (REV C) 20-Lead Thin Shrink Small Outline Package, JEDEC Package Number MTC20

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor
Corporation
Americas
Customer Response Center
Tel: 1-888-522-5372
Fairchild Semiconductor
Europe
Fax: +49 (0) 1 80
Email: europe.supp
Deutsch Tel: -449 (0) 8 14

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com