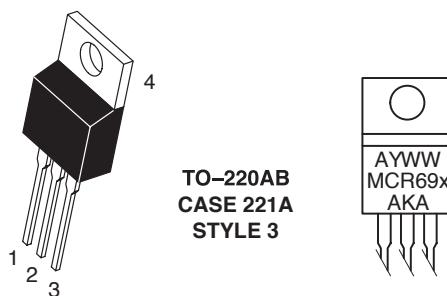
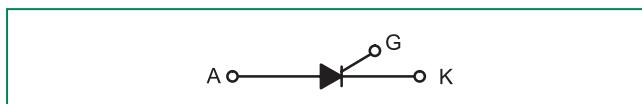


MCR69-2, MCR69-3


Description

Designed for overvoltage protection in crowbar circuits.


Features

- Glass-Passivated Junctions for Greater Parameter Stability and Reliability
- Center-Gate Geometry for Uniform Current Spreading Enabling High Discharge Current
- Small Rugged, Thermowatt Package Constructed for Low Thermal Resistance and Maximum Power Dissipation and Durability
- High Capacitor Discharge Current, 750 Amps
- Pb-Free Packages are Available

Pin Out

Functional Diagram

Additional Information

Datasheet

Resources

Samples

Maximum Ratings ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Rating	Part Number	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) ($T_J = -40$ to $+125^\circ\text{C}$, Gate Open)	MCR169-2	V_{DRM} , V_{RRM}	50	V
	MCR69-3		100	
Peak Discharge Current (Note 2)		I_{TM}	750	A
On-State RMS Current (180° Conduction Angles; $T_C = 85^\circ\text{C}$)		$I_{\text{T(RMS)}}$	25	A
Average On-State Current (180° Conduction Angles; $T_C = 80^\circ\text{C}$)		$I_{\text{T(AV)}}$	16	A
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, $T_J = 125^\circ\text{C}$)		I_{TSM}	300	A
Circuit Fusing Considerations ($t = 8.3$ ms)		I^2t	375	A^2sec
Forward Peak Gate Current (Pulse Width ≤ 1.0 μs , $T_C = 85^\circ\text{C}$)		I_{GM}	2.0	A
Forward Average Gate Power ($t = 8.3$ ms, $T_C = 80^\circ\text{C}$)		P_{GM}	20	W
Operating Junction Temperature Range		T_J	-40 to $+125$	$^\circ\text{C}$
Storage Temperature Range		T_{stg}	-40 to $+150$	$^\circ\text{C}$
Mounting Torque		-	8.0	in. lb.

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. VDRM and VRRM for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.
2. Ratings apply for $tw = 1$ ms. See Figure 1 for ITM capability for various duration of an exponentially decaying current waveform, tw is defined as 5 time constants of an exponentially decaying current pulse.
3. Test Conditions: $I_G = 150$ mA, $V_D = \text{Rated } V_{\text{DRM}}$, $I_{\text{TM}} = \text{Rated Value}$, $T_J = 125^\circ\text{C}$.

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R_{eJC}	1.5	$^\circ\text{C}/\text{W}$
Thermal Resistance, Junction-to-Ambient	R_{eJA}	60	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T_L	260	$^\circ\text{C}$

Electrical Characteristics - OFF ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Peak Repetitive Blocking Current ($V_{AK} = V_{DRM} = V_{RRM}$; Gate Open)	I_{DRM}	-	-	10	μA
	I_{RRM}	-	-	2.0	mA

Electrical Characteristics - ON

Characteristic	Symbol	Min	Typ	Max	Unit
Peak Forward On-State Voltage ($I_{TM} = 50 \text{ A}$) ($I_{TM} = 750 \text{ A}$, $t_w = 1 \text{ ms}$) (Note 5)	V_{TM}	-	-	1.8	V
		-	6.0	-	
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}$, $R_L = 100 \Omega$)	I_{GT}	2.0	7.0	30	mA
Gate Trigger Voltage (Continuous dc) ($V_D = 12 \text{ Vdc}$, $R_L = 100 \Omega$)	V_{GT}	0.5	0.65	1.0	V
Gate Non-Trigger Voltage (Continuous dc) ($V_D = 12 \text{ Vdc}$, $R_L = 100 \Omega$, $T_J = 125^\circ\text{C}$)	V_{GD}	0.2	0.40	-	V
Holding Current ($V_D = 12 \text{ Vdc}$, Initiating Current = 200 mA, Gate Open)	I_H	3.0	15	50	mA
Latch Current ($V_D = 12 \text{ V}_D$, $I_G = 150 \text{ mA}$)	I_L	-	-	60	mA
Gate Controlled Turn-On Time (Note 6) ($V_D = \text{Rated } V_{DRM}$, $I_G = 150 \text{ mA}$) ($I_{TM} = 50 \text{ A}$ Peak)	t_{gt}	-	1.0	-	μs

Dynamic Characteristics

Characteristic	Symbol	Min	Typ	Max	Unit
Critical Rate-of-Rise of Off-State Voltage ($V_D = \text{Rated } V_{DRM}$, Exponential Waveform, Gate Open, $T_J = 125^\circ\text{C}$)	dv/dt	10	-	-	$\text{V}/\mu\text{s}$
Critical Rate of Rise of On-State Current $I_G = 150 \text{ mA}$, $T_J = 125^\circ\text{C}$	di/dt	-	-	100	$\text{A}/\mu\text{s}$

4. Pulse duration $\leq 300 \mu\text{s}$, duty cycle $\leq 2\%$.

5. Ratings apply for $t_w = 1 \text{ ms}$. See Figure 1 for I_{TM} capability for various durations of an exponentially decaying current waveform.
 t_w is defined as 5 time constants of an exponentially decaying current pulse.

6. The gate controlled turn-on time in a crowbar circuit will be influenced by the circuit inductance.

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I_{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I_{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I_H	Holding Current

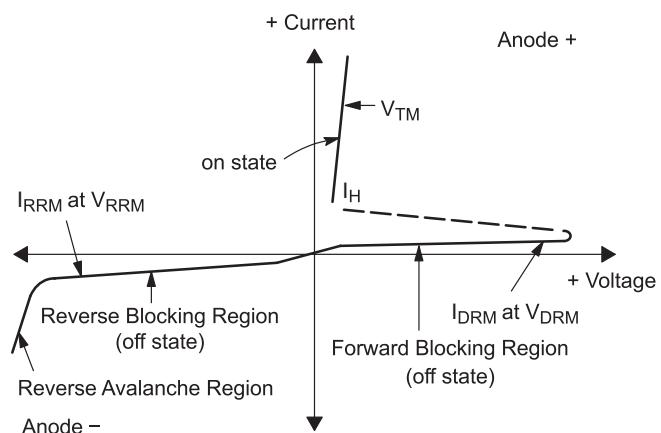


Figure 1. Typical RMS Current Derating

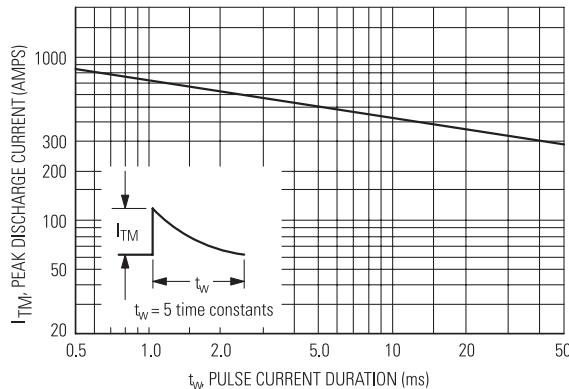
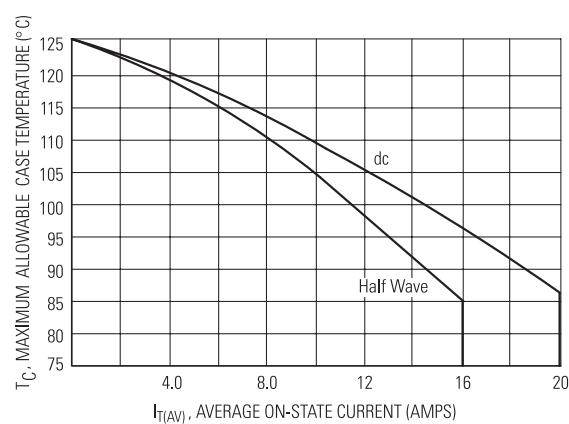
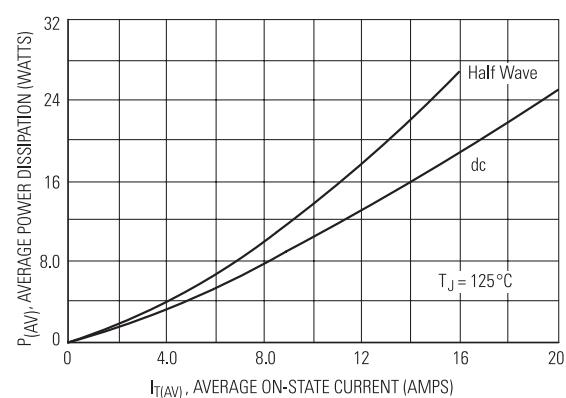
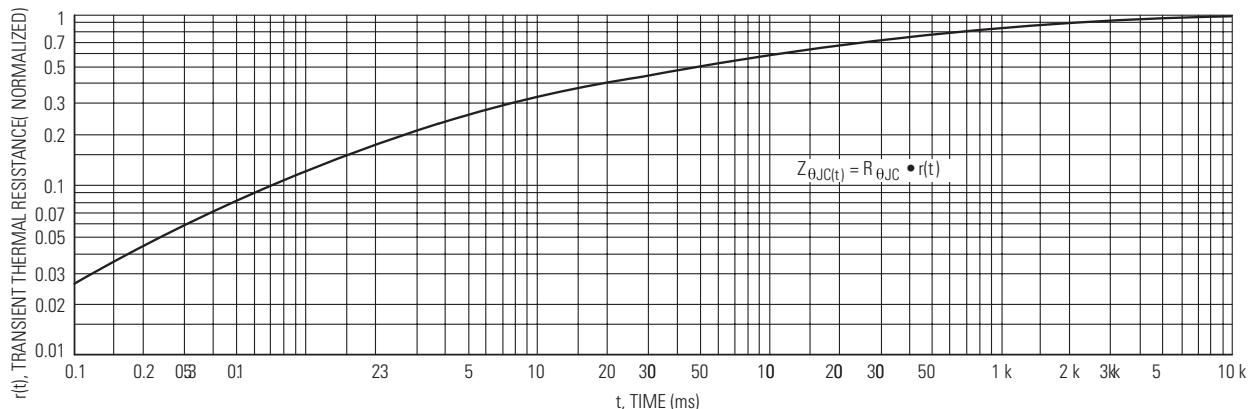
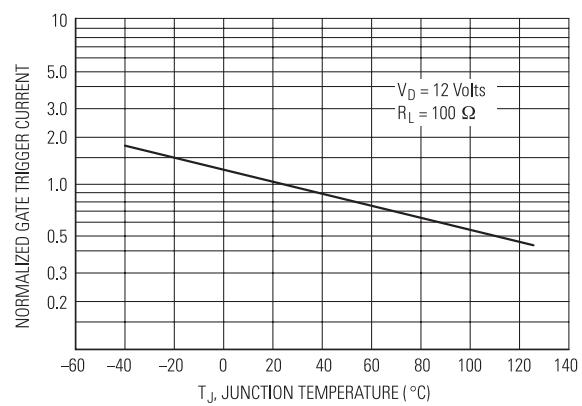
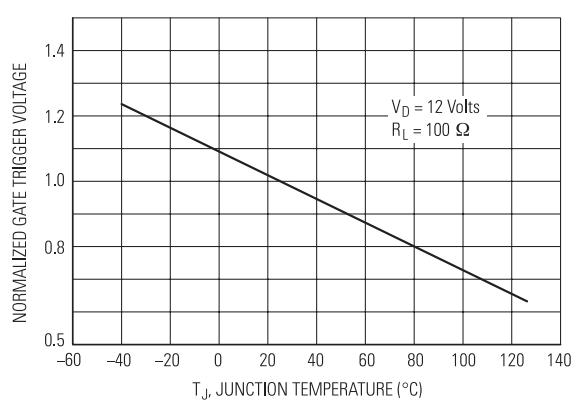


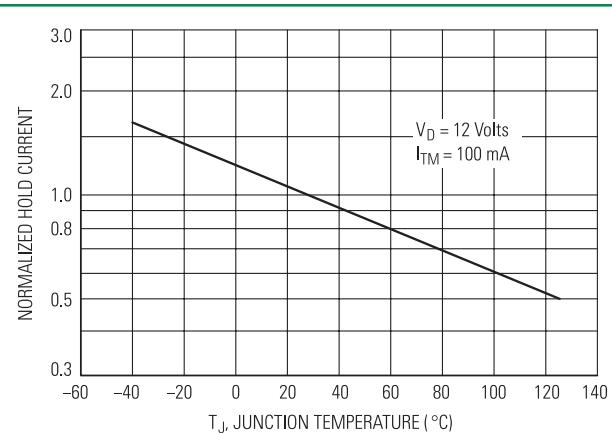
Figure 2. Peak Capacitor Discharge Current Derating

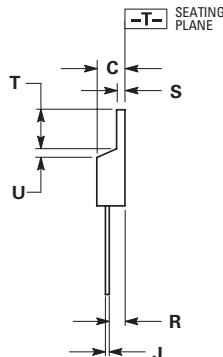
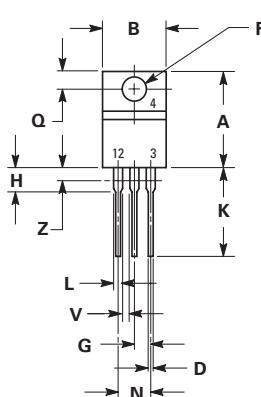
Figure 3. Current Derating

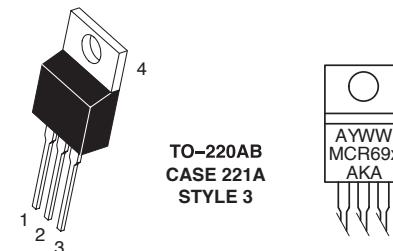





Figure 4. Maximum Power Dissipation


Figure 5. Thermal Response


Figure 6. Gate Trigger Current



Figure 7. Gate Trigger Voltage


Figure 8. Holding Current

Dimensions

Part Marking System

A= Assembly Location
 Y= Year
 WW = Work Week
 MCR69= Device Code
 x= 2 or 3
 AKA= Location Code

Dim	Inches		Millimeters	
	Min	Max	Min	Max
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Pin Assignment

1	Cathode
2	Anode
3	Gate
4	Anode

Ordering Information

Device	Package	Shipping
MCR69-2	TO-220AB	500 / Box
MCR69-2G	TO-220AB (Pb-Free)	
MCR69-3	TO-220AB	500 / Box
MCR69-3G	TO-220AB (Pb-Free)	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics.