

4518 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REJ03B0008-0301 Rev.3.01 2005.06.15

DESCRIPTION

The 4518 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with serial interface, four 8-bit timers (each timer has one or two reload registers), a 10-bit A/D converter, interrupts, and oscillation circuit switch function.

The various microcomputers in the 4518 Group include variations of the built-in memory size as shown in the table below.

FEATURES

•	ilmers	
	Timer 1	8-bit timer with a reload register
	Timer 2	8-bit timer with a reload register
	Timer 3	8-bit timer with a reload register
	Timer 3 8-b	oit timer with two reload registers

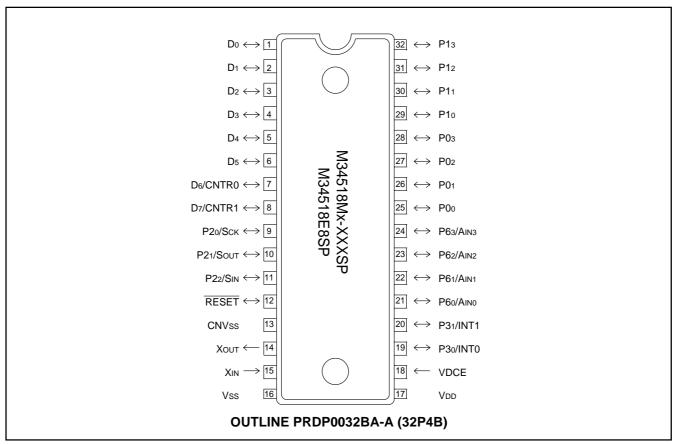
●Interrupt 8 sc	urces
●Key-on wakeup function pins	10
● Serial interface 8 bit	ts X 1
● A/D converter 10-bit successive comparison method	d, 4ch
■Voltage drop detection circuit	
Reset occurrence	25 °C)
Reset releaseTyp. 3.7 V (Ta = 2	25 °C)

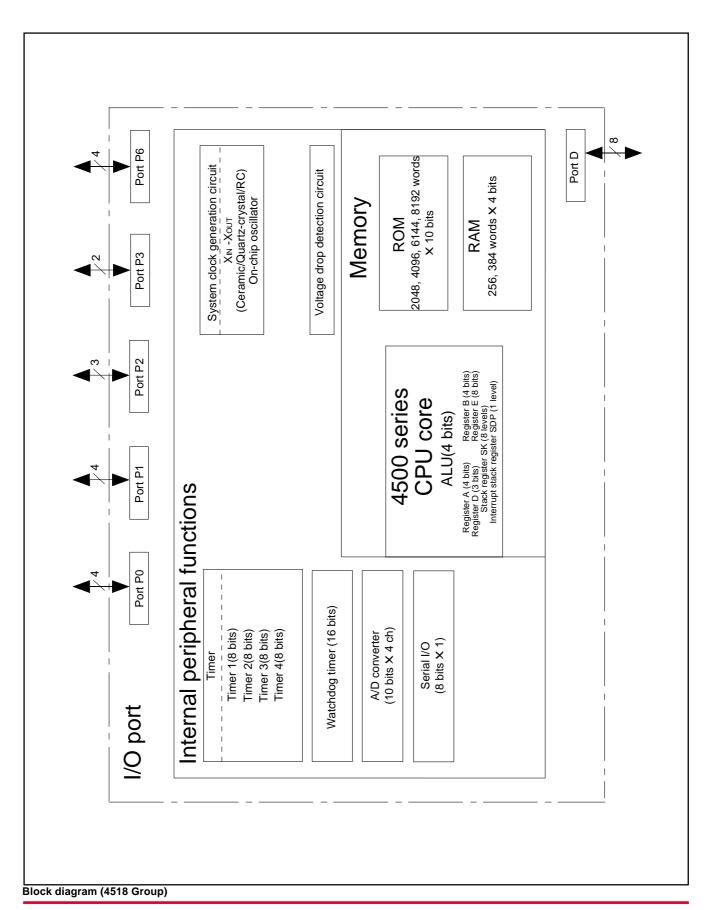
- Watchdog timer
- Clock generating circuit (ceramic resonator/RC oscillation/quartz-crystal oscillation/onchip oscillator)
- ●LED drive directly enabled (port D)

APPLICATION

Electrical household appliance, consumer electronic products, office automation equipment, etc.

Part number	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34518M2-XXXFP	2048 words	256 words	PLQP0032GB-A	Mask ROM
M34518M2-XXXSP	2048 words	256 words	PRDP0032BA-A	Mask ROM
M34518M4-XXXFP	4096 words	256 words	PLQP0032GB-A	Mask ROM
M34518M4-XXXSP	4096 words	256 words	PRDP0032BA-A	Mask ROM
M34518M6-XXXFP	6144 words	384 words	PLQP0032GB-A	Mask ROM
M34518M8-XXXFP	8192 words	384 words	PLQP0032GB-A	Mask ROM
M34518E8FP (Note)	8192 words	384 words	PLQP0032GB-A	One Time PROM
M34518E8SP (Note)	8192 words	384 words	PRDP0032BA-A	One Time PROM


Note: Shipped in blank.


PIN CONFIGURATION

Pin configuration (top view) (4518 Group)

Pin configuration (top view) (4518 Group)

PERFORMANCE OVERVIEW

Parameter			Function			
Number of bas	ic instr	uctions	148			
Minimum instruction execution time			0.5 μs (at 6.0 MHz oscillation frequency, in XIN through-mode)			
Memory sizes	ROM	M34518M2	2048 words X 10 bits			
		M34518M4	4096 words X 10 bits			
		M34518M6	6144 words X 10 bits			
		M34518M8/E8	8192 words X 10 bits			
	RAM	M34518M2/M4	256 words X 4 bits			
		M34518M6/M8/E8	384 words X 4 bits			
Input/Output ports	D0-D7	I/O (Input is examined by skip decision)	Eight independent I/O ports; Ports D6 and D7 are also used as CNTR0 and CNTR1, respectively. The output structure is switched by software.			
	P00-P	P03 I/O	4-bit I/O port; a pull-up function, a key-on wakeup function and output structure can be switched by software.			
	P10-P	713 I/O	4-bit I/O port; a pull-up function, a key-on wakeup function and output structure can be switched by software.			
	P20-P	² 22 I/O	3-bit I/O port; ports P20, P21 and P22 are also used as SCK, SOUT and SIN, respectively.			
	P30, P31 I/O		2-bit I/O port; ports P30 and P31 are also used as INT0 and INT1, respectively.			
	P60-P63 I/O		4-bit I/O port; ports P60–P63 are also used as AIN0–AIN3, respectively.			
Timers	Timer 1		8-bit timer with a reload register is also used as an event counter.			
			Also, this is equipped with a period/pulse width measurement function.			
	Timer 2		8-bit timer with a reload register.			
	Timer 3		8-bit timer with a reload register is also used as an event counter.			
	Timer 4		8-bit timer with two reload registers and PWM output function.			
A/D converter			10-bit wide X 4 ch, This is equipped with an 8-bit comparator function.			
Serial I/O			8-bit X 1			
Interrupt	Source	es	8 (two for external, four for timer, one for A/D, and one for serial I/O)			
	Nestin	g	1 level			
Subroutine nes	sting		8 levels			
Device structu	re		CMOS silicon gate			
Package			32-pin plastic molded LQFP (PLQP0032GB-A)/SDIP (PRDP0032BA-A)			
Operating tem		•	−20 °C to 85 °C			
Supply voltage	Mask	ROM version	1.8 V to 5.5 V (It depends on operation source clock, oscillation frequency and operating mode.)			
	One T	ime PROM version	2.5 V to 5.5 V (It depends on operation source clock, oscillation frequency and operating mode.)			
Power	Active	mode	2.8 mA (Ta=25 °C, VDD=5V, f(XIN)=6 MHz, f(STCK)=f(XIN), on-chip oscillator stop)			
dissipation			70 μA (Ta=25 °C, VDD=5V, f(XIN)=32 kHz, f(STCK)=f(XIN), on-chip oscillator stop)			
(typical value)			150 μA (Ta=25 °C, VDD=5V, on-chip oscillator is used, f(STCK)=f(RING), f(XIN) stop)			
	RAM back-up mode		0.1 μ A (Ta=25 °C, VDD = 5 V, output transistors in the cut-off state)			

PIN DESCRIPTION

Pin	Name	Input/Output	Function
VDD	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
CNVss	CNVss	_	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.
VDCE	Voltage drop detection circuit enable	Input	This pin is used to operate/stop the voltage drop detection circuit. When "H" level is input to this pin, the circuit starts operating. When "L" level is input to this pin, the circuit stops operating.
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, the built-in power-on reset or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.
XIN	Main clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator, connect it between pins XIN and XOUT. When using a 32 kHz quartz-crystal oscillator, connect it
Хоит	Main clock output	Output	between pins XIN and XOUT. A feedback resistor is built-in between them. When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.
D0-D7	I/O port D Input is examined by skip decision.	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Ports D6, D7 is also used as CNTR0 pin and CNTR1 pin, respectively.
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P20-P23	I/O port P2	I/O	Port P2 serves as a 3-bit I/O port. The output structure is N-channel open-drain. For input use, set the latch of the specified bit to "1". Ports P20–P22 are also used as SCK, SOUT, SIN, respectively.
P30-P33	I/O port P3	I/O	Port P3 serves as a 2-bit I/O port. The output structure is N-channel open-drain. For input use, set the latch of the specified bit to "1". Ports P3o and P31 are also used as INTO pin and INT1 pin, respectively.
P60-P63	I/O port P6	I/O	Port P6 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain. For input use, set the latch of the specified bit to "1". Ports P60–P63 are also used as AIN0–AIN3, respectively.
CNTR0, CNTR1	Timer input/output	I/O	CNTR0 pin has the function to input the clock for the timer 1 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2. CNTR1 pin has the function to input the clock for the timer 3 event counter, and to output the PWM signal generated by timer 4.CNTR0 pin and CNTR1 pin are also used as Ports D6 and D7, respectively.
INTO, INT1	Interrupt input	Input	INT0 pin and INT1 pin accept external interrupts. They have the key-on wakeup function which can be switched by software. INT0 pin and INT1 pin are also used as Ports P30 and P31, respectively.
AIN0-AIN3	Analog input	Input	A/D converter analog input pins. AIN0-AIN3 are also used as ports P60-P63, respectively.
Sck	Serial I/O data I/O	I/O	Serial I/O data transfer synchronous clock I/O pin. SCK pin is also used as port P20.
Sout	Serial I/O data output	Output	Serial I/O data output pin. Sout pin is also used as port P21.
SIN	Serial I/O clock input	Input	Serial I/O data input pin. SIN pin is also used as port P22.

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
D6	CNTR0	CNTR0	D6	P60	AIN0	AIN0	P60
D7	CNTR1	CNTR1	D7	P61	AIN1	AIN1	P61
P20	Sck	Sck	P20	P62	AIN2	AIN2	P62
P21	Sout	Sout	P21	P63	AIN3	AIN3	P63
P22	SIN	SIN	P22				
P30	INT0	INT0	P30				
P31	INT1	INT1	P31				

Notes 1: Pins except above have just single function.

- 2: The input/output of P30 and P31 can be used even when INT0 and INT1 are selected.
- 3: The input of ports P20-P22 can be used even when SIN, SOUT and SCK are selected.
- 4: The input/output of D6 can be used even when CNTR0 (input) is selected.
- 5: The input of D6 can be used even when CNTR0 (output) is selected.
- 6: The input/output of D7 can be used even when CNTR1 (input) is selected.
- 7: The input of D7 can be used even when CNTR1 (output) is selected.

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator
- Clock (f(XIN)) by the external quartz-crystal oscillation

System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table Selection of system clock

	Register MR			System clock	Operation mode
MR ₃	MR2	MR1	MR ₀		
0	0	0	0	f(STCK) = f(XIN)	XIN through mode
		X 1		f(STCK) = f(RING)	Ring through mode
0	1	0	0	f(STCK) = f(XIN)/2	XIN divided by 2 mode
		×	1	f(STCK) = f(RING)/2	Ring divided by 2 mode
1	0	0 0 0		f(STCK) = f(XIN)/4	XIN divided by 4 mode
	X 1		1	f(STCK) = f(RING)/4	Ring divided by 4 mode
1	1 1 0 0		0	f(STCK) = f(XIN)/8	XIN divided by 8 mode
		X	1	f(STCK) = f(RING)/8	Ring divided by 8 mode

X: 0 or 1

Note: The f(RING)/8 is selected after system is released from reset. When on-chip oscillator clock is selected for main clock, set the on-chip oscillator to be operating state.

PORT FUNCTION

	TONCTION							
Port	Pin	Input	Output structure	I/O	Control	Control	Remark	
1 011		Output	o atpat otractaro	unit	instructions	registers		
Port D	D0-D5	I/O	N-channel open-drain/	1	SD, RD	FR1, FR2	Output structure selection	
	D6/CNTR0	(8)	CMOS		SZD	W6	function (programmable)	
	D7/CNTR1				CLD	W4		
Port P0	P00-P03	I/O	N-channel open-drain/	4	OP0A	FR0	Built-in programmable pull-up	
		(4)	CMOS		IAP0	PU0	functions, key-on wakeup	
						K0, K1	functions and output structure	
							selection functions	
Port P1	P10-P13	I/O	N-channel open-drain/	4	OP1A	FR0	Built-in programmable pull-up	
		(4)	CMOS		IAP1	PU1	functions, key-on wakeup	
						K0	functions and output structure	
							selection functions	
Port P2	P20/SCK, P21/SOUT	I/O	N-channel open-drain	3	OP2A	J1		
	P22/SIN	(3)			IAP2			
Port P3	P30/INT0, P31/INT1	I/O	N-channel open-drain	2	OP3A	I1, I2		
		(2)			IAP3	K2		
Port P6	P60/AIN0-P63/AIN3	I/O	N-channel open-drain	4	OP6A	Q2		
		(4)			IAP6	Q1		

CONNECTIONS OF UNUSED PINS

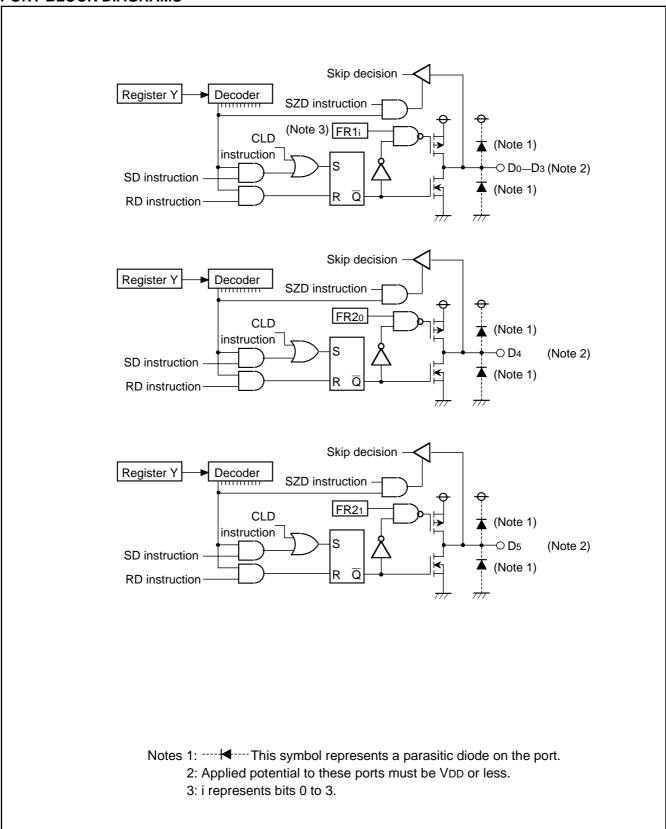
Pin	Connection	Usage condition			
XIN	Open.	Internal oscillator is selected.	(Note 1)		
Xout	Open.	Internal oscillator is selected.	(Note 1)		
		RC oscillator is selected.	(Note 2)		
		External clock input is selected for main clock.	(Note 3)		
D0-D5	Open.				
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 4)		
D6/CNTR0	Open.	CNTR0 input is not selected for timer 1 count source.			
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 4)		
D7/CNTR1	Open.	CNTR1 input is not selected for timer 3 count source.			
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 4)		
P00-P03	Open.	The key-on wakeup function is not selected.	(Note 6)		
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 5)		
		The pull-up function is not selected.	(Note 4)		
		The key-on wakeup function is not selected.	(Note 6)		
P10-P13	Open.	The key-on wakeup function is not selected.	(Note 7)		
	Connect to Vss.	N-channel open-drain is selected for the output structure.	(Note 5)		
		The pull-up function is not selected.	(Note 4)		
		The key-on wakeup function is not selected.	(Note 7)		
P20/SCK	Open.	Scк pin is not selected.			
	Connect to Vss.				
P21/SOUT	Open.				
	Connect to Vss.				
P22/SIN	Open.	SIN pin is not selected.			
	Connect to Vss.				
P3o/INT0	Open.	"0" is set to output latch.			
	Connect to Vss.				
P31/INT1	Open.	"0" is set to output latch.			
	Connect to Vss.				
P60/AIN0-P63/AIN3	Open.				
	Connect to Vss.				

Notes 1: After system is released from reset, the internal oscillation (on-chip oscillator) is selected for system clock (RG0=0, MR0=1).

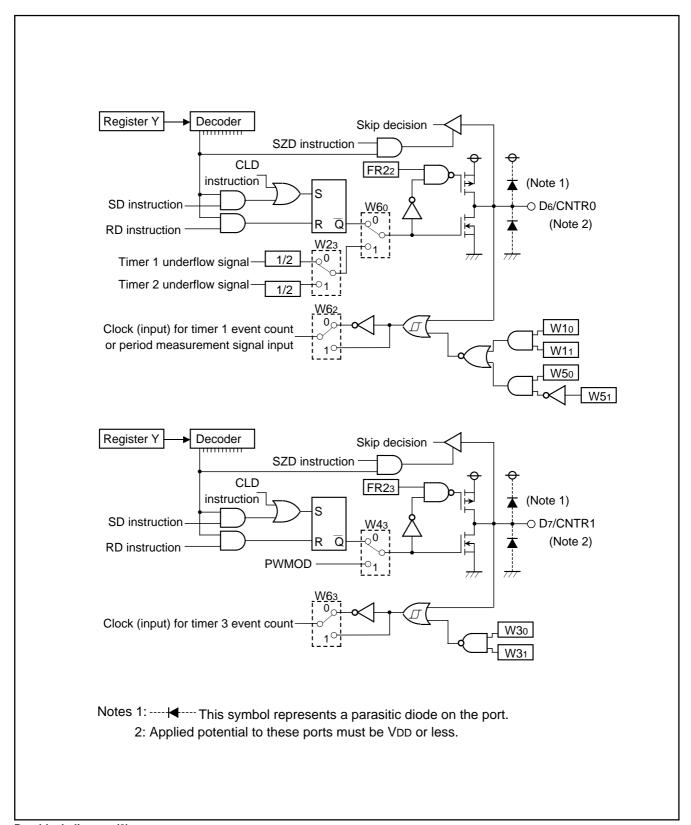
In order to start oscillation, setting the main clock f(XIN) oscillation to be valid (MR1=0) is required. (If necessary, generate the oscillation stabilizing wait time by software.)

Also, when the main clock (f(XIN)) is selected as system clock, set the main clock f(XIN) oscillation (MR1=0) to be valid, and select main clock f(XIN) (MR0=0). Be careful that the switch of system clock cannot be executed at the same time when main clock oscillation is started.

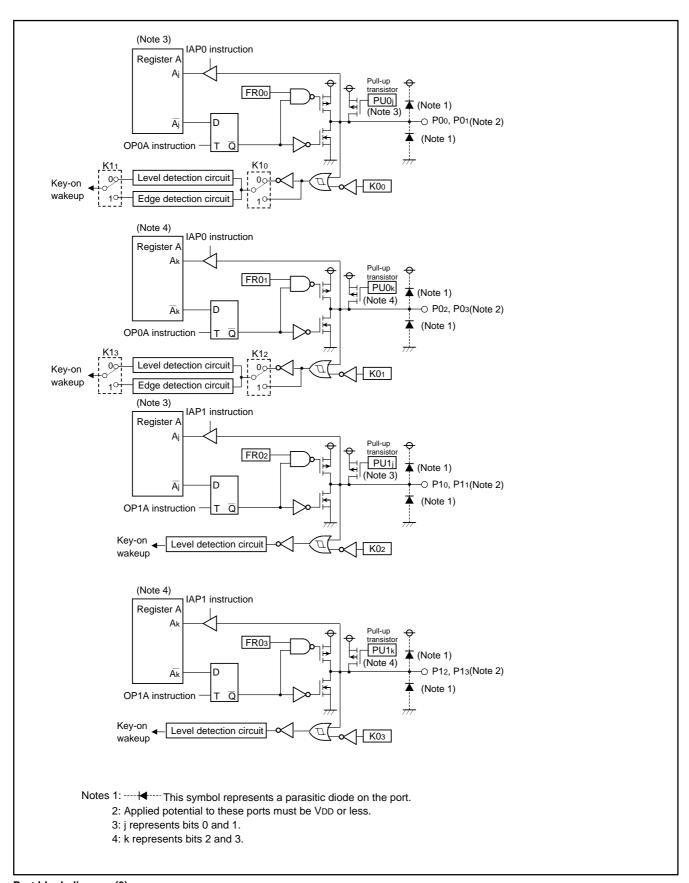
- 3: In order to use the external clock input for the main clock, select the ceramic resonance by executing the CMCK instruction at the beggining of software, and then set the main clock (f(XIN)) oscillation to be valid (MR1=0). Until the main clock (f(XIN)) oscillation becomes valid (MR1=0) after ceramic resonance becomes valid, XIN pin is fixed to "H". When an external clock is used, insert a 1 kΩ resistor to XIN pin in series for limits of current.
- 4: Be sure to select the output structure of ports D0-D5 and the pull-up function of P00-P03 and P10-P13 with every one port. Set the corresponding bits of registers for each port.
- 5: Be sure to select the output structure of ports P00–P03 and P10–P13 with every two ports. If only one of the two pins is used, leave another one open.
- 6: The key-on wakeup function is selected with every two bits. When only one of key-on wakeup function is used, considering that the value of key-on wake-up control register K1, set the unused 1-bit to "H" input (turn pull-up transistor ON and open) or "L" input (connect to Vss, or open and set the output latch to "0").
- 7: The key-on wakeup function is selected with every two bits. When one of key-on wakeup function is used, turn pull-up transistor of the unused one ON and open.

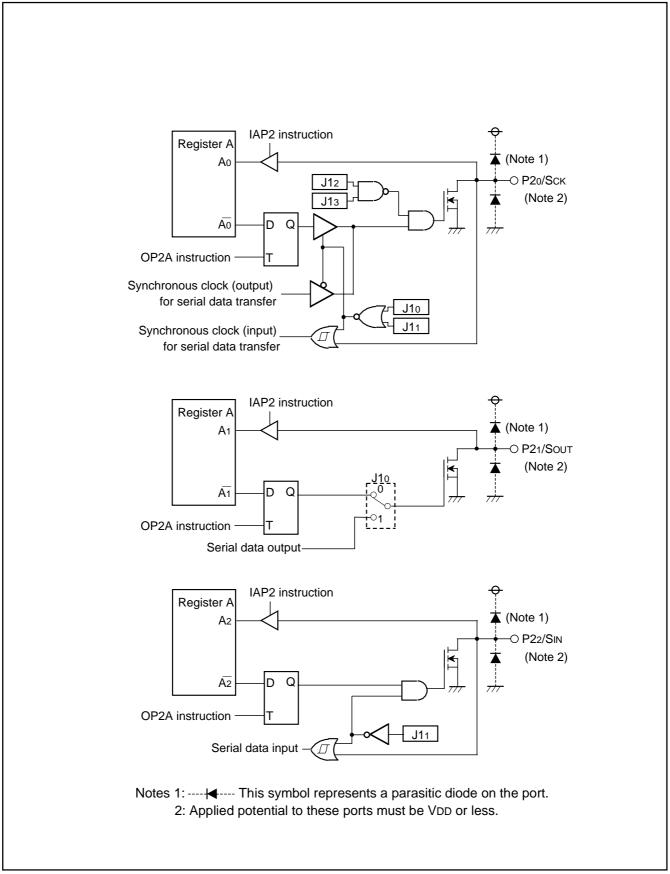

(Note when connecting to Vss and VDD)

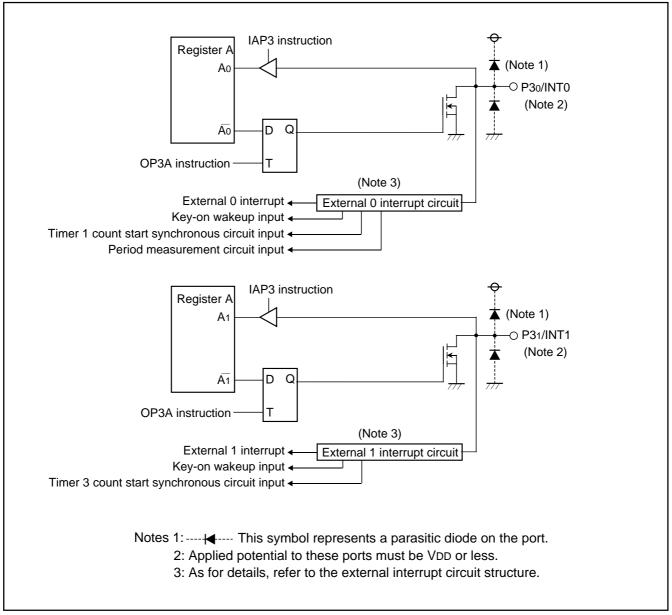
Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise.

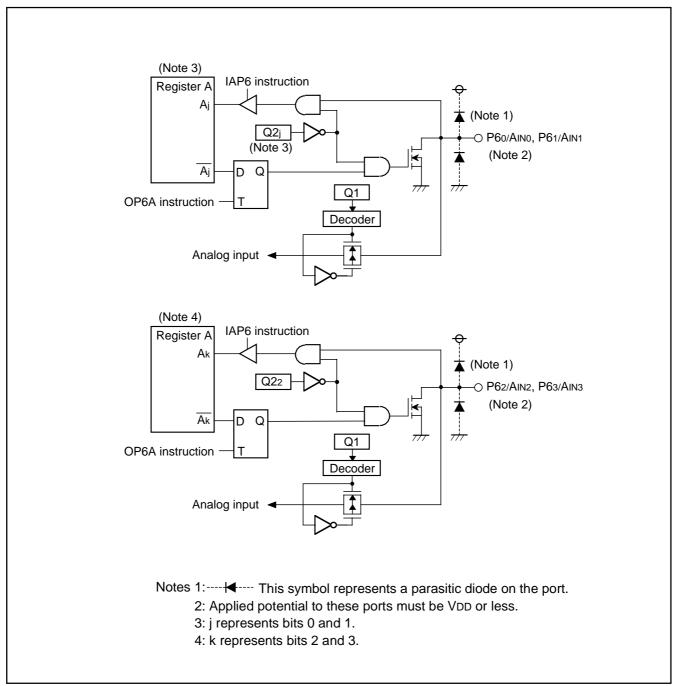


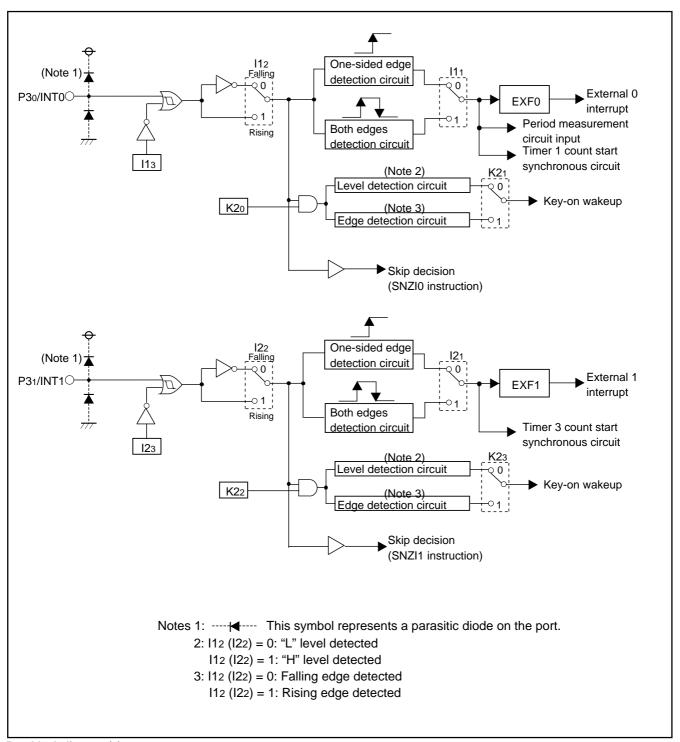
^{2:} When the CRCK instruction is executed, the RC oscillation circuit becomes valid. Be careful that the swich of system clock is not executed at oscillation start only by the CRCK instruction execution.


PORT BLOCK DIAGRAMS




Port block diagram (1)


Port block diagram (2)



Port block diagram (5)

Port block diagram (6)

Port block diagram (7)

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed. Also, when the TABP p instruction is executed, the high-order 2 bits of the reference data in ROM is stored to the low-order 2 bits of register D, and the contents of the high-order 1 bit of register D is "0". (Figure 4).

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

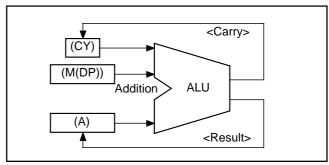


Fig. 1 AMC instruction execution example

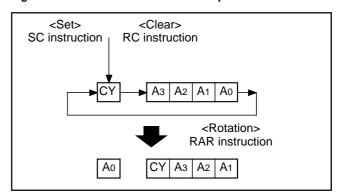


Fig. 2 RAR instruction execution example

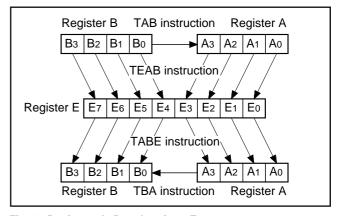


Fig. 3 Registers A, B and register E

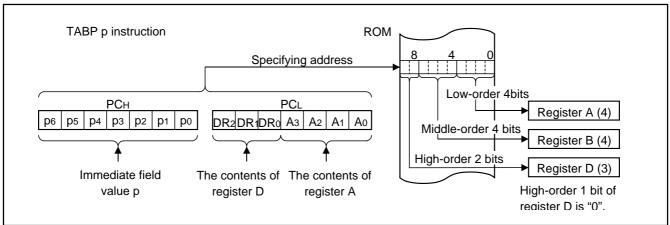


Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

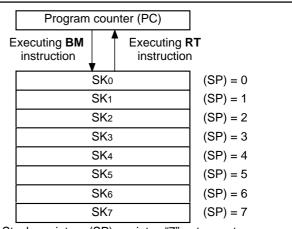
Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.


Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

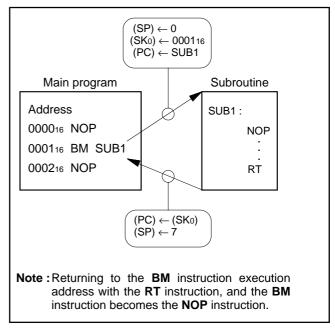


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8)

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

Note

Register Z of data pointer is undefined after system is released from reset

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

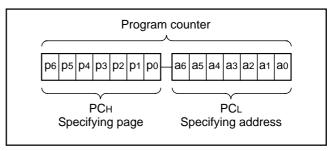


Fig. 7 Program counter (PC) structure

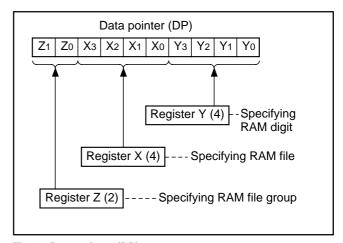


Fig. 8 Data pointer (DP) structure

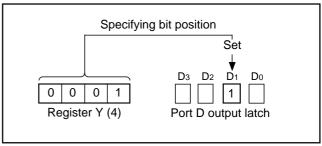


Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34518M8/E8.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages	
M34518M2	2048 words	16 (0 to 15)	
M34518M4	4096 words	32 (0 to 31)	
M34518M6	6144 words	48 (0 to 47)	
M34518M8/E8	8192 words	64 (0 to 63)	

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 9 to 0) of all addresses can be used as data areas with the TABP p instruction.

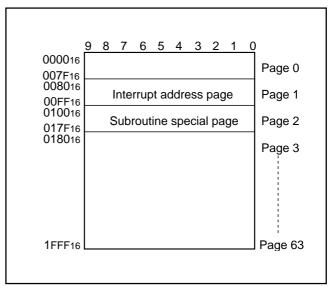


Fig. 10 ROM map of M34518M8/E8

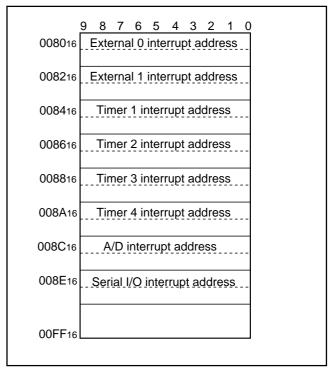


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up). Table 2 shows the RAM size. Figure 12 shows the RAM map.

• Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size
M34518M2/M4	256 words X 4 bits (1024 bits)
M34518M6/M8/E8	384 words X 4 bits (1536 bits)

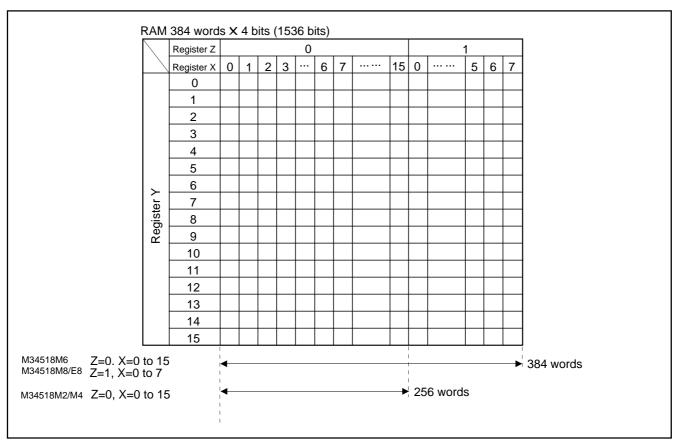


Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT0 pin	Address 0 in page 1
2	External 1 interrupt	Level change of INT1 pin	Address 2 in page 1
3	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
4	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
5	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1
6	Timer 4 interrupt	Timer 4 underflow	Address A in page 1
7	A/D interrupt	Completion of A/D conversion	Address C in page 1
8	Serial I/O interrupt	Completion of serial I/O transmit/receive	Address E in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

struction			
Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
External 1 interrupt	EXF1	SNZ1	V11
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20
Timer 4 interrupt	T4F	SNZT4	V21
A/D interrupt	ADF	SNZAD	V22
Serial I/O interrupt	SIOF	SNZSI	V23

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction		
1	Enabled	Invalid		
0	Disabled	Valid		

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
 - An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
 INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0"
- Data pointer, carry flag, skip flag, registers A and B
 The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

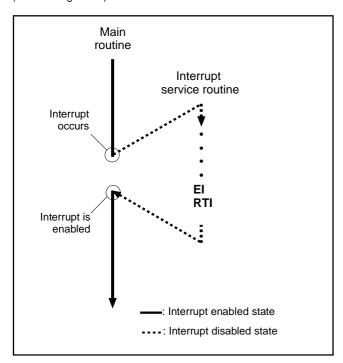


Fig. 13 Program example of interrupt processing

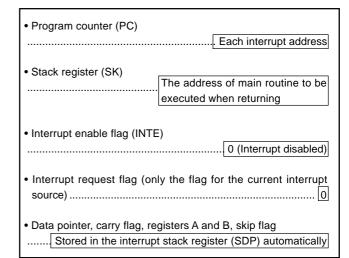


Fig. 14 Internal state when interrupt occurs

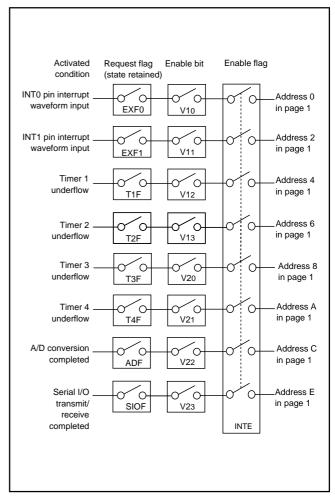


Fig. 15 Interrupt system diagram

(6) Interrupt control registers

- Interrupt control register V1
 Interrupt enable bits of external 0, external 1, timer 1 and timer 2
 are assigned to register V1. Set the contents of this register
 through register A with the TV1A instruction. The TAV1 instruction
 can be used to transfer the contents of register V1 to register A.
- Interrupt control register V2
 The timer 3, timer 4, A/D and serial I/O interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 6 Interrupt control registers

Interrupt control register V1		at reset : 00002		at RAM back-up : 00002	R/W TAV1/TV1A	
V13 Timer 2 interrupt enable bit		0	Interrupt disabled	(SNZT2 instruction is valid)		
V 13	Timer 2 interrupt enable bit	1	Interrupt enabled (Interrupt enabled (SNZT2 instruction is invalid)		
1/10	V12 Timer 1 interrupt enable bit	0	Interrupt disabled	(SNZT1 instruction is valid)		
V 12		1	Interrupt enabled (SNZT1 instruction is invalid)		
V11	External 1 interrupt enable bit	0	Interrupt disabled	(SNZ1 instruction is valid)		
VIII	External Timerrupt enable bit	1	Interrupt enabled (SNZ1 instruction is invalid)		
V10	External 0 interrupt enable bit	0	Interrupt disabled	(SNZ0 instruction is valid)		
V 10	External o interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)		

Interrupt control register V2		at reset : 00002		at RAM back-up : 00002	R/W TAV2/TV2A
1/20	Vo Corial I/O interrupt anable bit		Interrupt disabled	(SNZSI instruction is valid)	
V 23	V23 Serial I/O interrupt enable bit	1	Interrupt enabled (SNZSI instruction is invalid)	
\/Os	V22 A/D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)		
V 22		1	Interrupt enabled (SNZAD instruction is invalid)	
\/O.	Timor 4 interrupt enable bit	0	Interrupt disabled	(SNZT4 instruction is valid)	
V21	Timer 4 interrupt enable bit	1	Interrupt enabled (SNZT4 instruction is invalid)	
\/Oo	Timer 3 interrupt enable bit	0	Interrupt disabled	(SNZT3 instruction is valid)	
V20	Timer 3 interrupt enable bit	1	Interrupt enabled (SNZT3 instruction is invalid)	

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10–V13, V20–V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4518 Group has the external 0 interrupt and external 1 interrupt.

An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control registers I1 and I2.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	P30/INT0	When the next waveform is input to P30/INT0 pin	I 11
		Falling waveform ("H"→"L")	l12
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	
External 1 interrupt	P31/INT1	When the next waveform is input to P31/INT1 pin	I21
		Falling waveform ("H"→"L")	l22
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	

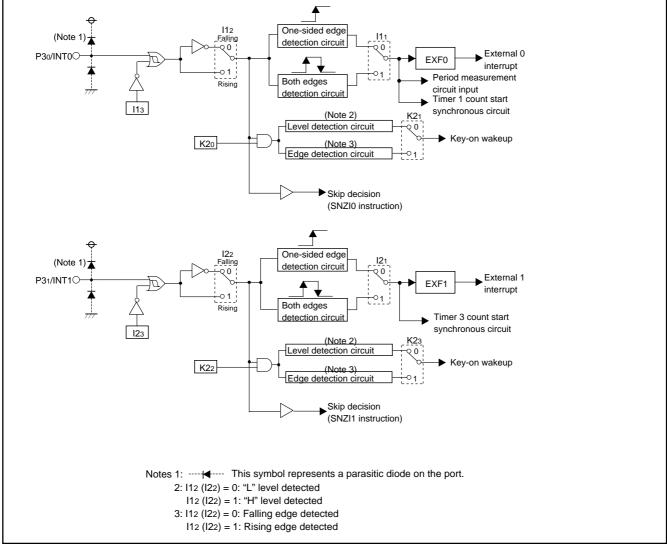


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to P30/INT0 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition
 - External 0 interrupt activated condition is satisfied when a valid waveform is input to P3o/INT0 pin.
 - The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.
- ① Set the bit 3 of register I1 to "1" for the INT0 pin to be in the input enabled state.
- 2 Select the valid waveform with the bits 1 and 2 of register I1.
- ③ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ0 instruction.
- Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the P30/INT0 pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External 1 interrupt request flag (EXF1)

External 1 interrupt request flag (EXF1) is set to "1" when a valid waveform is input to P31/INT1 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction

- External 1 interrupt activated condition
 - External 1 interrupt activated condition is satisfied when a valid waveform is input to P31/INT1 pin.
- The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows.
- ① Set the bit 3 of register I2 to "1" for the INT1 pin to be in the input enabled state.
- ② Select the valid waveform with the bits 1 and 2 of register I2.
- ③ Clear the EXF1 flag to "0" with the SNZ1 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ1 instruction.
- Set both the external 1 interrupt enable bit (V11) and the INTE flag to "1."

The external 1 interrupt is now enabled. Now when a valid waveform is input to the P31/INT1 pin, the EXF1 flag is set to "1" and the external 1 interrupt occurs.

(3) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

• Interrupt control register I2

Register I2 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 8 External interrupt control register

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W TAI1/TI1A
l13	INTO pin input control bit	0	INT0 pin input disa	abled	
113	113 IN TO PILL INPUT CONTROL DIT	1	INT0 pin input ena	bled	
110	Interrupt valid waveform for INT0 pin/ return level selection bit	0	Falling waveform/"L" level ("L" level is recognized with the SNZI0 instruction)		
112		1	Rising waveform/"I	H" level ("H" level is recognized with	the SNZI0
l1 ₁	INTO pin adde detection circuit control bit	0	One-sided edge detected		
111	INT0 pin edge detection circuit control bit	1	Both edges detected		
I1 0	INT0 pin Timer 1 count start synchronous	0	Timer 1 count star	t synchronous circuit not selected	
110	circuit selection bit	1	Timer 1 count star	t synchronous circuit selected	

	Interrupt control register I2		reset : 00002	at RAM back-up : state retained	R/W TAI2/TI2A
123	INT1 pin input control bit (Note 2)	0	INT1 pin input disa	abled	
123	int i pin input control bit (Note 2)	1	INT1 pin input ena	bled	
120	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 2)	0	Falling waveform/"L" level ("L" level is recognized with the SNZI1 instruction)		
122		1	Rising waveform/"H" level ("H" level is recognized with the SNZI1 instruction)		
I2 ₁	INT1 pin edge detection circuit control bit	0	One-sided edge de	etected	
121	in i più eage detection circuit control bit	1	Both edges detected		
120	INT1 pin Timer 3 count start synchronous	0	Timer 3 count start	t synchronous circuit not selected	
120	circuit selection bit		Timer 3 count start synchronous circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set.

(4) Notes on External 0 interrupt

- ① Note [1] on bit 3 of register I1

 When the input of the INT0 pin is controlled with the bit 3 of reg
 - when the input of the INTO pin is controlled with the bit 3 of reg ister I1 in software, be careful about the following notes.
- Depending on the input state of the P3o/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18 ①) and then, change the bit 3 of register I1. In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 18 ②). Also, set the NOP instruction for the case when a skip is per-

formed with the SNZ0 instruction (refer to Figure 18 3).

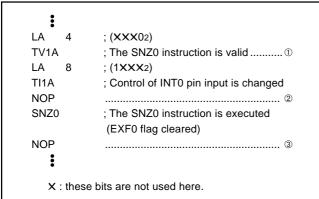


Fig. 18 External 0 interrupt program example-1

about the following notes.

- ② Note [2] on bit 3 of register I1
 When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful
- When the input of INT0 pin is disabled (register I13 = "0"), set the key-on wakeup function to be invalid (register K20 = "0") before system enters to the RAM back-up mode. (refer to Figure 19①).

```
LA 0 ; (XXX02)
TK2A ; Input of INT0 key-on wakeup invalid .. ①
DI
EPOF
POF ; RAM back-up

X: these bits are not used here.
```

Fig. 19 External 0 interrupt program example-2

- ③ Note on bit 2 of register I1 When the interrupt valid waveform of the P30/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P3o/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20①) and then, change the bit 2 of register I1. In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20②). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20③).

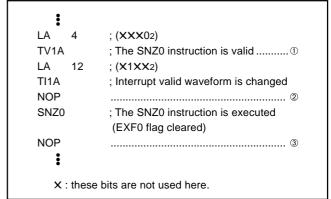


Fig. 20 External 0 interrupt program example-3

(5) Notes on External 1 interrupt

- ① Note [1] on bit 3 of register I2
 - When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

• Depending on the input state of the P31/INT1 pin, the external 1

interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 21①) and then, change the bit 3 of register I2. In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 21②). Also, set the NOP instruction for the case when a skip is per-

formed with the SNZ1 instruction (refer to Figure 213).

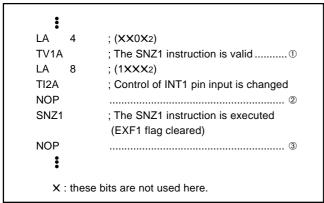


Fig. 21 External 1 interrupt program example-1

- 2 Note [2] on bit 3 of register I2
 - When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.
- When the input of INT1 pin is disabled (register I23 = "0"), set the key-on wakeup function to be invalid (register K22 = "0") before system enters to the RAM back-up mode. (refer to Figure 22①).

```
LA 0 ; (X0XX2)

TK2A ; Input of INT1 key-on wakeup invalid .. ①

DI

EPOF

POF ; RAM back-up

X: these bits are not used here.
```

Fig. 22 External 1 interrupt program example-2

- ③ Note on bit 2 of register I2 When the interrupt valid waveform of the P31/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.
- Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 23^①) and then, change the bit 2 of register I2. In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 23^②). Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 23^③).

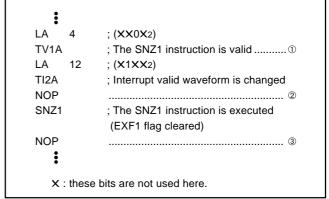


Fig. 23 External 1 interrupt program example-3

TIMERS

The 4518 Group has the following timers.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fixed dividing frequency timer
 The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

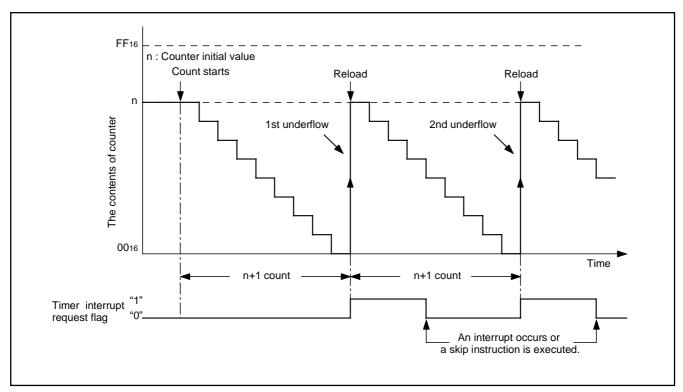


Fig. 24 Auto-reload function

The 4518 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1: 8-bit programmable timer
- Timer 2: 8-bit programmable timer
- Timer 3: 8-bit programmable timer
- Timer 4: 8-bit programmable timer
- Watchdog timer: 16-bit fixed dividing frequency timer
 (Timers 1, 2, 3, and 4 have the interrupt function, respectively)

Prescaler and timers 1, 2, 3, and 4 can be controlled with the timer control registers PA, W1 to W6. The watchdog timer is a free counter which is not controlled with the control register. Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable	Instruction clock (INSTCK)	1 to 256	• Timer 1, 2, 3, amd 4 count sources	PA
	binary down counter				
Timer 1	8-bit programmable	Instruction clock (INSTCK)	1 to 256	Timer 2 count source	W1
	binary down counter	Prescaler output (ORCLK)		CNTR0 output	W2
	(link to INT0 input)	XIN input		Timer 1 interrupt	W5
	(period/pulse width	CNTR0 input			
	measurement function)				
Timer 2	8-bit programmable	System clock (STCK)	1 to 256	Timer 3 count source	W2
	binary down counter	Prescaler output (ORCLK)		CNTR0 output	
		Timer 1 underflow		Timer 2 interrupt	
		(T1UDF)			
		PWM output (PWMOUT)			
Timer 3	8-bit programmable	PWM output (PWMOUT)	1 to 256	CNTR1 output control	W3
	binary down counter	Prescaler output (ORCLK)		Timer 3 interrupt	
	(link to INT1 input)	Timer 2 underflow			
		(T2UDF)			
		CNTR1 input			
Timer 4	8-bit programmable	XIN input	1 to 256	Timer 2, 3 count source	W4
	binary down counter	Prescaler output (ORCLK)		CNTR1 output	
	(PWM output function)			Timer 4 interrupt	
Watchdog	16-bit fixed dividing	Instruction clock (INSTCK)	65534	System reset (count twice)	
timer	frequency			WDF flag decision	

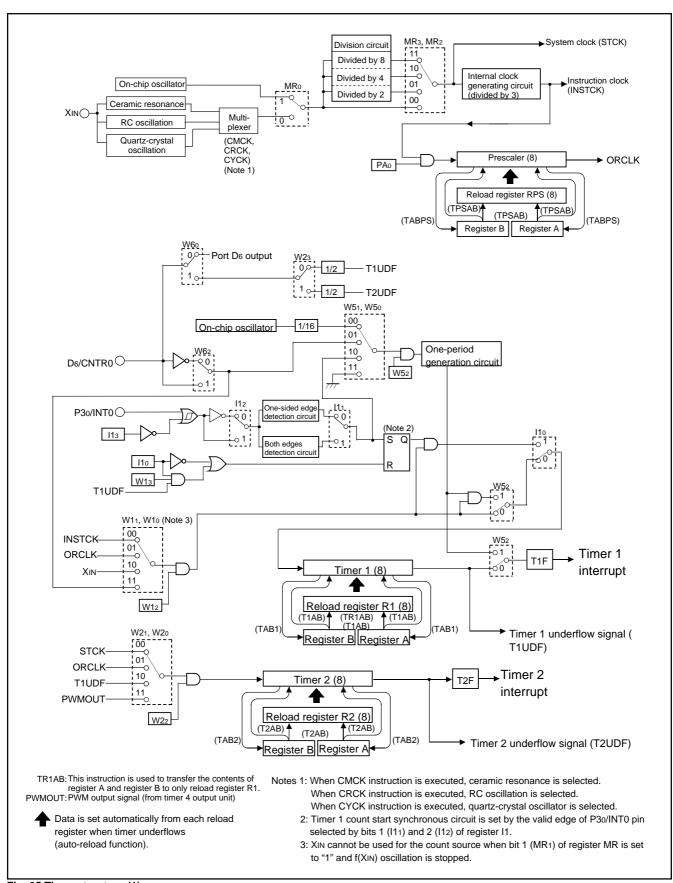


Fig. 25 Timer structure (1)

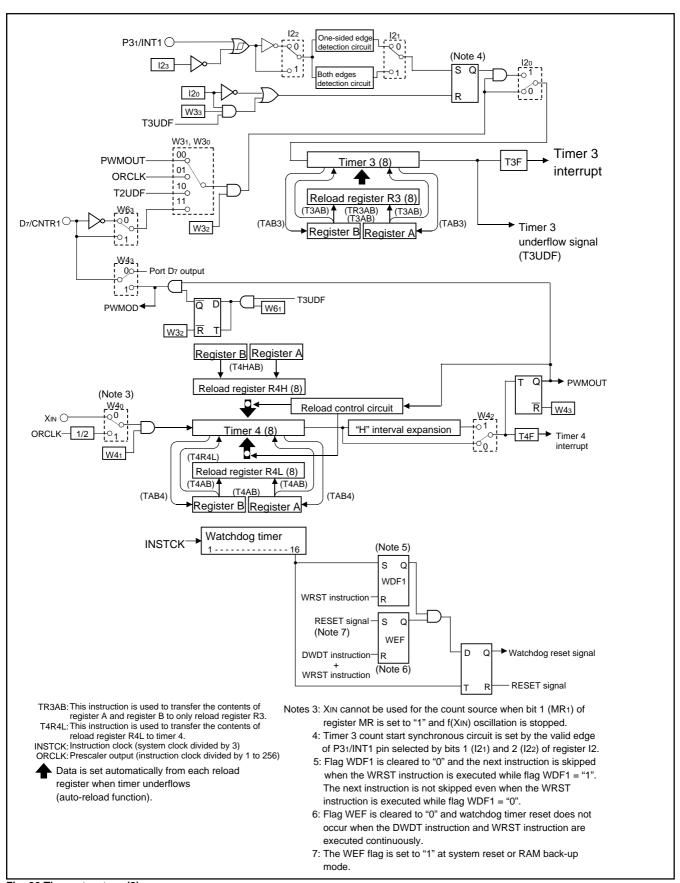


Fig. 26 Timer structure (2)

Table 10 Timer related registers

Timer control register PA		at reset : 02		at RAM back-up : 02	W TPAA
PA ₀	Prescaler control bit	0	Stop (state initialize	ed)	•
PA0		1	Operating		

	Timer control register W1		at reset : 00002		at RAM back-up : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection	()	Timer 1 count auto	-stop circuit not selected	
*****	bit (Note 2)	1		Timer 1 count auto	-stop circuit selected	
W12	Times deserted hit	0		Stop (state retained)		
VV 12	Timer 1 control bit	1	1 Operating			
		W11	W10	Count source		
W11		0	0	Instruction clock (II	NSTCK)	
	Timer 1 count source selection bits	0	1	Prescaler output (ORCLK)		
W10		1	0	XIN input		
		1	1	CNTR0 input		

Timer control register W2			at reset : 00002		at RAM back-up : state retained	R/W TAW2/TW2A
W23	W23 CNTR0 output signal selection bit)	Timer 1 underflow s	Timer 1 underflow signal divided by 2 output	
VV23			1	Timer 2 underflow s	signal divided by 2 output	
W22	V22 Timer 2 control bit)	Stop (state retained)		
VVZZ	Timer 2 control bit	1 Opera		Operating		
1440		W21	W20		Count source	
W21		0	0	System clock (STC	K)	
	Timer 2 count source selection bits	0	1	Prescaler output (ORCLK)		
W20		1	0	Timer 1 underflow signal (T1UDF)		
		1	1	PWM signal (PWMOUT)		

	Timer control register W3		at reset : 00002		at RAM back-up : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection	()	Timer 3 count auto	-stop circuit not selected	•
*****	bit (Note 3)	1		Timer 3 count auto	-stop circuit selected	
W32	Timer 3 control bit	0		Stop (state retained)		
VV 32	11mer 3 control bit	·	1 Operating			
		W31	W30	Count source		
W31	Town O count course a deather little	0	0	PWM signal (PWM	IOUT)	
	Timer 3 count source selection bits	0	1	Prescaler output (ORCLK)		
W30		1	0	Timer 2 underflow	signal (T2UDF)	
		1	1	CNTR1 input		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1"). 3: This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").

Timer control register W4		at reset : 00002		at RAM back-up : 00002	R/W TAW4/TW4A
W43	D7/CNTR1 pin function selection bit	0	D7 (I/O) / CNTR1 (input)		
		1	CNTR1 (I/O) / D7 (input)		
W42	PWM signal "H" interval expansion function control bit	0	PWM signal "H" interval expansion function invalid		
		1	PWM signal "H" interval expansion function valid		
W41	Timer 4 control bit	0	Stop (state retained)		
		1	Operating		
W40	Timer 4 count source selection bit	0	XIN input		
		1	Prescaler output (ORCLK) divided by 2		

Timer control register W5		at reset : 00002		reset : 00002	at RAM back-up : state retained	R/W TAW5/TW5A
W53	Not used	0		This bit has no function, but read/write is enabled.		
		·	1	·		
W52	Period measurement circuit control bit	0		Stop		
VV32		•	1	Operating		
	Signal for period measurement selection bits	W51	W50	Count source		
W51		0	0	On-chip oscillator (f(RING/16))		
		0	1	CNTR ₀ pin input		
W50		1	0	INTO pin input		
			1	Not available		

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W TAW6/TW6A
W63	CNTR1 pin input count edge selection bit	0	Falling edge		
		1	Rising edge		
W62	CNTR0 pin input count edge selection bit	0	Falling edge		
		1	Rising edge		
W61	CNTR1 output auto-control circuit	0	CNTR1 output auto-control circuit not selected		
	selection bit	1	CNTR1 output auto-control circuit selected		
W60	D6/CNTR0 pin function selection bit	0	D6 (I/O) / CNTR0 (input)		
		1	CNTR0 (I/O) /D6 (input)		

Note: "R" represents read enabled, and "W" represents write enabled.

(1) Timer control registers

· Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

· Timer control register W1

Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

Timer control register W2

Register W2 controls the selection of CNTR0 output, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

· Timer control register W3

Register W3 controls the selection of the count operation and count source of timer 3 count auto-stop circuit. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

• Timer control register W4

Register W4 controls the D7/CNTR1 output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 4. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A.

• Timer control register W5

Register W5 controls the period measurement circuit and target signal for period measurement. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

Timer control register W6

Register W6 controls the count edges of CNTR0 pin and CNTR1 pin, selection of CNTR1 output auto-control circuit and the D6/CNTR0 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

(2) Prescaler

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

① set data in prescaler, and

2 set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1, 2, 3, and 4 count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

① set data in timer 1

2 set count source by bits 0 and 1 of register W1, and

3 set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

INT0 pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register I1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."

Timer 1 underflow signal divided by 2 can be output from CNTR0 pin by clearing bit 3 of register W2 to "0" and setting bit 0 of register W6 to "1".

The period measurement circuit starts operating by setting bit 2 of register W5 to "1" and timer 1 is used to count the one-period of the target signal for the period measurement. In this time, the timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Data can be read from timer 2 with the TAB2 instruction. Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

Timer 2 starts counting after the following process;

- 1) set data in timer 2.
- 2 select the count source with the bits 0 and 1 of register W2, and
- 3 set the bit 2 of register W2 to "1."

When a value set in reload register R2 is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).

Timer 2 underflow signal divided by 2 can be output from CNTR0 pin by setting bit 3 of register W2 to "1" and setting bit 0 of register W6 to "1".

(5) Timer 3 (interrupt function)

Timer 3 is an 8-bit binary down counter with the timer 3 reload register (R3). Data can be set simultaneously in timer 3 and the reload register (R3) with the T3AB instruction. Data can be written to reload register (R3) with the TR3AB instruction. Data can be read from timer 3 with the TAB3 instruction.

Stop counting and then execute the T3AB or TAB3 instruction to read or set timer 3 data.

When executing the TR3AB instruction to set data to reload register R3 while timer 3 is operating, avoid a timing when timer 3 underflows.

Timer 3 starts counting after the following process;

- ① set data in timer 3
- 2 set count source by bits 0 and 1 of register W3, and
- 3 set the bit 2 of register W3 to "1."

When a value set in reload register R3 is n, timer 3 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes "0"), the timer 3 interrupt request flag (T3F) is set to "1," new data is loaded from reload register R3, and count continues (auto-reload function).

INT1 pin input can be used as the start trigger for timer 3 count operation by setting the bit 0 of register I2 to "1."

Also, in this time, the auto-stop function by timer 3 underflow can be performed by setting the bit 3 of register W3 to "1."

(6) Timer 4 (interrupt function)

Timer 4 is an 8-bit binary down counter with two timer 4 reload registers (R4L, R4H). Data can be set simultaneously in timer 4 and the reload register R4L with the T4AB instruction. Data can be set in the reload register R4H with the T4HAB instruction. The contents of reload register R4L set with the T4AB instruction can be set to timer 4 again with the T4R4L instruction. Data can be read from timer 4 with the TAB4 instruction.

Stop counting and then execute the T4AB or TAB4 instruction to read or set timer 4 data.

When executing the T4HAB instruction to set data to reload register R4H while timer 4 is operating, avoid a timing when timer 4 underflows

Timer 4 starts counting after the following process;

- ① set data in timer 4
- 2 set count source by bit 0 of register W4, and
- 3 set the bit 1 of register W4 to "1."

When a value set in reload register R4L is n, timer 4 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 4 underflows (the next count pulse is input after the contents of timer 4 becomes "0"), the timer 4 interrupt request flag (T4F) is set to "1," new data is loaded from reload register R4L, and count continues (auto-reload function).

The PWM signal generated by timer 4 can be output from CNTR1 pin by setting bit 3 of the timer control register W4 to "1".

Timer 4 can control the PWM output to CNTR1 pin with timer 3 by setting bit 1 of the timer control register W6 to "1".

(7) Period measurement function (Timer 1, period measurement circuit)

Timer 1 has the period measurement circuit which performs timer count operation synchronizing with one cycle of the signal divided by 16 of an on-chip oscillator, D6/CNTR0 pin input, or P30/INT0 pin input (one cycle, "H", or "L" pulse width at the case of a P30/INT0 pin input).

When the target signal for period measurement is set by bits 0 and 1 of register W5, a period measurement circuit is started by setting the bit 2 of register W5 to "1".

Then, if a XIN input is set as the count source of a timer 1 and the bit 2 of register W1 is set to "1", timer 1 starts operation.

Timer 1 starts operation synchronizing with the falling edge of the target signal for period measurement, and stops count operation synchronizing with the next falling edge (one-period generation circuit).

When selecting D6/CNTR0 pin input as target signal for period measurement, the period measurement synchronous edge can be changed into a rising edge by setting the bit 2 of register W6 to "1".

When selecting P30/INT0 pin input as target signal for period measurement, period measurement synchronous edge can be changed into a rising edge by setting the bit 2 of register I1 to "1". A timer 1 interrupt request flag (T1F) is set to "1" after completing measurement operation.

When a period measurement circuit is set to be operating, timer 1 interrupt request flag (T1F) is not set by timer 1 underflow signal, but turns into a flag which detects the completion of period measurement.

In addition, a timer 1 underflow signal can be used as timer 2 count source.

Once period measurement operation is completed, even if period measurement valid edge is input next, timer 1 is in a stop state and measurement data is held.

When a period measurement circuit is used again, stop a period measurement circuit at once by setting the bit 2 of register W5 to "0", and change a period measurement circuit into a state of operation by setting the bit 2 of register W5 to "1" again.

When a period measurement circuit is used, clear bit 0 of register I1 to "0", and set a timer 1 count start synchronous circuit to be "not selected".

Start timer operation immediately after operation of a period measurement circuit is started.

When the target edge for measurement is input until timer operation is started from the operation of period measurement circuit is started, the count operation is not executed until the timer operation becomes valid. Accordingly, be careful of count data.

When data is read from timer, stop the timer and clear bit 2 of register W5 to "0" to stop the period measurement circuit, and then execute the data read instruction.

Depending on the state of timer 1, the timer 1 interrupt request flag (T1F) may be set to "1" when the period measurement circuit is stopped by clearing bit 2 of register W5 to "0". In order to avoid the occurrence of an unexpected interrupt, clear the bit 2 of register V1 to "0" (refer to Figure 27①) and then, stop the bit 2 of register W5 to "0" to stop the period measurement circuit.

In addition, execute the SNZT1 instruction to clear the T1F flag after executing at least one instruction (refer to Figure 27②). Also, set the NOP instruction for the case when a skip is performed with the SNZT1 instruction (refer to Figure 27③).

```
i
LA
            ; (X0XX2)
TV1A
            ; The SNZT1 instruction is valid ...... ①
LA
            : (X0XX2)
TW5A
            : Period measurement circuit stop
NOP
SNZT1
            : The SNZT1 instruction is executed
             (T1F flag cleared)
NOP
             ...... 3
   i
   X: these bits are not used here.
```

Fig. 27 Period measurement circuit program example

When a period measurement circuit is used, select the sufficiently higher-speed frequency than the signal for measurement for the count source of a timer 1.

When the target signal for period measurement is D6/CNTR0 pin input, do not select D6/CNTR0 pin input as timer 1 count source. (The XIN input is recommended as timer 1 count source at the time of period measurement circuit use.)

(8) Pulse width measurement function (timer 1, period measurement circuit)

A period measurement circuit can measure "H" pulse width (from rising to falling) or "L" pulse width (from falling to rising) of P30/ INTO pin input (pulse width measurement function) when the following is set;

- Set the bit 0 of register W5 to "0", and set a bit 1 to "1" (target for period measurement circuit: 30/INT0 pin input).
- Set the bit 1 of register I1 to "1" (INT0 pin edge detection circuit: both edges detection)

The measurement pulse width ("H" or "L") is decided by the period measurement circuit and the P30/INT0 pin input level at the start time of timer operation.

At the time of the start of a period measurement circuit and timer operation, "L" pulse width (from falling to rising) when the input level of P3o/INT0 pin is "H" or "H" pulse width (from rising to falling) when its level is "L" is measured.

When the input of P30/INT0 pin is selected as the target for measurement, set the bit 3 of register I1 to "1", and set the input of INT0 pin to be enabled.

(9) Count start synchronization circuit (timer 1, timer 3)

Timer 1 and timer 3 have the count start synchronous circuit which synchronizes the input of INT0 pin and INT1 pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to "1" and the control by INT0 pin input can be performed.

Timer 3 count start synchronous circuit function is selected by setting the bit 0 of register I2 to "1" and the control by INT1 pin input can be performed.

When timer 1 or timer 3 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT0 pin or INT1 pin.

The valid waveform of INT0 pin or INT1 pin to set the count start synchronous circuit is the same as the external interrupt activated condition.

Once set, the count start synchronous circuit is cleared by clearing the bit I10 or I20 to "0" or reset.

However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 or timer 3 underflow.

(10) Count auto-stop circuit (timer 1, timer 3)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

Timer 3 has the count auto-stop circuit which is used to stop timer 3 automatically by the timer 3 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W3 to "1". It is cleared by the timer 3 underflow and the count source to timer 3 is stopped.

This function is valid only when the timer 3 count start synchronous circuit is selected.

(11) Timer input/output pin (D6/CNTR0 pin, D7/CNTR1 pin)

CNTR0 pin is used to input the timer 1 count source and output the timer 1 and timer 2 underflow signal divided by 2.

CNTR1 pin is used to input the timer 3 count source and output the PWM signal generated by timer 4.

The D6/CNTR0 pin function can be selected by bit 0 of register W6. The selection of D7/CNTR1 output signal can be controlled by bit 3 of register W4.

When the CNTR0 input is selected for timer 1 count source, timer 1 counts the rising or falling waveform of CNTR0 input. The count edge is selected by the bit 2 of register W6.

When the CNTR1 input is selected for timer 3 count source, timer 3 counts the rising or falling waveform of CNTR1 input. The count edge is selected by the bit 3 of register W6.

(12) PWM output function (D7/CNTR1, timer 3, timer 4)

When bit 3 of register W4 is set to "1", timer 4 reloads data from reload register R4L and R4H alternately each underflow.

Timer 4 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R4L, and the "H" interval set as reload register R4H. The PWM signal (PWMOUT) is output from CNTR1 pin. When bit 2 of register W4 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R4H for the counter of timer 4 is extended for a half period of count source.

In this case, when a value set in reload register R4H is n, timer 4 divides the count source signal by n + 1.5 (n = 1 to 255).

When this function is used, set "1" or more to reload register R4H. When bit 1 of register W6 is set to "1", the PWM signal output to CNTR1 pin is switched to valid/invalid each timer 3 underflow. However, when timer 3 is stopped (bit 2 of register W3 is cleared to "0"), this function is canceled.

Even when bit 1 of a register W4 is cleared to "0" in the "H" interval of PWM signal, timer 4 does not stop until it next timer 4 underflow. When clearing bit 1 of register W4 to "0" to stop timer 4 at the use of PWM output function, avoid a timing when timer 4 underflows.

(13) Timer interrupt request flags (T1F, T2F, T3F, T4F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3, SNZT4).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction. The timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.

(14) Precautions

Note the following for the use of timers.

Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data. $\label{eq:prescaler} % \begin{subarray}{ll} \end{subarray} % \begin$

· Timer count source

Stop timer 1, 2, 3 and 4 counting to change its count source.

· Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

• Writing to the timer

Stop timer 1, 2, 3 or 4 counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB) to write its data.

• Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload register R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

• Timer 4

Avoid a timing when timer 4 underflows to stop timer 4 at the use of PWM output function.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

• Period measurement function

When a period measurement circuit is used, clear bit 0 of register I1 to "0", and set a timer 1 count start synchronous circuit to be "not selected".

Start timer operation immediately after operation of a period measurement circuit is started.

When the target edge for measurement is input until timer operation is started from the operation of period measurement circuit is started, the count operation is not executed until the timer operation becomes valid. Accordingly, be careful of count data.

When data is read from timer, stop the timer and clear bit 2 of register W5 to "0" to stop the period measurement circuit, and then execute the data read instruction.

Depending on the state of timer 1, the timer 1 interrupt request flag (T1F) may be set to "1" when the period measurement circuit is stopped by clearing bit 2 of register W5 to "0". In order to avoid the occurrence of an unexpected interrupt, clear the bit 2 of register V1 to "0" (refer to Figure 28①) and then, stop the bit 2 of register W5 to "0" to stop the period measurement circuit.

In addition, execute the SNZT1 instruction to clear the T1F flag after executing at least one instruction (refer to Figure 28@).

Also, set the NOP instruction for the case when a skip is performed with the SNZT1 instruction (refer to Figure 28³).

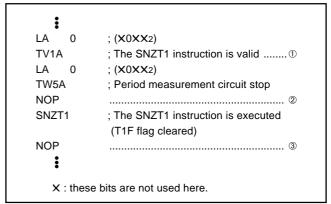


Fig. 28 Period measurement circuit program example

While a period measurement circuit is operating, the timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.

When a period measurement circuit is used, select the sufficiently higher-speed frequency than the signal for measurement for the count source of a timer 1.

When the target signal for period measurement is De/CNTR0 pin input, do not select De/CNTR0 pin input as timer 1 count source. (The XIN input is recommended as timer 1 count source at the time of period measurement circuit use.)

When the input of P30/INT0 pin is selected for measurement, set the bit 3 of a register I1 to "1", and set the input of INT0 pin to be enabled.

Prescaler, Timer 1, Timer 2 and Timer 3 count start timing and count time when operation starts
 Count starts from the first rising edge of the count source (2) after Prescaler, Timer 1, Timer 2 and Timer 3 operations start (1).
 Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts.

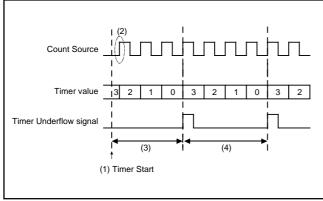


Fig. 29 Timer count start timing and count time when operation starts (Prescaler, Timer 1, Timer 2 and Timer 3)

Timer 4 count start timing and count time when operation starts
 Count starts from the rising edge (2) after the first falling edge of
 the count source, after Timer 4 operations start (1).
 Time to first underflow (3) is different from time among next underflow (4) by the timing to start the timer and count source
 operations after count starts.

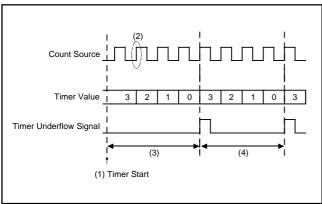


Fig. 30 Timer count start timing and count time when operation starts (Timer 4)

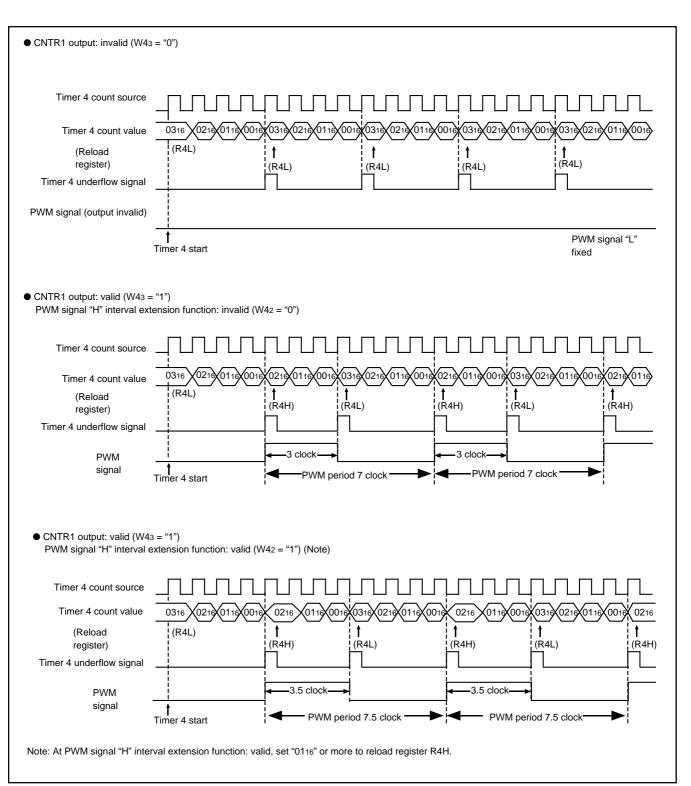


Fig. 31 Timer 4 operation (reload register R4L: "0316", R4H: "0216")

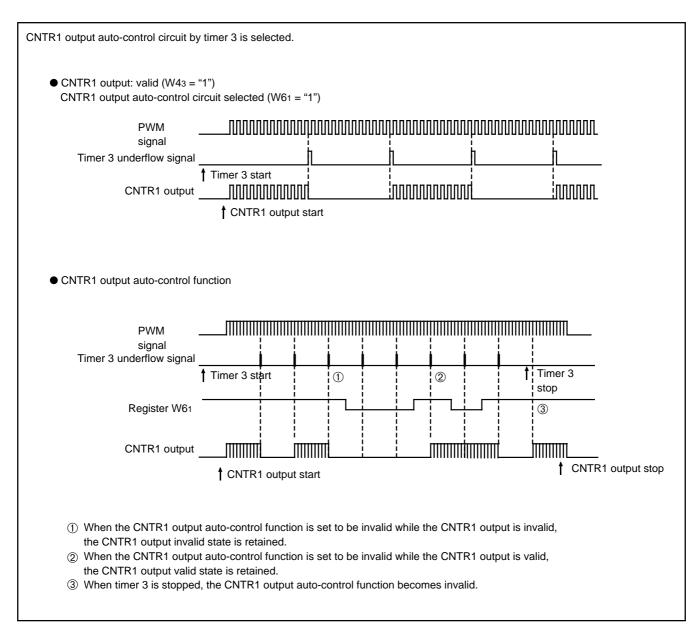


Fig. 32 CNTR1 output auto-control function by timer 3

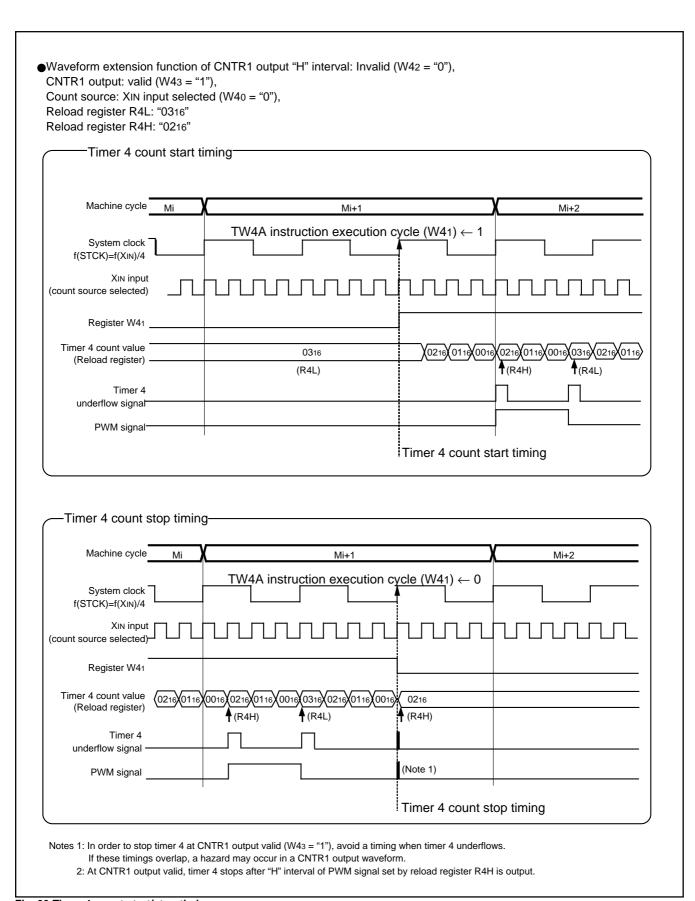


Fig. 33 Timer 4 count start/stop timing

WATCHDOG TIMER

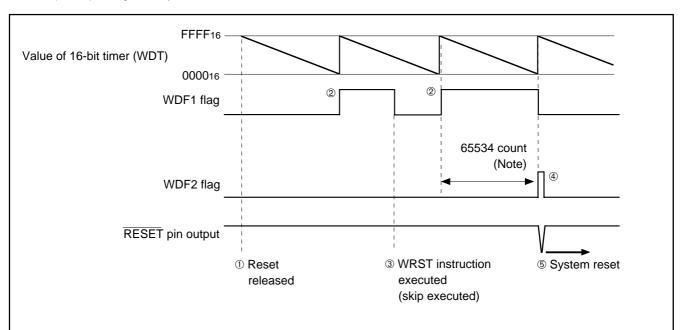
Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the RESET pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.


When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

- ① After system is released from reset (= after program is started), timer WDT starts count down.
- 2 When timer WDT underflow occurs, WDF1 flag is set to "1."
- ③ When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 34 Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 35). The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.

When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state (refer to Figure 36). The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

```
WRST; WDF1 flag cleared

DI
DWDT; Watchdog timer function enabled/disabled
WRST; WEF and WDF1 flags cleared
```

Fig. 35 Program example to start/stop watchdog timer

```
WRST; WDF1 flag cleared
NOP
DI; Interrupt disabled
EPOF; POF instruction enabled
POF

↓
Oscillation stop
```

Fig. 36 Program example to enter the mode when using the watchdog timer

A/D CONVERTER (Comparator)

The 4518 Group has a built-in A/D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A/D converter. This A/D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 11 A/D converter characteristics

Parameter	Characteristics
Conversion format	Successive comparison method
Resolution	10 bits
Relative accuracy	Linearity error: ±2LSB (2.7 V ≤ VDD ≤ 5.5V)
	Differential non-linearity error: ± 0.9 LSB (2.2 V \leq VDD \leq 5.5V)
Conversion speed	31 μ s (f(XIN) = 6 MHz, STCK = f(XIN) (XIN through-mode), ADCK = INSTCK/6)
Analog input pin	4

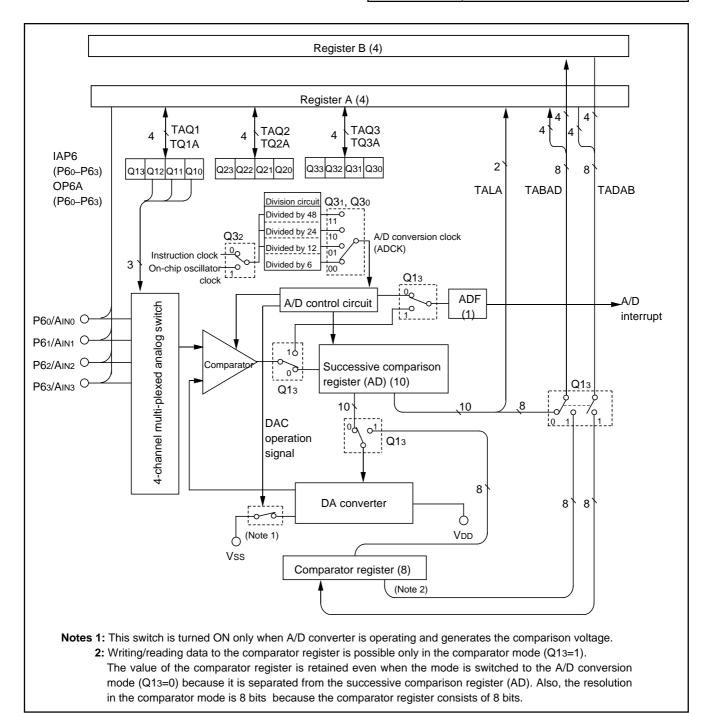


Fig. 37 A/D conversion circuit structure

Table 12 A/D control registers

	A/D control register Q1		at	rese	t : 00002	at RAM back-up : state retained	R/W TAQ1/TQ1A
Q13	A/D operation mode selection bit	A/D) con	versi	on mode		
QIS	Operation mode selection bit	Cor	mpar	ator	mode		
		Q12	Q11	Q10		Analog input pins	
Q12		0	0	0	AIN0		
		0	0	1	AIN1		
	Analog input pin selection bits	0	1	0	AIN2		
Q11	Analog input pin selection bits	0	1	1	AIN3		
		1	0	0	Not available		
		1	0	1	Not available		
Q10		1	1	0	Not available	·	
		1	1	1	Not available		

	A/D control register Q2	at reset : 00002		at RAM back-up : state retained	R/W TAQ2/TQ2A
Q23	O20 Netword		This hit has no fun	ction, but road/write is enabled	
Q23 Not used		1	This bit has no run	This bit has no function, but read/write is enabled.	
Q22	O20 PCc/Auto PCc/Auto pin function colortion bit		P62, P63		
Q22 P62/AIN2, P63/AIN3 pin function selection bit		1	AIN2, AIN3		
024	Q21 P61/AIN1 pin function selection bit		P61		
QZI			AIN1		
Q20 P60/AIN0 pin function select	P60/AIN0 pin function selection bit	0	P60		
Q20	Pou/Aino pin function selection bit	1	AIN0		

	A/D control register Q3	atı		reset : 00002	at RAM back-up : state retained	R/W TAQ3/TQ3A
Q33	Not used	0		This bit has no fun	ction, but read/write is enabled.	
Q32	A/D conventor or cretical clock colection bit	0		Instruction clock (II	NSTCK)	
Q32	Q32 A/D converter operation clock selection bit		1	On-chip oscillator ((f(RING))	
		Q31	Q30		Division ratio	
Q31		0	0	Frequency divided	by 6	
	A/D converter operation clock division	0	1	Frequency divided	by 12	
Q30	ratio selection bits	1	0	Frequency divided	by 24	
		1	1	Frequency divided	by 48	

Note: "R" represents read enabled, and "W" represents write enabled.

(1) A/D control register

· A/D control register Q1

Register Q1 controls the selection of A/D operation mode and the selection of analog input pins. Set the contents of this register through register A with the TQ1A instruction. The TAQ1 instruction can be used to transfer the contents of register Q1 to register A.

• A/D control register Q2

Register Q2 controls the selection of P60/AIN0–P63/AIN3. Set the contents of this register through register A with the TQ2A instruction. The TAQ2 instruction can be used to transfer the contents of register Q2 to register A.

A/D control register Q3

Register Q3 controls the selection of A/D converter operation clock. Set the contents of this register through register A with the TQ3A instruction. The TAQ3 instruction can be used to transfer the contents of register Q3 to register A.

(2) Operating at A/D conversion mode

The A/D conversion mode is set by setting the bit 3 of register Q1 to "0."

(3) Successive comparison register AD

Register AD stores the A/D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A/D conversion.

When the contents of register AD is n, the logic value of the comparison voltage Vref generated from the built-in DA converter can be obtained with the reference voltage VDD by the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{1024} \times n$$

n: The value of register AD (n = 0 to 1023)

(4) A/D conversion completion flag (ADF)

A/D conversion completion flag (ADF) is set to "1" when A/D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(5) A/D conversion start instruction (ADST)

A/D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

(6) Operation description

A/D conversion is started with the A/D conversion start instruction (ADST). The internal operation during A/D conversion is as follows:

- ① When the A/D conversion starts, the register AD is cleared to "00016"
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage V_{ref} is compared with the analog input voltage V_{IN}
- When the comparison result is Vref < VIN, the topmost bit of the register AD remains set to "1." When the comparison result is Vref > VIN, it is cleared to "0."

The 4518 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A/D conversion stops after 2 machine cycles + A/D conversion clock (31 μ s when f(XIN) = 6.0 MHz in XIN through mode, f(ADCK) = f(INSTCK)/6) from the start, and the conversion result is stored in the register AD. An A/D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A/D conversion completes (Figure 38).

Table 13 Change of successive comparison register AD during A/D conversion

At starting conversion	Change of successive comparison register AD Comparison voltage (Vref) value
1st comparison	1 0 0 0 0 0 0 VDD 2
2nd comparison	*1 1 0 0 0 0 VDD 2 ± VDD 4
3rd comparison	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
After 10th comparison completes	A/D conversion result *1 *2 *3 *** *8 *9 *A VDD ± VDD 1024

*1: 1st comparison result*3: 3rd comparison result

*2: 2nd comparison result*8: 8th comparison result

*9: 9th comparison result

*A: 10th comparison result

(7) A/D conversion timing chart

Figure 38 shows the A/D conversion timing chart.

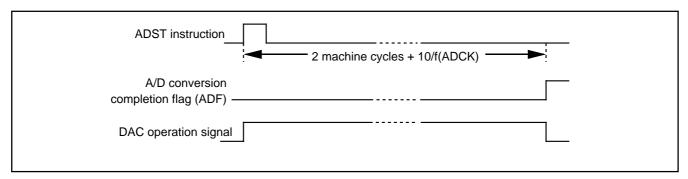


Fig. 38 A/D conversion timing chart

(8) How to use A/D conversion

How to use A/D conversion is explained using as example in which the analog input from P60/AINO pin is A/D converted, and the high-order 4 bits of the converted data are stored in address M(Z, X, Y) = (0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1), and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM. The A/D interrupt is not used in this example.

Instruction clock/6 is selected as the A/D converter operation clock.

- ① Select the AIN0 pin function with the bit 0 of the register Q2. Select the AIN0 pin function and A/D conversion mode with the register Q1. Also, the instruction clock divided by 6 is selected with the register Q3. (refer to Figure 39)
- ② Execute the ADST instruction and start A/D conversion.
- ③ Examine the state of ADF flag with the SNZAD instruction to determine the end of A/D conversion.
- Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- ⑤ Transfer the contents of register A to M (Z, X, Y) = (0, 0, 2).
- ® Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).

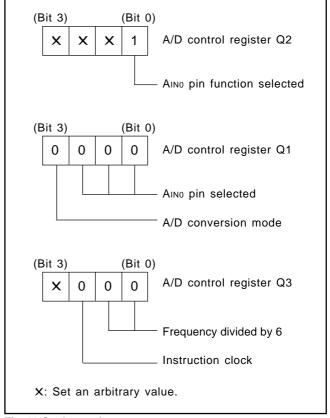


Fig. 39 Setting registers

(9) Operation at comparator mode

The A/D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."

Below, the operation at comparator mode is described.

(10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A/D conversion mode to comparator mode, the result of A/D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A/D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage V_{ref} generated by the built-in DA converter can be determined from the following formula:

Logic value of comparison voltage
$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n: The value of register AD (n = 0 to 255)

(11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A/D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 2 machine cycles + A/D conversion clock f(ADCK) 1 clock after it has started (4 μ s at f(XIN) = 6.0 MHz in XIN through mode, f(ADCK) = f(INSTCK)/6). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1"

(13) Notes for the use of A/D conversion

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

• Operation mode of A/D converter

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

Clear the bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode.

The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the register Q1, and execute the SNZAD instruction to clear the ADF flag.

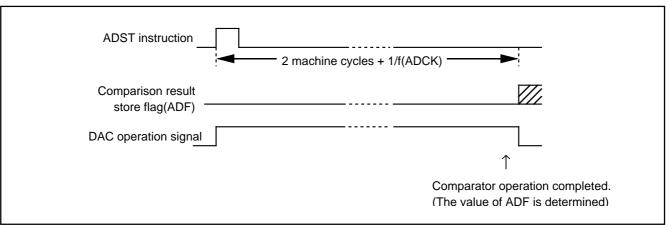


Fig. 40 Comparator operation timing chart

(14) Definition of A/D converter accuracy

The A/D conversion accuracy is defined below (refer to Figure 41).

· Relative accuracy

① Zero transition voltage (VoT)

This means an analog input voltage when the actual A/D conversion output data changes from "0" to "1."

② Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A/D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between VoT and VFST of a converted value between VoT and VFST.

④ Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics.

Vn: Analog input voltage when the output data changes from "n" to "n+1" (n=0 to 1022)

• 1LSB at relative accuracy $\rightarrow \frac{VFST-V0T}{1022}$ (V)

• 1LSB at absolute accuracy $\rightarrow \frac{VDD}{1024}$ (V)

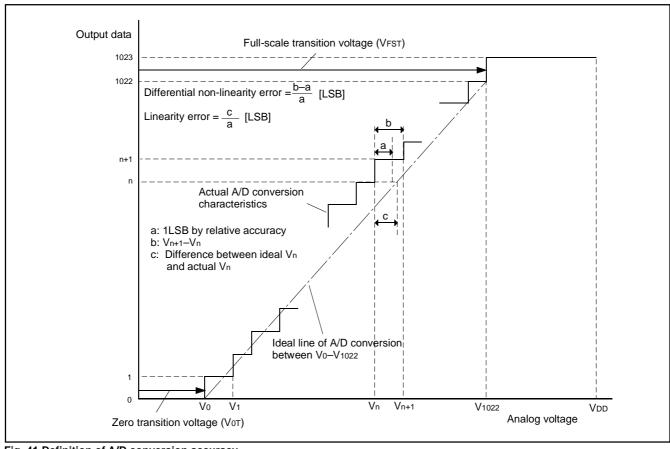


Fig. 41 Definition of A/D conversion accuracy

SERIAL INTERFACE

The 4518 Group has a built-in clock synchronous serial I/O which can serially transmit or receive 8-bit data.

Serial I/O consists of;

- serial I/O register SI
- serial I/O control register J1
- serial I/O transmit/receive completion flag (SIOF)
- serial I/O counter

Registers A and B are used to perform data transfer with internal CPU, and the serial I/O pins are used for external data transfer.

The pin functions of the serial I/O pins can be set with the register ${\sf J1}$.

Table 14 Serial I/O pins

Pin	Pin function when selecting serial I/O
P20/SCK	Clock I/O (Sck)
P21/SOUT	Serial data output (SOUT)
P22/SIN	Serial data input (SIN)

Note: Even when the SCK, SOUT, SIN pin functions are used, the input of P20, P21, P22 are valid.

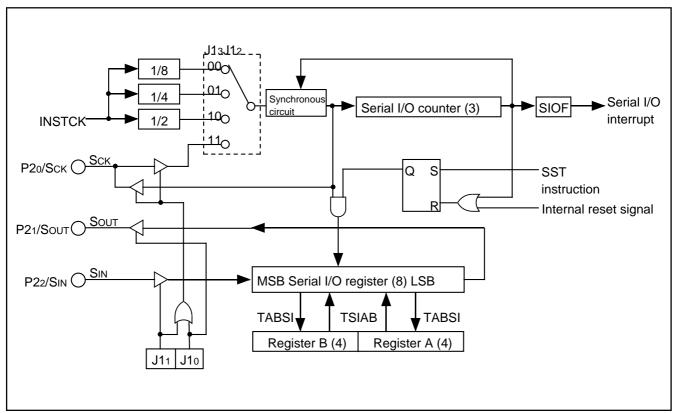


Fig. 42 Serial I/O structure

Table 15 Serial I/O control register

	Serial I/O control register J1	at reset : 00002		reset : 00002	at RAM back-up : state retained	R/W TAJ1/TJ1A
			J12		Synchronous clock	
J1 3		0	0	Instruction clock (II	NSTCK) divided by 8	
	J12 Serial I/O synchronous clock selection bits	0	1	Instruction clock (II	Instruction clock (INSTCK) divided by 4	
J12		1	0	Instruction clock (INSTCK) divided by 2		
		1	1	External clock (Scr	< input)	
	l 1 1		J1 0		Port function	
J11			0	P20, P21,P22 selec	ted/Sck, Sout, Sin not selected	
	J10 Serial I/O port function selection bits	0	1	SCK, SOUT, P22 selected/P20, P21, SIN not selected		
J1 0		1	0	SCK, P21, SIN selec	cted/P20, SOUT, P22 not selected	
			1	SCK, SOUT, SIN sele	ected/P20, P21,P22 not selected	

Note: "R" represents read enabled, and "W" represents write enabled.

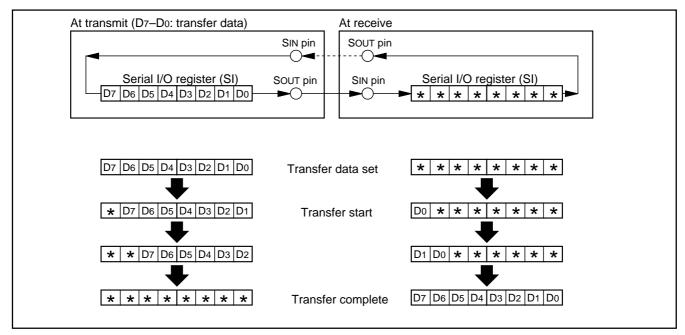


Fig. 43 Serial I/O register state when transferring

(1) Serial I/O register SI

Serial I/O register SI is the 8-bit data transfer serial/parallel conversion register. Data can be set to register SI through registers A and B with the TSIAB instruction. The contents of register A is transmitted to the low-order 4 bits of register SI, and the contents of register B is transmitted to the high-order 4 bits of register SI.

During transmission, each bit data is transmitted LSB first from the lowermost bit (bit 0) of register SI, and during reception, each bit data is received LSB first to register SI starting from the topmost bit (bit 7).

When register SI is used as a work register without using serial I/O, do not select the SCK pin.

(2) Serial I/O transmit/receive completion flag (SIOF)

Serial I/O transmit/receive completion flag (SIOF) is set to "1" when serial data transmission or reception completes. The state of SIOF flag can be examined with the skip instruction (SNZSI). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The SIOF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(3) Serial I/O start instruction (SST)

When the SST instruction is executed, the SIOF flag is cleared to "0" and then serial I/O transmission/reception is started.

(4) Serial I/O control register J1

Register J1 controls the synchronous clock, P20/SCK, P21/SOUT and P22/SIN pin function. Set the contents of this register through register A with the TJ1A instruction. The TAJ1 instruction can be used to transfer the contents of register J1 to register A.

(5) How to use serial I/O

Figure 44 shows the serial I/O connection example. Serial I/O interrupt is not used in this example. In the actual wiring, pull up the

wiring between each pin with a resistor. Figure 44 shows the data transfer timing and Table 16 shows the data transfer sequence.

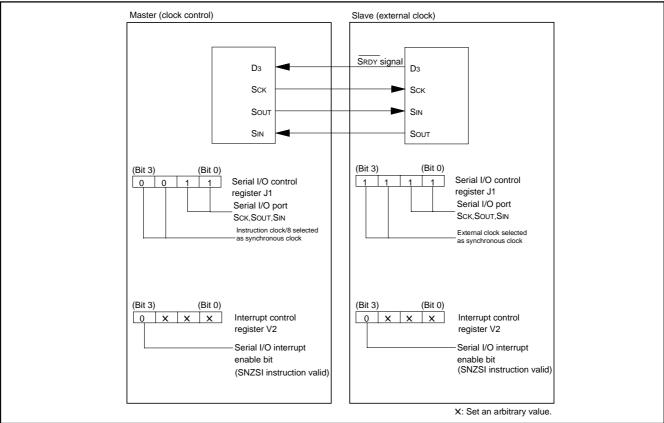


Fig. 44 Serial I/O connection example

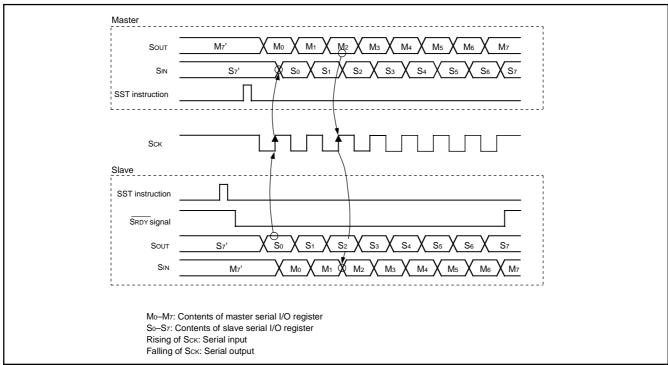


Fig. 45 Timing of serial I/O data transfer

Table 16 Processing sequence of data transfer from master to slave

Table 16 Processing sequence of data transfer fro	om master to slave		
Master (transmission)	Slave (reception)		
[Initial setting]	[Initial setting]		
• Setting the serial I/O mode register J1 and interrupt control register V2 shown in Figure 44.	• Setting serial I/O mode register J1, and interrupt control register V2 shown in Figure 44.		
TJ1A and TV2A instructions	TJ1A and TV2A instructions		
Setting the port received the reception enable signal (SRDY) to the input mode.	Setting the port transmitted the reception enable signal (SRDY) and outputting "H" level (reception impossible).		
(Port D3 is used in this example)	(Port D3 is used in this example)		
SD instruction	SD instruction		
* [Transmission enable state]	*[Reception enable state]		
• Storing transmission data to serial I/O register SI.	• The SIOF flag is cleared to "0."		
TSIAB instruction	SST instruction		
	• "L" level (reception possible) is output from port D3.		
	RD instruction		
[Transmission]	[Reception]		
•Check port D ₃ is "L" level.			
SZD instruction			
•Serial transfer starts.			
SST instruction			
•Check transmission completes.	Check reception completes.		
SNZSI instruction	SNZSI instruction		
•Wait (timing when continuously transferring)	• "H" level is output from port D3.		
	SD instruction		
	[Data processing]		

1-byte data is serially transferred on this process. Subsequently, data can be transferred continuously by repeating the process from *. When an external clock is selected as a synchronous clock, the clock is not controlled internally. Control the clock externally because serial transfer is performed as long as clock is externally input. (Unlike an internal clock, an external clock is not stopped when serial transfer is completed.) However, the SIOF flag is set to "1" when the clock is counted 8 times after executing the SST instruction. Be sure to set the initial level of the external clock to "H."

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to $\overline{\text{RESET}}$ pin, software starts from address 0 in page 0.

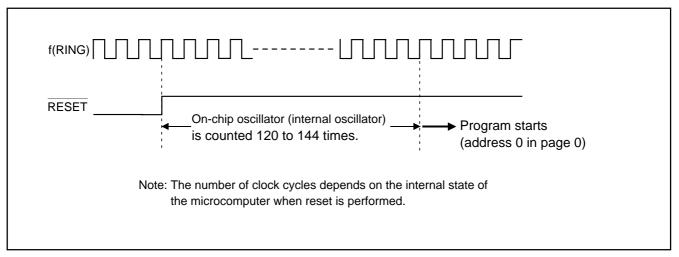


Fig. 46 Reset release timing

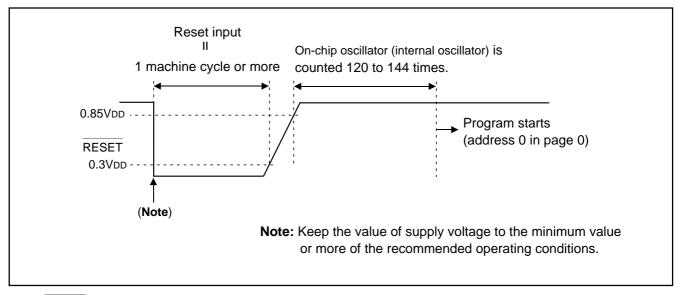


Fig. 47 RESET pin input waveform and reset operation

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V until the value of supply voltage reaches the minimum operating voltage must be set to 100 μ s or less.

If the rising time exceeds 100 μ s, connect a capacitor between the $\overline{\text{RESET}}$ pin and Vss at the shortest distance, and input "L" level to $\overline{\text{RESET}}$ pin until the value of supply voltage reaches the minimum operating voltage.

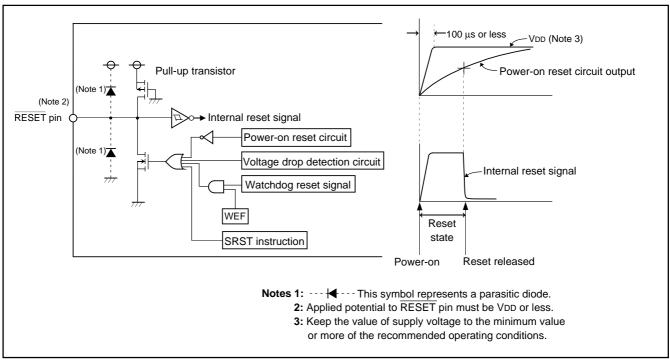


Fig. 48 Structure of reset pin and its peripherals,, and power-on reset operation

Table 1 Port state at reset

Name	Function	State
D0-D5	D0-D5	High-impedance (Notes 1, 2)
D6/CNTR0	D6	High-impedance (Notes 1, 2)
D7/CNTR1	D7	High-impedance (Notes 1, 2)
P00-P03	P00-P03	High-impedance (Notes 1, 2, 3)
P10-P13	P10-P13	High-impedance (Notes 1, 2, 3)
P20/SCK, P21/SOUT, P22/SIN	P20-P22	High-impedance (Note 1)
P30/INT0, P31/INT1	P30, P31	High-impedance (Note 1)
P60/AIN0-P63/AIN3	P60-P63	High-impedance (Note 1)

Notes 1: Output latch is set to "1."

- 2: Output structure is N-channel open-drain.
- 3: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 49 and 50 show internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure are undefined, so set the initial value to them.

Program counter (PC)	0000000000000000000
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	0 (Interrupt disabled)
Power down flag (P)	
External 0 interrupt request flag (EXF0)	
External 1 interrupt request flag (EXF1)	
Interrupt control register V1	
Interrupt control register V2	` ' ' '
Interrupt control register I1	
Interrupt control register I2	
Timer 1 interrupt request flag (T1F)	
• Timer 2 interrupt request flag (T2F)	
• Timer 3 interrupt request flag (T3F)	
• Timer 4 interrupt request flag (T4F)	
Watchdog timer flags (WDF1, WDF2)	
Watchdog timer enable flag (WEF)	
• Timer control register PA	
• Timer control register W1	
• Timer control register W2	
• Timer control register W3	
Timer control register W4	
Timer control register W5	` ' '
Timer control register W6	`
Clock control register MR	
Clock control register RG	
Serial I/O transmit/receive completion flag (SIOF)	
Serial I/O mode register J1	
Condition mode register or	serial I/O port not selected)
Serial I/O register SI	· · · · · · · · · · · · · · · · · · ·
A/D conversion completion flag (ADF)	<u> </u>
A/D control register Q1	
A/D control register Q1 A/D control register Q2	
A/D control register Q2 A/D control register Q3	
Successive comparison register ADX X	
Comparator register	
Key-on wakeup control register K0	
, ,	
Key-on wakeup control register K1 Key-on wakeup control register K2	
Pull-up control register PU0	
Pull-up control register PU1	0 0 0 0
	"X" represents undefined.

Fig. 49 Internal state at reset 1

Port output structure control register FR0]
Port output structure control register FR1]
Port output structure control register FR2	
Carry flag (CY)	
• Register A	
• Register B	
Register D	
• Register E	
• Register X	
• Register Y	
Register ZX X	
Stack pointer (SP)	
Operation source clock	
Ceramic resonator circuit	
• RC oscillation circuit	
Quartz-crystal oscillation circuit	
	"X" represents undefined

Fig. 50 Internal state at reset 2

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

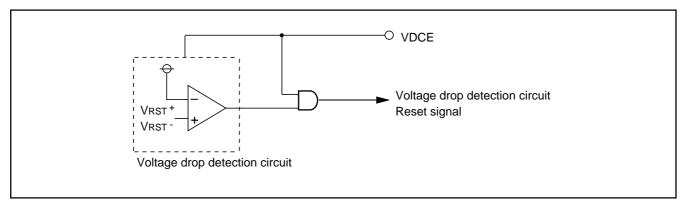


Fig. 51 Voltage drop detection reset circuit

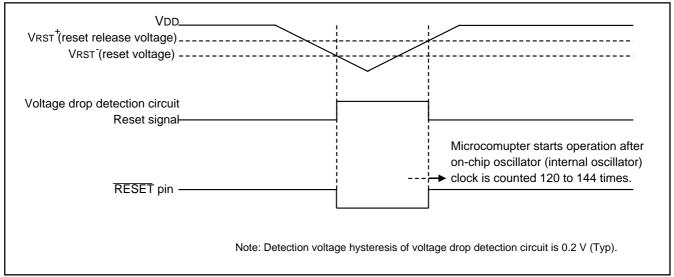


Fig. 52 Voltage drop detection circuit operation waveform

Table 17 Voltage drop detection circuit operation state

VDCE pin	At CPU operating	At RAM back-up
"L"	Invalid	Invalid
"H"	Valid	Valid

RAM BACK-UP MODE

The 4518 Group has the RAM back-up mode.

When the EPOF and POF instructions are executed continuously, system enters the RAM back-up state. The POF instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF instruction.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM. Table 18 shows the function and states retained at RAM back-up. Figure 53 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the RAM back-up flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF and POF instructions continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when;

- reset pulse is input to RESET pin, or
- reset by watchdog timer is performed, or
- voltage drop detection circuit detects the voltage drop, or
- SRST instruction is executed.

In this case, the P flag is "0."

Table 18 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B,	
carry flag (CY), stack pointer (SP) (Note 2)	×
Contents of RAM	0
Interrupt control registers V1, V2	×
Interrupt control registers I1, I2	0
Selection of oscillation circuit	0
Clock control register MR	×
Timer 1 function	(Note 3)
Timer 2 function	(Note 3)
Timer 3 function	(Note 3)
Timer 4 function	(Note 3)
Watchdog timer function	X (Note 4)
Timer control register PA, W4	×
Timer control registers W1 to W3, W5, W6	0
Serial I/O function	×
Serial I/O mode register J1	0
A/D conversion function	×
A/D control registers Q1 to Q3	0
Voltage drop detection circuit	O (Note 5)
Port level	0
Key-on wakeup control register K0 to K2	0
Pull-up control registers PU0, PU1	0
Port output direction registers FR0 to FR2	0
External 0 interrupt request flag (EXF0)	×
External 1 interrupt request flag (EXF1)	×
Timer 1 interrupt request flag (T1F)	(Note 3)
Timer 2 interrupt request flag (T2F)	(Note 3)
Timer 3 interrupt request flag (T3F)	(Note 3)
Timer 4 interrupt request flag (T4F)	(Note 3)
A/D conversion completion flag (ADF)	×
Serial I/O transmission/reception completion flag	×
(SIOF)	
Interrupt enable flag (INTE)	×
Watchdog timer flags (WDF1, WDF2)	X (Note 4)
Watchdog timer enable flag (WEF)	X (Note 4)
N-t 4:"O"	-ll ">4"

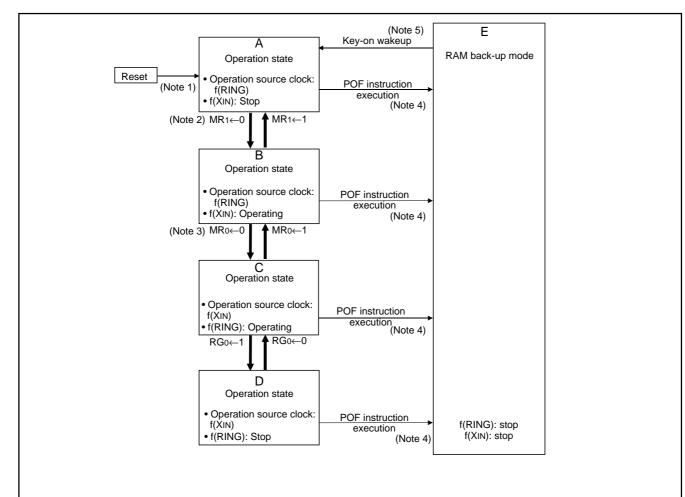
Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer with the WRST instruction, and then execute the POF instruction.
- 5: The valid/invalid of the voltage drop detection circuit can be controlled only by VDCE pin.

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 19 shows the return condition for each return source.


(5) Related registers

- Key-on wakeup control register K0
 Register K0 controls the ports P0 and P1 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K1
 Register K1 controls the return condition and valid waveform/
 level selection for port P0. Set the contents of this register
 through register A with the TK1A instruction. In addition, the
 TAK1 instruction can be used to transfer the contents of register
 K1 to register A.
- Key-on wakeup control register K2
 Register K2 controls the INTO and INT1 key-on wakeup functions
 and return condition function. Set the contents of this register
 through register A with the TK2A instruction. In addition, the
 TAK2 instruction can be used to transfer the contents of register
 K2 to register A.

- Pull-up control register PU0
- Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.
- Pull-up control register PU1
 Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU0 to register A.
- External interrupt control register I1
 Register I1 controls the valid waveform of external 0 interrupt, input control of INT0 pin, and return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.
- External interrupt control register I2
 Register I2 controls the valid waveform of external 1 interrupt, input control of INT1 pin, and return input level. Set the contents of this register through register A with the TI2A instruction. In addition, the TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 19 Return source and return condition

	R	Return source Return condition		Remarks		
External wakeup signal		Ports P00-P03	"L" level input, or rising edge ("L" \rightarrow "H") or falling edge	The key-on wakeup function can be selected with 2 port units. Select the return level ("L" level or "H" level), and return condition (return by level or edge) with the register K1 according to the external state before going into the RAM back-up state.		
		Ports P10-P13	Return by an external "L" level input.	The key-on wakeup function can be selected with 2 port units. Set the port using the key-on wakeup function to "H" level before going into the RAM back-up state.		
	External w	INTO INT1	"L" level input, or rising edge	Select the return level ("L" level or "H" level) with the registers I1 and I2 according to the external state, and return condition (return by level or edge) with the register K2 before going into the RAM back-up state.		
			The external interrupt request flags (EXF0, EXF1) are not set.			

Notes 1: Microcomputer starts its operation after counting f(RING) 120 to 144 times.

- 2: The f(XIN) oscillation circuit (ceramic resonance, RC oscillation or quartz-crystal oscillation) selected by the CMCK, CRCK or CYCK instruction starts oscillating (the start of oscillation and the operation source clock is not switched by these instructions). The start/stop of oscillation and the operation source is switched by register MR.
 Surely, select the f(XIN) oscillation circuit by executing the CMCK, CRCK or CYCK instruction before clearing MR1 to "0".
- Surely, select the f(XIN) oscillation circuit by executing the CMCK, CRCK or CYCK instruction before clearing MR1 to "0". MR1 cannot be cleared to "0" when the oscillation circuit is not selected.
- 3: Generate the wait time by software until the oscillation is stabilized, and then, switch the system clock.
- 4: Continuous execution of the EPOF instruction and the POF instruction is required to go into the RAM back-up state.
- 5: System returns to state A certainly when returning from the RAM back-up mode.

 However, the selected contents (CMCK, CRCK, CYCK instruction execution state) of f(XIN) oscillation circuit is retained.

Fig. 53 State transition

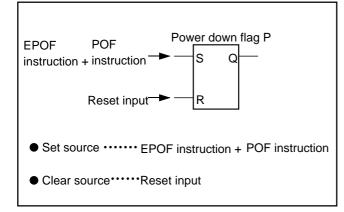


Fig. 54 Set source and clear source of the P flag

Fig. 55 Start condition identified example using the SNZP instruction

Table 20 Key-on wakeup control register, pull-up control register

Key-on wakeup control register K0		at	at reset : 00002 at RAM back-up : state retain		R/W TAK0/TK0A		
1/0-	K03 Pins P12 and P13 key-on wakeup control bit		Key-on wakeup not used				
KU3			Key-on wakeup use	ed			
I/Oo	Pins P1o and P11 key-on wakeup	0	Key-on wakeup not used				
K02	control bit	1	Key-on wakeup used				
K01	Pins P02 and P03 key-on wakeup	0	Key-on wakeup not used				
KU1	control bit	1	Key-on wakeup used				
K0°	Pins P0o and P01 key-on wakeup	0	Key-on wakeup not	used			
K00	control bit	1	Key-on wakeup used				
	Key-on wakeup control register K1		reset : 00002	at RAM back-up : state retained	R/W TAK1/TK1A		
1/4.5	Ports P02 and P03 return condition selection	0	Return by level				
K13	bit	1	Return by edge				
K12	Ports P02 and P03 valid waveform/	0	Falling waveform/"L" level				
K12	level selection bit	1	Rising waveform/"H" level				
K11	Ports P01 and P00 return condition selection	0	Return by level				
K11	bit	1	Return by edge				
K10	Ports P01 and P00 valid waveform/	0	Falling waveform/"L" level				
KIU	level selection bit	1	Rising waveform/"H" level				
	Key-on wakeup control register K2		reset : 00002	at RAM back-up : state retained	R/W TAK2/TK2A		
K23	INIT4 nin return condition coloction hit	0	Return by level				
K 23	INT1 pin return condition selection bit	1	Return by edge				
K22	INT1 pin key-on wakeup contro bit	0	Key-on wakeup not used				
NZ2	int i pili key-oli wakeup contio bit	1	Key-on wakeup used				
K21	INTO pin return condition colories hit	0	Return by level				
N 21	INT0 pin return condition selection bit	1	Return by edge				
K20	INT0 pin key-on wakeup contro bit	0	Key-on wakeup not	used			
N∠ U	in to pill key-off wakeup contro bit	1	Key-on wakeup use	ed			

Note: "R" represents read enabled, and "W" represents write enabled.

Table 21 Key-on wakeup control register, pull-up control register

145.0 2.1	ey-on wakeup control register, pun-up con						
Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	R/W TAPU0/ TPU0A		
PU03	P03 pin pull-up transistor	0	Pull-up transistor OFF				
P003	control bit	1	Pull-up transistor ON				
PU02	P02 pin pull-up transistor	0	Pull-up transistor OFF				
PU02	control bit	1	Pull-up transistor ON				
DUO	P01 pin pull-up transistor	0	Pull-up transistor OFF				
PU01	control bit	1	Pull-up transistor O	N			
DUIOs	P0o pin pull-up transistor	0	Pull-up transistor OFF				
PU00	control bit	1	Pull-up transistor ON				
	Pull-up control register PU1		reset: 00002	at RAM back-up : state retained	R/W TAPU1/ TPU1A		
DUIA	P13 pin pull-up transistor	0	Pull-up transistor OFF				
PU13	control bit	1	Pull-up transistor ON				
P12 pin pull-up transistor		0	Pull-up transistor OFF				
PU12	control bit	1	Pull-up transistor ON				
DUA	P11 pin pull-up transistor	0	Pull-up transistor OFF				
PU11	control bit	1	Pull-up transistor ON				
PU10	P10 pin pull-up transistor	0	Pull-up transistor OFF				
	control bit	1	Pull-up transistor ON				

Note: "R" represents read enabled, and "W" represents write enabled.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- On-chip oscillator (internal oscillator)
- · Ceramic resonator
- · RC oscillation circuit
- · Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- · Frequency divider
- · Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 56 shows the structure of the clock control circuit.

The 4518 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset. Also, the ceramic resonator, the RC oscillation or quartz-crystal oscillator can be used for the main clock (f(XIN)) of the 4518 Group. The CMCK instruction, CRCK instruction or CYCK instruction is executed to select the ceramic resonator, RC oscillator or quartz-crystal oscillator respectively.

The CMCK, CRCK, and CYCK instructions can be used only to select main clock (f(XIN)). In this time, the start of oscillation and the switch of system clock are not performed.

The oscillation start/stop of main clock f(XIN) is controlled by bit 1 of register MR. The system clock is selected by bit 0 of register MR. The oscillation start/stop of on-chip oscillator is controlled by register RG.

The oscillation circuit by the CMCK, CRCK or CYCK instruction can be selected only at once.

The oscillation circuit corresponding to the first executed one of these instructions is valid.

Execute the main clock (f(XIN)) selection instruction (CMCK, CRCK or CYCK instruction) in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

When the CMCK, CRCK, and CYCK instructions are never executed, main clock (f(XIN)) cannot be used and system can be operated only by on-chip oscillator.

The no operated clock source (f(RING)) or (f(XIN)) cannot be used for the system clock. Also, the clock source (f(RING) or f(XIN)) selected for the system clock cannot be stopped.

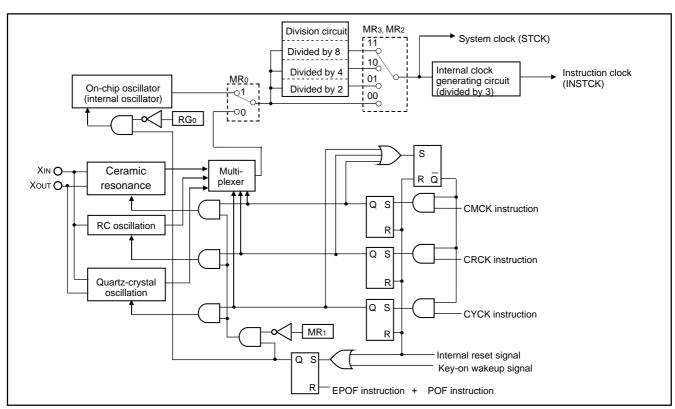


Fig. 56 Clock control circuit structure

(1) Main clock generating circuit (f(XIN))

The ceramic resonator, RC oscillation or quartz-crystal oscillator can be used for the main clock of this MCU.

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. When the quartz-crystal oscillator is used, execute the CYCK instruction. The oscillation start/stop of main clock f(XIN) is controlled by bit 1 of register MR. The system clock is selected by bit 0 of register MR. The oscillation circuit by the CMCK, CRCK or CYCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these instructions is valid

Execute the CMCK, CRCK or CYCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK, CRCK or CYCK instruction is not executed in program, this MCU operates by the on-chip oscillator.

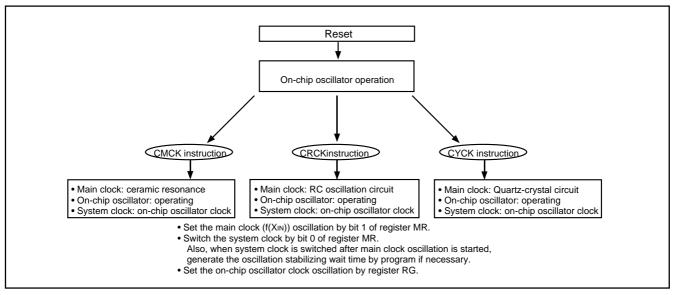


Fig. 57 Switch to ceramic resonance/RC oscillation/quartz-crystal oscillation

(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the main clock (f(XIN)) without using the ceramic resonator, RC oscillator or quartz-crystal oscillation, leave XIN pin and XOUT pin open (Figure 58).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 59).

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 60).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

(5) Quartz-crystal oscillator

When a quartz-crystal oscillator is used as the main clock (f(XIN)), connect this external circuit and a quartz-crystal oscillator to pins XIN and XOUT at the shortest distance. Then, execute the CYCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 61).

(6) External clock

When the external clock signal for the main clock (f(XIN)) is used, connect the clock source to XIN pin and XOUT pin open. In program, after the CMCK instruction is executed, set main clock (f(XIN)) oscillation start to be enabled (MR1=0).

For this product, when RAM back-up mode and main clock (f(XIN)) stop (MR1=1), XIN pin is fixed to "H" in order to avoid the through current by floating of internal logic. The XIN pin is fixed to "H" until main clock (f(XIN)) oscillation starts to be valid (MR1=0) by the CMCK instruction from reset state. Accordingly, when an external clock is used, connect a 1 k Ω or more resistor to XIN pin in series to limit of current by competitive signal.

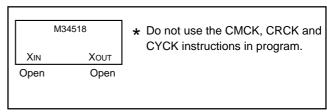


Fig. 58 Handling of XIN and XOUT when operating on-chip oscillator

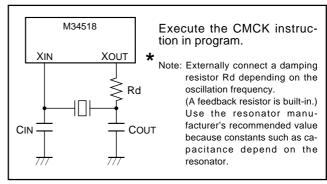


Fig. 59 Ceramic resonator external circuit

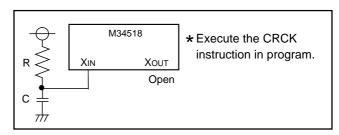


Fig. 60 External RC oscillation circuit

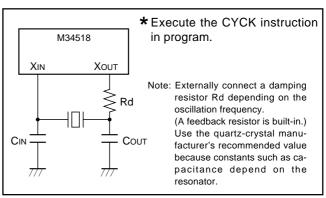


Fig. 61 External quartz-crystal circuit

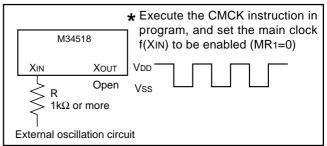


Fig. 62 External clock input circuit

(7) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

(8) Clock control register RG

Register RG controls start/stop of on-chip oscillator. Set the contents of this register through register A with the TRGA instruction.

Table 22 Clock control registers

Clock control register MR		at reset : 11112		reset : 11112	at RAM back-up : 11112	R/W TAMR/ TMRA
MR3	- Operation mode selection bits	MRз	MR2		Operation mode	
		0	0	Through mode (frequency not divided)		
		0	1	Frequency divided by 2 mode		
		1	0	Frequency divided by 4 mode		
		1	1	Frequency divided I	by 8 mode	
MR1	Main clock f(XIN) oscillation circuit control bit	()	Main clock (f(XIN))	oscillation enabled	
IVIK1		1		Main clock (f(XIN)) oscillation stop		
MR ₀	System clock oscillation source selection bit	(0 Main clock (f(XIN))			
IVITU		1		Main clock (f(RING)))	

	Clock control register RG		at reset : 02	at RAM back-up : 02	W TRGA
P.Co	RG0 On-chip oscillator (f(RING)) control bit	0	On-chip oscillator (f(RING)) oscillation enabled	
KG0		1	On-chip oscillator (f(RING)) oscillation stop	

Note: "R" represents read enabled, and "W" represents write enabled.

ROM ORDERING METHOD

- 1.Mask ROM Order Confirmation Form*
- 2.Mark Specification Form*
- 3. Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.
- *For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1 μ F) between pins VDD and Vss at the shortest distance.
- equalize its wiring in width and length, and
- use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/ VPP pin as close as possible).

②Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

3 Register initial values 2

The initial value of the following registers are undefined at RAM backup. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

⑤ Multifunction

- The input/output of P30 and P31 can be used even when INT0 and INT1 are selected.
- The input of ports P20–P22 can be used even when SIN, SOUT and SCK are selected.
- The input/output of D6 can be used even when CNTR0 (input) is selected.
- The input of D6 can be used even when CNTR0 (output) is selected.
- The input/output of D7 can be used even when CNTR1 (input) is selected.
- The input of D7 can be used even when CNTR1 (output) is selected.

6 Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

Stop timer 1, 2, 3 and 4 counting to change its count source.

® Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

Writing to the timer

Stop timer 1, 2, 3 or 4 counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB) to write its data.

Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload register R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

11 Timer 4

Avoid a timing when timer 4 underflows to stop timer 4 at the use of PWM output function.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

@ Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the RAM back-up state. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up state, and stop the watchdog timer function.
- When the watchdog timer function and RAM back-up function are used at the same time, execute the WRST instruction before system enters into the RAM back-up state and initialize the flag

© Prescaler, Timer 1, Timer 2 and Timer 3 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after Prescaler, Timer 1, Timer 2 and Timer 3 operations start (1). Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts.

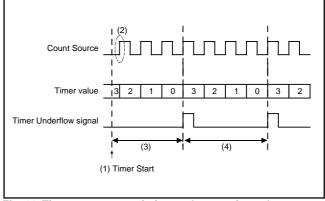


Fig. 63 Timer count start timing and count time when operation starts (Prescaler, Timer 1, Timer 2 and Timer 3)

Timer 4 count start timing and count time when operation starts

Count starts from the rising edge (2) after the first falling edge of
the count source, after Timer 4 operations start (1).

Time to first underflow (3) is different from time among next underflow (4) by the timing to start the timer and count source operations after count starts.

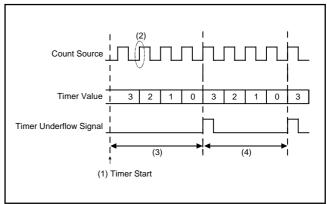


Fig. 64 Timer count start timing and count time when operation starts (Timer 4)

⁽⁵⁾ Period measurement circuit

When a period measurement circuit is used, clear bit 0 of register I1 to "0", and set a timer 1 count start synchronous circuit to be "not selected".

Start timer operation immediately after operation of a period measurement circuit is started.

When the edge for measurement is input until timer operation is started from the operation of period measurement circuit is started, the count operation is not executed until the timer operation becomes valid. Accordingly, be careful of count data.

When data is read from timer, stop the timer and clear bit 2 of register W5 to "0" to stop the period measurement circuit, and then execute the data read instruction.

Depending on the state of timer 1, the timer 1 interrupt request flag (T1F) may be set to "1" when the period measurement circuit is stopped by clearing bit 2 of register W5 to "0". In order to avoid the occurrence of an unexpected interrupt, clear the bit 2 of register V1 to "0" (refer to Figure $65 \odot$) and then, stop the bit 2 of register W5 to "0" to stop the period measurement circuit.

In addition, execute the SNZT1 instruction to clear the T1F flag after executing at least one instruction (refer to Figure 65@).

Also, set the NOP instruction for the case when a skip is performed with the SNZT1 instruction (refer to Figure 65³).

While a period measurement circuit is operating, the timer 1 interrupt request flag (T1F) is not set by the timer 1 underflow signal, it is the flag for detecting the completion of period measurement.

When a period measurement circuit is used, select the sufficiently higher-speed frequency than the signal for measurement for the count source of a timer 1.

When the signal for period measurement is D6/CNTR0 pin input, do not select D6/CNTR0 pin input as timer 1 count source.

(The XIN input is recommended as timer 1 count source at the time of period measurement circuit use.)

When the input of P30/INT0 pin is selected for measurement, set the bit 3 of a register I1 to "1", and set the input of INT0 pin to be enabled.

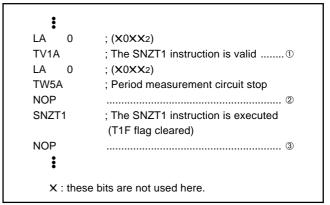


Fig. 65 Period measurement circuit program example

® P30/INT0 pin

- Note [1] on bit 3 of register I1
 When the input of the INT0 pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P3o/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 66 ①) and then, change the bit 3 of register I1. In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 66 ②). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 66 ③).

```
i
          ; (XXX02)
LA
TV1A
          ; The SNZ0 instruction is valid ..... ①
LA
          ; (1XXX2)
TI1A
          ; Control of INT0 pin input is changed
NOP
           SNZ0
          ; The SNZ0 instruction is executed
           (EXF0 flag cleared)
NOP
           :
       X: these bits are not used here.
```

Fig. 66 External 0 interrupt program example-1

- Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful about the following notes.
- When the input of INT0 pin is disabled (register I13 = "0"), set the key-on wakeup function to be invalid (register K20 = "0") before system enters to the RAM back-up mode. (refer to Figure 67⁻0).

```
LA 0 ; (XXX02)
TK2A ; Input of INT0 key-on wakeup invalid .. ①
DI
EPOF
POF ; RAM back-up

X: these bits are not used here.
```

Fig. 67 External 0 interrupt program example-2

- Note on bit 2 of register I1

 When the interrupt valid waveform of the P30/INT0 pin is

 The part of the bit 2 of control of the P30/INT0 pin is
- When the interrupt valid waveform of the P30/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P3o/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 68[®]) and then, change the bit 2 of register I1. In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 68[®]). Also, set the NOP instruction for the case when a skip is per-

formed with the SNZ0 instruction (refer to Figure 683).

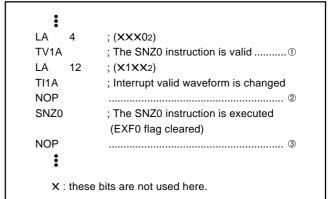


Fig. 68 External 0 interrupt program example-3

[®]P31/INT1 pin

- Note [1] on bit 3 of register I2
 When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.
- Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 69^①) and then, change the bit 3 of register I2. In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 69^②). Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 69^③).

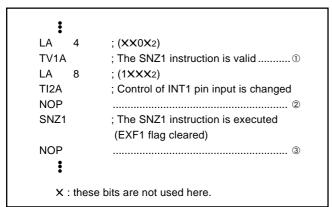


Fig. 69 External 1 interrupt program example-1

- Note [2] on bit 3 of register I2
 When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.
- When the input of INT1 pin is disabled (register I23 = "0"), set the key-on wakeup function to be invalid (register K22 = "0") before system enters to the RAM back-up mode. (refer to Figure 70①).

```
LA 0; (X0XX2)
TK2A; Input of INT1 key-on wakeup invalid .. ①
DI
EPOF
POF; RAM back-up

X: these bits are not used here.
```

Fig. 70 External 1 interrupt program example-2

- Note on bit 2 of register I2 When the interrupt valid waveform of the P31/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.
- Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 71①) and then, change the bit 2 of register I2. In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 71②). Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 71③).

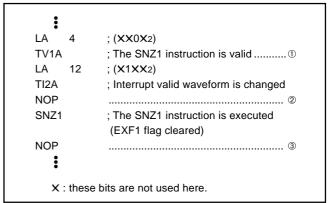


Fig. 71 External 1 interrupt program example-3

[®]A/D converter-1

- When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."
- Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.
- Clear the bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode.
- The A/D conversion completion flag (ADF) may be set when the
 operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a
 value to the register Q1, and execute the SNZAD instruction to
 clear the ADF flag.

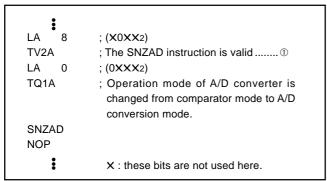


Fig. 72 A/D converter program example-3

A/D converter-2

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μF to 1 μF) to analog input pins (Figure 73).

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 74. In addition, test the application products sufficiently.

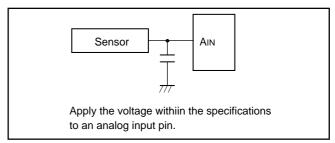


Fig. 73 Analog input external circuit example-1

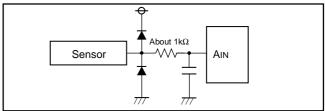


Fig. 74 Analog input external circuit example-2

POF instruction

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the POF instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF instruction continuously.

Make sure that the PC does not specify after the last page of the built-in ROM.

@Power-on reset

When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to the value of supply voltage or more must be set to 100 μs or less. If the rising time exceeds 100 μs , connect a capacitor between the $\overline{\text{RESET}}$ pin and Vss at the shortest distance, and input "L" level to $\overline{\text{RESET}}$ pin until the value of supply voltage reaches the minimum operating voltage.

Execute the main clock (f(XIN)) selection instruction (CMCK, CRCK or CYCK instruction) in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the CMCK, CRCK or CYCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these instructions is valid.

The CMCK, CRCK, and CYCK instructions can be used only to select main clock (f(XIN)). In this time, the start of oscillation and the switch of system clock are not performed.

When the CMCK, CRCK, and CYCK instructions are never executed, main clock (f(XIN)) cannot be used and system can be operated only by on-chip oscillator.

The no operated clock source (f(RING)) or (f(XIN)) cannot be used for the system clock. Also, the clock source (f(RING)) or (XIN) selected for the system clock cannot be stopped.

On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

When considering the oscillation stabilize wait time at the switch of clock, be careful that the variable frequency of the on-chip oscillator clock.

® External clock

When the external clock signal for the main clock (f(XIN)) is used, connect the clock source to XIN pin and XOUT pin open. In program, after the CMCK instruction is executed, set main clock (f(XIN)) oscillation start to be enabled (MR1=0).

For this product, when RAM back-up mode and main clock (f(XIN)) stop (MR1=1), XIN pin is fixed to "H" in order to avoid the through current by floating of internal logic. The XIN pin is fixed to "H" until main clock (f(XIN)) oscillation start to be valid (MR1=0) by the CMCK instruction from reset state. Accordingly, when an external clock is used, connect a 1 k Ω or more resistor to XIN pin in series to limit of current by competitive signal.

© Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

CONTROL REGISTERS

Interrupt control register V1		at	reset : 00002	at RAM back-up : 00002	R/W TAV1/TV1A
V/4 Timer 2 interrupt anable hit		0	Interrupt disabled	(SNZT2 instruction is valid)	
V13	Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid)	
\/10	V12 Timer 1 interrupt enable bit	0	Interrupt disabled	(SNZT1 instruction is valid)	
V 12	Timer i interrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid)	
\///	External 1 interrupt anable bit	0	Interrupt disabled ((SNZ1 instruction is valid)	
V11	External 1 interrupt enable bit	1	Interrupt enabled (SNZ1 instruction is invalid)	
\/10	External O interrupt anable bit	0	Interrupt disabled	(SNZ0 instruction is valid)	
V10	External 0 interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)	

Interrupt control register V2		at reset : 00002		at RAM back-up : 00002	R/W TAV2/TV2A
V23 Serial I/O interrupt enable bit		0	Interrupt disabled ((SNZSI instruction is valid)	
		1	Interrupt enabled (SNZSI instruction is invalid)	
V22 A/D interrupt enable bit	0	Interrupt disabled ((SNZAD instruction is valid)		
V22	A/D Interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid)	
\/O.	Timer 4 interrupt enable bit	0	Interrupt disabled ((SNZT4 instruction is valid)	
V21	Timer 4 interrupt enable bit	1	Interrupt enabled (SNZT4 instruction is invalid)	
\/O-	Timor 2 interrupt enable hit	0	Interrupt disabled ((SNZT3 instruction is valid)	
V20	Timer 3 interrupt enable bit	1	Interrupt enabled (SNZT3 instruction is invalid)	

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W TAI1/TI1A
l13	INT0 pin input control bit (Note 2)	0	INT0 pin input disa	abled	
113	IN 10 pin input control bit (Note 2)	1	INT0 pin input ena	bled	
			Falling waveform/"	L" level ("L" level is recognized with	the SNZI0
112	Interrupt valid waveform for INT0 pin/	0	instruction)		
112	return level selection bit (Note 2)	Rising waveform/"H" level ("H" level is recognized with the SI			the SNZI0
		ľ	instruction)		
111	INT0 pin edge detection circuit control bit	0	One-sided edge detected		
'''	IN 10 pin eage detection circuit control bit	1	Both edges detect	ed	
I10	INT0 pin Timer 1 count start synchronous	0	Timer 1 count start	t synchronous circuit not selected	
110	circuit selection bit	1	Timer 1 count start	t synchronous circuit selected	

	Interrupt control register I2		reset : 00002	at RAM back-up : state retained	R/W TAI2/TI2A	
120	I23 INT1 pin input control bit (Note 2)		INT1 pin input disa	INT1 pin input disabled		
123			INT1 pin input ena	bled		
	Interrupt valid waveform for INT1 pin/	0	Falling waveform/"	L" level ("L" level is recognized with	the SNZI1	
122			instruction)			
122	return level selection bit (Note 2)	4	Rising waveform/"H" level ("H" level is recognized with the SNZI1			
		'	instruction)			
l2 ₁	INT1 pin edge detection circuit control bit	0	One-sided edge de	etected		
121	INTERPRETARY	1	Both edges detected	ed		
120	INT1 pin Timer 3 count start synchronous	0	Timer 3 count start	t synchronous circuit not selected		
120	circuit selection bit	1	Timer 3 count start	t synchronous circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set to "1".

	Clock control register MR		at reset : 11112		at RAM back-up : 11112	R/W TAMR/ TMRA
		MR ₃	MR2		Operation mode	
MR3	MR3 Operation mode selection bits MR2	0	0	Through mode (free	quency not divided)	
		0	1	Frequency divided I	by 2 mode	
MR ₂		1	0	Frequency divided by 4 mode		
		1	1	Frequency divided I	by 8 mode	
MR1	Main clock f(XIN) oscillation circuit control bit	()	Main clock (f(XIN))	oscillation enabled	
IVIK		1		Main clock (f(XIN)) oscillation stop		
MR ₀	System clock appillation source selection bit	0		Main clock (f(XIN))		
IVINO	System clock oscillation source selection bit			Main clock (f(RING))		

Clock control register RG		;	at reset : 02	at RAM back-up : 02	W TRGA		
RG ₀	On-chip oscillator (f(RING)) control bit	0	On-chip oscillator (On-chip oscillator (f(RING)) oscillation enabled			
I KG0	On-chip oscillator (I(KINO)) control bit	1	On-chip oscillator (f(RING)) oscillation stop			

Timer control register PA		at reset : 02		at RAM back-up : 02	W TPAA
PA ₀	Prescaler control bit	0	Stop (state initialize	ed)	
FAU		1	Operating		

	Timer control register W1		at reset : 00002		at RAM back-up : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection	0		Timer 1 count auto	-stop circuit not selected	
VVIS	bit (Note 2)		1	Timer 1 count auto-	-stop circuit selected	
W12	W/10 T)	Stop (state retained)		
VV 12	Timer 1 control bit	•	1	Operating		
		W11	W10		Count source	
W11		0	0	Instruction clock (IN	NSTCK)	
	Timer 1 count source selection bits	0	1	Prescaler output (C	ORCLK)	
W10		1	0	XIN input		
		1	1	CNTR0 input		

	Timer control register W2		at reset : 00002		at RAM back-up : state retained	R/W TAW2/TW2A
W23	CNTR0 output signal selection bit	0		Timer 1 underflow signal divided by 2 output		
VV23	CNTRO output signal selection bit	_	1	Timer 2 underflow s	ignal divided by 2 output	
W22	W22 Timer 2 control bit)	Stop (state retained)		
VVZZ	Timer 2 control bit	•	1	Operating		
14/0		W21	W20		Count source	
W21		0	0	System clock (STCI	K)	
	Timer 2 count source selection bits	0	1	Prescaler output (ORCLK)		
W20		1	0	Timer 1 underflow s	ignal (T1UDF)	
		1	1	PWM signal (PWMOUT)		

Note 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").

	Timer control register W3		at reset : 00002		at RAM back-up : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection	0		Timer 3 count auto-stop circuit not selected		
****	bit (Note 2)	•	1	Timer 3 count auto	-stop circuit selected	
W32	Timer 3 control bit	0		Stop (state retained)		
VV 32	Timer 3 control bit	·	1	Operating		
		W31	W30		Count source	
W31	Times 2 count council calcution hits	0	0	PWM signal (PWM	OUT)	
	Timer 3 count source selection bits	0	1	Prescaler output (C	DRCLK)	
W30		1	0	Timer 2 underflow	signal (T2UDF)	
		1	1	CNTR1 input		

Timer control register W4		at reset : 00002		at RAM back-up : 00002	R/W TAW4/TW4A	
W/40 DZ/CNTD4 nin function colection hit		0	D7 (I/O) / CNTR1 (input)			
VV43	W43 D7/CNTR1 pin function selection bit		CNTR1 (I/O) / D7 (input)			
W42	W42 PWM signal	0	PWM signal "H" interval expansion function invalid			
VV42	"H" interval expansion function control bit	1	PWM signal "H" interval expansion function valid			
W41	Timer 4 control bit	0	Stop (state retained)			
VV41	Timer 4 control bit	1	Operating			
W40	Timer 4 count source selection bit	0	XIN input			
VV40	Timer 4 count source selection bit	1	Prescaler output (0	ORCLK) divided by 2		

	Timer control register W5		at reset : 00002		at RAM back-up : state retained	R/W TAW5/TW5A
W53	Not used	0		This bit has no fund	ction, but read/write is enabled.	
		•	1		,	
W52	Period measurement circuit control bit	0) Stop		
VV32	T chou measurement on our control bit	•	1	Operating		
		W51	W5 0		Count source	
W51	Signal for period measurement selection	0	0	On-chip oscillator (f(RING/16))	
	bits	0	1	CNTR ₀ pin input		
W50		1	0	INT0 pin input		
		1	1	Not available		

	Timer control register W6	at reset : 00002		at RAM back-up : state retained	R/W TAW6/TW6A	
W63	CNTR1 pin input count edge selection bit	0	Falling edge		•	
VV03	CNTNT piit input count eage selection bit	1	Rising edge			
W62	W60 CNTDO nin input pount adapt colortion hit		Falling edge			
VV02	CNTR0 pin input count edge selection bit	1	Rising edge			
W61	CNTR1 output auto-control circuit	0	CNTR1 output aut	o-control circuit not selected		
****	selection bit	CNTR1 output auto-control circuit selected		o-control circuit selected		
W60	D6/CNTR0 pin function selection bit	0	D6 (I/O) / CNTR0 (input)			
*****	Do ONTRO pin raneaon selection bit	1	CNTR0 (I/O) /D6 (input)			

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").

	Serial I/O control register J1	at reset : 00002		reset : 00002	at RAM back-up : state retained	R/W TAJ1/TJ1A	
			J12		Synchronous clock		
J13		0	0	Instruction clock (II	NSTCK) divided by 8		
	Serial I/O synchronous clock selection bits	0	1	Instruction clock (II	NSTCK) divided by 4		
J12			0	Instruction clock (INSTCK) divided by 2			
		1	1	External clock (Scr	(input)		
		J11	J 10		Port function		
J11		0	0	P20, P21,P22 selected/SCK, SOUT, SIN not selected			
	Serial I/O port function selection bits	0	1	SCK, SOUT, P22 sel	SCK, SOUT, P22 selected/P20, P21, SIN not selected		
J1 0			0	SCK, P21, SIN selected/P20, SOUT, P22 not selected			
		1	1	SCK, SOUT, SIN selected/P20, P21,P22 not selected			

	A/D control register Q1	at reset : 00002		t : 00002	at RAM back-up : state retained	R/W TAQ1/TQ1A	
Q13	A/D operation mode selection bit	A/E) con	versi	on mode		
QIS	A/D operation mode selection bit	Coi	mpar	ator	mode		
		Q12	Q11	Q10		Analog input pins	
Q12		0	0	0	AIN0		
		0	0	1	AIN1		
	Analog input pin selection bits	0	1	0	AIN2		
Q11	Analog input pin selection bits	0	1	1	Аімз		
		1	0	0	Not available		
		1	0	1	Not available		
Q10		1	1	0	Not available		
		1	1	1	Not available		

	A/D control register Q2	at reset : 00002		at RAM back-up : state retained	R/W TAQ2/TQ2A	
Q23	Not used	0	This hit has no fun	ction, but read/write is enabled		
Q25	Not used	1	This bit has no function, but read/write is enabled.			
Q22	000		P62, P63			
QZZ	P62/AIN2, P63/AIN3 pin function selection bit	1	AIN2, AIN3			
Q21	DO./America for all and all and by	0	P61			
QZ1	Q21 P61/AIN1 pin function selection bit		AIN1			
Q20	DCs/Automin function coloration hit	0	P60			
Q20 P6o/AINo pin function selection bit		1	AIN0			

A/D control register Q3			at	reset : 00002	at RAM back-up : state retained	R/W TAQ3/TQ3A
Q33	Not used	0		This bit has no function, but read/write is enabled.		
		1			NOTOK	
Q32	A/D converter operation clock selection bit)	Instruction clock (INSTCK)		
۵02	778 converter operation dook delection bit	1		On-chip oscillator (f(RING))		
		Q31	Q30	Division ratio		
Q31		0	0	Frequency divided by 6		
	A/D converter operation clock division	0	1	Frequency divided	Frequency divided by 12	
Q30	ratio selection bits	1	0	Frequency divided	by 24	
		1	1	Frequency divided by 48		

	Key-on wakeup control register K0	at	reset : 00002	at RAM back-up : state retained	R/W TAK0/TK0A
	Pins P12 and P13 key-on wakeup	0	Key-on wakeup not	used	IAKU/IKUA
K03	control bit	1	Key-on wakeup use		
	Pins P10 and P11 key-on wakeup	0	Key-on wakeup not		
K02	control bit	1	Key-on wakeup use		
	Pins P02 and P03 key-on wakeup	0	Key-on wakeup not		
K01	control bit	1	Key-on wakeup use		
140	Pins P00 and P01 key-on wakeup	0	Key-on wakeup not		
K00	control bit	1	Key-on wakeup use	ed	
	Key-on wakeup control register K1	at reset : 00002		at RAM back-up : state retained	R/W TAK1/TK1A
1/4	Ports P02 and P03 return condition selection	0 Return by level		1	
K13	bit	1	Return by edge		
1/40	Ports P02 and P03 valid waveform/	0	Falling waveform/"L	." level	
K12	level selection bit	1	Rising waveform/"H	" level	
1/4 /	Ports P01 and P00 return condition selection	0	Return by level		
K11	bit	1	Return by edge		
1/4 a	Ports P01 and P00 valid waveform/	0	Falling waveform/"L	." level	
K10	level selection bit	1	Rising waveform/"H	l" level	
	Key-on wakeup control register K2	at	reset : 00002	at RAM back-up : state retained	R/W TAK2/TK2A
K23	INITA win natural and distance allocation bit	0	Return by level		·
K23	INT1 pin return condition selection bit	1	Return by edge		
K22	INITA win have an avalence and his	0 Key-on wakeup not		used	
N22	INT1 pin key-on wakeup contro bit	1	1 Key-on wakeup used		
K21	INT0 pin return condition selection bit	0 Return by level			
NZ1	in to pin return condition selection bit	1 Return by edge			
K20	INT0 pin key-on wakeup contro bit	0	Key-on wakeup not	used	
K∠∪	in to pill key-on wakeup contro bit	1	Key-on wakeup use	ed	

Pull-up control register PU0		at	reset : 00002	at RAM back-up : state retained	R/W TAPU0/ TPU0A	
DLIOs	P03 pin pull-up transistor	0 Pull-up transistor				
PU03	control bit	1	Pull-up transistor O	N		
PU02	P02 pin pull-up transistor	0	Pull-up transistor O	FF		
PU02	control bit	1	Pull-up transistor O	N		
DUIG	P01 pin pull-up transistor	0	Pull-up transistor O	FF		
PU01	control bit	1	Pull-up transistor O	N		
DLIOs	P0o pin pull-up transistor	0 Pull-up transistor		FF		
PU00	control bit	1	Pull-up transistor O	N		
	Pull-up control register PU1	at	reset : 00002	at RAM back-up : state retained	R/W TAPU1/ TPU1A	
PU13	P13 pin pull-up transistor	0	Pull-up transistor O	OFF		
PU13	control bit	1	Pull-up transistor O	ON		
DUIA	P12 pin pull-up transistor	0	Pull-up transistor O	FF		
PU12	control bit	1	Pull-up transistor O	N		
DUIA	P11 pin pull-up transistor	0 Pull-up transistor OF		FF		
PU11	control bit	1 Pull-up transistor		N		
DUIAG	P10 pin pull-up transistor	0	Pull-up transistor O	or OFF		
PU10	control bit	1 Pull-up transistor		N		

Port output structure control register FR0		at reset : 00002		at RAM back-up : state retained	W TFR0A
ED00	Ports P12, P13 output structure selection	0	N-channel open-dra	ain output	
FR03	bit	1	CMOS output		
ED0s	Ports P10, P11 output structure selection	0	N-channel open-dra	rain output	
FR02	bit	1	CMOS output		
ED04	Ports P02, P03 output structure selection	0	N-channel open-dra	-drain output	
FR01	bit	1 CMOS output			
ED0s	Ports P00, P01 output structure selection	0 N-channel open-dra		ain output	
FR00	bit	1	CMOS output		

Por	Port output structure control register FR1		reset : 00002	at RAM back-up : state retained	W TFR1A
FR13	Don't Do output atmost up a planting hit	0	N-channel open-dra	ain output	
FK13	Port D3 output structure selection bit	1	CMOS output		
ED4e			N-channel open-drain output		
FR12	Port D2 output structure selection bit	1	CMOS output		
ED4.	Bard Barada da	0	N-channel open-drain output		
FR11	Port D1 output structure selection bit	1	CMOS output		
ED4°	Don't Do output atmost up calcution hit	0	N-channel open-drain output		
FR10	Port Do output structure selection bit	1	CMOS output		

Por	Port output structure control register FR2		reset : 00002	at RAM back-up : state retained	W TFR2A
FR23	Dort D-/CNTD4 output of undure colories hit	0	N-channel open-dra	ain output	
FR23	Port D7/CNTR1 output structure selection bit	1	CMOS output		
FR22			0 N-channel open-drain output		
FR22	Port D6/CNTR0 output structure selection bit	1	CMOS output		
ED0.	Dant De autout atmosture calcution hit	0	N-channel open-drain output		
FR21	Port D5 output structure selection bit	1	CMOS output		
ED0s	Don't Dr. costant atmost one calcution hit	0	N-channel open-drain output		
FR20	Port D4 output structure selection bit	1	CMOS output		

INSTRUCTIONS

The 4518 Group has the 148 instructions. Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	PS	Prescaler
В	Register B (4 bits)	T1	Timer 1
DR	Register DR (3 bits)	T2	Timer 2
E	Register E (8 bits)	T3	Timer 3
V1	Interrupt control register V1 (4 bits)	T4	Timer 4
V2	Interrupt control register V2 (4 bits)	T1F	Timer 1 interrupt request flag
11	Interrupt control register I1 (4 bits)	T2F	Timer 2 interrupt request flag
12	Interrupt control register I2 (4 bits)	T3F	Timer 3 interrupt request flag
MR	Clock control register MR (4 bits)	T4F	Timer 4 interrupt request flag
RG	Clock control register RG (1 bit)	WDF1	Watchdog timer flag
PA	Timer control register PA (1 bit)	WEF	Watchdog timer enable flag
W1	Timer control register W1 (4 bits)	INTE	Interrupt enable flag
W2	Timer control register W2 (4 bits)	EXF0	External 0 interrupt request flag
W3	Timer control register W3 (4 bits)	EXF1	External 1 interrupt request flag
W4	Timer control register W4 (4 bits)	Р	Power down flag
W5	Timer control register W5 (4 bits)	ADF	A/D conversion completion flag
W6	Timer control register W6 (4 bits)	SIOF	Serial I/O transmit/receive completion flag
J1	Serial I/O control register J1 (4 bits)		
Q1	A/D control register Q1 (4 bits)	D	Port D (8 bits)
Q2	A/D control register Q2 (4 bits)	P0	Port P0 (4 bits)
Q3	A/D control register Q3 (4 bits)	P1	Port P1 (4 bits)
PU0	Pull-up control register PU0 (4 bits)	P2	Port P2 (3 bits)
PU1	Pull-up control register PU1 (4 bits)	P3	Port P3 (2 bits)
FR0	Port output format control register FR0 (4 bits)	P6	Port P6 (4 bits)
FR1	Port output format control register FR1 (4 bits)		,
FR2	Port output format control register FR2 (4 bits)	x	Hexadecimal variable
K0	Key-on wakeup control register K0 (4 bits)	у	Hexadecimal variable
K1	Key-on wakeup control register K1 (4 bits)	z	Hexadecimal variable
K2	Key-on wakeup control register K2 (4 bits)	р	Hexadecimal variable
X	Register X (4 bits)	n	Hexadecimal constant
Υ	Register Y (4 bits)	i	Hexadecimal constant
Z	Register Z (2 bits)	j	Hexadecimal constant
DP	Data pointer (10 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
	(It consists of registers X, Y, and Z)		(same for others)
PC	Program counter (14 bits)		,
РСн	High-order 7 bits of program counter	←	Direction of data movement
PCL	Low-order 7 bits of program counter	\leftrightarrow	Data exchange between a register and memory
SK	Stack register (14 bits X 8)	?	Decision of state shown before "?"
SP	Stack pointer (3 bits)	()	Contents of registers and memories
CY	Carry flag		Negate, Flag unchanged after executing instruction
RPS	Prescaler reload register (8 bits)	M(DP)	RAM address pointed by the data pointer
R1	Timer 1 reload register (8 bits)	a	Label indicating address a6 a5 a4 a3 a2 a1 a0
R2	Timer 2 reload register (8 bits)	р, а	Label indicating address a6 a5 a4 a3 a2 a1 a0
R3	Timer 3 reload register (8 bits)		in page p5 p4 p3 p2 p1 p0
R4L	Timer 4 reload register (8 bits)	С	Hex. C + Hex. number x
R4H	Timer 4 reload register (8 bits)	C + x	

Note: Some instructions of the 4518 Group has the skip function to unexecute the next described instruction. The 4518 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

	LIST O	F INSTRUCTION FUNCTION			
Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function
	TAB	(A) ← (B)		XAMI j	$(A) \leftarrow \rightarrow (M(DP))$
			fer		$(X) \leftarrow (X)EXOR(j)$
	TBA	(B) ← (A)	ans		j = 0 to 15
			er fr		(Y) ← (Y) + 1
	TAY	$(A) \leftarrow (Y)$	Jiste		
) je	TMA j	$(M(DP)) \leftarrow (A)$
	TYA	$(Y) \leftarrow (A)$	RAM to register transfer		$(X) \leftarrow (X)EXOR(j)$
			RAI		j = 0 to 15
_	TEAB	(E7–E4) ← (B)			
ısfeı		(E3–E0) ← (A)		LA n	(A) ← n
tran	TARE	(P) ((E7 E4)			n = 0 to 15
ter	TABE	$(B) \leftarrow (E7-E4)$ $(A) \leftarrow (E3-E0)$		TA DD	(CD) - (CD) - 4
gis		(A) (L3-L0)		TABP p	$(SP) \leftarrow (SP) + 1$
Register to register transfer	TDA	(DR2−DR0) ← (A2−A0)			$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$
ter					$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$
gis	TAD	$(A_2-A_0) \leftarrow (DR_2-DR_0)$			$(DR2) \leftarrow (DR2 DR0, A3 A0)$
&		(A ₃) ← 0			(DR1, DR0) ← (ROM(PC))9, 8
					$(B) \leftarrow (ROM(PC))7-4$
	TAZ	$(A_1, A_0) \leftarrow (Z_1, Z_0)$			$(A) \leftarrow (ROM(PC))_{3-0}$
		(A ₃ , A ₂) ← 0			(PC) ← (SK(SP))
					(SP) ← (SP) − 1
	TAX	$(A) \leftarrow (X)$			
				AM	$(A) \leftarrow (A) + (M(DP))$
	TASP	$(A_2-A_0) \leftarrow (SP_2-SP_0)$			
		(A3) ← 0	_	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$
	1.307	(10)	Arithmetic operation		(CY) ← Carry
	LXY x, y	$(X) \leftarrow X X = 0 \text{ to } 15$	ber		(4)
Se		$(Y) \leftarrow y \ y = 0 \ \text{to} \ 15$	lic o	A n	$(A) \leftarrow (A) + n$
RAM addresses	LZ z	$(Z) \leftarrow z z = 0 \text{ to } 3$	J. J.		n = 0 to 15
ddre	LZ Z		rith	AND	(A) ((A) AND (M(DD))
a Z	INY	$(Y) \leftarrow (Y) + 1$		AND	$(A) \leftarrow (A) \text{ AND } (M(DP))$
RAI	••			OR	(A) ← (A) OR (M(DP))
	DEY	$(Y) \leftarrow (Y) - 1$			() () () () () () () () () ()
		,		sc	(CY) ← 1
	ТАМ ј	$(A) \leftarrow (M(DP))$			` ´
		$(X) \leftarrow (X)EXOR(j)$		RC	(CY) ← 0
JE .		j = 0 to 15			
nsfe				SZC	(CY) = 0 ?
rtra	XAM j	$(A) \leftarrow \rightarrow (M(DP))$			_
stei		$(X) \leftarrow (X)EXOR(j)$		CMA	$(A) \leftarrow (\overline{A})$
regi		j = 0 to 15			
5	VAMD:	(A) ((M(DD))		RAR	→ CY → A3A2A1A0 —
RAM to register transfer	XAMD j	$(A) \leftarrow \to (M(DP))$			
"		$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15			
		$ Y = 0 \text{ to } 13$ $ Y \leftarrow Y - 1$			

Note: p is 0 to 15 for M34518M2,

p is 0 to 31 for M34518M4, p is 0 to 47 for M34518M6,

p is 0 to 63 for M34518M8/E8.

		F INSTRUCTION FUNCTION (co	ntin	ued) Group-	I	
Group- ing	Mnemonic	Function		Group- ing	Mnemonic	Function
	SB j	$(Mj(DP)) \leftarrow 1$ j = 0 to 3			DI	$(INTE) \leftarrow 0$
ration	RB j	(Mj(DP)) ← 0			EI	(INTE) ← 1
Bit operation		j = 0 to 3			SNZ0	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0
ш	SZB j	(Mj(DP)) = 0? j = 0 to 3				V10 = 1: NOP
nos on	SEAM	(A) = (M(DP)) ?	-		SNZ1	V11 = 0: (EXF1) = 1 ? After skipping, (EXF1) ← 0 V11 = 1: NOP
Comparison operation	SEA n	(A) = n? n = 0 to 15			SNZI0	I12 = 1 : (INT0) = "H" ?
_	Ва	(PCL) ← a6–a0		ation	0.1714	I12 = 0 : (INT0) = "L" ?
Branch operation	BL p, a	(PCH) ← p (PCL) ← a6–a0		Interrupt operation	SNZI1	I22 = 1 : (INT1) = "H" ? I22 = 0 : (INT1) = "L" ?
anch o	BLA p	(PCH) ← p		Interru	TAV1	(A) ← (V1)
Br	·	(PCL) ← (DR2–DR0, A3–A0)			TV1A	(V1) ← (A)
	ВМ а	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$			TAV2	(A) ← (V2)
		(PCH) ← 2 (PCL) ← a6-a0			TV2A	(V2) ← (A)
eration	BML p, a	(SP) ← (SP) + 1			TAI1	(A) ← (I1)
Subroutine operation		$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$			TI1A	(l1) ← (A)
Subrou	DA 41 A	(PCL) ← a6–a0			TAI2	$(A) \leftarrow (12)$
0,	BMLA p	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$			TI2A	$(12) \leftarrow (A)$
		$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$			TPAA TAW1	$(PA0) \leftarrow (A0)$ $(A) \leftarrow (W1)$
	RTI	(PC) ← (SK(SP)) (SP) ← (SP) – 1			TW1A	$(W1) \leftarrow (A)$
	RT	(SF) ← (SF) = 1 (PC) ← (SK(SP))		tion	TAW2	$(W) \leftarrow (A)$ $(A) \leftarrow (W2)$
on		$(SP) \leftarrow (SR(SP))$		Timer operation	TW2A	$(W2) \leftarrow (A)$
operati	RTS	(PC) ← (SK(SP)) (SP) ← (SP) – 1		Time	TAW3	(A) ← (W3)
Return operation					TW3A	(W3) ← (A)
		 34518M2_n is 0 to 31 for M34518M4_n is 0 to 47 for	L		<u> </u>	

Note: p is 0 to 15 for M34518M2, p is 0 to 31 for M34518M4, p is 0 to 47 for M34518M6 and p is 0 to 63 for M34518M8/E8.

Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function
	TAW4	(A) ← (W4)		Т4НАВ	(R4H7−R4H4) ← (B)
					(R4H3−R4H0) ← (A)
	TW4A	(W4) ← (A)		TR1AB	$(R17-R14) \leftarrow (B) (R13-R10) \leftarrow (A)$
	TAW5	(A) ← (W5)			(
				TR3AB	(R37–R34) ← (B) (R33–R30) ← (A)
	TW5A	(W5) ← (A)		T4R4L	 (T47–T44) ← (R4L7–R4L4)
	TAW6	(A) ← (W6)		141146	(147-144) (1417-1414)
			_	SNZT1	V12 = 0: (T1F) = 1 ?
	TW6A	(W6) ← (A)	Timer operation		After skipping, (T1F) ← 0
	TABPS	(B) ← (TPS7–TPS4)	per		V12 = 1: NOP
	IABI 3	$(A) \leftarrow (TPS3-TPS0)$	ner (SNZT2	V13 = 0: (T2F) = 1 ?
		(1) (11 00 11 00)	Ξ̈́		After skipping, (T2F) ← 0
	TPSAB	(RPS7–RPS4) ← (B)			V13 = 1: NOP
		(TPS7–TPS4) ← (B)			
		$(RPS_3-RPS_0) \leftarrow (A)$		SNZT3	V20 = 0: (T3F) = 1 ?
		$(TPS3-TPS0) \leftarrow (A)$			After skipping, $(T3F) \leftarrow 0$ V20 = 1: NOP
	TAB1	(B) ← (T17–T14)			V20 = 1. NOF
	IADI	$(A) \leftarrow (T13-T10)$		SNZT4	V21 = 0: (T4F) = 1 ?
					After skipping, (T4F) ← 0
ion	T1AB	(R17–R14) ← (B)			V21 = 1: NOP
erat		(T17–T14) ← (B)		IA DO	(A) ((D0)
r op		$(R13-R10) \leftarrow (A)$		IAP0	(A) ← (P0)
Timer operation		(T13–T10) ← (A)		OP0A	(P0) ← (A)
_	TAB2	(B) ← (T27–T24)			
		(A) ← (T23–T20)		IAP1	(A) ← (P1)
	T2AB	R27−R24) ← (B)		OP1A	(P1) ← (A)
		(T27–T24) ← (B)			
		(R23−R20) ← (A)		IAP2	$(A_2-A_0) \leftarrow (P_{22}-P_{20}) (A_3) \leftarrow 0$
		(T23–T20) ← (A)	on	OP2A	(P22−P20) ← (A2−A0)
	TAB3	(B) ← (T37–T34)	erati		
		(A) ← (T33–T30)	Input/Output operation	IAP3	(A) ← (P3)
	ТЗАВ	(R37–R34) ← (B)	Jutpi	ОРЗА	(P3) ← (A)
	IJAD	$(T37-T34) \leftarrow (B)$	out/(
		(R33–R30) ← (A)	<u>u</u>	IAP6	(A) ← (P6)
		(T33–T30) ← (A)		OP6A	(P6) ← (A)
	TADA	(D) - (T4- T4)		OI OA	(1 0) (- (A)
	TAB4	$(B) \leftarrow (T47-T44)$ $(A) \leftarrow (T43-T40)$			
		עירו פרון ייטן			
	T4AB	(R4L7−R4L4) ← (B)			
		(T47–T44) ← (B)			
		$(R4L3-R4L0) \leftarrow (A)$			
		$ (T43-T40) \leftarrow (A) $			

INDEX LIST OF INSTRUCTION FUNCTION (continued)

INDE	(LIST O	F INSTRUCTION FUNCTION (cor		1	
Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function
	CLD	(D) ← 1		TABSI	$(B) \leftarrow (SI7-SI4) \ \ (A) \leftarrow (SI3-SI0)$
	RD	$ (D(Y)) \leftarrow 0 $ $ (Y) = 0 \text{ to } 7 $		TSIAB	$(SI7-SI4) \leftarrow (B) (SI3-SI0) \leftarrow (A)$
	SD	(D(Y)) ← 1 (Y) = 0 to 7	Serial I/O operation	SST	(SIOF) ← 0 Serial I/O starting
	SZD	(D(Y)) = 0? (Y) = 0 to 7	Serial I/O	SINZSI	V23=0: (SIOF)=1? After skipping, (SIOF) \leftarrow 0 V23=1: NOP
	TAPU0	$(A) \leftarrow (PU0)$		TAJ1	(A) ← (J1)
	TPU0A	(PU0) ← (A)		TJ1A	(J1) ← (A)
	TAPU1	(A) ← (PU1)		TABAD	In A/D conversion mode , (B) \leftarrow (AD9-AD6)
u	TPU1A	(PU1) ← (A)			(A) ← (AD5–AD2) In comparator mode,
peration	TAK0	$(A) \leftarrow (K0)$			(B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0)
Input/Output operation	TK0A	$(K0) \leftarrow (A)$		TALA	$(A3, A2) \leftarrow (AD1, AD0)$
O/tndu	TAK1	(A) ← (K1)		IALA	$(A_1, A_0) \leftarrow (A_0, A_0)$ $(A_1, A_0) \leftarrow 0$
_	TK1A	(K1) ← (A)		TADAB	(AD7–AD4) ← (B) (AD3–AD0) ← (A)
	TAK2	(A) ← (K2)		ADST	(ADF) ← 0
	TK2A	(K2) ← (A)	ation		A/D conversion starting
	TFR0A	$(FR0) \leftarrow (A)$	A/D operation	SNZAD	V21 = 0: (ADF) = 1 ? After skipping, (ADF) ← 0
	TFR1A	$(FR1) \leftarrow (A)$	₹		V21=1: NOP
	TFR2A	(FR2) ← (A)		TAQ1	(A) ← (Q1)
	CMCK	Ceramic resonator selected		TQ1A	(Q1) ← (A)
	CRCK	RC oscillator selected		TAQ2	(A) ← (Q2)
ration	СҮСК	Quartz-crystal oscillator selected		TQ2A	(Q2) ← (A)
Clock operation	TRGA	$(RG_0) \leftarrow (A_0)$		TAQ3	(A) ← (Q3)
Clo	TAMR	$(A) \leftarrow (MR)$		TQ3A	(Q3) ← (A)
	TMRA	$(MR) \leftarrow (A)$			

INDEX LIST OF INSTRUCTION FUNCTION (continued)

	<u> </u>	
Group- ing	Mnemonic	Function
	NOP	(PC) ← (PC) + 1
	POF	Transition to RAM back-up mode
	EPOF	POF instruction valid
Other operation	SNZP	(P) = 1 ?
her op	DWDT	Stop of watchdog timer function enabled
ŏ	WRST	(WDF1) = 1 ?
		After skipping, (WDF1) \leftarrow 0
	SRST	System reset occurrence

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

A n (Add n	and accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0	1	1	_	Overflow = 0
Operation:	$(A) \leftarrow (A) + n$ n = 0 to 15	Grouping: Description	register A, The contents Skips the r overflow as Executes t	ralue n in and stores of carry flament instructions the result he next ins	the immediate field to a result in register A. g CY remains unchanged. ction when there is no of operation. struction when there is of operation.
ADST (A/D	conversion STart)				
Instruction code	D9 D0 1 0 0 1 1 1 1 1 1 2 2 9 F 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	(ADF) ← 0	Grouping:	A/D conve	sion opera	ation
	Q13 = 0: A/D conversion starting Q13 = 1: Comparator operation starting (Q13 : bit 3 of A/D control register Q1)	Description	flag ADF, a	nd the A/D mode (Q1 on at the c	onversion completion conversion at the A/D 3 = 0) or the compara- omparator mode (Q13
AM (Add a	ccumulator and Memory)	I			
Instruction code	D9 D0 0 0 0 0 0 1 0 1 0 2 0 0 A 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	$(A) \leftarrow (A) + (M(DP))$	Grouping: Description		contents o	f M(DP) to register A.
					ins unchanged.
	accumulator, Memory and Carry)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	North an of	FI 0\	01: 1:::
Instruction code	D9 D0 0 0 0 0 1 0 1 1 0 0 B	Number of words	Number of cycles	Flag CY	Skip condition
Code	0 0 0 0 0 0 0 1 0 1 1 ₂ 0 0 B ₁₆	1	1	0/1	_
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$	Grouping: Description		ontents of ster A. Sto	M(DP) and carry flag res the result in regis- Y.

D9 Do	Number of			
		Number of	Flag CY	Skip condition
0 0 0 0 1 1 0 0 0 2 0 1 8 16	words 1	cycles 1	_	_
(A) . (A) AND (M/DD))	Grouping	Arithmetic	operation	
$(A) \leftarrow (A) \text{ AND } (M(DP))$			•	ation between the con-
			•	and the contents of e result in register A.
h to address a)	<u> </u>			
D9 D0 0 1 1 a6 a5 a4 a3 a2 a1 a0 1 8 a 46	Number of words	Number of cycles	Flag CY	Skip condition
	1	1	_	_
(PCL) ← a6 to a0	Grouping:	Branch ope	eration	
	Description Note:	a in the ide Specify the	entical pag e branch a	ddress within the page
ranch Long to address a in page p) D9 D0 0 0 1 1 1 p4 p3 p2 p1 p0 2 0 F p 16	Number of words	Number of cycles	Flag CY	Skip condition
1 0 ps 25 25 24 22 24 20 2 P 2	2	2	_	_
(PCH) ← p	Description			: Branches to address
(PCL) ← a6 to a0	Note:	p is 0 to 1	5 for M345	518M2, p is 0 to 31 for 47 for M34518M6 and
		p is 0 to 63	3 for M345	18M8E8.
anch Long to address (D) + (A) in page p)				
D9 D0 0 0 0 1 0 0 0 0 1 0	Number of words	Number of cycles	Flag CY	Skip condition
1 0 85 84 0 0 82 82 84 80 2 8 8	2	2	_	_
$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$: Branch out (DR2 DR1 registers D p is 0 to 19 M34518M4	t of a page DRo A3 A and A in p 5 for M345 4, p is 0 to	2 A1 A0)2 specified by page p. 518M2, p is 0 to 31 for 47 for M34518M6 and
	(A) ← (A) AND (M(DP)) The to address a) D9 D0 D1 1	Tanch Long to address a in page p) D9 D9 D0 Qrouping:	A ← (A) AND (M(DP)) Grouping: Arithmetic	(A) ← (A) AND (M(DP)) Corouping: Arithmetic operation

BM a (Bran	nch and Mark to address a in page 2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a a 16	words 1	cycles 1	_	_
		'	<u>'</u>		
Operation:	(SP) ← (SP) + 1	Grouping:	Subroutine		
	$(SK(SP)) \leftarrow (PC)$	Description			in page 2 : Calls th
	(PCH) ← 2		subroutine	at addres	s a in page 2.
	(PCL) ← a6–a0	Note:			ng from page 2 to an
			. 0		be called with the BN
					arts on page 2.
					r the stack because the
			maximum l	evel of sub	proutine nesting is 8.
BML p, a (Branch and Mark Long to address a in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 C p	words	cycles		
		2	2	_	_
	1 0 p5 a6 a5 a4 a3 a2 a1 a0 2 2 p a a 16		0 1 "	ļ.,,	
	(CD) - (CD) - 4	Grouping: Description	Subroutine	•	ation Calls the subroutine a
Operation:	$(SP) \leftarrow (SP) + 1$	Description	address a		
	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$	Note:			518M2, p is 0 to 31 fo
	(PCL) ← a6–a0	TTOTO:			47 for M34518M6 and
	(1 OL) (- au au		p is 0 to 63	•	
			•		r the stack because the
					proutine nesting is 8.
BMLA p (E	Branch and Mark Long to address (D) + (A) in page (o)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 0 0 0 0 2 0 3 0	words	cycles		
		2	2	_	_
	1 0 p5 p4 0 0 p3 p2 p1 p0 2 2 p p p 16	Grouping:	Subroutine	call oper	ation
Operation:	(SP) ← (SP) + 1	Description			Calls the subroutine a
Operation.	$(SK(SP)) \leftarrow (PC)$				Ro A3 A2 A1 A0)2 speci-
	$(PCH) \leftarrow p$		fied by reg	isters D ar	nd A in page p.
	$(PCL) \leftarrow (DR2-DR0, A3-A0)$	Note:			518M2, p is 0 to 31 fo
	(* 5-) * (- : - : : : : : : : : : : : : : : : :			•	47 for M34518M6 and
			p is 0 to 63		TRIMBES. r the stack because the
					r the stack because the proutine nesting is 8.
CLD (CLea	ar port D)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 1 1 1 1 16	words	cycles		
	10	1	1	_	_
Operation:	(D) ← 1	Grouping:	Input/Outp	ut operatio	n
			1: Sets (1) to		511
			()		

CMA (Cald	Interpret of Assumptions				
	Iplement of Accumulator)	Number of	Number of	Flog CV	Chin condition
Instruction code	D9 D0	Number of words	cycles	Flag CY	Skip condition
oouc	0 0 0 0 0 1 1 1 1 0 0 ₂ 0 1 C ₁₆	1	1	-	_
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic	operation	
Operano					mplement for register
			A's conten	ts in registe	er A.
CMCK (Cld	ock select: ceraMic oscillation ClocK)				_
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	Ceramic oscillation circuit selected	Grouping:	Clock cont	rol operation	on
		Description	: Selects th main clock		oscillation circuit for
CRCK (Clo	ock select: Rc oscillation ClocK) D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
coue	1 0 1 0 0 1 1 0 0 1 1 2 2 9 B ₁₆	1	1	_	_
Operation:	RC oscillation circuit selected	Grouping:	Clock cont	rol operation	on
		Description	: Selects the	e RC osci	lation circuit for main
			clock f(XIN).	
	ck select: crYstal oscillation ClocK)	Т	1	, , , , , , , , , , , , , , , , , , ,	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 1 1 1 1 0 1 ₂ 2 9 D ₁₆	1	1	_	_
Operation:	Quartz-crystal oscillation circuit selected	Grouping:	Clock cont	rol operation	on
		Description		e quartz-cr	ystal oscillation circuit

DEV (DEar	rement register V)				
Instruction	rement register Y) D9 D0	Number of	Number of	Flog CV	Skip condition
code		words	cycles	Flag CY	Skip condition
5545	0 0 0 0 0 1 0 1 1 1 1 2 0 1 7 16	1	1	_	(Y) = 15
Operation:	(Y) ← (Y) − 1	Grouping:	RAM addr	esses	
орогино	(., (.,				contents of register Y.
					action, when the con-
					15, the next instruction
			is skipped	. When the	e contents of register Y
			is not 15, t	he next in	struction is executed.
DI (Disable		1	I	1	
Instruction code	D9 D0 0 0 0 0 0 1 0 0 0 4	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 1 0 0 2	1	1	_	_
Operation:	(INTE) ← 0	Grouping:	Interrupt co	ontrol oper	ation
•		Description	: Clears (0)	to interrupt	t enable flag INTE, and
			disables th		
		Note:	•		by executing the DI in-
			struction a	fter execut	ing 1 machine cycle.
	sable WatchDog Timer)		T	T	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 ₂ 2 9 C ₁₆	1	1	_	_
		<u>'</u>	·		
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper		
		Description		_	timer function by the
			DWDT inst		after executing the
			טייטו ווטי	iruction.	
El (Enable	Interrupt)	1			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 0 1 0 5	words	cycles		
	16	1	1	_	_
Operation:	(INTE) ← 1	Grouping:	Interrupt co	ontrol oper	ation
•		Description			enable flag INTE, and
			enables the	e interrupt	
		Note:			by executing the EI in-
			struction a	fter execut	ing 1 machine cycle.

EPOF (En	able PO	F ins	structi	on)													
Instruction	D9							D ₀						Number of	Number of	Flag CY	Skip condition
code	0 0	0	1 0	1	1	0	1	1	2	0	5	В	16	words	cycles		
									12				10	1	1	-	_
Operation:	POF ins	struct	ion vali	d										Grouping:	Other oper	ation	
														Description	: Makes the	immediate	after POF instruction
																	EPOF instruction.
IAP0 (Inpu	ıt Accum	 nulat	or fror	n po	rt P0))											
Instruction	D9	0	1 1			0	0	D ₀]	2	6	0		Number of words	Number of cycles	Flag CY	Skip condition
									12		-		16	1	1	_	-
Operation:	(A) ← (P0)												Grouping:	Input/Outp	ut operatio	n
-	(-7 - (,															port P0 to register A
IAP1 (Inpution code	D9	nulat	or fron	n po		0	0	D ₀]2	2	6	1	16	Number of words	Number of cycles	Flag CY	Skip condition
														1	1	_	_
Operation:	$(A) \leftarrow ($	P1)												Grouping:	Input/Outp		n port P1 to register A
IAP2 (Inpu	ut A gourn	- Viot	or from		w DO	•											
Instruction	D9	luiat	01 1101	про	11. 17. 2	.)		D ₀						Number of	Number of	Flag CY	Skip condition
code	1 0	0	1 1	0	0	0	1	0]	2	6	2		words	cycles		
	1 0			10	0	<u> </u>	'	0	2		0		16	1	1	_	-
Operation:	(A2-A0) ← ([P22-P2	0)										Grouping:	Input/Outp	ut operatio	n
	(A3) ←	0												Description	: Transfers t	he input of	port P2 to register A

	t Accumulator from port P3)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 1 1 2 2 6 3	1	1	_	
Operation:	(A) ← (P3)	Grouping:	Input/Outp	ut operatio	n
Operation.	$(n) \leftarrow (10)$				port P3 to register A.
IAP6 (Inpu	t Accumulator from port P6)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 1 1 0 0 1 1 0 2 2 6 6 6	1	1	-	
Operation:	(A) ← (P6)	Grouping:	Input/Outp	ut operatio	n
					port P6 to register A.
INY (INcre Instruction code	ment register Y) D9 D0 1 0 0 0 0 0 1 0 0 1 1 2 0 1 3 16	Number of words	Number of cycles	Flag CY	Skip condition (Y) = 0
Instruction code	D9	words 1	cycles 1	_	Skip condition (Y) = 0
Instruction	D9 D0 0 0 0 1 0 0 1 1 0 1 3	words 1 Grouping:	cycles 1 RAM addr	esses	(Y) = 0
Instruction code	D9	words 1 Grouping:	cycles 1 RAM addr Adds 1 to	esses	(Y) = 0
Instruction code	D9	words 1 Grouping:	RAM addr n: Adds 1 to sult of ad	esses the contendition, w	(Y) = 0 ts of register Y. As a rethen the contents of
Instruction code	D9	words 1 Grouping:	RAM addr 1: Adds 1 to sult of ac register \(\) skipped. V	esses the contendition, way is 0, the	· · · · · · · · · · · · · · · · · · ·
Instruction code Operation:	D9	words 1 Grouping:	RAM addr 1: Adds 1 to sult of ac register \(\) skipped. V	esses the content ddition, w Y is 0, th Vhen the c next instru	(Y) = 0 Its of register Y. As a replace the contents of the contents of the contents of the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y.
Instruction code Operation:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	RAM addr 1: Adds 1 to sult of ac register \(\) skipped. V	esses the contendition, way is 0, the	(Y) = 0 Its of register Y. As a replace the contents of the contents of the contents of the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y is a replaced to the contents of register Y.
Operation:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description	RAM addr n: Adds 1 to sult of a register skipped. V not 0, the	esses the content ddition, w Y is 0, th Vhen the c next instru	(Y) = 0 Its of register Y. As a register the contents of e next instruction is ontents of register Y in the contents of the contents of register Y in the contents of t
Operation:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	RAM addr RAM addr RAM addr RAM addr RAM addr RAM addr Register N Skipped. V Not 0, the RAM addr Register N Skipped. V Not 0, the RAM addr	esses the contendition, way is 0, the onext instruction of the content inst	(Y) = 0 Its of register Y. As a register the contents of register Y is contents of register Y is contents of register Y is continuous. Skip condition Continuous description
Operation: LA n (Load Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	RAM addr RAM addr RAM addr Adds 1 to sult of ac register \(\) skipped. V not 0, the Number of cycles 1 Arithmetic Loads the	esses the contendition, way is 0, the onext instruction operation value n in	(Y) = 0 Its of register Y. As a researchen the contents of register Y ction is executed. Skip condition Continuous description
Operation: LA n (Load Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	RAM addr RAM	esses the contendition, was a contended the	(Y) = 0 Its of register Y. As a register the contents of enext instruction contents of register Y ction is executed. Skip condition Continuous description the immediate field to
Operation: LA n (Load Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	RAM addr RAM addr RAM addr RAM addr RAM addr REGISTER REGISTER REGISTER REGISTER Arithmetic Loads the register A. When the	esses the content ddition, we will see the content ddition, we will see the content flag CY Flag CY operation value n in LA instruct	(Y) = 0 Its of register Y. As a register then the contents of enext instruction ontents of register Y ction is executed. Skip condition Continuous description the immediate field to the tions are continuous descriptions
Operation: LA n (Load Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	RAM addr Register N Skipped. V Not 0, the RAM addr Register N Skipped. V Not 0, the Ram addr Register N Loads the register A. When the coded and	esses the content ddition, we will so the content distribution of the content flag CY Flag CY operation value n in LA instruct d executed	(Y) = 0 Its of register Y. As a register then the contents of enext instruction is ontents of register Y in the contents of register Y in the continuous description The immediate field the tions are continuous in the content in the con
Operation: LA n (Load Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	RAM addr RAM addr RAM addr Ri: Adds 1 to sult of ac register \(\) skipped. V not 0, the Number of cycles 1 Arithmetic Loads the register A. When the coded and struction	esses the content ddition, we will be seen the content ddition, we will be seen the content Flag CY Flag CY operation value n in LA instruct d executed is exec	(Y) = 0 Its of register Y. As a register the contents of register Y is contents of register Y is contents of register Y is continuous.

	Load register X and Y with x and y)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 1 ₁₆	1	1	_	Continuous description
Operation:	$(X) \leftarrow x \ x = 0 \text{ to } 15$	Grouping:	RAM addr	esses	GOGOp.1101.1
	$(Y) \leftarrow y \ y = 0 \text{ to } 15$				the immediate field t
			field to re- tions are c only the fi	gister Y. W ontinuously irst LXY in LXY instru	alue y in the immedianulue y in the LXY instruction is executed and executed attraction is executed actions coded continuations.
LZ z (Load	I register Z with z)	•			
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	
Operation:	$(Z) \leftarrow z z = 0 \text{ to } 3$	Grouping: Description	RAM addre		the immediate field to
		·	register Z.		
NOP (No (DPeration)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16	1	1	-	-
Operation:	(PC) ← (PC) + 1	Grouping:	Other ope	ration	
		Description			1 to program counte
OD04 (O	tout a set DO feers A server datas				
	tput port P0 from Accumulator)	Number of	Number of	Flog CV	Chin condition
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
			Number of cycles	Flag CY	Skip condition

WACHIN	E INSTRUCTIONS (INDEX BY ALPHABET)	(Continu	ueu)		
OP1A (Ou	tput port P1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	words 1	cycles 1	_	_
Operation:	(P1) ← (A)	Grouping:	Input/Outp	ut operatio	n
Operation.	$(P1) \leftarrow (A)$				s of register A to port
			P1.		
OP2A (Ou	tput port P2 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 1 0 0 0 1 0 2	1	1	_	-
Operation:	$(P2) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n
		Description	P2.	ne content	s of register A to port
OP3A (Ou Instruction code	tput port P3 from Accumulator) D9 D0 1 0 0 0 1 0 0 0 1 1 2 2 3 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(P3) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n
		Description	i: Outputs the P3.	ne content	s of register A to port
OP6A (Ou	tput port P6 from Accumulator)				
Instruction	D9 D0 1 0 0 1 1 0 0 2 2 6 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(P6) ← (A)	Grouping: Description	Input/Outp : Outputs th P6.		n s of register A to port

Oit (logical	OR between accumulator and memory)				
Instruction code	D9 D0 0 0 0 1 1 0 0 1 2 0 1 9 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 1 1 0 0 1 2 0 1 9 16	1	1	-	-
Operation:	$(A) \leftarrow (A) \ OR \ (M(DP))$	Grouping:	Arithmetic	operation	
		Description:	Takes the	OR operat	on between the con-
				_	and the contents o
POF (Powe	er OFf)	<u> </u>			
Instruction code	D9 D0 D0 0 0 0 0 0 0 1 0 2 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	Transition to RAM back-up mode	Grouping:	Other oper		
		Description Note:	executing ing the EPOF	the POF in OF instruct instruction this instruction	is not executed before tion, this instruction is
	ate Accumulator Right)	1		- o.	
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	0/1	_
Operation:	\rightarrow CY \rightarrow A3A2A1A0	Grouping:	Arithmetic		
		Description			ontents of register A in of carry flag CY to the
RB j (Rese	·	Number of	Number of	Flog CV	Chin condition
code	D9 D0 0 0 1 0 0 1 1 j j 0 4 C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	words	cycles	Flag CY	Skip condition
	0 0 0 1 0 0 1 1 j j ₂ 0 4 ^C _{+j} ₁₆	1	1	-	-
Operation:	$ (Mj(DP)) \leftarrow 0 $ $ j = 0 \text{ to } 3 $	Grouping: Description		the conten	ts of bit j (bit specified e immediate field) o

RC (Reset	Carry flag)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 1 1 0 2 0 0 6	words 1	cycles 1	0	
		'	'		_
Operation:	$(CY) \leftarrow 0$	Grouping:	Arithmetic	operation	
		Description	: Clears (0)	to carry fla	g CY.
RD (Reset	port D specified by register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 0 0 2 0 1 4	words	cycles		
	10	1	1	-	_
Operation:	$(D(Y)) \leftarrow 0$	Grouping:	Input/Outp	ut operatio	n
	However, (Y) = 0 to 7				ort D specified by reg
Instruction	n from subroutine) D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 1 0 0 1 0 2	1	2	_	_
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
	(SP) ← (SP) – 1		: Returns f		outine to the routine
RTI (ReTu	rn from Interrupt)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 1 1 0 0 1 1 1 0 2 0 4 6 16	1	1	-	_
Operation:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Grouping: Description	main routing Returns earry flag, the continu	rom interru ne. ach value of skip status uous descri	opt service routine to f data pointer (X, Y, Z) , NOP mode status by ption of the LA/LXY in and register B to the

RTS (ReTu	urn from subroutine and Skip)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 0 1 0 0 1 0 1 2	words 1	cycles 2	_	Skip at uncondition
0	(DO) (O((OD))	Grouping:	Poturn on	rotion	
Operation:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$		Return ope		outine to the routing
				subroutine	and skips the next in
SB j (Set E	Bit)				
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
	2 2 3 4 16	1	1	_	_
Operation:	$(Mj(DP)) \leftarrow 1$	Grouping:	Bit operation	on	
	j = 0 to 3	Description			of bit j (bit specified by ediate field) of M(DP)
SC (Set Ca	· · · · · · · · · · · · · · · · · · ·	Number of	Number of	Flag CY	Chin condition
code	D9 D0	words	cycles	_	Skip condition
		1	1	1	
Operation:	(CY) ← 1	Grouping:	Arithmetic	operation	
			: Sets (1) to	,	
Instruction	ort D specified by register Y)	Number of	Number of	Flor CV	Skip condition
code	D9 D0	words	cycles	Flag CY	Skip condition
	0 0 0 0 1 0 1 0 1 0 1 2	1	1	_	_
Operation:	$ (D(Y)) \leftarrow 1 $ $ (Y) = 0 \text{ to } 7 $	Grouping: Description	Input/Outp : Sets (1) to ter Y.		n rt D specified by regis

	p Equal, Ad	Cullic	iiatoi	** ! []		11110	uiai	c u	ıaıc	1 II <i>)</i>							
Instruction	D9						D ₀						Number of	Number of	Flag CY	Skip condition	
code	0 0 0	0 1	0	0	1	0	1], [0	2	5	16	words	cycles			
								12 L 1 F				J 10	2	2	_	(A) = n	
	0 0 0	1 1	1	n	n	n	n	2	0	7	n	16	Grouping:	puping: Comparison operation			
Operation:	(A) = n ?															uction when the con-	
Operation.	n = 0 to 15												2 occinpaton			equal to the value n in	
	11 = 0 10 13													the immed	-		
														Executes t	he next ins	struction when the con-	
														tents of reg	gister A is r	ot equal to the value n	
														in the imme	ediate field	l.	
SEAM (Ski	p Equal, Ad	cumu	lator	with	n M	emo	ory)										
Instruction	D9						D ₀						Number of	Number of	Flag CY	Skip condition	
code	0 0 0	0 1	0	0	1	1	0] [0	2	6],,	words	cycles			
								12 [-	-	_ 16	1	1	_	(A) = (M(DP))	
Operation:	(A) = (M(DP	1) 2											Grouping:	Compariso	n operatio	<u> </u>	
Operation.	(A) = (IVI(DF)) :											Description		•	uction when the con-	
													Description			equal to the contents of	
														M(DP).	,		
														Executes t	he next ins	struction when the con-	
														tents of r	egister A	is not equal to the	
														contents of	f M(DP).		
SNZ0 (Skip	if Non Zer	o con	ditio	n of	ext	erna	al O	inte	erru	ıpt i	req	ues	t flag)				
Instruction	D9						D ₀			•			Number of	Number of	Flag CY	Skip condition	
code	0 0 0	0 /	1 1	1	0	0	0] [0	3	8	٦	words	cycles		-	
						_		12 [_		⊿ 16	1	1	_	V10 = 0: (EXF0) = 1	
0)/4- 0 (E)	(F0)	4.0										0	Introvent a			
Operation:	V10 = 0: (E) After skippii			Ο									Grouping:	Interrupt o		os the next instruction	
	V10 = 1: SN			0									Description			rupt request flag EXF0	
	(V10 : bit 0			pt cor	ntrol	regi	ster	V1)								clears (0) to the EXF0	
	`					Ū		,								0 flag is "0," executes	
														the next in	struction.		
														When V10	= 1 : This	instruction is equiva-	
														lent to the	NOP instru	uction.	
SNZ1 (Skip	if Non Zer	o con	ditio	n of	ext	erna	al 1	inte	erru	ıpt ı	req	ues	t flag)				
Instruction	D9						D ₀						Number of	Number of	Flag CY	Skip condition	
code	0 0 0	0 1	1	1	0	0	1] [0	3	9],,	words	cycles			
				1				12 L				 16	1	1	_	V11 = 0: (EXF1) = 1	
Operation:	V11 = 0: (E)	/E1\ = :	1 2										Grouping	Intervent -	orotion	<u> </u>	
Operation:	After skippir			0									Grouping:	Interrupt of		os the next instruction	
	V11 = 1: SN			O									Description			rupt request flag EXF1	
	(V11 : bit 1 d			ot cor	ntrol	regi	ster '	V1)								clears (0) to the EXF1	
	•		•			0		,								1 flag is "0," executes	
														the next in:		-	
														When \/11	- 1 · This	instruction is equiva-	
														VVIICII V I I	- 1 . 11113	ilistruction is equiva-	

Toleration To	 , ,		eio con	ullion	OI A/	DC	onve	18101	n con	npieti	on flag)			
1	Instruction	D9					D ₀				1		Flag CY	Skip condition
Operation: V22 = 0: (ADF) = 1?	code	1 0 1	0 0	0 0	1	1	1 2	2	8	7		•		
After skipping. (ADF) ← 0 V22 = 1 : SNZAD = NOP (V22 : bit 2 of the interrupt control register V2) Description: When V22 = 0 : Skips the next when AD conversion completite is "1." After skipping, clears (0) flag. When the ADF flag is "0," enext instruction. When V22 = 1 : This instruction lent to the NOP instruction. When V22 = 1 : This instruction lent to the NOP instruction. When V22 = 1 : This instruction. When V2 = 1 : This instruction This instruction when the leap in is "H." When V2 = 1 : This instruction When V2 = 1 : This instruction This instruction when the leap in is "H." When V2 = 1 : This instruction when the leap in is "H." When V2 = 1 : This instruction when the leap in is "H." When V2 = 1 : This instruction when the leap in is "H." When V2 = 1 : This instruction when the leap in is "H." When V2 = 1 : This instruction when the leap in is "H." When V2 = 1 : This instruction when the leap in is "H." When V2 = 1 : This instruction when the leap in is "H." When V2 = 1 : Skips the next when the leap in is "H." When V2 = 1 : Skips the next when the leap in is "H." When V2 = 1 : Skips the next when the lea							2				1	1	_	V22 = 0: (ADF) = 1
V22 = 1: SNZAD = NOP	Operation:	V22 = 0: (Al	DF) = 1 ?								Grouping:	A/D conve	rsion opera	ation
V22 = 1: SNZAD = NOP		After skippii	ng, (ADF)	← 0							Description	: When V22	= 0 : Skij	s the next instruction
SNZI0 (Skip if Non Zero condition of external 0 Interrupt input pin) SNZI0 (Skip if Non Zero condition of external 0 Interrupt input pin) SNZI0 (Skip if Non Zero condition of external 0 Interrupt input pin) Number of words Number of code O O O O O O O O O		V22 = 1: SN	IZAD = N	OP										
SNZI0 (Skip if Non Zero condition of external 0 Interrupt input pin)		(V22 : bit 2	of the inte	rrupt co	ntrol	reais	ter V	2)						
Number of code		`		•		Ü		,						, ,
SNZI0 (Skip if Non Zero condition of external 0 Interrupt input pin)												-		
SNZIO (Skip if Non Zero condition of external 0 Interrupt input pin)												When V22	= 1 : This	instruction is equiva
Number of cycles Flag CY Skip or code Do Do Do Do Do Do Do D														·
code 0 0 0 0 0 1 1 1 0 0 1 0 2 0 3 A 16 words cycles Cycles I12 = 0 : (II 1 = 1 : (II	SNZIO (Skip	if Non Ze	ro cond	ition o	f exte	erna	al O I	nterr	upt ii	nput p	oin)			
Operation: 112 = 0 : (INT0) = "L" ?	Instruction	D9					D ₀				Number of		Flag CY	Skip condition
1	code	0 0 0	0 1	1 1	0	1	0	0	3	Α	words	cycles		
112 = 0 : (INT0) = "L" ? 112 = 1 : (INT0) = "H" ? (I12 : bit 2 of the interrupt control register I1)			1 , 1 ,		1 1	- 1	2	ت		16	1	1	_	I12 = 0 : (INT0) = "L"
Total Code													_	I12 = 1 : (INT0) = "H"
when the level of INT0 pin is "L the next instruction when the level of INT0 pin is "L" When I12 = 1 : Skips the next when the level of INT0 pin is "H." When I12 = 1 : Skips the next when the level of INT0 pin is "H." When I12 = 1 : Skips the next when the level of INT0 pin is "H." SNZI1 (Skip if Non Zero condition of external 1 Interrupt input pin) Instruction D9 D0 Void 1 1 1 0 1 1 2 0 3 B 16 Operation: I22 = 0 : (INT1) = "L" ? (I22 = 1 : (INT1) = "H" ? (I22 : bit 2 of the interrupt control register I2) Grouping: Interrupt operation Description: When I22 = 0 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I2 = 1 : Skips the next when the level of INT1 pin is "H." When I2 = 1 : Skips the next when the level of INT1 pin is "H." When I2 = 1 : Skips the next when the level of INT1 pin is "H." When I2 = 1 : Skips the next when the level of INT1 pin is "H." When I2 = 1 : Skips the next when the level of INT1 pin is "H." When I2 = 1 : Skips the next when the level of INT1 pin is "H." When I2 = 1 : Skips the next when the level of INT1 pin is "H." When I2 = 1 : Skips the next when the level of INT1 pin is "H." When I2 = 1 : Skips the next when the level of INT1 pin is "H." When I2 = 1 : Skips the next when th	Operation:	•	,											- the second feeting the
the next instruction when the lepin is "H." When 112 = 1 : Skips the next when the level of INT0 pin is "H the next instruction when the lepin is "L." SNZI1 (Skip if Non Zero condition of external 1 Interrupt input pin) Instruction D9 D0 Words Number of vords 1 1 1 - 122 = 0 : (II 122 = 1 : (INT1) = "L"? 122 = 1 : (INT1) = "H"? (I22 : bit 2 of the interrupt control register I2) SNZP (Skip if Non Zero condition of Power down flag) Instruction D9 D0 Number of vords Number of vords Number of vords 1 1 1 - 122 = 0 : (II 1 2 = 1 : (INT1) = "H"? When 122 = 0 : Skips the next when the level of INT1 pin is "L the next instruction when the lepin is "H." When 122 = 1 : Skips the next when the level of INT1 pin is "H the next instruction when the lepin is "H." When 125 = 1 : Skips the next when the level of INT1 pin is "H the next instruction when the lepin is "L." SNZP (Skip if Non Zero condition of Power down flag) Instruction D9 D0 Number of vords		,	,								Description			
SNZI1 (Skip if Non Zero condition of external 1 Interrupt input pin)		(I12 : bit 2 o	f the inter	rupt cor	ntrol re	egist	er I1)							•
When I12 = 1 : Skips the next when the level of INT0 pin is "H the next instruction when the lepin is "L." SNZI1 (Skip if Non Zero condition of external 1 Interrupt input pin)													Struction	when the level of hit
SNZI1 (Skip if Non Zero condition of external 1 Interrupt input pin)												•	= 1 : Skin	s the next instruction
SNZI1 (Skip if Non Zero condition of external 1 Interrupt input pin)													•	
SNZI1 (Skip if Non Zero condition of external 1 Interrupt input pin) Instruction code														•
Number of vocal												pin is "L."		
Code 0 0 0 1 1 1 1 0 1 1 2 0 3 B 16 words cycles Cycles Iz2 = 0 : (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		if Non Ze	ro cond	ition o	f exte	erna	al 1 I	nterr	upt ii	nput p				
Operation:	Instruction	D9					D ₀						Flag CY	Skip condition
1	code	0 0 0	0 1	1 1	0	1	1 ,	0	3	B ₁₆		•		
Operation: $122 = 0$: (INT1) = "L"? $122 = 1$: (INT1) = "H"?(I22: bit 2 of the interrupt control register I2)Description:When $122 = 0$: Skips the next when the level of INT1 pin is "L the next instruction when the level of INT1 pin is "H."When $122 = 1$: Skips the next when the level of INT1 pin is "H the next instruction when the level of INT1 pin is "H the next instruction when the level of INT1 pin is "H the next instruction when the level of INT1 pin is "L."SNZP (Skip if Non Zero condition of Power down flag)Instruction codeDoNumber of wordsNumber of yordsFlag CYSkip or yords											1	1	_	I22 = 0 : (INT1) = "L" I22 = 1 : (INT1) = "H"
Description: When I22 = 0 : Skips the next when the level of INT1 pin is "L the next instruction when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H the next instruction when the level of INT1 pin is "	Operation:	I22 = 0 : (IN	T1) = "L"	?							Grouping:	Interrupt of	peration	, ,
the next instruction when the lepin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H the next instruction when the lepin is "L." SNZP (Skip if Non Zero condition of Power down flag) Instruction D9 D0 Number of Number of Flag CY Skip or code O O O O O O O O O O O O O O O O O O O	•	I22 = 1 : (IN	T1) = "H"	?							Description	: When I22	= 0 : Skip	s the next instruction
pin is "H." When I22 = 1 : Skips the next when the level of INT1 pin is "H the next instruction when the lepin is "L." SNZP (Skip if Non Zero condition of Power down flag) Instruction D9 D0 Number of Words Very Skip or code Number of Skip or cycles		(I22 : bit 2 o	f the inter	rupt cor	ntrol re	egist	er I2)							•
When I22 = 1 : Skips the next when the level of INT1 pin is "H the next instruction when the lepin is "L." SNZP (Skip if Non Zero condition of Power down flag) Instruction D9 D0 Number of Number of Flag CY Skip or code 0 0 0 0 0 0 0 1 1 1 2 0 0 3 16													struction v	when the level of INT
when the level of INT1 pin is "H the next instruction when the lepin is "L." SNZP (Skip if Non Zero condition of Power down flag) Instruction Do Number of Number of Flag CY Skip or code O O O O O O O O O O O O O O O O O O O												•		
## the next instruction when the leading is "L." SNZP (Skip if Non Zero condition of Power down flag)														
SNZP (Skip if Non Zero condition of Power down flag)														
SNZP (Skip if Non Zero condition of Power down flag) Instruction code D9 D0 Number of words Number of words Number of cycles Skip or cycles													struction v	when the level of livi
code 0 0 0 0 0 0 0 0 0 3 words cycles	SNZP (Skip	if Non Zei	o condi	tion of	Pow	ver d	dowr	ı flaç	j)			piii io L.		
0 0 0 0 0 0 0 0 1 1 2 0 0 3 16 3 16 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Instruction	D9					D ₀				1		Flag CY	Skip condition
	code	0 0 0	0 0	0 0	0	1	1 2	0	0	3 16		•		
1 1 - (P)						·					1	1	_	(P) = 1
Operation: (P) = 1 ? Grouping: Other operation	Operation:	(P) = 1 ?									Grouping:	Other oper	ation	
Description: Skips the next instruction when to											Description		ext instruc	ction when the P flag is
"1".													- باد ماما	D floor remains
After skipping, the P flag re													ping, the	r mag remains un
changed.												Ū	المستعممة	naturation where the -
Executes the next instruction v													ine next ii	istruction when the I
flag is "0."												tiag is "U."		

SNZSI (Ski	ip if Non Zero condition of Serial I/o interrupt reques	t flag)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 1 0 0 0 1 0 0 0 2 2 8 8 16	words 1	cycles 1	_	V23 = 0: (SIOF) = 1		
					. ,		
Operation:	V23 = 0: (SIOF) = 1 ?	Grouping: Serial I/O operation Description: When V23 = 0 : Skips the next instruction					
	After skipping, (SIOF) ← 0 V23 = 1: SNZSI = NOP (V23 = bit 3 of interrupt control register V2)	Description	when serial is "1." After flag. When the next ins	al I/O internor skipping, in the SIOF struction. = 1 : This	rupt request flag SIOF clears (0) to the SIOF flag is "0," executes instruction is equiva-		
SNZT1 (Sk	tip if Non Zero condition of Timer 1 interrupt request	flag)					
Instruction code	D9 D0 1 0 1 0 0 0 0 0 0 0 2 8 0 46	Number of words	Number of cycles	Flag CY	Skip condition		
	16	1	1	_	V12 = 0: (T1F) = 1		
Operation:	V12 = 0: (T1F) = 1 ?	Grouping:	Timer oper	ation			
	After skipping, (T1F) ← 0 V12 = 1: SNZT1 = NOP (V12 = bit 2 of interrupt control register V1)	Description	when time "1." After flag. When next instru	or 1 interruskipping, the T1F flottion.	os the next instruction opt request flag T1F is clears (0) to the T1F lag is "0," executes the sinstruction is equivaluction.		
SNZT2 (Sk	tip if Non Zero condition of Timer 2 interrupt request	flag)					
Instruction	D9 D0 1 0 1 0 0 0 0 0 1 2 8 1	Number of words	Number of cycles	Flag CY	Skip condition		
	16	1	1	_	V13 = 0: (T2F) = 1		
Operation:	V13 = 0: (T2F) = 1 ?	Grouping:	Timer oper	ation			
	After skipping, $(T2F) \leftarrow 0$	Description			os the next instruction		
	V13 = 1: SNZT2 = NOP				pt request flag T2F is		
	(V13 = bit 3 of interrupt control register V1)			the T2F f	clears (0) to the T2F lag is "0," executes the		
			When V13 lent to the		instruction is equiva- uction.		
SNZT3 (Sk	rip if Non Zero condition of Timer 3 interrupt request	flag)					
Instruction	D9 D0 1 0 0 0 0 1 0 2 8 2 4c	Number of words	Number of cycles	Flag CY	Skip condition		
	16	1	1	_	V20 = 0: (T3F) = 1		
Operation:	V20 = 0: (T3F) = 1 ? After skipping, (T3F) \leftarrow 0 V20 = 1: SNZT3 = NOP (V20 = bit 0 of interrupt control register V2)	Grouping: Description	when time "1." After	= 0 : Skip r 3 interru skipping,	os the next instruction pt request flag T3F is clears (0) to the T3F		
			next instru	ction. = 1 : This	lag is "0," executes the instruction is equiva- uction.		

	E INSTRUCTIONS (INDEX BY ALPHABET		——————————————————————————————————————		
	kip if Non Zero condition of Timer 4 inerrupt request		Ni. mala an af	Flan OV	Oldan and distan
Instruction code	D9 D0 1 0 0 0 0 1 1 2 2 8 3 ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	V21 = 0: (T4F) = 1
Operation:	V21 = 0: (T4F) = 1 ?	Grouping:	Timer oper	ration	
	After skipping, $(T4F) \leftarrow 0$	Description	: When V21	= 0 : Ski	os the next instruction
	V21 = 1: SNZT4 = NOP		when time	er 4 interru	pt request flag T4F is
	(V21 = bit 1 of interrupt control register V2)		"1." After	skipping,	clears (0) to the T4F
			flag. Wher next instru		lag is "0," executes the
			When V21	= 1 : This	s instruction is equiva-
			lent to the	NOP instr	uction.
SRST (Sys	stem ReSeT)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 0 0 1 16	words 1	cycles 1		
		!	ļ.	_	
Operation:	System reset occurrence	Grouping:	Other oper		
		Description	: System res	set occurs.	
SST (Serial Instruction code	Al i/o transmission/reception STart) D9 D0 1 0 1 0 0 1 1 1 1 0 2 2 9 E 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	$(SIOF) \leftarrow 0$	Grouping:	Serial I/O		
	Serial I/O transmission/reception start				ng and starts serial I/O.
SZB j (Skip	De De Do Do Do	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 0 0 j j 2 0 2 j	words	cycles	riay C f	Skip Condition
		1	1	-	(Mj(DP)) = 0 j = 0 to 3
Operation:	(Mj(DP)) = 0 ?	Grouping:	Bit operation	on	
	j = 0 to 3	Description	tents of bit	t j (bit spe iate field) o he next ins	uction when the concified by the value j in of M(DP) is "0." struction when the conis "1."

SZC (SKIP	if Zero, Carry flag)				
Instruction	D9 D0 0 0 1 0 1 1 1 1 2 0 2 F 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	(CY) = 0
Operation:	(CY) = 0 ?	Grouping:	Arithmetic	operation	
		Description	tents of ca After skip changed.	rry flag CY ping, the he next ins	CY flag remains un struction when the con
SZD (Skin	if Zero, port D specified by register Y)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0000	0 0 0 0 1 0 0 1 0 0 1 0 0 ₂ 0 2 4 ₁₆ 0 0 0 0 1 0 1 0 1 0 1 1 ₂ 0 2 B ₁₆	2	2	-	(D(Y)) = 0 (Y) = 0 to 7
Operation:	(D(Y)) = 0 ?	Grouping:	Input/Outp		
	(Y) = 0 to 7	Description	D specified	by registe	ection when a bit of poer Y is "0." Executes the other than the bit is "1."
T1AB (Trai	nsfer data to timer 1 and register R1 from Accumula	tor and reg			
Instruction code	D9 D0 1 0 0 1 1 0 0 0 0 0 2 2 3 0 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	$(T17-T14) \leftarrow (B)$	Grouping:	Timer oper		
	(R17−R14) ← (B)	Description			nts of register B to the
	$(T13-\!T10) \leftarrow (A)$		J		timer 1 and timer 1 re
			load redist	er R1. Tra	ansfers the contents o
	(R13–R10) ← (A)		_		order 4 bits of timer 1
	(R13–R10) ← (A)		register A		order 4 bits of timer 1
T2AB (Trar	(R13–R10) ← (A) nsfer data to timer 2 and register R2 from Accumula	tor and reg	register A and timer		order 4 bits of timer 1
T2AB (Tran		Number of	register A and timer and timer sister B) Number of		order 4 bits of timer
	nsfer data to timer 2 and register R2 from Accumula		register A and timer	reload re	-order 4 bits of timer 1 gister R1.
Instruction code	nsfer data to timer 2 and register R2 from Accumula D9 D0 1 0 0 0 1 1 0 0 0 1 1 2 2 3 1 16	Number of words	register A and timer sister B) Number of cycles	Flag CY	order 4 bits of timer of egister R1.
Instruction code	nsfer data to timer 2 and register R2 from Accumula D9 D0 1 0 0 0 1 1 0 0 0 1 2 3 1	Number of words 1 Grouping:	ister B) Number of cycles 1 Timer oper	Flag CY - ation	-order 4 bits of timer agister R1. Skip condition -
Instruction code	nsfer data to timer 2 and register R2 from Accumula $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping:	ister B) Number of cycles 1 Timer oper	Flag CY ation the conter	Skip condition - - - - - - - - - - - - -
Instruction	nsfer data to timer 2 and register R2 from Accumula D9	Number of words 1 Grouping:	ister B) Number of cycles 1 Timer oper: Transfers high-order load regist	Flag CY ation the conter 4 bits of ter R2. Tra	Skip condition Skip condition - outs of register B to the timer 2 and timer 2 reansfers the contents o
Instruction code	nsfer data to timer 2 and register R2 from Accumula D_9 D_0 $1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ _2 \ 2 \ 3 \ 1 \ _{16}$ $(T27-T24) \leftarrow (B)$ $(R27-R24) \leftarrow (B)$ $(R27-R24) \leftarrow (B)$ $(T23-T20) \leftarrow (A)$	Number of words 1 Grouping:	ister B) Number of cycles 1 Timer oper: Transfers high-order load regist	Flag CY ation the conter 4 bits of ter R2. Trato the low-	Skip condition Skip condition Skip condition Skip condition chts of register B to the timer 2 and timer 2 reansfers the contents of corder 4 bits of timer 2

	ner 3 and timer 3 resfers the contents of order 4 bits of timer 3 ister R3. Skip condition - s of register B to the ner 4 and timer 4 re-
Operation:	ner 3 and timer 3 resfers the contents of order 4 bits of timer 3 ister R3. Skip condition - s of register B to the ner 4 and timer 4 re-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ner 3 and timer 3 resfers the contents of order 4 bits of timer 3 ister R3. Skip condition - s of register B to the ner 4 and timer 4 re-
$(R37-R34) \leftarrow (B) \\ (T33-T30) \leftarrow (A) \\ (R33-R30) \leftarrow (A)$ $(R33-R30) \leftarrow (A)$ $(R31-R34) \leftarrow (B)$ $(R41-R34) \leftarrow (B)$ $(R41-R34) \leftarrow (A)$ $(R41-R34) \leftarrow (A)$ $(R41-R34) \leftarrow (A)$ $(R33-R30) \leftarrow (A)$ $(R41-R34) \leftarrow (B)$ $(R33-R30) \leftarrow (A)$ $(R41-R34) \leftarrow (A)$ $(R33-R30) \leftarrow (A)$ $(R33-R30) \leftarrow (A)$ $(R33-R30) \leftarrow (A)$ $(R41-R34) \leftarrow (A)$ $(R41-R3+R3) \leftarrow (A)$ $(R33-R30) \leftarrow (A)$ $(R33-R30) \leftarrow (A)$ $(R41-R3+R3) \leftarrow (A)$ $(R33-R30) \leftarrow (A)$ $(R41-R3+R3) \leftarrow (A)$ $(R33-R30) \leftarrow (A)$ $(R33$	ner 3 and timer 3 resfers the contents of order 4 bits of timer 3 ister R3. Skip condition - s of register B to the ner 4 and timer 4 re-
$(T33-T30) \leftarrow (A) \\ (R33-R30) $	ner 3 and timer 3 resfers the contents of order 4 bits of timer 3 ister R3. Skip condition - s of register B to the ner 4 and timer 4 re-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	sfers the contents of order 4 bits of timer 3 ister R3. Skip condition - s of register B to the oner 4 and timer 4 re-
	Skip condition Sof register B to the ner 4 and timer 4 re-
	Skip condition - s of register B to the ner 4 and timer 4 re-
	Skip condition – s of register B to the ner 4 and timer 4 re-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	s of register B to the
	s of register B to the
	ner 4 and timer 4 re-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ner 4 and timer 4 re-
$(R4L7-R4L4) \leftarrow (B)$ $(T43-T40) \leftarrow (A)$ $(R4L3-R4L0) \leftarrow (A)$ $(R4L3-R4H4) \leftarrow (B)$ $(R4H3-R4H4) \leftarrow (B)$ $(R4H3-R4H0) \leftarrow (A)$	ner 4 and timer 4 re-
$(T43-T40) \leftarrow (A) \\ (R4L3-R4L0) \leftarrow (A) \\ (R4L3-R4L0) \leftarrow (A) \\ \hline $ high-order 4 bits of timestable load register R4L. Transfer data to register R4H from Accumulator and register B)	ner 4 and timer 4 re-
$(R4L_3-R4L_0) \leftarrow (A)$ $(R4L_3-R4L_0) \leftarrow (A)$ $(R4L_3-R4L_0) \leftarrow (A)$ $(R4H_3-R4L_0) \leftarrow (A)$ $(R4H_3-R4H_0) \leftarrow (A)$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ster R4L.
	Skip condition
Operation: $(R4H7-R4H4) \leftarrow (B)$ $(R4H3-R4H0) \leftarrow (A)$ $(R4H3-R4H0) \leftarrow (A)$ $(R4H3-R4H0) \leftarrow (B)$ $(R4H3-R4H0) \leftarrow$	Chap containen
$(R4H_3-R4H_0) \leftarrow (A)$ Description: Transfers the contents high-order 4 bits of times.	_
$(R4H_3-R4H_0) \leftarrow (A)$ Description: Transfers the contents high-order 4 bits of times.	
ļ	s of register B to the
load register R4H. Tran	ner 4 and timer 4 re-
register A to the low-or	
and timer 4 reload regis	ster R4H.
T4R4L (Transfer data to timer 4 from register R4L)	
Instruction D9 D0 Number of Number of Flag CY	Skip condition
code 1 0 1 0 0 1 0 1 1 1 2 9 7 words cycles	·
1 1 -	_
Operation: $(T47-T44) \leftarrow (R4L7-R4L4)$ Grouping: Timer operation	
$(T43-T40) \leftarrow (R4L3-R4L0)$ Description: Transfers the contents	
R4L to timer 4.	ts of reload register
	ts of reload register

	efor data to Accumulator from register P)	Contin			
Instruction	sfer data to Accumulator from register B) Do Do	Number of	Number of	Flag CY	Skip condition
code		words	cycles	Flag C1	Skip condition
	16	1	1	_	_
Operation:	(A) ← (B)	Grouping:	Register to	register tr	ansfer
-		Description			ts of register B to reg-
			ister A.		
TAB1 (Trai	nsfer data to Accumulator and register B from timer	1)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 0 2 2 7 0	words	cycles		
		1	1	_	_
Operation:	(B) ← (T17–T14)	Grouping:			
	$(A) \leftarrow (T13-T10)$	Description		_	der 4 bits (T17-T14) of
			timer 1 to 1	-	lan 4 hita (T4a T4a) af
			timer 1 to i		der 4 bits (T13-T10) of
				register A.	
TAB2 (Trai	nsfer data to Accumulator and register B from timer	2)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 1 2 2 7 1 16	words	cycles		
		1	1	_	_
Operation:	$(B) \leftarrow (T27 - T24)$	Grouping:	Timer oper		
	$(A) \leftarrow (T23-T20)$	Description		-	der 4 bits (T27-T24) of
			timer 2 to i	Ū	der 4 bits (T23-T20) of
			timer 2 to 1		101 4 Dito (125 120) 01
				3	
_					
TAB3 (Trai	nsfer data to Accumulator and register B from timer	3)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 1 0 2 2 7 2 16	words 1	cycles 1	_	
		Į.		_	_
Operation:	(B) ← (T37–T34)	Grouping:	Timer oper	ration	
	$(A) \leftarrow (T33-T30)$	Description		_	der 4 bits (T37-T34) of
			timer 3 to 1	-	land him (TO TO)
					der 4 bits (T33–T30) of
			timer 3 to 1	egister A.	
		1			

Code 1 0 0 1 1 0 0 1 1 1 1 1 - - Operation: (B) ← (T47-T44) Grouping: Time opperation Transfers the high-order 4 bits (T47-Timer 4 to register B. Transfers the high-order 4 bits (T47-Timer 4 to register A. TABAD (Transfer data to Accumulator and register B from register AD) Instruction code DB DD0 Number of vords	TAB4 (Tran	nsfer data to Accumulator and register B from timer	4)			
Table Tab	Instruction	D9 D0			Flag CY	Skip condition
Coperation: (B) ← (T47-T44)	code	1 0 0 1 1 1 0 0 1 1 2 2 7 3 16				
Description: Transfers the high-order 4 bits (T47-T timer 4 to register A.			1	1	_	=
TABAD Transfer data to Accumulator and register B from register AD Table Transfer the low-order 4 bits (T43-Titimer 4 to register A.	Operation:	$(B) \leftarrow (T47\text{-}T44)$	Grouping:	Timer oper	ation	•
Tabsdot Transfer data to Accumulator and register B from register AD		$(A) \leftarrow (T43-T40)$	Description	: Transfers t	he high-or	der 4 bits (T47-T44) of
TABAD (Transfer data to Accumulator and register B from register AD)				timer 4 to 1	egister B.	
Instruction code						der 4 bits (T43–T40) of
code 1	TABAD (Tr	ansfer data to Accumulator and register B from regi	ster AD)			
TABP p (Transfer data to Accumulator and register B from Program memory in page p)				Number of	Flag CY	Skip condition
Name of the part of the par	code	1 0 0 1 1 1 1 0 0 1 2 7 9	words	cycles		
$(B) \leftarrow (AD9 - ADe) \\ (A) \leftarrow (AD5 - ADe) \\ (A) \leftarrow (AD5 - ADe) \\ (A) \leftarrow (AD7 - AD4) \\ (A) \leftarrow (AD7 - AD4) \\ (A) \leftarrow (AD7 - AD4) \\ (A) \leftarrow (AD3 - AD0) \\ (CP13 : bit 3 of A/D control register Q1) \\ (DP3 - AD4) \\ (DP4 - AD4) $			1	1	_	_
$(B) \leftarrow (AD9 - ADe) \\ (A) \leftarrow (AD5 - ADe) \\ (A) \leftarrow (AD5 - ADe) \\ (A) \leftarrow (AD7 - AD4) \\ (A) \leftarrow (AD7 - AD4) \\ (A) \leftarrow (AD7 - AD4) \\ (A) \leftarrow (AD3 - AD0) \\ (CP13 : bit 3 of A/D control register Q1) \\ (DP3 - AD4) \\ (DP4 - AD4) $	Operation:	In A/D conversion mode (O13 – 0)	Grouping:	A/D conve	rsion opera	ation
In comparator mode (Q13 = 1), (B) \leftarrow (AD7-AD4) (PC) \rightarrow (B) \leftarrow (AD7-AD4) (PC) (PC) (PC) (PC) (PC) (PC) (PC) (PC						
$(B) \leftarrow (AD7-AD4) \\ (A) \leftarrow (AD3-AD0) \\ (Q13: bit 3 of A/D control register Q1) \\ \hline \textbf{TABE} \ (Transfer data to Accumulator and register B from register E) \\ \hline \textbf{Instruction} \\ \textbf{code} \\ \hline \textbf{(A)} \leftarrow (E3-E0) \\ \hline \textbf{(B)} \leftarrow (E7-E4) \\ (A) \leftarrow (E3-E0) \\ \hline \textbf{(B)} \leftarrow (CP) + 1 \\ (SK(SP)) \leftarrow (PC) \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR1, DR0) \leftarrow (ROM(PC)) + 8 \\ (B) \leftarrow (ROM(PC)) - 4 \\ \hline \textbf{(B)} \leftarrow (ROM(PC)) - 4 \\ \hline \textbf{(B)} \leftarrow (ROM(PC)) - 4 \\ \hline \textbf{(B)} \leftarrow (ROM(PC)) - 4 \\ \hline \textbf{(A)} \leftarrow (E3-E0) \\ \hline \textbf{(C)} \ (AD3-AD0) \ of register A. In the comparator mode (Q1 transfers A. D2) of register A. In the comparator mode (Q1 transfers A. D2) of register A. In the comparator mode (Q1 transfers B from register E) of register B. In the comparator mode (Q1 transfers B from register E) of register B. In the comparator mode (Q1 transfers B from register E) of register B. In the comparator mode (Q1 transfers B from register E) of register B. In the comparator mode (Q1 transfers B from Program from the properties of the properties B from Program from the properties B from Program from the properties B from Program memory in page p. The properties B from Program memory i$		$(A) \leftarrow (AD5-AD2)$			-	
$(A) \leftarrow (AD3-AD0) \\ (A) \leftarrow (AD3-AD0) \\ (D13: bit 3 of A/D control register Q1) \\ \hline \textbf{TABE} (Transfer data to Accumulator and register B from register E)} \\ \hline \textbf{Instruction} \\ \textbf{code} \\ \hline \textbf{Operation:} (B) \leftarrow (E7-E4) \\ (A) \leftarrow (E3-E0) \\ \hline \textbf{Do} \\ (A) \leftarrow (B) + p + 1 \\ (SK(SP)) \leftarrow (PC) \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow (BNC) + (B) \leftarrow (BOM(PC)) + 8 \\ (B) \leftarrow (ROM(PC)) - 4 \\ \hline \textbf{Note:} p is 0 to 15 for M34518MK, p is 0 to 14 for M34518MK, p is 0 to 15 for M34518MK, p is 0 to 14 for M34518MK, p is 0 to 15 for M34518MK, p is 0 to 15 for M34518MK, p is 0 to 14 for M34518MK, p is 0 to 16 for M34518MK, p is 0 to 47 for M34518MK, and p is 0 to 47 for M34518MK, p is 0 to 47 for $		In comparator mode (Q13 = 1),		-	-	
$(A) = (ADS-ADO) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register Q1) \\ (Q13: bit 3 of A/D control register D to register D1 \\ (Q13: bit 3 of A/D control register D1 or register D1 \\ (Q13: bit 3 of A/D control register D1 or register D1 or register D1 or register D2 or register D3 of register D1 or register D3 of register D4 or register D$		$(B) \leftarrow (AD7\text{-}AD4)$				
TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code Tabp p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code Tabp p (Transfer data to Accumulator and register B from Program memory in page p) Instruction Code Tabp p (Transfer data to Accumulator and register B from Program memory in page p) Number of Number of Number of Piag CY Skip condition words cycles 1 3 Operation: (SP) \leftarrow (SP) + 1 (SK(SP)) \leftarrow (PC) (PC) \leftarrow (DR2 \leftarrow DR0, A3-A0) (DR3 \leftarrow DR0, A3-A0) (DR3 \leftarrow DR0 \leftarrow A3 A2 A3 A0) (DR3 \leftarrow DR0 \leftarrow A3 A3 A3 A3 A0) (DR3 \leftarrow DR0 \leftarrow A3 A3 A3 A3 A0) (DR3 \leftarrow DR0 \leftarrow DR3 A3 A3 A3 A3 A0) (DR3 \leftarrow DR0 \leftarrow DR3 A3 A3 A3 A3 A0) (DR3 \leftarrow DR3 A3		$(A) \leftarrow (AD3-AD0)$				
		(Q13 : bit 3 of A/D control register Q1)				
TABE (Transfer data to Accumulator and register B from register E) Instruction code D9 D0 D0 Number of words Number of words Number of cycles Register to register transfer Skip condition Operation: (B) ← (E7–E4) (A) ← (E3–E0) Grouping: Register to register transfer Description: Transfers the high-order 4 bits (E7–I register E to register B, and low-order of register E (SK) (SP) (PC) (PCH) ← P (PCL) ← (DR2–DR0, A3–A0) (DR2–DR0, A3–A0) (DR2–DR0, A3–A0) (DR2–C) (PCH) ← P (PCL) ← (DR2–DR0, A3–A0) (DR3–C) (DR3–DR0, A3–A0) (DR3–C) (DR3–DR0, A3–A0) (DR3–C) (PCH) ← P (PCL) ← (DR2–DR0, A3–A0) (DR3–C) (PCH) ← P (PCL) ← (DR3–DR0, A3–A0) (DR3–C) (DR3–DR0, A3–A0) (DR3–C) (DR3–DR0, A3–A0) (DR3–DR				-	_	
	TABE (Tra	nsfer data to Accumulator and register B from regist	er E)	,		<u> </u>
Comparison:	Instruction	D9 D0			Flag CY	Skip condition
	code	0 0 0 0 1 0 1 0 1 0 ₂ 0 2 A ₁₆			_	_
			'	'		
	Operation:		Grouping:	Register to	register ti	ransfer
		$(A) \leftarrow (E3-E0)$	Description		_	
TABP p (Transfer data to Accumulator and register B from Program memory in page p) Instruction code $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				of register	E to regist	er A.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TABP p (T		dram mem	orv in page	(a e	
		Š	-	, , , ,	<u>, , , </u>	Skip condition
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	code		words	cycles		
$ (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \\ (PCL) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 $ $ Description: Transfers bits 9 and 8 to register D, bits to register B and bits 3 to 0 to are the ROM pattern dress (DR2 DR1 DR0 A3 A2 A1 A0)2 sp by registers A and D in page p.$		16 The state of th	1	3	_	_
$ \begin{array}{l} (\text{PCH}) \leftarrow \text{p} \\ (\text{PCL}) \leftarrow (\text{DR2-DR0, A3-A0}) \\ (\text{DR2}) \leftarrow 0 \\ (\text{DR1, DR0}) \leftarrow (\text{ROM(PC)})\text{9, 8} \\ (\text{B}) \leftarrow (\text{ROM(PC)})\text{7-4} \end{array} \\ \begin{array}{l} to register B and bits 3 to 0 to 7 to 8 and bits 3 to 0 to 9 are the ROM pattern dress (DR2 DR1 DR0 A3 A2 A1 A0)2 sp by registers A and D in page p. $	Operation:	(SP) ← (SP) + 1	Grouping:	Arithmetic	operation	l
$ \begin{array}{c} (\text{PCL}) \leftarrow (\text{DR2-DR0, A3-A0}) \\ (\text{DR2}) \leftarrow 0 \\ (\text{DR1, DR0}) \leftarrow (\text{ROM(PC)}) \\ (\text{B}) \leftarrow (\text{ROM(PC)}) \\ (\text{CROM(PC)}) \\ \end{array} \\ \begin{array}{c} \text{These bits 7 to 0 are the ROM pattern} \\ \text{dress (DR2 DR1 DR0 A3 A2 A1 A0)2 sp} \\ \text{by registers A and D in page p.} \\ \text{Note: p is 0 to 15 for M34518M2, and p is 0 to} \\ \text{M34518M6, p is 0 to 47 for M34518M6, and p} \\ \end{array} $			Description			
$ \begin{array}{c} (ROE) \leftarrow (DR2-DR0, A3-A0) \\ (DR2) \leftarrow 0 \\ (DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ (B) \leftarrow (ROM(PC))7-4 \end{array} \\ \begin{array}{c} dress (DR2 DR1 DR0 A3 A2 A1 A0)2 sp \\ by registers A and D in page p. \\ \textbf{Note:} p is 0 to 15 for M34518M2, and p is 0 to \\ M34518M6, p is 0 to 47 for M34518M6, and p \\ \end{array} $						
(DR1, DR0) ← (ROM(PC))9, 8 (B) ← (ROM(PC))7-4 (B) ← (ROM(PC))7-4 (B) ← (ROM(PC))7-4 (B) ← (ROM(PC))8-4 (B) ← (ROM(PC))8-				dress (DR2	DR1 DR0	A3 A2 A1 A0)2 specifie
(B) \leftarrow (ROM(PC))7-4 M34518M6, p is 0 to 47 for M34518M6, and p			Note: p is			
		$(B) \leftarrow (ROM(PC))7-4$	M345	o to 15 for N 518M6, p is 0	to 47 for N	د, مانو به ای تا تا ۱۵ //34518M6, and p is 0 t
			63 fo	r M34518M8E	≣8.	
$(PC) \leftarrow (SK(SP))$ When this instruction is executed, be careful not the stack because 1 stage of stack register is us						

TABPS (Tr	ansfer data to Accumulator and register B from Pres	Scaler)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 1 1 0 1 0 1 2 2 7 5	words	cycles			
	10	1	1	_	-	
Operation:	(B) ← (TPS7–TPS4)	Grouping:	Timer oper	ation		
	$(A) \leftarrow (TPS3-TPS0)$	Description	TPS4) of	prescale he low-ord	order 4 bits (TPS7- r to register B, and er 4 bits (TPS3-TPS0) er A.	
TABSI (Tra	ansfer data to Accumulator and register B from regis	ter SI)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 1 1 1 0 0 0 0 2 2 7 8 16	words	cycles		- ,	
		1	1	_	-	
Operation:	(B) ← (SI7−SI4)	Grouping:	Serial I/O	peration		
	$(A) \leftarrow (SI3-SI0)$	Description	serial I/O transfers t	register :	rder 4 bits (SI7–SI4) of SI to register B, and der 4 bits (SI3–SIo) of to register A.	
TAD (Trans	sfer data to Accumulator from register D)					
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	0 0 0 1 0 1 0 1 0 0 0 1 2 0 5 1 16	1	1	_	_	
Operation:	$(A2-A0) \leftarrow (DR2-DR0)$	Grouping:	Register to	register tr	ansfer	
	(A3) ← 0	Description: Transfers the contents of register D to th				
		Note:	When this	instruction	Ao) of register A. on is executed, "0" is a) of register A.	
TADAB (T	ansfer data to register AD from Accumulator from re	gister B)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 0 1 1 1 1 0 0 1 2 2 3 9 16	1	1	_	-	
Operation:	$(AD7-AD4) \leftarrow (B)$ $(AD3-AD0) \leftarrow (A)$	Grouping: Description	struction is In the com fers the c high-order register, a	conversion equivalent parator m contents 4 bits (AD nd the conder 4 bits (A	ation mode (Q13 = 0), this into the NOP instruction. node (Q13 = 1), trans- of register B to the 17-AD4) of comparator ntents of register A to AD3-AD0) of compara-	

TAI1 (Trans	sfer data to Accumulator from register I1)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
coue	1 0 0 1 0 1 0 1 1 2 2 5 3	1	1	-	_
Operation:	(A) ← (I1)	Grouping:	Interrupt o	peration	
		Description		the conten to register <i>i</i>	ts of interrupt contro A.
TAI2 (Trans	sfer data to Accumulator from register I2)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	(A) ← (I2)	Grouping: Description	Interrupt of Transfers register I2	the conten	ts of interrupt contro A.
TAJ1 (Tran	nsfer data to Accumulator from register J1)				
Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(A) \leftarrow (J1)$	Grouping: Description	Serial I/O		ts of serial I/O contro
			register J1	to register	А.
	nsfer data to Accumulator from register K0)	T.,	I	T=: 0\/ 1	
Instruction code	D9 D0 1 0 1 0 1 1 0 2 5 6 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	(A) ← (K0)	Grouping:	Input/Outp	ut operatio	า
		Description		the conter ister K0 to	its of key-on wakeup register A.

TAK1 (Tran	nsfer data to Accumulator from register K1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 1 0 0 1 2 2 5 9	words	cycles		
	10	1	1	_	_
Operation:	(A) ← (K1)	Grouping:	Input/Outp	ut operatio	n
Operation.	$(n) \leftarrow (n)$	Description			nts of key-on wakeup
			control reg	jister K1 to	register A.
TAK2 (Trai	nsfer data to Accumulator from register K2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 1 0 1 0 ₂ 2 5 A ₁₆	words	cycles		
		1	1	_	_
Operation:	(A) ← (K2)	Grouping:	Input/Outp	ut operatio	ın
орогинон.	(*) (* =)	Description			nts of key-on wakeup
			control reg		
TALA (Transference of the Talant Tala	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
Oneretien	(Ao Ao) - (AD-ADo)	Crouning	A /D 2271/2	roion onor	ation.
Operation:	$(A3, A2) \leftarrow (AD1, AD0)$ $(A1, A0) \leftarrow 0$	Grouping: Description	A/D conve		ation ler 2 bits (AD1, AD0) of
	(11,710)	Description			h-order 2 bits (A3, A2)
			of register	-	, , ,
		Note:			n is executed, "0" is der 2 bits (A1, A0) of
	nsfer data to Accumulator from Memory)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 1 0 0 j j j j ₂ 2 C j ₁₆	1	1	_	_
Operation:	$(A) \leftarrow (M(DP))$	Grouping:	RAM to reg	gister trans	fer
•	$(X) \leftarrow (X) EXOR(j)$	Description			contents of M(DP) to
	j = 0 to 15				sive OR operation is
					egister X and the value
			j in the imi sult in regi		eld, and stores the re-

TAMR (Tra	nsfer data to Accumulator from register MR)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 0 0 1 0 2 2 5 2 16	1	1	_	_
				<u>.</u>	
Operation:	$(A) \leftarrow (MR)$	Grouping: Description	Clock oper		s of clock control reg
		Description	ister MR to		
TAPU0 (Tra	ansfer data to Accumulator from register PU0)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 1 0 1 0 1 1 1 2 2 3 7 16	1	1	_	-
Operation:	(A) ← (PU0)	Grouping:	Input/Outp	ut operatio	n
		Description		the conte J0 to regist	nts of pull-up contro er A.
TAPU1 (Tra	ansfer data to Accumulator from register PU1) D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 1 1 1 0 ₂ 2 5 E ₁₆	words 1	cycles 1	_	
Operation:	(A) ← (PU1)	Grouping:		ut aparatio	
орегиноп.	(,) ((, 0, 1)	Description	Input/Outp		nts of pull-up contro
			register PU		
	nsfer data to Accumulator from register Q1)		1		
Instruction code	D9 D0 1 0 0 1 0 0 0 1 0 0 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(A) ← (Q1)	Grouping:	A/D conve	rsion opera	ition
		Description	ter Q1 to re		s of A/D control regis

IAQ2 (Trai	nsfer data to Accumulator from register Q2)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 0 1 0 1 1 2 2 4 5	1	1	_	-
Operation:	(A) ← (Q2)	Grouping:	A/D conve	rsion oners	ation
		Description			ts of A/D control regis
			ter Q2 to r	egister A.	
TAQ3 (Trai	nsfer data to Accumulator from register Q3)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(A) ← (Q3)	Grouping:	A/D conve	rsion opera	ation
		Description	: Transfers ter Q3 to re		ts of A/D control regis
	nsfer data to Accumulator from Stack Pointer)		T	T	
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	
Operation:	$(A2-A0) \leftarrow (SP2-SP0)$	Grouping:	Register to	register tr	ansfer
	(A3) ← 0	Description			s of stack pointer (SP
		to the low-order 3 bits (A2–A0) of register Note: After this instruction is executed, "0"			
		Note:			of register A.
TAV1 (Tran	nsfer data to Accumulator from register V1)				
Instruction code	D9 D0 0 0 1 0 1 0 1 0 0 0 5 4	Number of words	Number of cycles	Flag CY	Skip condition
0000	0 0 0 1 0 1 0 1 0 0 2	1	1	-	-
			*		
Operation:	(A) ← (V1)	Grouping:	Interrupt o	peration	
Operation:	(A) ← (V1)	Grouping: Description		the conter	nts of interrupt cor r A.

	e instructions (index by Alphaber)	(contine	ueu)			
IAVZ (11ar	nsfer data to Accumulator from register V2)	Number of	Number of	Flag CY	Clain condition	
code	D9 D0	words	cycles	l lag C1	Skip condition	
code	0 0 0 1 0 1 0 1 0 1 0 1 2	1	1	_	-	
Operation:	(A) ← (V2)	Grouping:	Interrupt o	neration		
	() . (/				its of interrupt control	
			register V2	2 to registe	r A.	
TAW1 (Tra	nsfer data to Accumulator from register W1)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 1 0 0 1 0 1 1 2 4 B	words	cycles		<u> </u>	
	16	1	1	_		
Operation:	(A) ← (W1)	Grouping:	Timer oper	ration		
		1			ts of timer control reg-	
			ister W1 to	register A		
TAW2 (Tra	nsfer data to Accumulator from register W2) D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
oodo	1 0 0 1 0 0 1 1 0 0 1 1 0 0 ₂ 2 4 C ₁₆	1	1	_	-	
Operation:	(A) ← (W2)	Grouping: Timer operation				
		Description: Transfers the contents of timer control reg				
			ister W2 to	o register A	•	
	nsfer data to Accumulator from register W3)					
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 1 0 0 1 1 0 0 1 1 2 2 4 D 16	1	1	_	_	
Operation:	(A) ← (W3)	Grouping:	Timer oper	ration		
			: Transfers to ister W3 to		ts of timer control reg-	

TAW4 (Tra	nsfer data to Accumulator from register W4)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
coue	1 0 0 1 0 0 1 1 0 0 1 1 1 0 ₂ 2 4 E ₁₆	1	1	-	-
Operation:	(A) ← (W4)	Grouping:	Timer ope		
		Description		the conten	ts of timer control re
TAW5 (Tra	nsfer data to Accumulator from register W5)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	(A) ← (W5)	Grouping: Description			ts of timer control re
TAW6 (Tra	nsfer data to Accumulator from register W6)				
Instruction code	D9	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(A) ← (W6)	Grouping:	Timer ope	ration	
		Description	n: Transfers		ts of timer control re
TAX (Trans	sfer data to Accumulator from register X)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	$(A) \leftarrow (X)$	Grouping: Description		register tr	ansfer ts of register X to re

TAY (Trans	fer data to Accumulator from register Y)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 1 1 2 0 1 F	1	1	_	_
Operation:	$(A) \leftarrow (Y)$	Grouping	Pogistor to	rogiotor tr	onofor
Operation:	$(A) \leftarrow (1)$	Grouping: Description		register tr	ansrer s of register Y to regis-
			ter A.		
TAZ (Trans	sfer data to Accumulator from register Z)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 1 0 0 1 1 2	1	1	-	_
Operation:	$(A1, A0) \leftarrow (Z1, Z0)$	Grouping:	Register to	register tr	ansfer
	(A ₃ , A ₂) ← 0	Description			ts of register Z to the
					Ao) of register A.
		Note:		the high-o	n is executed, "0" is rder 2 bits (A3, A2) o
TBA (Trans	sfer data to register B from Accumulator)				
Instruction code	D9 D0 0 0 0 0 1 1 1 0 0 0 E 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(B) ← (A)	Grouping:	Register to	register tr	ansfer
		Description	ter B.	the content	s of register A to regis
TDA (Trans	sfer data to register D from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1 0 0 1 2 0 2 9 16	1	1	_	_
Operation:	$(DR2-DR0) \leftarrow (A2-A0)$	Grouping:	Register to	register tr	ansfer
		Description	: Transfers	the conter	nts of the low-order 3 er A to register D.

	ansfer data to register E from Accumulator and regis	ter B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 1 0 2 0 1 A	words 1	cycles 1	_	_
Operation	(F7 F4) (/D)	Craunina	Dogiotor to		ranafar
Operation:	$(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$	Grouping: Description		register t	ranster nts of register B to the
	(L3 L0) (A)	Description			–E4) of register E, and
			-	nts of regis	ter A to the low-order
TFR0A (Tr	ansfer data to register FR0 from Accumulator)				
Instruction		Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 0 0 2 2 2 8 16	words	cycles		
		1	1	_	_
Operation:	(FR0) ← (A)	Grouping:	Input/Outp	ut operatio	ın
орогишот.					nts of register A to the
TFR1A (Tr	ansfer data to register FR1 from Accumulator)				
Instruction code	D9 D0 1 0 1 0 1 0 0 1 2 2 9 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	-
Operation:	$(FR1) \leftarrow (A)$	Grouping:	Input/Outp		
		Description			nts of register A to the control register FR1.
TFR2A (Tr	ansfer data to register FR2 from Accumulator)				
Instruction code	D9 D0 1 0 1 0 1 0 2 2 A	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(FR2) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n
		Description			its of register A to the control register FR2.

TI1A (Tran	sfer data to register I1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 1 1 2 2 1 7 16	words 1	cycles 1	_	_
		·	•	_	
Operation:	$(11) \leftarrow (A)$	Grouping:	Interrupt o	peration	
		Description	: Transfers	the content	s of register A to inter
			rupt contro	ol register l'	
TI2A (Tran	sfer data to register I2 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(I2) ← (A)	Grouping:	Interrupt o	peration	
		Description	: Transfers	the content	s of register A to inter
TJ1A (Trai	nsfer data to register J1 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 0 0 0 1 0 2 0 2 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(J1) \leftarrow (A)$	Grouping:	Serial I/O	operation	
		Description		the content register J1	s of register A to seria
TK0A (Tra	nsfer data to register K0 from Accumulator)				
Instruction code	D9 D0 1 1 0 1 1 2 1 B 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(K0) ← (A)	Grouping:	Input/Outp	ut operatio	n
		Description		the conten	ts of register A to key gister K0.

TK1A (Tra	nsfer data to register K1 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 0 1 0 1 0 1 0 0 2 2 1 4 16	1	1	_	
Operation:	(K1) ← (A)	Grouping: Description	Input/Outp : Transfers on wakeup	the conten	ts of register A to key
TK2A (Tra	nsfer data to register K2 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 0 1 0 1 0 1 2 2 1 3 16	1	1	_	_
Operation:	$(K2) \leftarrow (A)$	Grouping:	Input/Outp		
		Description	: Transfers on wakeur		ts of register A to key gister K2.
TMA j (Tra	Insfer data to Memory from Accumulator) D9 D0 1 0 1 0 1 1 j j j j 2 2 B j 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$	Grouping:		gister trans	sfer contents of register
	j = 0 to 15	Description			ve OR operation is per
	•				ister X and the value
			in the imm in register		d, and stores the resu
TMRA (Tra	nnsfer data to register MR from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 1 0 2 2 1 6	1	1	-	_
Operation:	$(MR) \leftarrow (A)$	Grouping:	Other oper	ration	
·		Description	: Transfers to		ts of register A to clock

TPAA (Tra	nsfer da	ita to	regis	ter F	'A fror	n Ac	<u>cum</u> u	<u>lator</u>)					
Instruction code	D9	1	0 1	0	1 0	1	D ₀	2		$\overline{}$	Number of words	Number of cycles	Flag CY	Skip condition
	1 0	1	0 1	10	1 0	'	0 2		A	16	1	1	-	
Operation:	(PA0) ←	- (Ao))								Grouping:	Timer oper	ration	
	(***)	(17)	,									: Transfers t	the content	s of lowermost bit (Ad atrol register PA.
TPSAB (Tr	ansfer o	data	to Pre	-Sca	aler fro	om A	ccum	ulate	or an	d rec	⊥ iister B)			
Instruction code	D9 1 0	0	0 1	1	0 1		D0	2			Number of words	Number of cycles	Flag CY	Skip condition
							2			16	1	1	_	_
Operation:			4) ← (B))							Grouping:	Timer oper	ration	
	(RPS3-	-RPS	i) ← (B) 0) ← (A) 0) ← (A)	1							Description	high-order reload regi tents of re	4 bits of p ister RPS, gister A to	ts of register B to the rescaler and prescale and transfers the con the low-order 4 bits caler reload registe
TPU0A (Tr		data	to regi	ster	PU0	rom		mula	ator)		1		I= 0.41	
Instruction code	D9 1 0	0	0 1	0	1 1	0	D ₀	2	2 [) 16	Number of words	Number of cycles	Flag CY	Skip condition
											'	'		_
Operation:	(PU0) «	— (A)									Grouping: Description	Input/Outp : Transfers up control	the conten	ts of register A to pull
TPU1A (Tr	ansfer o	data	to regi	ster	PU1	rom	Accu	mula	ator)					
Instruction	D9	0	0 1	0	1 1	1	D ₀	2	2 E	1.0	Number of words	Number of cycles	Flag CY	Skip condition
	1,1,					'	2	_		16	1	1	_	-
Operation:	(PU1) €	— (A)									Grouping: Description	Input/Outp : Transfers to up control	the conten	ts of register A to pull

TQ1A (Tra	nsfer data to register Q1 from Accumulator)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code		words	cycles	l lag O I	Chip condition			
	16	1	1	-	_			
Operation:	(Q1) ← (A)	Grouping:	A/D conve	rsion opera	ation			
-		Description			its of register A to A/D			
			control reg	iister Q1.				
TQ2A (Tra	nsfer data to register Q2 from Accumulator)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	1 0 0 0 0 0 1 0 1 2 0 5	words	cycles		<u>'</u>			
	1 0 0 0 0 0 1 0 1 2 2 0 3 16	1	1	_	_			
Operation:	(Q2) ← (A)	Grouping:	A/D conve	rsion oner:	ation			
o por unom		Description			its of register A to A/D			
			control reg		J			
TQ3A (Tra Instruction code	D9 D0 1 0 0 0 0 1 1 0 0 2 0 6 46	Number of words	Number of cycles	Flag CY	Skip condition			
	16	1	1	-	-			
Operation:	(Q3) ← (A)	Grouping:	A/D conve	rsion opera	ation			
		Description			ts of register A to A/D			
			control reg	ister Q3.				
TR1AB (Tr	ansfer data to register R1 from Accumulator and req	, ,						
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code	1 0 0 0 1 1 1 1 1 1 ₂ 2 3 F ₁₆	1	1	_	_			
Operation:	(R17–R14) ← (B)	Grouping:	Timer ope	ration	l			
operation.	$(R13-R10) \leftarrow (A)$	Description: Transfers the contents of register B to the high-order 4 bits (R17–R14) of reload register R1, and the contents of register A to the low-order 4 bits (R13–R10) of reload register R1.						

	E INSTRUCTIONS (INDEX BY ALPHABET)				
	ransfer data to register R3 from Accumulator and reg	· · ·	Number of	Flor CV	Oldin ann dition
Instruction code	D9 D0 1 0 0 1 1 1 0 1 1 2 3 B 46	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 1 1 1 0 1 1 2 2 3 5 16	1	1	_	-
Operation:	(R37–R34) ← (B) (R33–R30) ← (A)	Grouping: Description	high-order ter R3, and	the conter 4 bits (R3 d the conte	nts of register B to the 7–R34) of reload regis- ents of register A to the 3–R30) of reload regis-
TRGA (Tra	Insfer data to register RG from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
Joue	1 0 0 0 0 0 1 0 0 1 2 2 0 9 16	1	1	_	-
Operation:	(RG ₀) ← (A ₀)	Grouping: Description	Clock cont : Transfers t ter RG.		on Is of register A to regis-
TSIAB (Tra	ansfer data to register SI from Accumulator and regis	ster B)			
Instruction code	D9 D0 1 1 1 0 0 0 2 2 3 8 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 1 1 1 0 0 0 2 2 3 0 16	1	1	_	-
Operation:	(SI7−SI4) ← (B)	Grouping:	Serial I/O	peration	
	$(SI3-SI0) \leftarrow (A)$	Description	high-order ister SI, a	4 bits (SI7 and trans o the low-c	ats of register B to the r–SI4) of serial I/O reg- fers the contents of order 4 bits (SI3–SI0) of
TV1A (Tra	nsfer data to register V1 from Accumulator)				
Instruction code	D9 D0 0 0 0 1 1 1 1 1 1 1 0 0 3 F	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 1 1 1 1 2 0 3 1 16	1	1	-	-
Operation:	(V1) ← (A)	Grouping: Description	Interrupt o Transfers rupt contro	the conten	ts of register A to inter- /1.

TV2A (Tra	nsfer data to register V2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 0 ₂ 0 3 E ₁₆	words	cycles		
		1	1	_	_
Operation:	(V2) ← (A)	Grouping:	Interrupt o	peration	
		Description			s of register A to inte
			rupt contro	ol register V	2.
TW1A (Tra	ansfer data to register W1 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	$(W1) \leftarrow (A)$	Grouping:	Timer ope	ration	
•		Description			s of register A to tim
			control reg	jister W1.	
TW2A (Trainstruction code	Ansfer data to register W2 from Accumulator) D9 D0 1 0 0 0 0 1 1 1 1 1 2 2 0 F 16	Number of words	Number of cycles	Flag CY	Skip condition
Oneretion	(W2) ← (A)	C	T:		
Operation:	$(VVZ) \leftarrow (A)$	Grouping: Description	Timer oper		s of register A to time
		·	control reg		•
TW3A (Tra	ansfer data to register W3 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0	1	1	_	_
			I .	1 1	
Operation:	(W3) ← (A)	Grouping:	Timer ope	ration	

TW4A (Tra	nsfer data to register W4 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 0 0 1 1 1 1 1 1 16	words 1	cycles 1	_	_
Operation:	$(W4) \leftarrow (A)$	Grouping:	Timer ope	ration	
•		Description			ts of register A to time
			control reç	gister W4.	
TW5A (Tra	nsfer data to register W5 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	(W5) ← (A)	Grouping:	Timer oper	ration	
		Description	: Transfers to control reg		ts of register A to time
TW6A (Tra	nsfer data to register W6 from Accumulator)	<u> </u>			
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 0 0 1 1 2 2 1 3 16	1	1	-	-
Operation:	(W6) ← (A)	Grouping:	Timer oper	ation	
		Description	: Transfers	the conten	ts of register A to time
			control reg	ister W6.	
TYA (Trans	sfer data to register Y from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 1 1 1 0 0 2 0 0 16	1	1	-	-
Operation:	(Y) ← (A)	Grouping:	Register to	register tr	ansfer
		Description	ter Y.	he content	s of register A to regis

WRST (Wa	atchdog timer ReSeT)									
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition					
code	1 0 1 0 1 0 0 0 0 0 0 ₂ 2 A 0 ₁₆	1	1	_	(WDF1) = 1					
Operation:	(WDF1) = 1 ?	Grouping:	Other oper	ration						
•	After skipping, (WDF1) ← 0	Description	· · · · · · · · · · · · · · · · · · ·		uction when watchdo					
	77 37 7				." After skipping, clear					
			_		. When the WDF1 fla					
			is "0," exe	cutes the	next instruction. Also					
			stops the	watchdog t	imer function when ex					
			J		nstruction immediatel					
			after the D	WDT instr	uction.					
XAM j (eXd	change Accumulator and Memory data)									
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition					
code	1 0 1 1 0 1 j j j ₂ 2 D j ₁₆	words	cycles							
	10	1	1	_	_					
Operation:	$(A) \leftarrow \rightarrow (M(DP))$	Grouping:	RAM to reg	l nister trans	sfer					
орогилон	$(X) \leftarrow (X) \in (X) \in (X) \in (X)$	Description			ne contents of M(DP)					
	j = 0 to 15				egister A, an exclusive					
	•	OR operation is performed between register X and the value j in the immediate field								
			and stores	the result	in register X.					
XAMD j (e	Xchange Accumulator and Memory data and Decre	ment regist	er Y and sk	cip)						
XAMD j (ex	Xchange Accumulator and Memory data and Decre	Number of	Number of	rip) Flag CY	Skip condition					
	D9 D0	Number of words	Number of cycles	1						
Instruction	D9 D0	Number of	Number of	1	Skip condition (Y) = 15					
Instruction code	D9 D0 D0 1 1 1 1 1 j j j j ₂ 2 F j ₁₆	Number of words 1 Grouping:	Number of cycles 1 RAM to reg	Flag CY – gister trans	(Y) = 15					
Instruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles 1 RAM to regard After exch	Flag CY - gister transpanging th	(Y) = 15 Interpolation (Y) = 15					
Instruction code	D9 D0 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping:	Number of cycles 1 RAM to require After exchibit with the co	Flag CY - gister transpanging the ntents of r	(Y) = 15 Ifer le contents of M(DP) legister A, an exclusive					
Instruction code	D9 D0 A $(A) \leftarrow (M(DP))$ B $(X) \leftarrow (X) \in (X) \in (X)$ D0 D0 D0 D0 D0 D0 D0 D0 D0 D	Number of words 1 Grouping:	Number of cycles 1 RAM to rec After exch with the co OR operat ter X and t	Flag CY - gister transpanging the ntents of rion is perfihe value j	(Y) = 15 Ifer le contents of M(DP) legister A, an exclusive ormed between regis- in the immediate field,					
Instruction code	D9 D0 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping:	RAM to rec : After exch with the co OR operat ter X and t and stores	Flag CY pister transpanging the ntents of rion is perfibe value jithe result	(Y) = 15 Ifer le contents of M(DP) legister A, an exclusive ormed between regis- in the immediate field, in register X.					
Instruction code	D9 D0 A $(A) \leftarrow (M(DP))$ B $(X) \leftarrow (X) \in (X) \in (X)$ D0 D0 D0 D0 D0 D0 D0 D0 D0 D	Number of words 1 Grouping:	RAM to rec : After exch with the co OR operat ter X and t and stores Subtracts	Flag CY - gister transpanging the ntents of rion is perfihe value jithe result 1 from the	(Y) = 15 Ifer le contents of M(DP) legister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y.					
Instruction code	D9 D0 A $(A) \leftarrow (M(DP))$ B $(X) \leftarrow (X) \in (X) \in (X)$ D0 D0 D0 D0 D0 D0 D0 D0 D0 D	Number of words 1 Grouping:	RAM to reg : After exch with the co OR operat ter X and t and stores Subtracts As a resul tents of reg	gister trans anging the ntents of rion is perfihe value jethe result 1 from the tof subtragister Y is	(Y) = 15 Ifer The contents of M(DP) The egister A, an exclusive ormed between registing the immediate field, in register X. The contents of register Y. The action, when the contents, the next instruction					
Instruction	D9 D0 A $(A) \leftarrow (M(DP))$ B $(X) \leftarrow (X) \in (X) \in (X)$ D0 D0 D0 D0 D0 D0 D0 D0 D0 D	Number of words 1 Grouping:	RAM to receive the receive ter X and to a resultents of receive terts of received terts.	pister transpanging the transpanging the value juster esult from the tof subtragister Y is when the	(Y) = 15 Interpolation (P) =					
Instruction code Operation:	D9 D0 A $(A) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$	Number of words 1 Grouping: Description	RAM to recurrence of cycles 1 RAM to recurrence of the cycles of the cycles of the cycle of th	pister trans langing the ntents of rion is perfective value jethe value jethe tof subtrations the tof subtrations when the next ins	(Y) = 15 Ifer The contents of M(DP) The egister A, an exclusive ormed between registin the immediate field, in register X. The contents of register Y. The action, when the contents, the next instruction					
Instruction code Operation:	D9 D0 1 0 1 1 1 1 j j j j $_2$ 2 F $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) $_j = 0 \text{ to } 15$ (Y) \leftarrow (Y) -1	Number of words 1 Grouping: Description ent register Number of	RAM to require to require the result of the requirements of require shaped. It is not 15, times and skipped.	pister trans langing the ntents of rion is perfective value jethe value jethe tof subtrations the tof subtrations when the next ins	(Y) = 15 Interpolation (P) =					
Instruction code Operation:	D9 D0 A Comparison of the co	Number of words 1 Grouping: Description ent register Number of words	RAM to receive the control of the co	Flag CY - gister transpanging the ntents of rion is perfihe value juthe result 1 from the tof subtragister Y is When the next ins	(Y) = 15 Inter Ide contents of M(DP) Idegister A, an exclusive Idea					
Instruction code Operation: XAMI j (eXInstruction	D9 D0 1 0 1 1 1 1 1 j j j j $_2$ 2 F $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \longleftrightarrow (X)EXOR(j) $_j = 0$ to 15 (Y) \longleftrightarrow (Y) \longleftrightarrow (Y) \longleftrightarrow 1	Number of words 1 Grouping: Description ent register Number of	RAM to require to require the result of the requirements of require shaped. It is not 15, times and skipped.	Flag CY - gister transpanging the ntents of rion is perfihe value juthe result 1 from the tof subtragister Y is When the next ins	(Y) = 15 Ifer the contents of M(DP) to egister A, an exclusive ormed between regising the immediate field, in register X. contents of register Y. action, when the contents of register Y to the next instruction contents of register Y truction is executed.					
Instruction code Operation: XAMI j (eXInstruction code	D9 D0 1 0 1 1 1 1 j j j j 2 2 F j 16 (A) \longleftrightarrow (M(DP)) (X) \longleftrightarrow (X)EXOR(j) j = 0 to 15 (Y) \longleftrightarrow (Y) \longleftrightarrow (Y) - 1 Change Accumulator and Memory data and Increme D9 D0 1 0 1 1 1 0 j j j j 2 2 E j 16 16 16 16 16 16 16	Number of words 1 Grouping: Description Pent register Number of words 1 Grouping:	RAM to require the registration of the registr	pister transpanging the ntents of rion is perfihe value juster Y is When the next instance of	(Y) = 15 Intervention of M(DP) Intervention					
Instruction code Operation: XAMI j (eXInstruction code	D9 D0 A Comparison of the property of the pr	Number of words 1 Grouping: Description ent register Number of words 1	RAM to require terms of reycles 1 RAM to require After exchold with the coordinate of the coordinate	pister translanging the result 1 from the t of subtrations when the next ins 1 Flag CY	(Y) = 15 Intervention of M(DP) Intervention					
Instruction code Operation: XAMI j (eXInstruction code	D9 D0 A \leftarrow \rightarrow	Number of words 1 Grouping: Description Pent register Number of words 1 Grouping:	RAM to require to recover a control of the control	Flag CY pister translanging the ntents of rion is perfihe value jethe result from the tof subtragister Y is When the next instance of the control of the co	(Y) = 15 Infer The contents of M(DP) Register A, an exclusive ormed between registing the immediate field, in register X. Incontents of register Y. Insertion, when the constant of register Y. Insertion is executed. Skip condition (Y) = 0 Infer The contents of M(DP) Register A, an exclusive					
Instruction code Operation: XAMI j (eXInstruction code	D9 D0 1 0 1 1 1 1 1 j j j j $_2$ 2 F $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) $_j = 0$ to 15 (Y) \leftarrow (Y) $-$ 1 change Accumulator and Memory data and Increme D9 D0 1 0 1 1 1 0 j j j j $_2$ 2 E $_1$ $_{16}$ (A) \leftarrow (M(DP)) (X) \leftarrow (X)EXOR(j) $_j = 0$ to 15	Number of words 1 Grouping: Description Pent register Number of words 1 Grouping:	RAM to require ter X and to require solutions of the coordinate of	Flag CY pister transmanging the ntents of rion is perfihe value jethe result from the tof subtrations when the next institute of rion is perfihe value jethe value jethe value jethe value jethe resulte from the tents of rion is perfihe value jethe value valu	(Y) = 15 Infer In					
Instruction code Operation: XAMI j (eXInstruction code	D9 D0 A \leftarrow \rightarrow	Number of words 1 Grouping: Description Pent register Number of words 1 Grouping:	RAM to require ter X and stores Subtracts As a result tents of require skipped, is not 15. t Y and skip Number of cycles 1 RAM to require ter X and to require skipped, is not 15. t Y and skip Number of cycles 1 RAM to require ter X and to require skipped, is not 15. t at the coordinate of the cycles ter X and to require ter X and to require x and to result and stores	Flag CY pister transmanging the ntents of rion is perfihe value jet to f subtrasivation with the next institute of rion is perfihe value jet the result to f subtrasivation is perfihe value jet the result to subtrasivation is perfined to subtrasivation is perfixed to subtrasivation is perfixed to subtrasivation is perfixed to subtrasivation in the subtrasivation in the subtrasivation is perfixed to subtrasivation in the subtrasivation in th	(Y) = 15 Infer In					
Instruction code Operation: XAMI j (eXInstruction code	D9 D0 1 0 1 1 1 1 1 j j j j $_2$ 2 F $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) $_j = 0$ to 15 (Y) \leftarrow (Y) $-$ 1 change Accumulator and Memory data and Increme D9 D0 1 0 1 1 1 0 j j j j $_2$ 2 E $_1$ $_{16}$ (A) \leftarrow (M(DP)) (X) \leftarrow (X)EXOR(j) $_j = 0$ to 15	Number of words 1 Grouping: Description Pent register Number of words 1 Grouping:	RAM to require ter X and ter x and stores Subtracts: As a resultents of require is skipped, is not 15. the term of	Flag CY - gister transpanging the ntents of rion is perfihe value jethe result from the tof subtractions. Flag CY Flag CY Flag CY - gister transpanging the result for in seperfihe value jethe result for r	(Y) = 15 Intervention of M(DP) Intervention of M(DP) Intervention of M(DP) Intervention of Megister A, an exclusive Intervention of M(DP) In					
Instruction code Operation: XAMI j (eXInstruction	D9 D0 1 0 1 1 1 1 1 j j j j $_2$ 2 F $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) $_j = 0$ to 15 (Y) \leftarrow (Y) $-$ 1 change Accumulator and Memory data and Increme D9 D0 1 0 1 1 1 0 j j j j $_2$ 2 E $_1$ $_{16}$ (A) \leftarrow (M(DP)) (X) \leftarrow (X)EXOR(j) $_j = 0$ to 15	Number of words 1 Grouping: Description Pent register Number of words 1 Grouping:	RAM to require ter X and to require shaped is not 15. the control of the control	Flag CY pister transpanging the tents of rion is perfihe value jethe result to from the tents of rion the tents of rion the tents of rion is perfihe value jethe result the content dition, we is 0, the	(Y) = 15 Infer In					

MACHINE INSTRUCTIONS (INDEX BY TYPES)

MACH	INE INS				143						11"	_3)					T
Parameter						In	stru	ction	cod	e					umber of words	umber of cycles	Function
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D ₀		ade otati	cimal on	Number words	Number of cycles	T dilonon
	ТАВ	0	0	0	0	0	1	1	1	1	0	0	1	E	1	1	$(A) \leftarrow (B)$
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	(B) ← (A)
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	(A) ← (Y)
	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
transfe	TEAB	0	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	$(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$
Register to register transfer	TABE	0	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (E7–E4) (A) ← (E3–E0)
er to 1	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	(DR2−DR0) ← (A2−A0)
Registe	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$ (A2-A0) \leftarrow (DR2-DR0) $ $ (A3) \leftarrow 0 $
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	TAX	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	(A2–A0) ← (SP2–SP0) (A3) ← 0
	LXY x, y	1	1	х3	X2	X1	X 0	уз	у2	y1	у0	3	Х	у	1	1	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$
resses	LZ z	0	0	0	1	0	0	1	0	Z1	Z0	0	4	8 +z	1	1	$(Z) \leftarrow z z = 0 \text{ to } 3$
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	$(Y) \leftarrow (Y) + 1$
<u>~</u>	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	ТАМ ј	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$ \begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} $
RAM to reç	XAMI j	1	0	1	1	1	0	j	j	j	j	2	E	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array} $
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	j = 0 to 15 $(Y) \leftarrow (Y) + 1$ $(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$

Skip condition	Carry flag CY	Datailed description
_	-	Transfers the contents of register B to register A.
_	-	Transfers the contents of register A to register B.
_	-	Transfers the contents of register Y to register A.
_	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
_	_	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits (E3–E0) of register E to register A.
_	_	Transfers the contents of the low-order 3 bits (A2–A0) of register A to register D.
_	-	Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A.
-	-	Transfers the contents of register Z to the low-order 2 bits (A ₁ , A ₀) of register A.
-	_	Transfers the contents of register X to register A.
_	-	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
_	_	Loads the value z in the immediate field to register Z.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
-	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
_	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
_	_	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

Parameter						Ir	stru	ction	cod	le					er of Is	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Дз	D2	D1	D ₀		ade otat	cimal ion	Number of words	Number or cycles	Function
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	(A) ← n n = 0 to 15
	ТАВР р	0	0	1	0	p5	p4	рз	p2	p1	po	0	8 +r		1	3	$ \begin{aligned} &(SP) \leftarrow (SP) + 1 \\ &(SK(SP)) \leftarrow (PC) \\ &(PCH) \leftarrow p \ (Note) \\ &(PCL) \leftarrow (DR2-DR0, A3-A0) \\ &(DR2) \leftarrow 0 \\ &(DR1, DR0) \leftarrow (ROM(PC))9, 8 \\ &(B) \leftarrow (ROM(PC))7-4 \\ &(A) \leftarrow (ROM(PC))3-0 \\ &(SK(SP)) \leftarrow (PC) \\ &(SP) \leftarrow (SP) - 1 \end{aligned} $
uc	АМ	0	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
Arithmetic operation	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithmeti	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	(A) ← (A) + n n = 0 to 15
	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	(A) ← (A) AND (M(DP))
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) \ OR \ (M(DP))$
	sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	szc	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY A3A2A1A0
	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	$(Mj(DP)) \leftarrow 1$ j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	(Mj(DP)) ← 0 j = 0 to 3
Bit o	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	0	1	0	0 n	1 n	0	1 n		2		2	2	(A) = n ? n = 0 to 15
						1	1	n	n	n	n						

Note: p is 0 to 15 for M34518M2,

p is 0 to 31 for M34518M4,

p is 0 to 47 for M34518M6,

p is 0 to 63 for M34518M8/E8.

Skip condition	Carry flag CY	Datailed description
Continuous description	-	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
-	_	Transfers bits 9 and 8 to register D, bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in ad-dress (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.
-	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	_	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
-	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

MACHINE INSTRUCTIONS (continued)

Parameter						In	stru	ction	cod	е					ir of	ir of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hex	kad nota	lecimal ation	Number o	Number o	Function
	Ва	0	1	1	a 6	a 5	a4	аз	a2	a1	ao	1		a a	1	1	(PCL) ← a6–a0
ration	BL p, a	0	0	1	1	1	p4	рз	p2	p 1	po	0		p p	2		(PCH) ← p (Note) (PCL) ← a6–a0
Branch operation		1	0	p 5	a 6	a 5	a 4	a 3	a2	a1	a 0	2		a a			
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
		1	0	p5	p4	0	0	рз	p2	p1	po	2	p	р			(1.02)
_	ВМ а	0	1	0	a 6	a 5	a4	a 3	a 2	a1	a0	1	а	а	1	1	(SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← 2 (PCL) ← a6–a0
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	р1	po	0		p p	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$
outine		1	0	p5	a 6	a 5	a 4	аз	a 2	a1	ao	2		a a			(PCL) ← a6–a0
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0	2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC)
		1	0	p5	p4	0	0	рз	p2	p1	po	2	р	р			$(PCH) \leftarrow p \text{ (Note)}$ $(PCL) \leftarrow (DR2-DR0,A3-A0)$
uc	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1
Retur	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1
Natar a la r) to 15 for M34	45401	40														

Note: p is 0 to 15 for M34518M2,

p is 0 to 31 for M34518M4,

p is 0 to 37 for M34518M4, p is 0 to 47 for M34518M6, p is 0 to 63 for M34518M8/E8.

Skip condition	Carry flag CY	Datailed description
_	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
_	_	Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
_	_	Call the subroutine : Calls the subroutine at address a in page p.
_		Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
_		Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.
_		Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

Parameter								ction					''		tinu	<u>+</u>	
Parameter	Mnemonic						isti u	Clion							Number of words	Number o	Function
Type of \instructions		D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otat	cimal ion	Nun	Nun	
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP
	SNZ1	0	0	0	0	1	1	1	0	0	1	0	3	9	1	1	V11 = 0: (EXF1) = 1 ? After skipping, (EXF1) ← 0 V11 = 1: SNZ1 = NOP
	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	Α	1	1	l12 = 1 : (INT0) = "H" ?
ion																	I12 = 0 : (INT0) = "L" ?
Interrupt operation	SNZI1	0	0	0	0	1	1	1	0	1	1	0	3	В	1	1	I22 = 1 : (INT1) = "H" ?
Interru																	l22 = 0 : (INT1) = "L" ?
	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	(A) ← (V1)
	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	(A) ← (V2)
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	E	1	1	(V2) ← (A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	(A) ← (I1)
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	(I1) ← (A)
	TAI2	1	0	0	1	0	1	0	1	0	0	2	5	4	1	1	(A) ← (I2)
	TI2A	1	0	0	0	0	1	1	0	0	0	2	1	8	1	1	(I2) ← (A)
	TPAA	1	0	1	0	1	0	1	0	1	0	2	Α	Α	1	1	(PA0) ← (A0)
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	(A) ← (W1)
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Е	1	1	(W1) ← (A)
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
<u>c</u>	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
eratio	TAW3	1	0	0	1	0	0	1	1	0	1	2	4	D	1	1	(A) ← (W3)
Timer operation	TW3A	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	(W3) ← (A)
Time	TAW4	1	0	0	1	0	0	1	1	1	0	2	4	E	1	1	$(A) \leftarrow (W4)$
	TW4A	1	0	0	0	0	1	0	0	0	1	2	1	1	1	1	(W4) ← (A)

Skip condition	Carry flag CY	Datailed description
-	_	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	_	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	_	When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
V11 = 0: (EXF1) = 1	_	When V11 = 0 : Skips the next instruction when external 1 interrupt request flag EXF1 is "1." After skipping, clears (0) to the EXF1 flag. When the EXF1 flag is "0," executes the next instruction. When V11 = 1 : This instruction is equivalent to the NOP instruction. (V11: bit 1 of interrupt control register V1)
(INT0) = "H" However, I12 = 1	_	When I12 = 1 : Skips the next instruction when the level of INT0 pin is "H." (I12: bit 2 of interrupt control register I1)
(INT0) = "L" However, I12 = 0	_	When I12 = 0 : Skips the next instruction when the level of INT0 pin is "L."
(INT1) = "H" However, I22 = 1	_	When I22 = 1 : Skips the next instruction when the level of INT1 pin is "H." (I22: bit 2 of interrupt control register I2)
(INT1) = "L" However, I22 = 0	_	When I22 = 0 : Skips the next instruction when the level of INT1 pin is "L."
_	_	Transfers the contents of interrupt control register V1 to register A.
_	_	Transfers the contents of register A to interrupt control register V1.
_	_	Transfers the contents of interrupt control register V2 to register A.
_	_	Transfers the contents of register A to interrupt control register V2.
_	_	Transfers the contents of interrupt control register I1 to register A.
_	_	Transfers the contents of register A to interrupt control register I1.
_	_	Transfers the contents of interrupt control register I2 to register A.
_	_	Transfers the contents of register A to interrupt control register I2.
_	_	Transfers the contents of register A to timer control register PA.
_	_	Transfers the contents of timer control register W1 to register A.
_	_	Transfers the contents of register A to timer control register W1.
_	_	Transfers the contents of timer control register W2 to register A.
_	_	Transfers the contents of register A to timer control register W2.
_	_	Transfers the contents of timer control register W3 to register A.
_	_	Transfers the contents of register A to timer control register W3.
_	_	Transfers the contents of timer control register W4 to register A.
_	_	Transfers the contents of register A to timer control register W4.

Parameter						In	stru	ction	cod	e					Jo	Jo	
Type of	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D ₀			cimal	Number o	Number of cycles	Function
instructions	TAW5	1	0	0	1	0	0	1	1	1	1		otat 4		1	1	(A) ← (W5)
	TW5A	1	0	0	0	0	1	0	0	1	0	2	1	2	1	1	(W5) ← (A)
	TAW6	1	0	0	1	0	1	0	0	0	0	2	5	0	1	1	(A) ← (W6)
	TW6A	1	0	0	0	0	1	0	0	1	1	2	1	3	1	1	(W6) ← (A)
	TABPS	1	0	0	1	1	1	0	1	0	1	2	7	5	1	1	(B) ← (TPS7–TPS4) (A) ← (TPS3–TPS0)
	TPSAB	1	0	0	0	1	1	0	1	0	1	2	3	5	1	1	$ \begin{array}{l} (RPS7\text{-}RPS4) \leftarrow (B) \\ (TPS7\text{-}TPS4) \leftarrow (B) \\ (RPS3\text{-}RPS0) \leftarrow (A) \\ (TPS3\text{-}TPS0) \leftarrow (A) \end{array} $
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$
	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	(B) ← (T27–T24) (A) ← (T23–T20)
eration	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(R27-R24) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R23-R20) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$
Timer operation	TAB3	1	0	0	1	1	1	0	0	1	0	2	7	2	1	1	(B) ← (T37–T34) (A) ← (T33–T30)
 = 	ТЗАВ	1	0	0	0	1	1	0	0	1	0	2	3	2	1	1	(R37–R34) ← (B) (T37–T34) ← (B) (R33–R30) ← (A) (T33–T30) ← (A)
	TAB4	1	0	0	1	1	1	0	0	1	1	2	7	3	1	1	(B) ← (T47–T44) (A) ← (T43–T40)
	T4AB	1	0	0	0	1	1	0	0	1	1	2	3	3	1	1	$(R4L7-R4L4) \leftarrow (B)$ $(T47-T44) \leftarrow (B)$ $(R4L3-R4L0) \leftarrow (A)$ $(T43-T40) \leftarrow (A)$
	T4HAB	1	0	0	0	1	1	0	1	1	1	2	3	7	1	1	(R4H7−R4H4) ← (B) (R4H3−R4H0) ← (A)
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	(R17-R14) ← (B) (R13-R10) ← (A)
	TR3AB	1	0	0	0	1	1	1	0	1	1	2	3	В	1	1	(R37–R34) ← (B) (R33–R30) ← (A)
	T4R4L	1	0	1	0	0	1	0	1	1	1	2	9	7	1	1	(T47–T40) ← (R4L7–R4L0)

Skip condition	Carry flag CY	Datailed description
-	-	Transfers the contents of timer control register W5 to register A.
_	-	Transfers the contents of register A to timer control register W5.
-	-	Transfers the contents of timer control register W6 to register A.
_	-	Transfers the contents of register A to timer control register W6.
_	_	Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
-	_	Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of timer 1 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
-	_	Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of timer 2 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2, and transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.
-	_	Transfers the high-order 4 bits of timer 3 to register B, and transfers the low-order 4 bits of timer 3 to register A.
_	-	Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3.
-	_	Transfers the high-order 4 bits of timer 4 to register B, and transfers the low-order 4 bits of timer 4 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 4 and timer 4 reload register R4L, and transfers the contents of register A to the low-order 4 bits of timer 4 and timer 4 reload register R4L.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 4 reload register R4H, and transfers the contents of register A to the low-order 4 bits of timer 4 reload register R4H.
_	-	Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1.
_	_	Transfers the contents of register B to the high-order 4 bits of timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 reload register R3.
_	-	Transfers the contents of timer 4 reload register R4L to timer 4.
-	_	

Parameter	1					In	stru	ction	cod	e					r of s	r of s	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otat	cimal	Number of words	Number of cycles	Function
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) ← 0 V12 = 0: NOP
eration	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0: (T2F) = 1 ? After skipping, (T2F) ← 0 V13 = 0: NOP
Timer operation	SNZT3	1	0	1	0	0	0	0	0	1	0	2	8	2	1	1	V20 = 0: (T3F) = 1 ? After skipping, (T3F) ← 0 $V20 = 0$: NOP
	SNZT4	1	0	1	0	0	0	0	0	1	1	2	8	3	1	1	$V21 = 0$: $(T4F) = 1$? After skipping, $(T4F) \leftarrow 0$ $V21 = 0$: NOP
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0) ← (A)
	IAP1	1	0	0	1	1	0	0	0	0	1		6		1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	(A2–A0) ← (P22–P20) (A3) ← 0
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	(P22−P20) ← (A2−A0)
	IAP3	1	0	0	1	1	0	0	0	1	1	2	6	3	1	1	(A1, A0) ← (P31, P30)
	ОРЗА	1	0	0	0	1	0	0	0	1	1	2	2	3	1	1	(P31, P30) ← (A1, A0)
	IAP6	1	0	0	1	1	0	0	1	1	0	2	6	6	1	1	(A) ← (P6)
	OP6A	1	0	0	0	1	0	0	1	1	0	2	2	6	1	1	(P6) ← (A)
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
Input/Output operation	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ (Y) = 0 to 7
do tndtr	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$ (D(Y)) \leftarrow 1 $ $ (Y) = 0 \text{ to } 7 $
nt/Or	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	1	1	(D(Y)) = 0 ?
dul		0	0	0	0	1	0	1	0	1	1	0	2	В	1	1	(Y) = 0 to 7
	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	(A) ← (PU0)
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)
	TAPU1	1	0	0	1	0	1	1	1	1	0	2	5	Е	1	1	(A) ← (PU1)
	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	Е	1	1	(PU1) ← (A)

Skip condition	Carry flag CY	Datailed description
V12 = 0: (T1F) = 1	_	Skips the next instruction when the contents of bit 2 (V12) of interrupt control register V1 is "0" and the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.
V13 = 0: (T2F) =1	-	Skips the next instruction when the contents of bit 3 (V13) of interrupt control register V1 is "0" and the contents of T2F flag is "1." After skipping, clears (0) to T2F flag.
V20 = 0: (T3F) = 1	_	Skips the next instruction when the contents of bit 0 (V20) of interrupt control register V2 is "0" and the contents of T3F flag is "1." After skipping, clears (0) to T3F flag.
V21 = 0: (T4F) =1	_	Skips the next instruction when the contents of bit 1 (V21) of interrupt control register V2 is "0" and the contents of T4F flag is "1." After skipping, clears (0) to T4F flag.
_	-	Transfers the input of port P0 to register A.
_	_	Outputs the contents of register A to port P0.
_	_	Transfers the input of port P1 to register A.
_	_	Outputs the contents of register A to port P1.
_	_	Transfers the input of port P2 to register A.
_	_	Outputs the contents of register A to port P2.
_	_	Transfers the input of port P3 to register A.
_	_	Outputs the contents of register A to port P3.
_	_	Transfers the input of port P6 to register A.
_	-	Outputs the contents of register A to port P6.
_	_	Sets (1) to all port D.
-	_	Clears (0) to a bit of port D specified by register Y.
-	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 However, (Y)=0 to 7	_	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
_	_	Transfers the contents of pull-up control register PU0 to register A.
_	_	Transfers the contents of register A to pull-up control register PU0.
_	-	Transfers the contents of pull-up control register PU1 to register A.
_	-	Transfers the contents of register A to pull-up control register PU1.
		1

Parameter	INL INS							ction				,			of	- of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Дз	D2	D1	D ₀		ade	cimal	Number of words	Number of cycles	Function
matractions,	TAK0	1	0	0	1	0	1	0	1	1	0		5		1		(A) ← (K0)
	TK0A	1	0	0	0	0	1	1	0	1	1	2	1	В	1	1	(K0) ← (A)
	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	(A) ← (K1)
ation	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	(K1) ← (A)
t oper	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	Α	1	1	(A) ← (K2)
Input/Output operation	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	(K2) ← (A)
put/C	TFR0A	1	0	0	0	1	0	1	0	0	0	2	2	8	1	1	$(FR0) \leftarrow (A)$
=	TFR1A	1	0	0	0	1	0	1	0	0	1	2	2	9	1	1	(FR1) ← (A)
	TFR2A	1	0	0	0	1	0	1	0	1	0	2	2	Α	1	1	(FR2) ← (A)
	TABSI	1	0	0	1	1	1	1	0	0	0	2	7	8	1	1	$(B) \leftarrow (SI7-SI4) \ \ (A) \leftarrow (SI3-SI0)$
tion	TSIAB	1	0	0	0	1	1	1	0	0	0	2	3	8	1	1	$(SI7-SI4) \leftarrow (B) (SI3-SI0) \leftarrow (A)$
) operat	SST	1	0	1	0	0	1	1	1	1	0	2	9	Е	1	1	(SIOF) ← 0 Serial I/O starting
Serial I/O operation	SNZSI	1	0	1	0	0	0	1	0	0	0	2	8	8	1	1	V23=0: (SIOF)=1? After skipping, (SIOF) \leftarrow 0 V23 = 1: NOP
"	TAJ1	1	0	0	1	0	0	0	0	1	0	2	4	2	1	1	$(A) \leftarrow (J1)$
	TJ1A	1	0	0	0	0	0	0	0	1	0	2	0	2	1	1	(J1) ← (A)
	СМСК	1	0	1	0	0	1	1	0	1	0	2	9	Α	1	1	Ceramic resonator selected
tion	CRCK	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillator selected
Clock operation	СҮСК	1	0	1	0	0	1	1	1	0	1	2	9	D	1	1	Quartz-crystal oscillator selected
l ock	TRGA	1	0	0	0	0	0	1	0	0	1	2	0	9	1	1	(RG0) ← (A0)
Ö	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$
	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR) \leftarrow (A)$

Skip condition	Carry flag CY	Datailed description
_	-	Transfers the contents of key-on wakeup control register K0 to register A.
_	-	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K1 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K1.
_	_	Transfers the contents of key-on wakeup control register K2 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K2.
_	_	Transferts the contents of register A to port output format control register FR0.
_	_	Transferts the contents of register A to port output format control register FR1.
_	_	Transferts the contents of register A to port output format control register FR2.
-	-	Transfers the high-order 4 bits of serial I/O register SI to register B, and transfers the low-order 4 bits of serial I/O register SI to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of serial I/O register SI, and transfers the contents of register A to the low-order 4 bits of serial I/O register SI.
_	_	Clears (0) to SIOF flag and starts serial I/O.
V23 = 0: (SIOF) = 1	_	Skips the next instruction when the contents of bit 3 (V23) of interrupt control register V2 is "0" and contents of SIOF flag is "1." After skipping, clears (0) to SIOF flag.
_	_	Transfers the contents of serial I/O control register J1 to register A.
_	-	Transfers the contents of register A to serial I/O control register J1.
_	-	Selects the ceramic resonator for main clock f(XIN).
_	_	Selects the RC oscillation circuit for main clock f(XIN).
_	_	Selects the quartz-crystal oscillation circuit for main clock f(XIN).
_	_	Transfers the contents of clock control regiser RG to register A.
-	-	Transfers the contents of clock control regiser MR to register A.
_	-	Transfers the contents of register A to clock control register MR.

<u> </u>	INE INS											-0)					
Parameter						Ir	nstru	ction	cod	e					er of	er of es	Function
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀			ecimal tion	Number of words	Number o	Punction
	TABAD	1	0	0	1	1	1	1	0	0	1	2	7	9	1	1	Q13 = 0: (B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2) Q13 = 1: (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0)
	TALA	1	0	0	1	0	0	1	0	0	1	2	4	9	1	1	$(A3, A2) \leftarrow (AD1, AD0) (A1, A0) \leftarrow 0$
ation	TADAB	1	0	0	0	1	1	1	0	0	1	2	3	9	1	1	
sion oper	ADST	1	0	1	0	0	1	1	1	1	1	2	9	F	1	1	(ADF) ← 0 A/D conversion starting
A/D conversion operation	SNZAD	1	0	1	0	0	0	0	1	1	1	2	8	7	1	1	V21 = 0: (ADF) = 1 ? After skipping, (ADF) \leftarrow 0 V22 = 1: NOP
∢	TAQ1	1	0	0	1	0	0	0	1	0	0	2	4	4	1	1	(A) ← (Q1)
	TQ1A	1	0	0	0	0	0	0	1	0	0	2	0	4	1	1	(Q1) ← (A)
	TAQ2	1	0	0	1	0	0	0	1	0	1	2	4	5	1	1	(A) ← (Q2)
	TQ2A	1	0	0	0	0	0	0	1	0	1	2	0	5	1	1	(Q2) ← (A)
	TAQ3	1	0	0	1	0	0	0	1	1	0	2	4	6	1	1	(A) ← (Q3)
	TQ3A	1	0	0	0	0	0	0	1	1	0	2	0	6	1	1	(Q3) ← (A)
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	Transition to RAM back-up mode
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	POF instruction valid
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
eration	WRST	1	0	1	0	1	0	0	0	0	0	2	A	0	1	1	(WDF1) = 1 ? After skipping, (WDF1) ← 0
Other operation	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled
0	SRST	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	System reset occurrence

	5	
Skip condition	Carry flag	Datailed description
-	_	In the A/D conversion mode (Q13 = 0), transfers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits (AD5–AD2) of register AD to register A. In the comparator mode (Q13 = 1), transfers the middle-order 4 bits (AD7–AD4) of register AD to register B, and the low-order 4 bits (AD3–AD0) of register AD to register A. (Q13: bit 3 of A/D control register Q1)
-	_	Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (AD3, AD2) of register A.
-	_	In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. (Q13 = bit 3 of A/D control register Q1)
-	-	Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started. (Q13 = bit 3 of A/D control register Q1)
V22 = 0: (ADF) = 1	-	When V22 = 0 : Skips the next instruction when A/D conversion completion flag ADF is "1." After skipping, clears (0) to the ADF flag. When the ADF flag is "0," executes the next instruction. (V22: bit 2 of interrupt control register V2)
_	_	Transfers the contents of A/D control register Q1 to register A.
-	_	Transfers the contents of register A to A/D control register Q1.
-	_	Transfers the contents of A/D control register Q2 to register A.
-	_	Transfers the contents of register A to A/D control register Q2.
-	_	Transfers the contents of A/D control register Q3 to register A.
-	_	Transfers the contents of register A to A/D control register Q3.
-	-	No operation; Adds 1 to program counter value, and others remain unchanged.
-	_	Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction.
-	_	Makes the immediate after POF instruction valid by executing the EPOF instruction.
(P) = 1	_	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged.
(WDF1) = 1	-	Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
-	_	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
-	_	System reset occurs.

INSTRUCTION CODE TABLE

1100	11014	COL	<u> </u>	OLL														
D9-D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	010000 010111	
Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0	NOP	BLA	SZB 0	BMLA	_	TASP	A 0	LA 0	TABP 0	TABP 16***	TABP 32**	TABP 48*	BML***	BML	BL***	BL	ВМ	В
1	SRST	CLD	SZB 1	_	_	TAD	A 1	LA 1	TABP 1	TABP 17***	TABP 33**	TABP 49*	BML***	BML	BL***	BL	ВМ	В
2	POF	_	SZB 2	-	_	TAX	A 2	LA 2	TABP 2	TABP 18***	TABP 34**	TABP 50*	BML***	BML	BL***	BL	ВМ	В
3	SNZP	INY	SZB 3	_	_	TAZ	A 3	LA 3	TABP 3	TABP 19***	TABP 35**	TABP 51*	BML***	BML	BL***	BL	ВМ	В
4	DI	RD	SZD	_	RT	TAV1	A 4	LA 4	TABP 4	TABP 20***	TABP 36**	TABP 52*	BML***	BML	BL***	BL	ВМ	В
5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21***	TABP 37**	TABP 53*	BML***	BML	BL***	BL	ВМ	В
6	RC	_	SEAM	-	RTI	-	A 6	LA 6	TABP 6	TABP 22***	TABP 38**	TABP 54*	BML***	BML	BL***	BL	ВМ	В
7	sc	DEY	_	_	_	_	A 7	LA 7	TABP 7	TABP 23***	TABP 39**	TABP 55*	BML***	BML	BL***	BL	ВМ	В
8	-	AND	_	SNZ0	LZ 0	_	A 8	LA 8	TABP 8	TABP 24***	TABP 40**	TABP 56*	BML***	BML	BL***	BL	ВМ	В
9	-	OR	TDA	SNZ1	LZ 1	_	A 9	LA 9	TABP 9	TABP 25***	TABP 41**	TABP 57*	BML***	BML	BL***	BL	ВМ	В
Α	AM	TEAB	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26***	TABP 42**	TABP 58*	BML***	BML	BL***	BL	ВМ	В
В	AMC	_	_	SNZI1	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27***	TABP 43**	TABP 59*	BML***	BML	BL***	BL	ВМ	В
С	TYA	СМА	_	_	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28***	TABP 44**	TABP 60*	BML***	BML	BL***	BL	вм	В
D	_	RAR	_	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29***	TABP 45**	TABP 61*	BML***	BML	BL***	BL	ВМ	В
Е	ТВА	TAB	_	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30***	TABP 46**	TABP 62*	BML***	BML	BL***	BL	ВМ	В
F	_	TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31***	TABP 47**	TABP 63*	BML***	BML	BL***	BL	ВМ	В
	D9-D4 Hex. notation 0 1 2 3 4 5 6 7 8 9 A B C D	D9—D4 000000 Hex. 00 0 NOP 1 SRST 2 POF 3 SNZP 4 DI 5 EI 6 RC 7 SC 8 — 9 — A AM B AMC C TYA D — E TBA	D9—D4 000000 000001 Hex. O0	D9-D4 NOP DO ON	Hex. notation 00 01 02 03 0 NOP BLA SZB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D9-D4 000000 00001 000010 000011 000100 000100 000100 000011 000100 000011 0001000 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 0001000 000100 0001000 0001000 0001000 0001000 0001000 0001000 0001000 0001000 0001000 0001000 0001000 00010000 00010000 00010000 00010000 00010000 00010000 00010000 000100000 000100000 00010000000 000100000 00010000000 000100000 000100000000	D9-D4 000000 00001 000011 000101 000	De-D4 000000 000001 000010 000110 00	NOP BLA SZB BMLA - TASP A LA	Day	Day	Dep-Day	Dep-D4 000000 000001 000011 000101 000111 001010 001011 001010 001011 0	Dep-Day 000000 000001 000011 000110 000111 001101	Dep-D4 000000 000001 000011 000110 000111 001111 001100 001101 0	Dept Dept	Dept Dept	Depth 000000 00001 00011 00110 00111 001010 00111 001010 001011 001011 001110 001111 01110 001111 011110 001111 011110 01111 0111111 0111111 011111 011111 011111 0111111 0111111 01111111 0111111 0111111 0

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The second word		
BL	1р	paaa	aaaa
BML	1р	paaa	aaaa
BLA	1р	pp00	pppp
BMLA	1р	pp00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

- \bullet *, **, *** cannot be used in the M34518M2.
- *, ** cannot be used in the M34518M4.
- * cannot be used in the M34518M6.

INSTRUCTION CODE TABLE (continued)

11431	NUC	IIOI	COL)	ADLE	(COI	itiliue	j u)										
]/[D9-D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	TW3A	OP0A	T1AB	-	TAW6	IAP0	TAB1	SNZT1	_	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	_	TW4A	OP1A	T2AB	-	_	IAP1	TAB2	SNZT2	-	-	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	TJ1A	TW5A	OP2A	ТЗАВ	TAJ1	TAMR	IAP2	TAB3	SNZT3	_	-	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	_	TW6A	ОРЗА	T4AB	-	TAI1	IAP3	TAB4	SNZT4	_	-	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	TK1A	_	_	TAQ1	TAI2	_	_	_	_	_	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	TQ2A	TK2A	_	TPSAB	TAQ2	_	_	TABPS	_	_	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	TQ3A	TMRA	OP6A	_	TAQ3	TAK0	IAP6	_	_	_	-	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	_	TI1A	_	T4HAB	_	TAPU0	-	_	SNZAD	T4R4L	-	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	_	TI2A	TFR0A	TSIAB	_	_	_	TABSI	SNZSI	_	_	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	TRGA	_	TFR1A	TADAB	TALA	TAK1	_	TABAD	_	_	_	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	Α	_	_	TFR2A	_	_	TAK2	_	_	_	смск	TPAA	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	_	TK0A	-	TR3AB	TAW1	-	-	_	_	CRCK	_	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	_	_	_	_	TAW2	_	-	_	_	DWDT	-	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	_	_	TPU0A	_	TAW3	_	_	1	_	СҮСК	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	_	TPU1A	_	TAW4	TAPU1	_		_	SST	_	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	-	-	TR1AB	TAW5	_	-	_	_	ADST	-	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	1p	paaa	aaaa
BML	1p	paaa	aaaa
BLA	1p	pp00	pppp
BMLA	1p	pp00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

ABSOLUTE MAXIMUM RATINGS

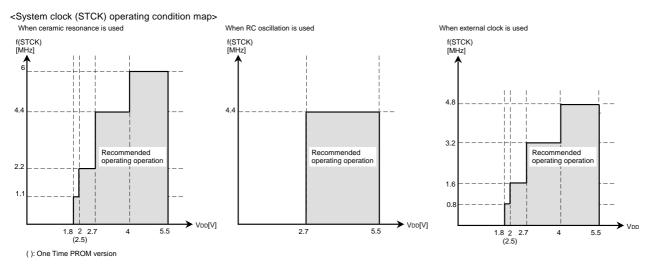
Symbol	Parameter	C	Conditions	Ratings	Unit
VDD	Supply voltage			-0.3 to 6.5	V
Vı	Input voltage			-0.3 to VDD+0.3	V
	P0, P1, P2, P3, P6, D0-D7, RESET, XIN, VDCE				
Vı	Input voltage Sck, Sin, CNTR0, CNTR1, INT0, INT1			-0.3 to VDD+0.3	V
Vı	Input voltage AIN0-AIN3			-0.3 to VDD+0.3	V
Vo	Output voltage	Output trans	sistors in cut-off state	-0.3 to VDD+0.3	V
	P0, P1, P2, P3, P6, D0–D7, RESET				
Vo	Output voltage Sck, Sout, CNTR0, CNTR1	Output trans	sistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage Xout			-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	PLQP0032GB-A	300	mW
			PRDP0032BA-A	1100	
Topr	Operating temperature range			-20 to 85	°C
Tstg	Storage temperature range			-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS 1

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Condition	ine	Limits			
Symbol	Faiametei			Min.	Тур.	Max.	Unit
VDD	Supply voltage	Mask ROM version	f(STCK) ≤ 6 MHz	4.0		5.5	V
	(when ceramic resonator/		f(STCK) ≤ 4.4 MHz	2.7		5.5	
	on-chip oscillator is used)		f(STCK) ≤ 2.2 MHz	2.0		5.5	
			f(STCK) ≤ 1.1 MHz	1.8		5.5	
		One Time PROM version		4.0		5.5	
			f(STCK) ≤ 4.4 MHz	2.7		5.5	
			f(STCK) ≤ 2.2 MHz	2.5		5.5	
VDD	Supply voltage	f(STCK) ≤ 4.4 MHz		2.7		5.5	V
	(when RC oscillation is used)						
Vdd	Supply voltage	Mask ROM version	f(XIN) ≤ 50 kHz	2.0		5.5	V
	(when quartz-crystal oscillator is used)	One Time PROM version	f(XIN) ≤ 50 kHz	2.5		5.5	1
VRAM	RAM back-up voltage	Mask ROM version	at RAM back-up mode	1.6			V
		One Time PROM version	at RAM back-up mode	2.0			1
Vss	Supply voltage				0		V
ViH	"H" level input voltage	P0, P1, P2, P3, P6, D0-D	7, VDCE, XIN	0.8Vpp		VDD	V
ViH	"H" level input voltage	RESET		0.85Vpp		VDD	V
VIH	"H" level input voltage	SCK, SIN, CNTR0, CNTR1	, INT0, INT1	0.85Vpp		VDD	V
VIL	"L" level input voltage	P0, P1, P2, P3, P6, D0-D	7, VDCE, XIN	0		0.2VDD	V
VIL	"L" level input voltage	RESET		0		0.3VDD	V
VIL	"L" level input voltage	SCK, SIN, CNTR0, CNTR1	, INT0, INT1	0		0.15VDD	V
Iон(peak)	"H" level peak output current	P0, P1, D0-D7	VDD = 5 V			-20	mA
,		CNTR0, CNTR1	VDD = 3 V			-10	1
Iон(avg)	"H" level average output current	P0, P1, D0–D7	VDD = 5 V			-10	mA
ν σ,	(Note)	CNTR0, CNTR1	VDD = 3 V			-5	1
loL(peak)	"L" level peak output current	P0, P1, P2, P6	VDD = 5 V			24	mA
" ,	·	SCK, SOUT	VDD = 3 V			12	1
IoL(peak)	"L" level peak output current	P3, RESET	VDD = 5 V			10	mA
α ,	·	,	VDD = 3 V			4	1
IoL(peak)	"L" level peak output current	D0-D5	VDD = 5 V			24	mA
(, ,	·		VDD = 3 V			12	1
IoL(peak)	"L" level peak output current	D6, D7	VDD = 5 V			40	mA
, (1	, , , , , , , , , , , , , , , , , , ,	CNTR0, CNTR1	VDD = 3 V			30	
IoL(avg)	"L" level average output current	P0, P1, P2, P6	VDD = 5 V			12	mA
3 (3)	(Note)	SCK, SOUT	VDD = 3 V			6	1
loL(avg)	"L" level average output current	P3, RESET	VDD = 5 V			5	mA
(5/19)	(Note)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VDD = 3 V			2	1
IoL(avg)	"L" level average output current	D0-D5	VDD = 5 V			15	mA
-(9)	(Note)		VDD = 3 V			7	1
IoL(avg)	"L" level average output current	D6, D7	VDD = 5 V			30	mA
. >=(~•9)	(Note)	CNTR0, CNTR1	VDD = 3 V			15	┪`
ΣIOH(avg)	"H" level total average current	D0-D7, CNTR0, CNTR1	1:=5 0 .			-60	mA
21011(avg)	The lover total average current	P0, P1				-60	† ····````
ΣloL(avg)	"L" level total average current	P2, D0–D7, RESET, CNTR	0 CNTR1			80	mA
∠ioc(avy)	L level total average current	P0, P1, P3, P6	o, OINTIXT			80	- '''

Note: The average output current is the average value during 100 ms.



RECOMMENDED OPERATING CONDITIONS 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter		Conditions			Limits		Unit
Cymbol	1 drameter				Min.	Тур.	Max.	
f(XIN)	Oscillation frequency	Mask ROM	Through mode	VDD = 4.0 to 5.5 V			6.0	MHz
	(with a ceramic resonator)	version		VDD = 2.7 to 5.5 V			4.4	
				VDD = 2.0 to 5.5 V			2.2	
				VDD = 1.8 to 5.5 V			1.1	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			6.0	
				VDD = 2.0 to 5.5 V			4.4	
				VDD = 1.8 to 5.5 V			2.2	
			Frequency/4, 8 mode	VDD = 2.0 to 5.5 V			6.0	
				VDD = 1.8 to 5.5 V			4.4	
		One Time PROM	Through mode	VDD = 4.0 to 5.5 V			6.0	
		version		VDD = 2.7 to 5.5 V			4.4	
				VDD = 2.5 to 5.5 V			2.2	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			6.0	
				VDD = 2.5 to 5.5 V			4.4	
			Frequency/4, 8 mode	VDD = 2.5 to 5.5 V			6.0	
f(XIN)	Oscillation frequency	VDD = 2.7 to 5.5 \	J				4.4	MHz
	(at RC oscillation) (Note)							
f(XIN)	Oscillation frequency	Mask ROM	Through mode	VDD = 4.0 to 5.5 V			4.8	MHz
	(with a ceramic resonator selected,	version		VDD = 2.7 to 5.5 V			3.2	
	external clock input)			VDD = 2.0 to 5.5 V			1.6	
				VDD = 1.8 to 5.5 V			0.8	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			4.8	
				VDD = 2.0 to 5.5 V			3.2	
				VDD = 1.8 to 5.5 V			1.6	
			Frequency/4, 8 mode	VDD = 2.0 to 5.5 V			4.8	
				VDD = 1.8 to 5.5 V			3.2	
		One Time PROM	Through mode	VDD = 4.0 to 5.5 V			4.8	
		version		VDD = 2.7 to 5.5 V			3.2	
				VDD = 2.5 to 5.5 V			1.6	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			4.8	
				VDD = 2.5 to 5.5 V			3.2	1
			Frequency/4, 8 mode	VDD = 2.5 to 5.5 V			4.8	1

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

RECOMMENDED OPERATING CONDITIONS 3

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditions		Limits			Unit
Cymbol	i didilietei	Conditions	Min.	Min. Typ.		Offic	
f(XIN)	Oscillation frequency	Mask ROM version	VDD = 2.0 to 5.5 V			50	kHz
	(with a quartz-crystal oscillator)	One Time PROM version	VDD = 2.5 to 5.5 V			50	
f(CNTR)	Timer external input frequency	CNTR0, CNTR1				f(STCK)/6	Hz
tw(CNTR)	Timer external input period	CNTR0, CNTR1 3		3/f(STCK)			s
	("H" and "L" pulse width)						
f(Sck)	Serial I/O external input frequency	Sck				f(STCK)/6	Hz
tw(Sck)	Serial I/O external input frequency	SCK		3/f(STCK)			s
	("H" and "L" pulse width)						
TPON	Power-on reset circuit	Mask ROM version	$VDD = 0 \rightarrow 1.8 \text{ V}$			100	μs
	valid supply voltage rising time	One Time PROM version	$VDD = 0 \rightarrow 2.5 \text{ V}$			100	

ELECTRICAL CHARACTERISTICS 1

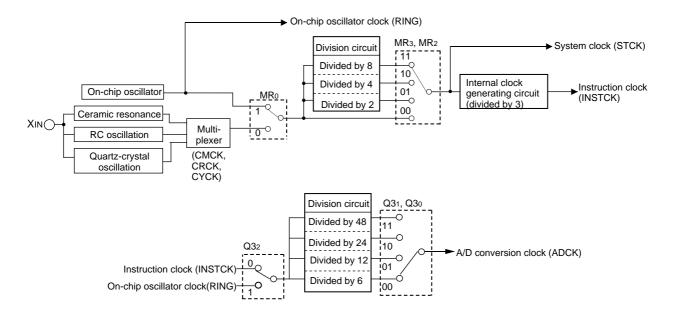
(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Test co	onditions		Limits		Unit
				Min.	Тур.	Max.	
Voh	"H" level output voltage	VDD = 5 V	IOH = −10 mA	3			V
	P0, P1, D0-D7, CNTR0, CNTR1		IOH = −3 mA	4.1			
		VDD = 3 V	IOH = −5 mA	2.1			
			IOH = −1 mA	2.4			
VOL	"L" level output voltage	VDD = 5 V	IOL = 12 mA			2	V
	P0, P1, P2, P6		IOL = 4 mA			0.9	
	SCK, SOUT	VDD = 3 V	IOL = 6 mA			0.9	
			IOL = 2 mA			0.6	
Vol	"L" level output voltage	VDD = 5 V	IOL = 5 mA			2	V
	P3, RESET		IOL = 1 mA			0.9	
		VDD = 3 V	IOL = 2 mA			0.9	
Vol	"L" level output voltage	VDD = 5 V	IOL = 15 mA			2	V
	D0-D5		IOL = 5 mA			0.9	
		VDD = 3 V	IOL = 9 mA			1.4	
			IOL = 3 mA			0.9	
Vol	"L" level output voltage	VDD = 5 V	IOL = 30 mA			2	V
	D ₆ , D ₇ , CNTR ₀ , CNTR ₁		IOL = 10 mA			0.9	
		VDD = 3 V	IOL = 15 mA			2	
			IOL = 5 mA			0.9	
lін	"H" level input current	VI = VDD	<u>'</u>			2	μΑ
	P0, P1, P2, P3, P6,	Port P6 selected					
	D0-D7, VDCE, RESET,						
	SCK, SIN, CNTR0, CNTR1,						
	INTO, INT1						
lıL	"L" level input current	VI = 0 V				-2	μΑ
	P0, P1, P2, P3, P6,	P0, P1 No pull-up					
	D0-D7, VDCE,	Port P6 selected					
	SCK, SIN, CNTR0, CNTR1,						
	INT0, INT1						
Rpu	Pull-up resistor value	VI = 0 V	VDD = 5 V	30	60	125	kΩ
	P0, P1, RESET		VDD = 3 V	50	120	250	1
VT+ - VT-	Hysteresis	VDD = 5 V	I		0.2		V
	SCK, SIN, CNTR0, CNTR1, INT0, INT1	VDD = 3 V			0.2		-
VT+ - VT-	Hysteresis RESET	VDD = 5 V			1		V
	,	VDD = 3 V			0.4		
f(RING)	On-chip oscillator clock frequency	VDD = 5 V		200	500	700	kHz
,,	,	VDD = 3 V		100	250	400	1
		Mask ROM version	VDD = 1.8 V	30	120	200	
Δf(XIN)	Frequency error	VDD = 5 V ± 10 %, Ta =	L			±17	%
· · · · · ·	(with RC oscillation,		-				'-
	error of external R, C not included)	VDD = 3 V ± 10 %, Ta =	25 °C			±17	%
	(Note)						

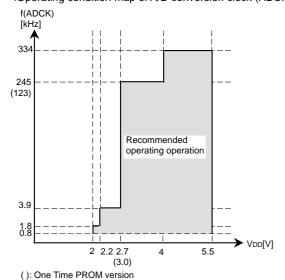
Note: When RC oscillation is used, use the external 30 or 33 pF capacitor (C).

ELECTRICAL CHARACTERISTICS 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)


Symbol		Parameter	Toot	conditions		Limits		Unit
Symbol		raiailletei	lesi	Conditions	Min.	Тур.	Max.	Oili
DD	Supply current	at active mode	VDD = 5 V	f(STCK) = f(XIN)/8		1.4	2.8	m/
		(with a ceramic resonator,	f(XIN) = 6 MHz	f(STCK) = f(XIN)/4		1.6	3.2	
		on-chip oscillator stop)		f(STCK) = f(XIN)/2		2.0	4.0	
				f(STCK) = f(XIN)		2.8	5.6	
			VDD = 5 V	f(STCK) = f(XIN)/8		1.1	2.2	m/
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		1.2	2.4	
				f(STCK) = f(XIN)/2		1.5	3.0	
				f(STCK) = f(XIN)		2.0	4.0	
			VDD = 3 V	f(STCK) = f(XIN)/8		0.4	0.8	m/
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		0.5	1.0	1
				f(STCK) = f(XIN)/2		0.6	1.2	1
				f(STCK) = f(XIN)		0.8	1.6	
		at active mode	VDD = 5 V	f(STCK) = f(XIN)/8		55	110	μA
		(with a quartz-crystal	f(XIN) = 32 kHz	f(STCK) = f(XIN)/4		60	120	
		oscillator,		f(STCK) = f(XIN)/2		65	130	
		on-chip oscillator stop)		f(STCK) = f(XIN)		70	140	1
			VDD = 3 V	f(STCK) = f(XIN)/8		12	24	μA
			f(XIN) = 32 kHz	f(STCK) = f(XIN)/4		13	26	
				f(STCK) = f(XIN)/2		14	28	
				f(STCK) = f(XIN)		15	30	
		at active mode	VDD = 5 V	f(STCK) = f(RING)/8		50	100	μΑ
		(with an on-chip oscillator,		f(STCK) = f(RING)/4		70	140	1
		f(XIN) stop)		f(STCK) = f(RING)/2		100	200	
				f(STCK) = f(RING)		150	300	
			VDD = 3 V	f(STCK) = f(RING)/8		10	20	μF
				f(STCK) = f(RING)/4		15	30	1
				f(STCK) = f(RING)/2		20	40	
				f(STCK) = f(RING)		35	70	
		at RAM back-up mode	Ta = 25 °C			0.1	3	μF
		(POF instruction execution)	VDD = 5 V				10	
			VDD = 3 V				6	

A/D CONVERTER RECOMMENDED OPERATING CONDITIONS


(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

Cumbal	Parameter	Conditi	one		Unit		
Symbol	Faranielei	Conditions		Min.	Тур.	Max.	
VDD	Supply voltage	Mask ROM version		2.0		5.5	V
		One Time PROM version	One Time PROM version			5.5	1
VIA	Analog input voltage			0		VDD	V
f(ADCK)	A/D conversion clock	Mask ROM version	VDD = 4.0 to 5.5 V	0.8		334	kHz
	frequency		VDD = 2.7 to 5.5 V	0.8		245	1
	(Note)		VDD = 2.2 to 5.5 V	0.8		3.9	1
			VDD = 2.0 to 5.5 V	0.8		1.8	1
		One Time PROM version	VDD = 4.0 to 5.5 V	0.8		334	7
			VDD = 3.0 to 5.5 V	0.8		123	7

Note: Definition of A/D conversion clock (ADCK)

<Operating condition map of A/D conversion clock (ADCK) >

A/D CONVERTER CHARACTERISTICS

(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test con	ditions	Limits			
Symbol	Parameter	Test con	aitions	Min.	Тур.	Max.	- Uni
_	Resolution					10	bits
_	Linearity error	$2.7(3.0)$ V \leq VDD \leq 5.5 V ((): 0	One Time PROM version)			±2	LSE
		Mask ROM version	$2.2 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$			±4	
_	Differential non-linearity error	2.2 (3.0) V ≤ VDD ≤ 5.5 V (():	One Time PROM version)			±0.9	LSE
Vот	Zero transition voltage	Mask ROM version	VDD = 5.12 V	0	10	20	mV
			VDD = 3.072 V	0	7.5	15	1
			VDD = 2.56 V	0	7.5	15	
		One Time PROM version	VDD = 5.12 V	0	15	30	
			VDD = 3.072 V	3	13	23	
VFST	Full-scale transition voltage	Mask ROM version	VDD = 5.12 V	5105	5115	5125	mV
			VDD = 3.072 V	3064.5	3072	3079.5	
			VDD = 2.56 V	2552.5	2560	2567.5	
		One Time PROM version	VDD = 5.12 V	5100	5115	5130	
			VDD = 3.072 V	3065	3075	3085	
_	Absolute accuracy	Mask ROM version				±8	LSB
	(Quantization error excluded)	2.0 V ≤ VDD < 2.2 V					
IAdd	A/D operating current	VDD = 5 V			150	450	μА
	(Note 1)	VDD = 3 V			75	225	
TCONV	A/D conversion time	f(XIN) = 6 MHz				31	μs
		f(STCK) = f(XIN) (XIN through	nh mode)				
		ADCK=INSTCK/6					
_	Comparator resolution					8	bits
_	Comparator error (Note 2)	Mask ROM version	VDD = 5.12 V			±20	mV
			VDD = 3.072 V			±15	1
			VDD = 2.56 V			±15	1
		One Time PROM version	VDD = 5.12 V			±30	
			VDD = 3.072 V			±23	
_	Comparator comparison time	f(XIN) = 6 MHz				4	μs
		f(STCK) = f(XIN) (XIN through	jh mode)				
		ADCK=INSTCK/6					

Notes 1: When the A/D converter is used, IADD is added to IDD (supply current).

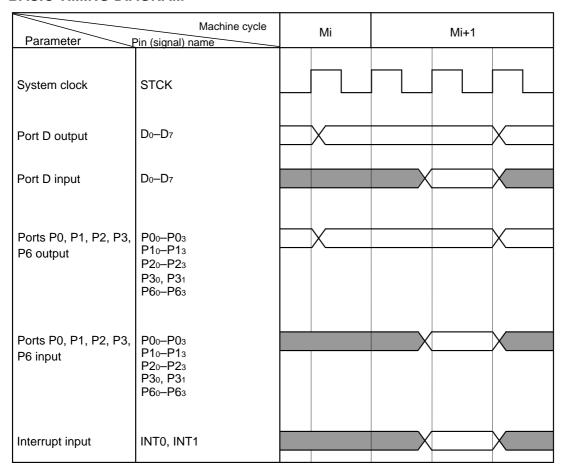
Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n = Value of register AD (n = 0 to 255)

^{2:} As for the error from the ideal value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage V_{ref} which is generated by the built-in DA converter can be obtained by the following formula.

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS


(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			
Symbol	Farameter	rest conditions	Min.	Тур.	Max.	- Unit	
VRST-	Detection voltage	Ta = 25 °C	3.3	3.5	3.7	V	
	(reset occurs) (Note 1)	Mask ROM version	2.7		4.2		
		One Time PROM version	2.6		4.2		
VRST+	Detection voltage	Ta = 25 °C	3.5	3.7	3.9	V	
	(reset release) (Note 2)	Mask ROM version	2.9		4.4		
		One Time PROM version	2.8		4.4	1	
VRST+-	Detection voltage hysteresis			0.2		V	
VRST-							
IRST	Operation current (Note 3)	VDD = 5 V		50	100	μΑ	
		VDD = 3 V		30	60		
Trst	Detection time	$VDD \rightarrow (VRST0.1 \text{ V}) \text{ (Note 4)}$		0.2	1.2	ms	

Notes 1: The detected voltage (VRST-) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

- 2: The detected voltage (VRST+) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.
- 3: When the voltage drop detection circuit is used (VDCE pin = "H"), IRST is added to IDD (power current).
- 4: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST- 0.1 V].

BASIC TIMING DIAGRAM

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4518 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 23 shows the product of built-in PROM version. Figure 75 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

Table 23 Product of built-in PROM version

Part number	PROM size RAM s (X 10 bits) (X 4 bits)		Package	ROM type
M34518E8FP	8192 words	384 words	PLQP0032GB-A	One Time PROM [shipped in blank]
M34518E8SP	8192 words	384 words	PRDP0032BA-A	One Time PROM [shipped in blank]

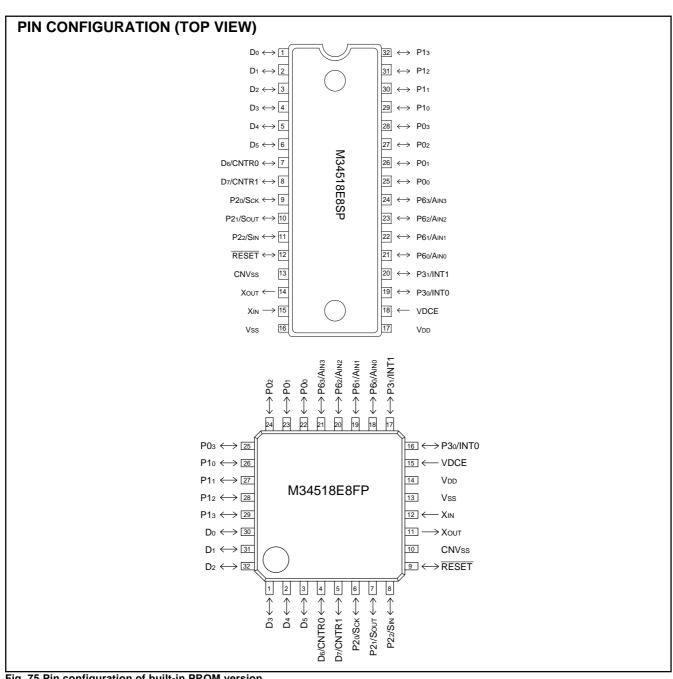


Fig. 75 Pin configuration of built-in PROM version

(1) PROM mode

The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM.

In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K.

Programming adapter is listed in Table 24. Contact addresses at the end of this data sheet for the appropriate PROM programmer.

• Writing and reading of built-in PROM

Programming voltage is 12.5 V. Write the program in the PROM of the built-in PROM version as shown in Figure 76.

(2) Notes on handling

- ①A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ②For the One Time PROM version shipped in blank, Renesas Technology Corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 77 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

(3) Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One Time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

Table 24 Programming adapter

Microcomputer	Name of Programming Adapter	
M34518E8FP	PCA7442FP	
M34518E8SP	PCA7442SP	

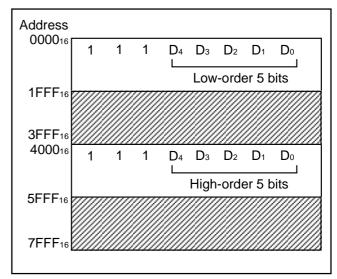


Fig. 76 PROM memory map

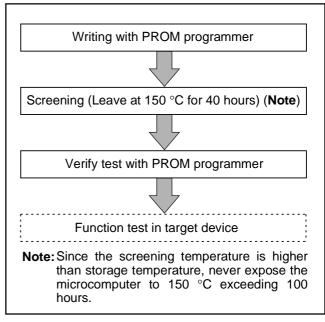
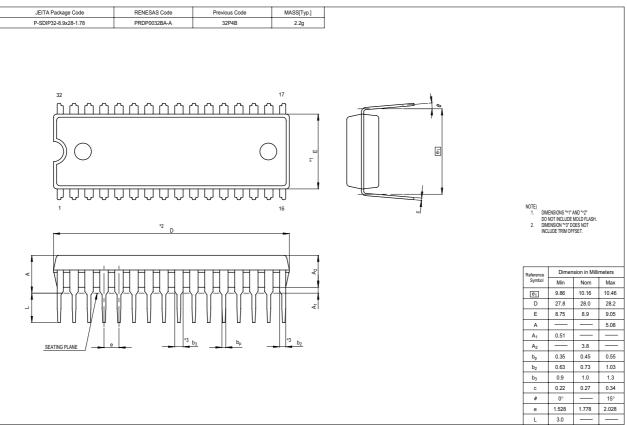
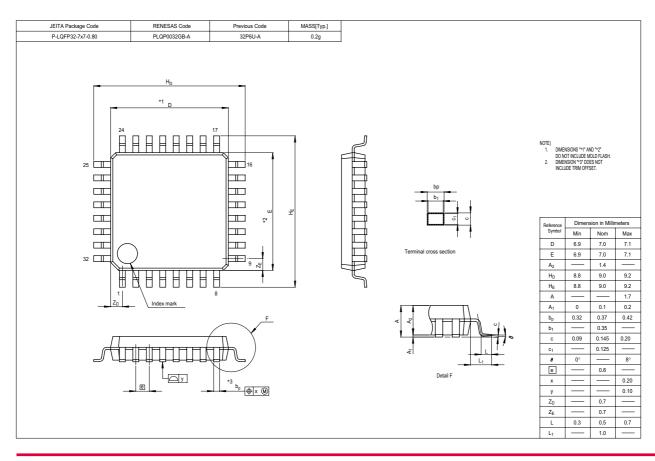




Fig. 77 Flow of writing and test of the product shipped in blank

PACKAGE OUTLINE

REVISION HISTORY

4518 Group Data Sheet

Rev.	Date	Description	
		Page	Summary
1.00	Jan. 14, 2003	_	First edition issued
	Apr. 15, 2003		Some values of the following table are revised. RECOMMENDED OPERATING CONDITIONS 1; • Supply voltage (when quartz-crystal oscillator is used)
		147	RAM back voltage RECOMMENDED OPERATING CONDITIONS 3; Oscillation fraguency (with a greater or stall assillator)
		150	 Oscillation frequency (with a quartz-crystal oscillator) A/D CONVERTER RECOMMENDED OPERATING CONDITIONS; Supply voltage
		151	 A/D conversion clock frequency A/D CONVERTER CHARACTERISTCS; Linearity error
		152	 Differential non-linearity error Zero transition voltage Full-scale transition voltage Comparator error VOLTAGE DROP DETECTION CIRCUIT; Detection voltage (reset occurs)
			Detection voltage (reset release)
3.00	Jul. 27, 2004	All pages 4 5 15 25 28 29 33 34 39 40 44 45 70 72 73 75 76 77 85	Words standardized: On-chip oscillator, A/D converter PERFORMANCE OVERVIEW: Power dissipation revised. PIN DESCRIPTION: Description of RESET pin revised. Port block diagram (7): Period measurement circuit added. Fig.17: Period measurement circuit added. Fig.20 revised. Fig.23 revised. Fig.26: Note added. Table 10 W13: (Note 2) added, W33: (Note 2) → (Note 3). (12): Some description added. (14): Some description added. Some description added. Fig.33: "DI" instruction added. Table 11: Relative accuracy revised. Fig.46: SRST instruction added. (1) Timer 4: Some description added. Fig.64 revised. Fig.67 revised. Note on Power Source Voltage added. I13, I12: (Note 2) added, and Note 2 added. SNZ0, SNZ1 revised.
3.01	Jun.15, 2005	154	Fig.73 revised. Delete the following: "PRELIMINARY". Package name revised. Pin configuration: Package name revised.
		4 41	PERFORMANCE OVERVIEW: Package name revised. •Prescaler, Timer 1, Timer 2 and Timer 3 count start timing and count time when operation starts, •Timer 4 count start timing and count time when operation starts added.

REVISION HISTORY

4518 Group Data Sheet

Rev.	Date	Description	
		Page	Summary
3.01	Jun.15, 2005	72 146 155 157	① Prescaler, Timer 1, Timer 2 and Timer 3 count start timing and count time when operation starts, ④ Timer 4 count start timing and count time when operation starts added. ABSOLUTE MAXIMUM RATINGS: Package name revised. BUILT-IN PROM VERSION: Package name revised. PACKAGE OUTLINE revised.

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- A. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> 2-796-3115, Fax: <82> 2-796-2145

Renesas Technology Malaysia Sdn. Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510