

Power Choke Coil

Series : PCC-M0630W (MC)

High power, Low loss, Low-profile

Features

- Small type (7.3×6.6×H3.0 mm)
- High power (5.5 A to 20.0 A)
- Low loss (R_{DC} : 3.3 to 35.0 mΩ)
- Suitable for high frequency circuit (up to 1 MHz)
- Low buzz noise due to its gap-less structure
- RoHS compliant

Recommended Applications

- Notebook PC power supply modules
- Servers, Routers, DC/DC converters for driving CPUs

Standard Packing Quantity (Minimum Quantity/Packing Unit)

- 2,000 pcs./box (2 reel)

Explanation of Part Numbers

1	2	3	4	5	6	7	8	9	10	11	12
E	T	Q	P	3	W						

Product Code Classification Size Winding Inductance Core Packaging Suffix

Standard Parts

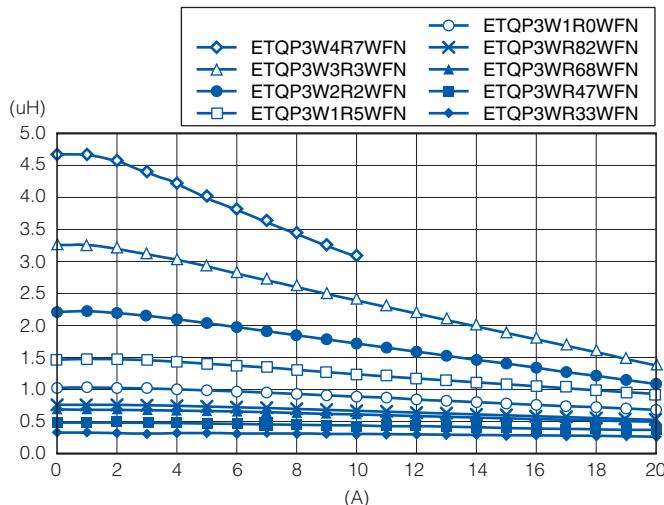
Part No.	Inductance (at 20 °C)*1					DC resistance (at 20 °C) (mΩ)	
	L0 at 0A (μH)	L1*4 (μH)		Measurement current (A)	Rated current (A)*2 (typ.)		
						typ.	max.
ETQP3WR33WFN	0.33±20 %	(0.27)	(20.0)	13.7	20	3.3	3.9
ETQP3WR47WFN	0.47±20 %	(0.38)	(17.0)	11.6	17	3.8	4.2
ETQP3WR68WFN	0.68±20 %	(0.55)	(14.0)	9.6	14	4.9	5.5
ETQP3WR82WFN	0.82±20 %	(0.66)	(13.0)	8.9	13	6.7	8.0
ETQP3W1R0WFN	1.0±20 %	(0.84)	(11.8)	8.1	11.8	6.9	7.9
ETQP3W1R5WFN	1.5±20 %	(1.24)	(9.6)	6.6	9.6	9.8	13.0
ETQP3W2R2WFN	2.2±20 %	(1.80)	(8.5)	5.8	8.5	15.5	17.8
ETQP3W3R3WFN	3.3±20 %	(2.69)	(7.0)	4.8	7	25.0	28.8
ETQP3W4R7WFN	4.7±20 %	(3.89)	(5.5)	3.8	5.5	35.0	40.3

(*1) Inductance is measured at 100 kHz.

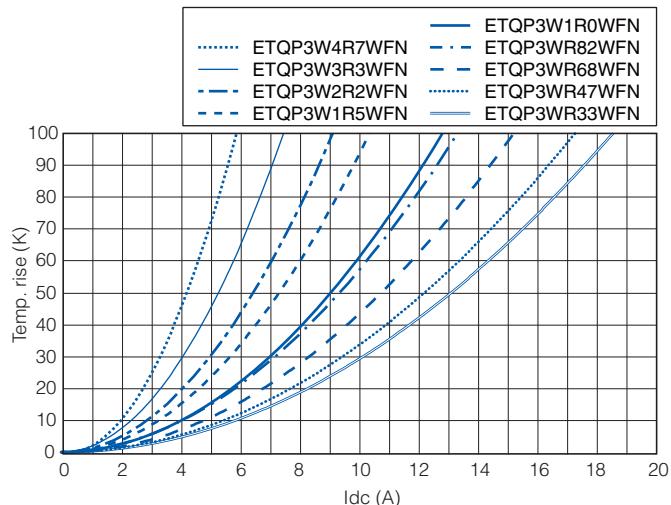
(*2) Rated current defines actual value of DC current, when temperature rise of coil becomes 40 K. (Method A)

(*3) Rated current defines actual value of DC current, when temperature rise of coil becomes 40 K. (Method B)

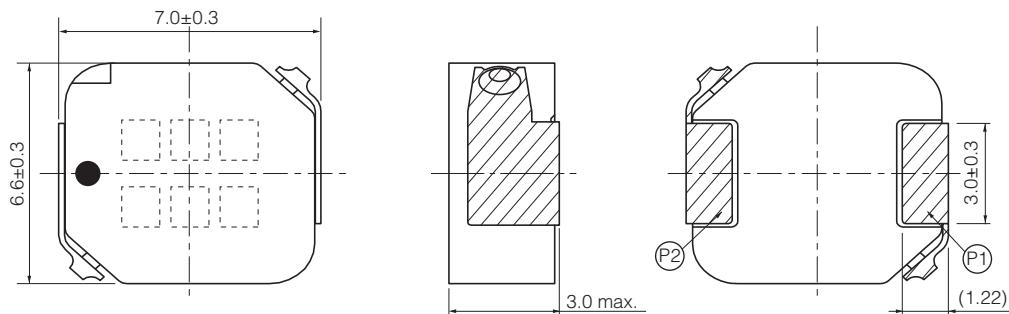
(*4) Reference only

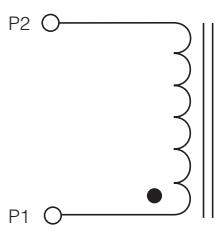

(*5) Method A (PANASONIC's standard measurement conditions),

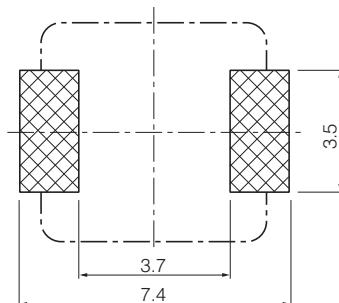
Method B (high heat dissipation measurement) is different from Method A by the measurement methods.


In normal application condition, the part's temperature depends on circuit design and heat dissipation condition. This condition shall be verified by the worst operational condition.

Performance Characteristics (Reference)


Inductance vs DC Current


Case Temperature vs DC Current (Method A)


Dimensions in mm (not to scale)

Connection

Recommended land patterns in mm (not to scale)

■ As for Packaging Methods, Soldering Conditions and Safety Precautions (Power Choke Coils for Consumer use),

Please see Data Files