

54283/DM74283 4-Bit Binary Full Adder (with Fast Carry)

General Description

The '283 high speed 4-bit binary full adders with internal carry lookahead accept two 4-bit binary words (A0-A3, B0-B3) and a Carry input (C0). They generate the binary Sum outputs (S0-S3) and the Carry output (C4) from the most significant bit. They operate with either active HIGH or active LOW operands (positive or negative logic).

Connection Diagram

TL/F/9786-1

Order Number 54283DMQB, 54283FMQB or DM74283N See NS Package Number J16A, N16E or W16A

Pin Names	Description
A0-A3	A Operand Inputs
B0-B3	B Operand Inputs
C0	Carry Input
S0-S3	Sum Outputs
C4	Carry Output

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 5.5V
Operating Free Air Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		54283			Units		
	Tarameter	Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.8			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			16			16	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Con	ditions	Min	Typ (Note 1)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I$	= -12 mA			-1.5	٧	
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{O}$ $V_{IL} = Max$	_H = Max	2.4	3.4		V	
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_O$ $V_{IH} = Min$	_L = Max		0.2	0.4	V	
II	Input Current @ Max Input Voltage	$V_{CC} = Max, V$	_I = 5.5V			1	mA	
I _{IH}	High Level Input Current	V _{CC} = Max, V	_I = 2.4V			40	μΑ	
I _{IL}	Low Level Input Current	V _{CC} = Max, V	_I = 0.4V			-1.6	mA	
los	Short Circuit	V _{CC} = Max	54	-20		-55	mA	
	Output Current at S _n	(Note 2)	DM74	-20		-55	1 111/4	
los	Short Circuit	V _{CC} = Max	54	-20		-70	mA	
	Output Current at C4 (Note 2)	(Note 2)	DM74	-18		-70	IIIA	
Іссн	I _{CCH} Supply Current with V _{CC} = Outputs High		54			99	mA	
			DM74			110	IIIA	

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time.

Switching Characteristics

 $V_{CC} = +5.0V$, $T_A = +25$ °C (See Section 1 for waveforms and load configurations)

Symbol	Parameter	C _L = 15 pi	Units	
	Tarameter	Min	Max	Onits
t _{PLH}	Propagation Delay C0 or S _n		21 21	ns
t _{PLH} t _{PHL}	Propagation Delay A _n or B _n to S _n		24 24	ns
t _{PLH} t _{PHL}	Propagation Delay C0 to C4		14 16	ns
t _{PLH}	Propagation Delay A _n or B _n to C4		14 16	ns

Functional Description

The '283 adds two 4-bit binary words (A plus B) plus the incoming carry C0. The binary sum appears on the Sum (S0-S3) and outgoing carry (C4 outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two.

$$2^0\ (A0\ +\ B0\ +\ C0)\ +\ 2^1\ (A1\ +\ B1)\ +\ 2^2\ (A2\ +\ B2)\ +\ 2^3\ (A3\ +\ B3)\ =\ S0\ +\ 2S1\ +\ 4S2\ +\ 8S3\ +\ 16C4$$
 Where (+) = plus

Interchanging inputs of equal weight does not affect the operation. Thus CO, AO, BO can be arbitrarily assigned to pins 5, 6 and 7. Due to the symmetry of the binary add function, the '283 can be used either with all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). Note that if CO is not used it must be tied LOW for active HIGH logic or tied HIGH for active LOW logic.

Example:

	CO	ΑO	A 1	A2	А3	ВО	В1	B2	Вз	S0	S1	S2	S3	C4
Logic Levels	L	L	Н	L	Н	Н	L	L	Н	Η	Н	L	L	Н
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

Active HIGH: 0 + 10 + 9 = 3 + 16 Active LOW: 1 + 5 + 6 = 12 + 0

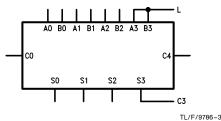
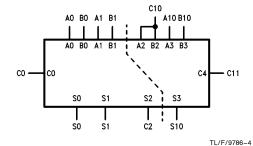
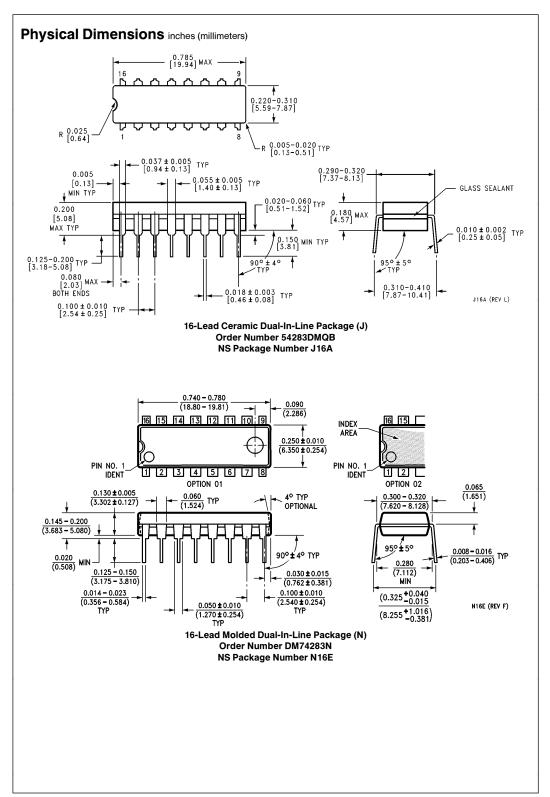
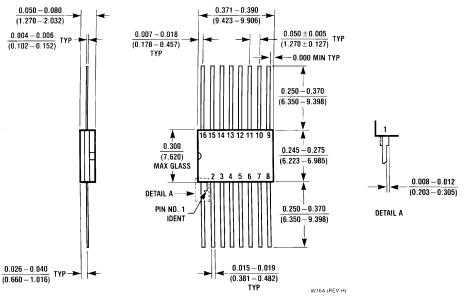


FIGURE a. 3-Bit Adder

Due to pin limitations, the intermediate carries of the '283 are not brought out for use as inputs or outputs. However, other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure a shows a way of making a 3-bit adder. Tying the operand inputs of the fourth adder (A3, B3) LOW makes S3 dependent ony on, and equal to, the carry from the third adder. Using somewhat the same principle, Figure b shows a way of dividing the '283 into a 2-bit and a 1-bit adder. The third stage adder (A2, B2, S2) is used merely as a means of getting a carry (C10) signal into the fourth stage (via A2 and B2) and bringing out the carry from the second stage on S2. Note that as long as A2 and B2 are the same, whether HIGH or LOW, they do not infuence S2. Similarly, when A2 and B2 are the same the carry into the third stage does not influence they carry out of the third stage. Figure c shows a method of implementing a 5-input encoder, where the inputs are equally weighted. The outputs S0, S1 and S2 present a binary number equal to the number of inputs I1-I5 that are true. Figure d shows one method of implementing a 5-input majority gate. When three or more of the inputs I1-I5 are true, the output M5 is true.


FIGURE b. 2-Bit and 1-Bit Adders

Functional Description (Continued) 14 15 A0 B0 A1 B1 A2 B2 A3 B3 **S**3 TL/F/9786-5 FIGURE c. 5-Input Encoder TL/F/9786-6 FIGURE d. 5-Input Majority Gate **Logic Symbol** 6 3 2 14 15 12 11 AO BO A1 B1 A2 B2 A3 B3 10 TL/F/9786-2 $V_{CC} = Pin 16$ GND = Pin 8**Logic Diagram**

TL/F/9786-7

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54283FMQB NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.

13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408