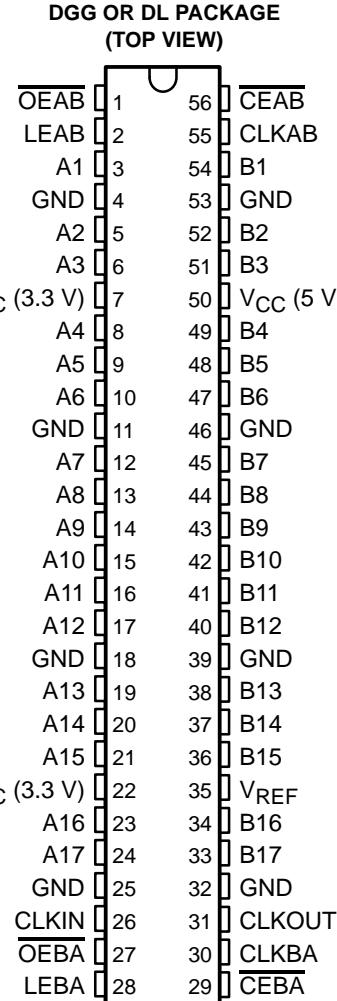


SN74GTL16616
17-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER
WITH BUFFERED CLOCK OUTPUTS

SCBS481H – JUNE 1994 – REVISED AUGUST 2001


- Member of Texas Instruments' Widebus™ Family
- UBT™ Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Modes
- OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- GTL Buffered CLKAB Signal (CLKOUT)
- Translates Between GTL/GTL+ Signal Levels and LVTTL Logic Levels
- Supports Mixed-Mode (3.3 V and 5 V) Signal Operation on A-Port and Control Inputs
- Equivalent to '16601 Function
- I_{off} Supports Partial-Power-Down Mode Operation
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors on A Port
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A)

description

The SN74GTL16616 is a 17-bit UBT™ transceiver that provides LVTTL-to-GTL/GTL+ and GTL/GTL+-to-LVTTL signal-level translation.

Combined D-type flip-flops and D-type latches allow for transparent, latched, clocked, and clocked-enabled modes of data transfer identical to the '16601 function. Additionally, this device provides for a copy of CLKAB at GTL/GTL+ signal levels (CLKOUT) and conversion of a GTL/GTL+ clock to LVTTL logic levels (CLKIN). This device provides an interface between cards operating at LVTTL logic levels and a backplane operating at GTL/GTL+ signal levels. Higher-speed operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and OEC™ circuitry.

The user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or the preferred higher noise margin GTL+ ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels. GTL+ is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The B port normally operates at GTL or GTL+ signal levels, while the A-port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. V_{REF} is the reference input voltage for the B port. V_{CC} (5 V) supplies the internal and GTL circuitry while V_{CC} (3.3 V) supplies the LVTTL output buffers.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

OEC, UBT, and Widebus are trademarks of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2001, Texas Instruments Incorporated

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

description (continued)

Data flow in each direction is controlled by output-enable (\overline{OEAB} and \overline{OEBA}), latch-enable ($LEAB$ and $LEBA$), and clock ($CLKAB$ and $CLKBA$) inputs. The clock can be controlled by the clock-enable ($CEAB$ and $CEBA$) inputs. For A-to-B data flow, the device operates in the transparent mode when $LEAB$ is high. When $LEAB$ is low, the A data is latched if \overline{CEAB} is low and $CLKAB$ is held at a high or low logic level. If $LEAB$ is low, the A-bus data is stored in the latch/flip-flop on the low-to-high transition of $CLKAB$ if $CEAB$ also is low. When \overline{OEAB} is low, the outputs are active. When $OEAB$ is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B, but uses \overline{OEBA} , $LEBA$, $CLKBA$, and $CEBA$.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

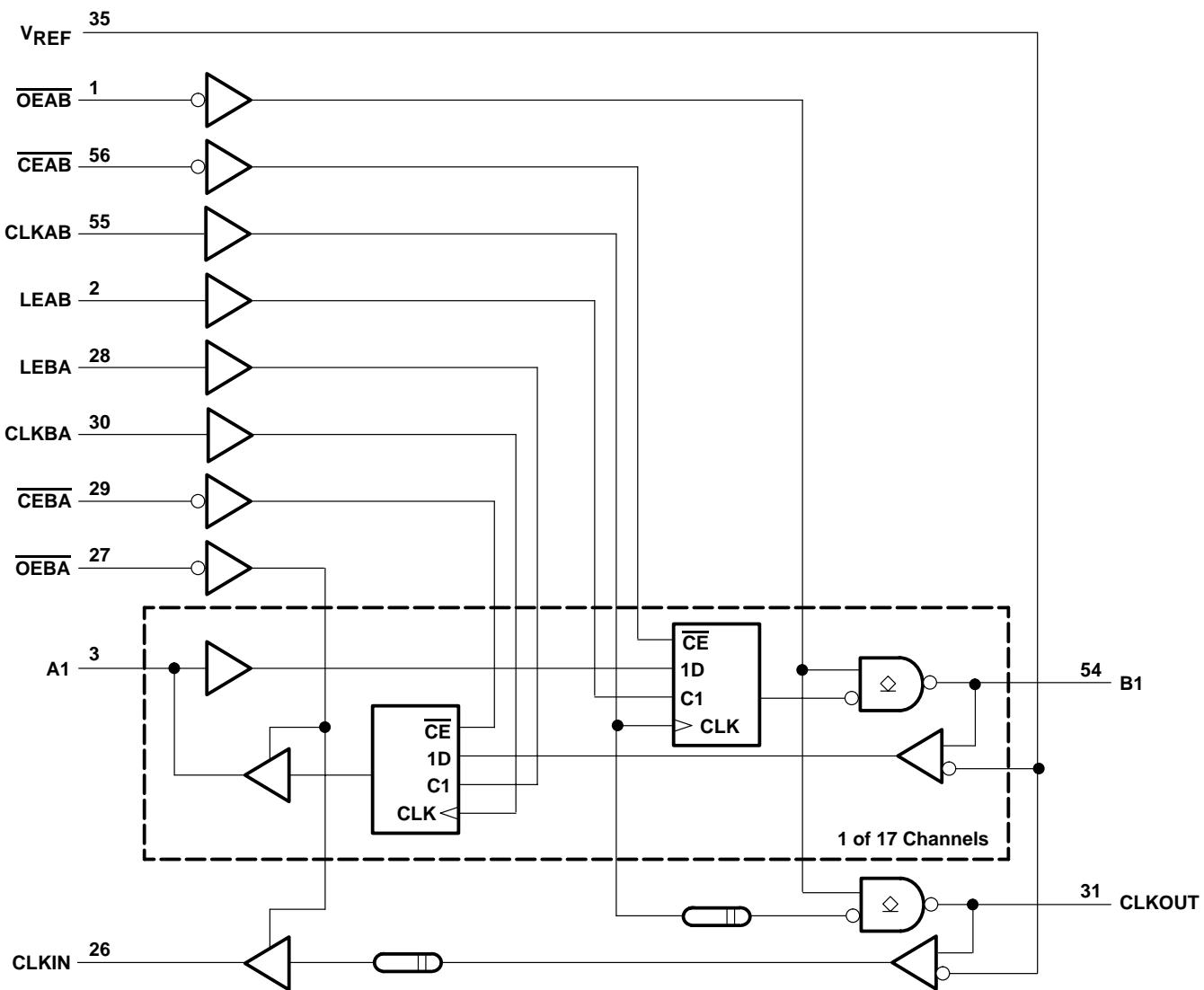
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION

T_A	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	SSOP – DL	Tube	SN74GTL16616DL	GTL16616
		Tape and reel	SN74GTL16616DLR	GTL16616
	TSSOP – DGG	Tape and reel	SN74GTL16616DGGR	GTL16616

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE[‡]


INPUTS					OUTPUT B	MODE
CEAB	OEAB	LEAB	CLKAB	A		
X	H	X	X	X	Z	Isolation
L	L	L	H	X	$B_0^{\$}$	Latched storage of A data
	L	L	L	X	$B_0^{\#}$	
X	L	H	X	L	L	Transparent
X	L	H	X	H	H	
L	L	L	\uparrow	L	L	Clocked storage of A data
	L	L	\uparrow	H	H	
H	L	L	X	X	$B_0^{\#}$	Clock inhibit

[‡] A-to-B data flow is shown. B-to-A data flow is similar, but uses \overline{OEBA} , $LEBA$, $CLKBA$, and $CEBA$. The condition when \overline{OEAB} and \overline{OEBA} are both low at the same time is not recommended.

^{\$} Output level before the indicated steady-state input conditions were established, provided that $CLKAB$ was high before $LEAB$ went low

[#] Output level before the indicated steady-state input conditions were established

logic diagram (positive logic)

SN74GTL16616**17-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER
WITH BUFFERED CLOCK OUTPUTS**

SCBS481H – JUNE 1994 – REVISED AUGUST 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} : 3.3 V	–0.5 V to 4.6 V
5 V	–0.5 V to 7 V
Input voltage range, V_I (see Note 1): A-port and control inputs	–0.5 V to 7 V
B port and V_{REF}	–0.5 V to 4.6 V
Voltage range applied to any output in the high or power-off state, V_O		
(see Note 1): A port	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I_O : A port	128 mA
B port	80 mA
Current into any A-port output in the high state, I_O (see Note 2)	64 mA
Continuous current through each V_{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$)	–50 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	64°C/W
DL package	56°C/W
Storage temperature range, T_{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
 3. The package thermal impedance is calculated in accordance with JEDEC 51-7.

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	3.3 V	3.15	3.3	3.45	V
		5 V	4.75	5	5.25	
V_{TT}	Termination voltage	GTL	1.14	1.2	1.26	V
		GTL+	1.35	1.5	1.65	
V_{REF}	Reference voltage	GTL	0.74	0.8	0.87	V
		GTL+	0.87	1	1.1	
V_I	Input voltage	B port			V_{TT}	V
		Except B port			5.5	
V_{IH}	High-level input voltage	B port	$V_{REF}+50$ mV			V
		Except B port	2			
V_{IL}	Low-level input voltage	B port			$V_{REF}-50$ mV	V
		Except B port			0.8	
I_{IK}	Input clamp current				–18	mA
I_{OH}	High-level output current	A port			–32	mA
I_{OL}	Low-level output current	A port			64	mA
		B port			40	
T_A	Operating free-air temperature		–40		85	°C

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.
 5. Normal connection sequence is GND first, $V_{CC} = 5$ V second, and $V_{CC} = 3.3$ V, I/O, control inputs, V_{TT} and V_{REF} (any order) last.
 6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.
 7. V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT} .

SN74GTL16616
17-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER
WITH BUFFERED CLOCK OUTPUTS

SCBS481H – JUNE 1994 – REVISED AUGUST 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYPT	MAX	UNIT
V_{IK}		V_{CC} (3.3 V) = 3.15 V, V_{CC} (5 V) = 4.75 V, $I_I = -18 \text{ mA}$			-1.2	V
V_{OH}	A port	V_{CC} (3.3 V) = 3.15 V to 3.45 V, V_{CC} (5 V) = 4.75 V to 5.25 V, $I_{OH} = -100 \mu\text{A}$	$V_{CC} - 0.2$			V
		$I_{OH} = -8 \text{ mA}$	2.4			
		$I_{OH} = -32 \text{ mA}$	2			
V_{OL}	A port	V_{CC} (3.3 V) = 3.15 V, V_{CC} (5 V) = 4.75 V	$I_{OL} = 100 \mu\text{A}$		0.2	V
			$I_{OL} = 16 \text{ mA}$		0.4	
			$I_{OL} = 32 \text{ mA}$		0.5	
			$I_{OL} = 64 \text{ mA}$		0.55	
	B port	V_{CC} (3.3 V) = 3.15 V, V_{CC} (5 V) = 4.75 V, $I_{OL} = 40 \text{ mA}$			0.4	
I_I	Control inputs	$V_{CC} = 0$ or 3.45 V, V_{CC} (5 V) = 0 or 5.25 V, $V_I = 5.5 \text{ V}$			10	μA
	A port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V	$V_I = 5.5 \text{ V}$		20	
			$V_I = V_{CC}$ (3.3 V)		1	
			$V_I = 0$		-30	
	B port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V	$V_I = V_{CC}$ (3.3 V)		5	
			$V_I = 0$		-5	
I_{off}		$V_{CC} = 0$, V_I or $V_O = 0$ to 4.5 V			100	μA
$I_I(\text{hold})$	A port	V_{CC} (3.3 V) = 3.15 V, V_{CC} (5 V) = 4.75 V	$V_I = 0.8 \text{ V}$		75	μA
			$V_I = 2 \text{ V}$		-75	
			$V_I = 0$ to V_{CC} (3.3 V) [†]		± 500	
I_{OZH}	A port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, $V_O = 3 \text{ V}$			1	μA
	B port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, $V_O = 1.2 \text{ V}$			10	
I_{OZL}	A port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, $V_O = 0.5 \text{ V}$			-1	μA
	B port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, $V_O = 0.4 \text{ V}$			-10	
I_{CC} (3.3 V)	A or B port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, $I_O = 0$, $V_I = V_{CC}$ (3.3 V) or GND	Outputs high		1	mA
			Outputs low		5	
			Outputs disabled		1	
I_{CC} (5 V)	A or B port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, $I_O = 0$, $V_I = V_{CC}$ (3.3 V) or GND	Outputs high		120	mA
			Outputs low		120	
			Outputs disabled		120	
$\Delta I_{CC}^{\$}$		V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, A-port or control inputs at V_{CC} (3.3 V) or GND, One input at 2.7 V			1	mA
C_i	Control inputs	$V_I = 3.15 \text{ V}$ or 0			3.5	pF
C_{io}	A port	$V_O = 3.15 \text{ V}$ or 0			12	pF
	B port	Per IEEE Std 1194.1			5	

[†] All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, $T_A = 25^\circ\text{C}$.

[‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

[§] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN74GTL16616**17-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER
WITH BUFFERED CLOCK OUTPUTS**

SCBS481H – JUNE 1994 – REVISED AUGUST 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V for GTL (unless otherwise noted) (see Figure 1)

			MIN	MAX	UNIT
f_{clock}	Clock frequency		95		MHz
t_w	Pulse duration	LEAB or LEBA high	3.3	ns	
		CLKAB or CLKBA high or low	5.5		
t_{su}	Setup time	A before CLKAB↑	1.3	ns	
		B before CLKBA↑	2.5		
		A before LEAB↓	0		
		B before LEBA↓	1.1		
		CEAB before CLKAB↑	2.2		
		CEBA before CLKBA↑	2.7		
t_h	Hold time	A after CLKAB↑	1.6	ns	
		B after CLKBA↑	0.4		
		A after LEAB↓	4		
		B after LEBA↓	3.5		
		CEAB after CLKAB↑	1.1		
		CEBA after CLKBA↑	0.9		

SN74GTL16616
**17-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER
 WITH BUFFERED CLOCK OUTPUTS**
 SCBS481H – JUNE 1994 – REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V for GTL (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP†	MAX	UNIT	
f_{max}			95			MHz	
t_{PLH}	A	B	1.7	3	4.4	ns	
t_{PHL}			1.4	2.8	4.5		
t_{PLH}	LEAB	B	2.3	3.8	5.4	ns	
t_{PHL}			2.2	3.7	5.3		
t_{PLH}	CLKAB	B	2.4	4	5.7	ns	
t_{PHL}			2.1	3.7	5.4		
t_{PLH}	CLKAB	CLKOUT	4.7	6.1	8.1	ns	
t_{PHL}			5.7	7.9	11.3		
t_{PHL}	OEAB	B or CLKOUT	2.1	3.6	5.1	ns	
t_{PLH}			2.1	3.8	5.6		
t_r	Transition time, B outputs (0.5 V to 1 V)		1.2			ns	
t_f	Transition time, B outputs (1 V to 0.5 V)		0.7			ns	
t_{PLH}	B	A	1.7	4	6.7	ns	
t_{PHL}			1.4	2.9	4.7		
t_{PLH}	LEBA	A	2.4	3.8	5.8	ns	
t_{PHL}			2	3	4.6		
t_{PLH}	CLKBA	A	2.6	4	6	ns	
t_{PHL}			2.2	3.4	4.9		
t_{PLH}	CLKOUT	CLKIN	7.4	10	14.4	ns	
t_{PHL}			6.1	8.1	11.7		
t_{en}	OEBA	A or CLKIN	2.8	5.3	7.8	ns	
t_{dis}			2.7	4.3	6.4		

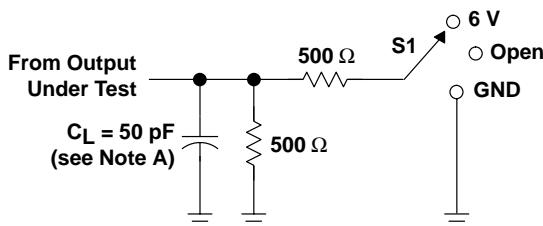
† All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

SN74GTL16616**17-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER
WITH BUFFERED CLOCK OUTPUTS**

SCBS481H – JUNE 1994 – REVISED AUGUST 2001

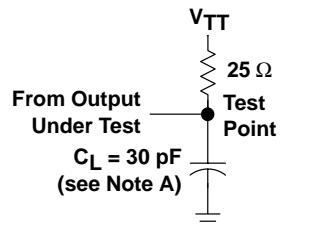
timing requirements over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.5$ V and $V_{REF} = 1$ V for GTL+ (unless otherwise noted) (see Figure 1)

		MIN	MAX	UNIT
f_{clock}	Clock frequency		95	MHz
t_w	Pulse duration	LEAB or LEBA high	3.3	ns
		CLKAB or CLKBA high or low	5.5	
t_{su}	Setup time	A before CLKAB \uparrow	1.3	ns
		B before CLKBA \uparrow	2.3	
		A before LEAB \downarrow	0	
		B before LEBA \downarrow	1.3	
		CEAB before CLKAB \uparrow	2.2	
		CEBA before CLKBA \uparrow	2.7	
t_h	Hold time	A after CLKAB \uparrow	1.6	ns
		B after CLKBA \uparrow	0.6	
		A after LEAB \downarrow	4	
		B after LEBA \downarrow	3.5	
		CEAB after CLKAB \uparrow	1.1	
		CEBA after CLKBA \uparrow	0.9	

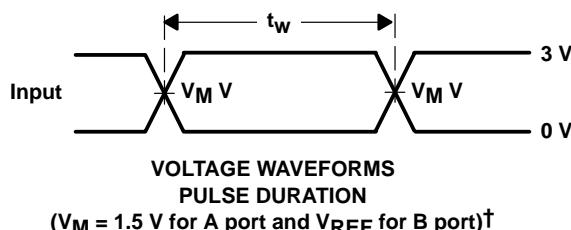
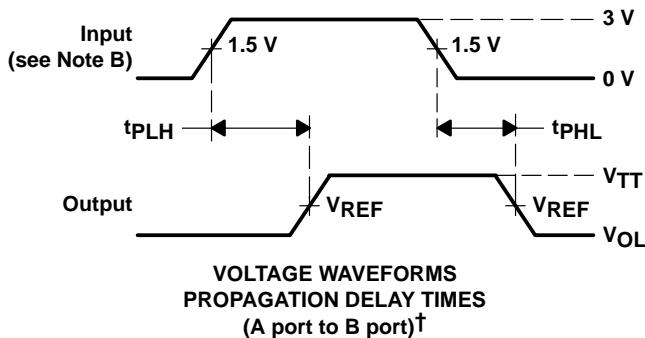
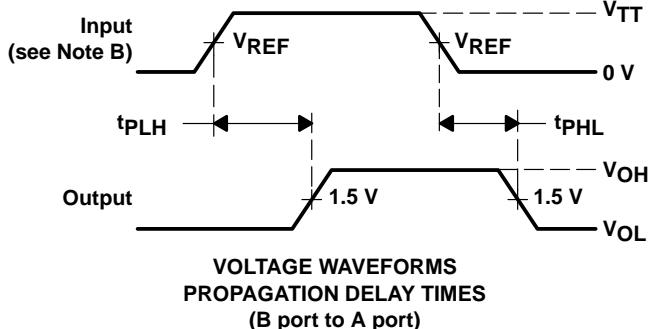
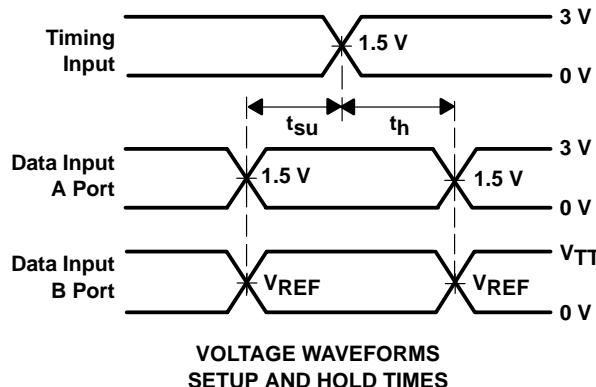
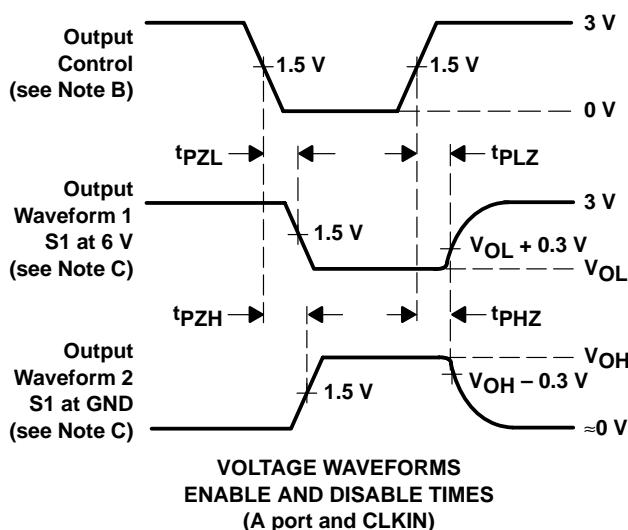

SN74GTL16616
17-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVER
WITH BUFFERED CLOCK OUTPUTS
SCBS481H – JUNE 1994 – REVISED AUGUST 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.5$ V and $V_{REF} = 1$ V for GTL+ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP†	MAX	UNIT	
f_{max}			95			MHz	
t_{PLH}	A	B	1.7	3	4.4	ns	
t_{PHL}			1.4	2.9	4.6		
t_{PLH}	LEAB	B	2.3	3.8	5.4	ns	
t_{PHL}			2.2	3.7	5.4		
t_{PLH}	CLKAB	B	2.4	4	5.7	ns	
t_{PHL}			2.1	3.8	5.5		
t_{PLH}	CLKAB	CLKOUT	4.7	6.1	8.1	ns	
t_{PHL}			5.7	8	11.4		
t_{PLH}	OEAB	B or CLKOUT	2.1	3.6	5.1	ns	
t_{PHL}			2.1	3.8	5.7		
t_r	Transition time, B outputs (0.5 V to 1 V)		1.4			ns	
t_f	Transition time, B outputs (1 V to 0.5 V)		1			ns	
t_{PLH}	B	A	1.6	3.9	6.6	ns	
t_{PHL}			1.3	2.8	4.5		
t_{PLH}	LEBA	A	2.4	3.8	5.8	ns	
t_{PHL}			2	3	4.6		
t_{PLH}	CLKBA	A	2.6	4	6	ns	
t_{PHL}			2.2	3.4	4.9		
t_{PLH}	CLKOUT	CLKIN	7.3	9.9	14.3	ns	
t_{PHL}			6	8	11.5		
t_{en}	OEBA	A or CLKIN	2.8	5.3	7.8	ns	
t_{dis}			2.7	4.3	6.4		


† All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

PARAMETER MEASUREMENT INFORMATION






 $V_{TT} = 1.2 \text{ V}$, $V_{REF} = 0.8 \text{ V}$ FOR GTL AND $V_{TT} = 1.5 \text{ V}$, $V_{REF} = 1 \text{ V}$ FOR GTL+

LOAD CIRCUIT FOR A OUTPUTS

TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	6 V
t_{PHZ}/t_{PZH}	GND

LOAD CIRCUIT FOR B OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATION
($V_M = 1.5 \text{ V}$ for A port and V_{REF} for B port)[†]VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
(A port to B port)[†]VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
(B port to A port)VOLTAGE WAVEFORMS
SETUP AND HOLD TIMESVOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
(A port and CLKIN)[†] All control inputs are TTL levels.NOTES: A. C_L includes probe and jig capacitance.B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$.

C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with *statements different from or beyond the parameters* stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: [Standard Terms and Conditions of Sale for Semiconductor Products](http://www.ti.com/sc/docs/stdterms.htm). www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265