

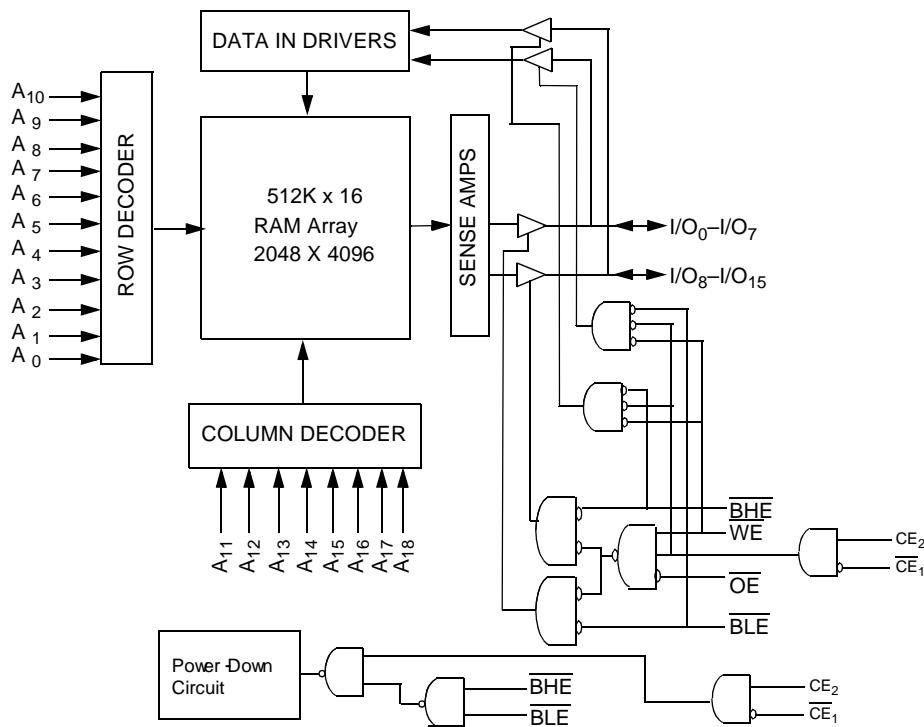
512K x 16 Static RAM

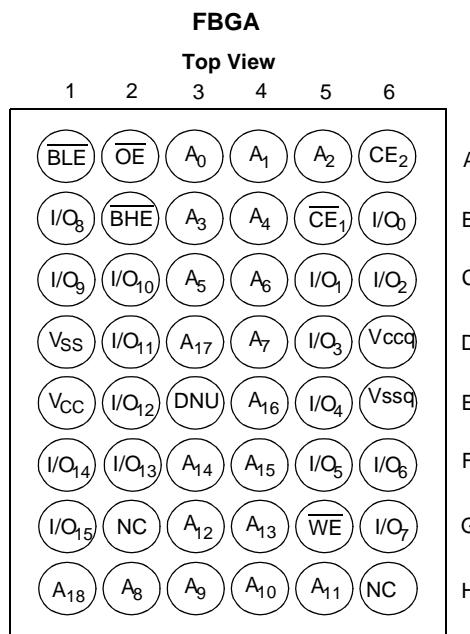
Features

- **High Speed**
 - 55 ns and 70 ns availability
- **Low voltage range:**
 - CY62157CV18: 1.65V–1.95V
- **Ultra-low active power**
 - Typical Active Current: 0.5 mA @ $f = 1$ MHz
 - Typical Active Current: 4 mA @ $f = f_{max}$ (70 ns speed)
- **Low standby power**
- **Easy memory expansion with \overline{CE}_1 , \overline{CE}_2 and \overline{OE} features**
- **Automatic power-down when deselected**
- **CMOS for optimum speed/power**

Functional Description

The CY62157CV18 is a high-performance CMOS static RAM organized as 512K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling.


The device can also be put into standby mode when deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW or both \overline{BHE} and \overline{BLE} are HIGH). The input/output pins (I/O_0 through I/O_{15}) are placed in a high-impedance state when: deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (\overline{BHE} , \overline{BLE} HIGH), or during a write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH and \overline{WE} LOW).


Writing to the device is accomplished by taking Chip Enables (\overline{CE}_1 LOW and \overline{CE}_2 HIGH) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins (I/O_0 through I/O_7), is written into the location specified on the address pins (A_0 through A_{18}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins (I/O_8 through I/O_{15}) is written into the location specified on the address pins (A_0 through A_{18}).

Reading from the device is accomplished by taking Chip Enable (\overline{CE}_1 LOW and \overline{CE}_2 HIGH) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O_0 to I/O_7 . If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O_8 to I/O_{15} . See the truth table at the back of this datasheet for a complete description of read and write modes.

The CY62157CV18 is available in a 48-ball FBGA package.

Logic Block Diagram

Pin Configuration^[1, 2]

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to +150°C

Ambient Temperature with

Power Applied -55°C to +125°C

Supply Voltage to Ground Potential -0.2V to +2.4V

DC Voltage Applied to Outputs
in High Z State^[3] -0.2V to V_{CC} + 0.2V

DC Input Voltage^[3] -0.2V to V_{CC} + 0.2V

Output Current into Outputs (LOW) 20 mA

Static Discharge Voltage >2001V
(per MIL-STD-883, Method 3015)

Latch-Up Current >200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
CY62157CV18	Industrial	-40°C to +85°C	1.65V to 1.95V

Product Portfolio

Product	V _{CC} Range			Speed	Power Dissipation (Industrial)			
					Operating (I _{CC})		Standby (I _{SB2})	
					f = 1 MHz		Typ. ^[4]	Max.
	Min.	Typ. ^[4]	Max.		0.5 mA	3 mA		
CY62157CV18	1.65V	1.8V	1.95V	55 ns	0.5 mA	3 mA	5 mA	15 mA
				70 ns	0.5 mA	3 mA	4 mA	12 mA
							1.5 μ A	20 μ A

Notes:

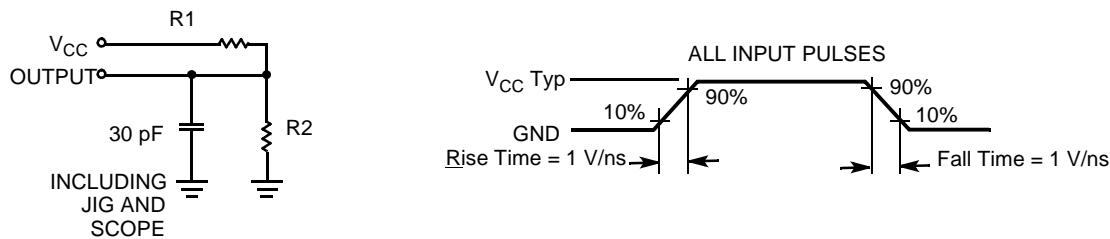
1. NC pins are not connected to the die.
2. E3 (DNU) can be left as NC or V_{SS} to ensure proper application.
3. V_{IIL(min.)} = -2.0V for pulse durations less than 20 ns.
4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		CY62157CV18-55			CY62157CV18-70			Unit
				Min.	Typ. ^[4]	Max.	Min.	Typ. ^[4]	Max.	
V_{OH}	Output HIGH Voltage	$I_{OH} = -0.1$ mA	$V_{CC} = 1.65V$	1.4			1.4			V
V_{OL}	Output LOW Voltage	$I_{OL} = 0.1$ mA	$V_{CC} = 1.65V$			0.2			0.2	V
V_{IH}	Input HIGH Voltage			1.4		$V_{CC} +0.2V$	1.4		$V_{CC} +0.2V$	V
V_{IL}	Input LOW Voltage			-0.2		0.4	-0.2		0.4	V
I_{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$		-1		+1	-1		+1	μA
I_{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled		-1		+1	-1		+1	μA
I_{CC}	V_{CC} Operating Supply Current	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 1.95V$		5	15		4	12	mA
		$f = 1$ MHz	$I_{OUT} = 0$ mA CMOS levels		0.5	3		0.5	3	mA
I_{SB1}	Automatic CE Power-Down Current—CMOS Inputs	$\overline{CE}_1 \geq V_{CC} - 0.2V$, $CE_2 \leq 0.2V$ $V_{IN} \geq V_{CC} - 0.2V$, $V_{IN} \leq 0.2V$ $f = f_{MAX}$ (Address and Data Only), $f = 0$ (OE, WE, BHE, and BLE)			1.5	20		1.5	20	μA
I_{SB2}	Automatic CE Power-Down Current—CMOS Inputs	$\overline{CE}_1 \geq V_{CC} - 0.2V$ or $CE_2 \leq 0.2V$, $V_{IN} \geq V_{CC} - 0.2V$ or $V_{IN} \leq 0.2V$, $f = 0$, $V_{CC} = 1.95V$								

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^\circ C$, $f = 1$ MHz, $V_{CC} = V_{CC(\text{typ})}$	6	pF
C_{OUT}	Output Capacitance		8	pF


Thermal Resistance

Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance (Junction to Ambient) ^[5]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	$^\circ C/W$
Thermal Resistance (Junction to Case) ^[5]		Θ_{JC}	16	$^\circ C/W$

Note:

5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Parameters	1.8V	Unit
R1	13500	Ohms
R2	10800	Ohms
R _{TH}	6000	Ohms
V _{TH}	0.80	Volts

Data Retention Characteristics (Over the Operating Range)

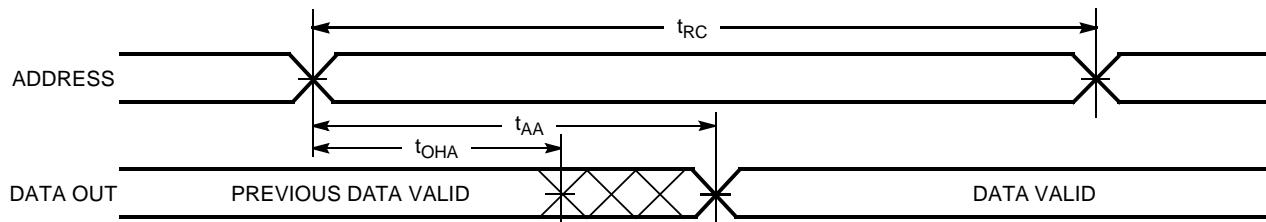
Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit
V_{DR}	V_{CC} for Data Retention		1.0		1.95	V
I_{CCDR}	Data Retention Current	$V_{CC} = 1.0V$ $CE_1 \geq V_{CC} - 0.2V, CE_2 \leq 0.2V,$ $V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq 0.2V$		1	10	μA
t_{CDR} ^[5]	Chip Deselect to Data Retention Time		0			ns
t_R ^[6]	Operation Recovery Time			t_{RC}		ns

Data Retention Waveform^[7]

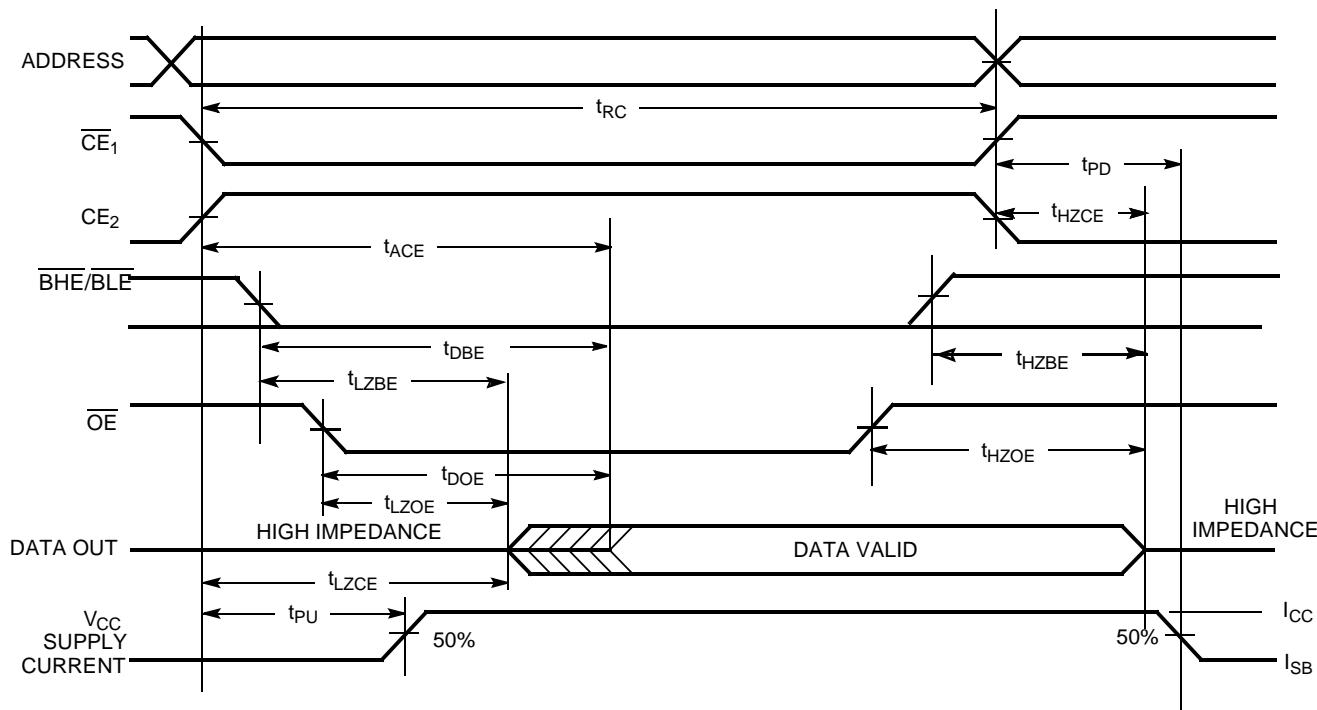
Notes:

- Full Device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(\min.)} \geq 100 \mu s$ or stable at $V_{CC(\min.)} \geq 100 \mu s$.
- $BHE \cdot BLE$ is the AND of both BHE and BLE . Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE .

Switching Characteristics Over the Operating Range^[8]


Parameter	Description	55 ns		70 ns		Unit
		Min.	Max.	Min.	Max.	
READ CYCLE						
t_{RC}	Read Cycle Time	55		70		ns
t_{AA}	Address to Data Valid		55		70	ns
t_{OHA}	Data Hold from Address Change	10		10		ns
t_{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to Data Valid		55		70	ns
t_{DOE}	\overline{OE} LOW to Data Valid		25		35	ns
t_{LZOE}	\overline{OE} LOW to Low Z ^[9]	5		5		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[9, 10]		20		25	ns
t_{LZCE}	\overline{CE}_1 LOW and CE_2 HIGH to Low Z ^[9]	10		10		ns
t_{HZCE}	\overline{CE}_1 HIGH and CE_2 LOW to High Z ^[9, 10]		20		25	ns
t_{PU}	\overline{CE}_1 LOW and CE_2 HIGH to Power-Up	0		0		ns
t_{PD}	\overline{CE}_1 HIGH and CE_2 LOW to Power-Down		55		70	ns
t_{DBE}	\overline{BLE} / \overline{BHE} LOW to Data Valid		55		70	ns
t_{LZBE}	\overline{BLE} / \overline{BHE} LOW to Low Z ^[9]	5		5		ns
t_{HZBE}	\overline{BLE} / \overline{BHE} HIGH to HIGH Z ^[9, 10]		20		25	ns
WRITE CYCLE^[11]						
t_{WC}	Write Cycle Time	55		70		ns
t_{SCE}	\overline{CE}_1 LOW and CE_2 HIGH to Write End	45		60		ns
t_{AW}	Address Set-Up to Write End	45		60		ns
t_{HA}	Address Hold from Write End	0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		ns
t_{PWE}	\overline{WE} Pulse Width	45		50		ns
t_{BW}	\overline{BLE} / \overline{BHE} LOW to Write End	45		60		ns
t_{SD}	Data Set-Up to Write End	25		30		ns
t_{HD}	Data Hold from Write End	0		0		ns
t_{HZWE}	\overline{WE} LOW to High Z ^[9, 10]		20		25	ns
t_{LZWE}	\overline{WE} HIGH to Low Z ^[9]	5		10		ns

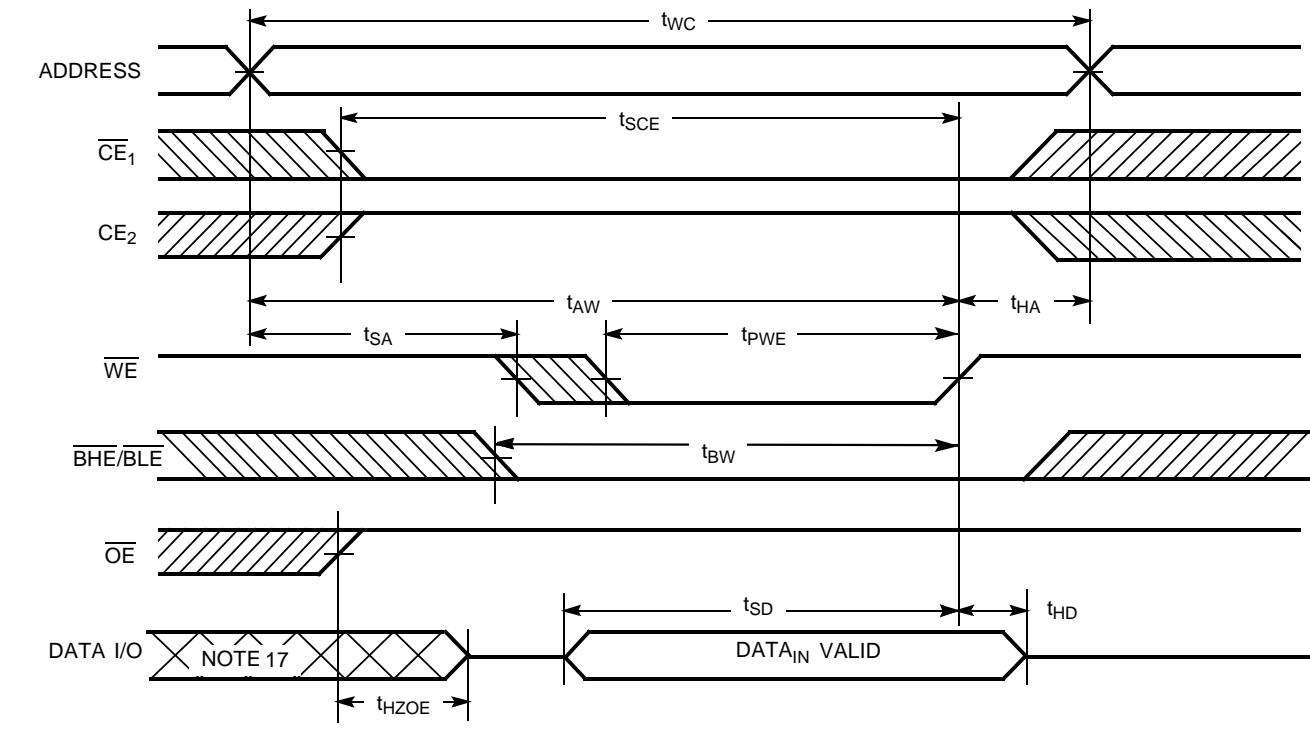
Notes:


8. Test conditions assume signal transition time of 3 ns or less, timing reference levels of $V_{CC(\text{typ})}/2$, input pulse levels of 0 to $V_{CC(\text{typ})}$, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
9. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZBE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device
10. t_{HZOE} , t_{HZCE} , t_{HZBE} , and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
11. The internal write time of the memory is defined by the overlap of WE , $CE = V_{IL}$, BHE and/or $BLE = V_{IL}$, $CE_2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

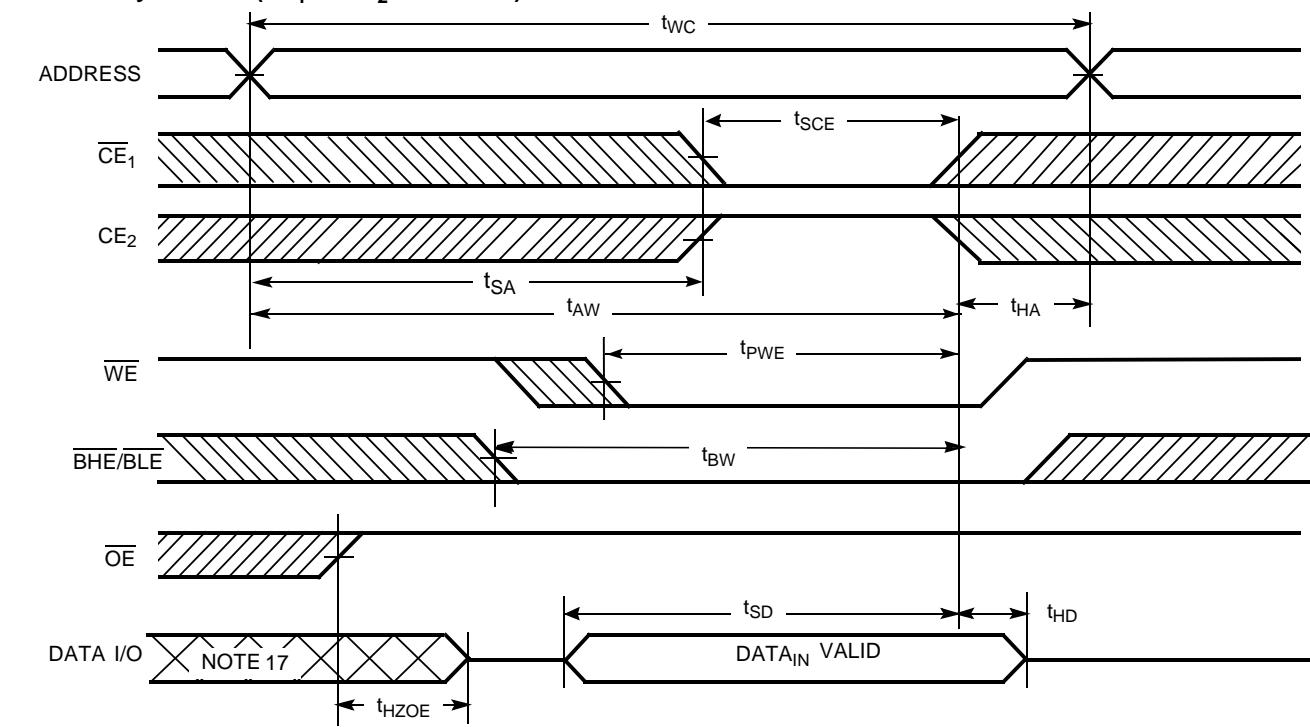
Switching Waveforms

Read Cycle No. 1 (Address Transition controlled)^[12, 13]

Read Cycle No. 2 (OE controlled)^[13, 14]


Notes:

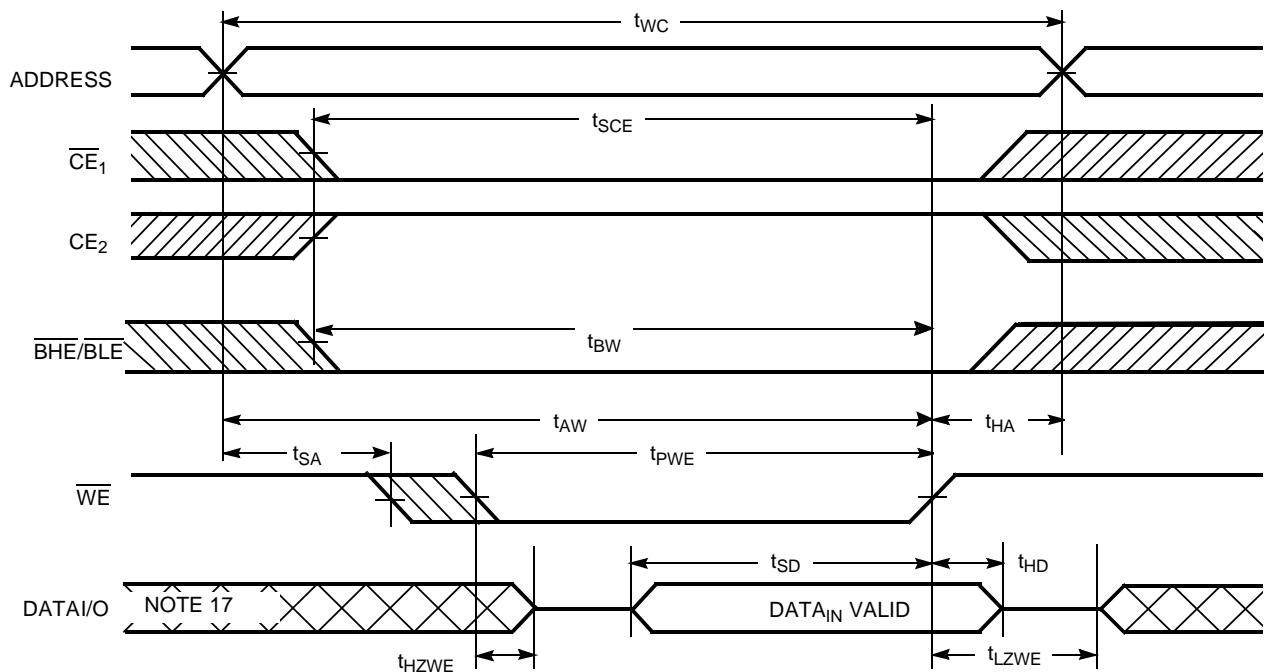
12. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$, $CE_2 = V_{IH}$.
13. WE is HIGH for read cycle.
14. Address valid prior to or coincident with \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and CE_2 transition HIGH.



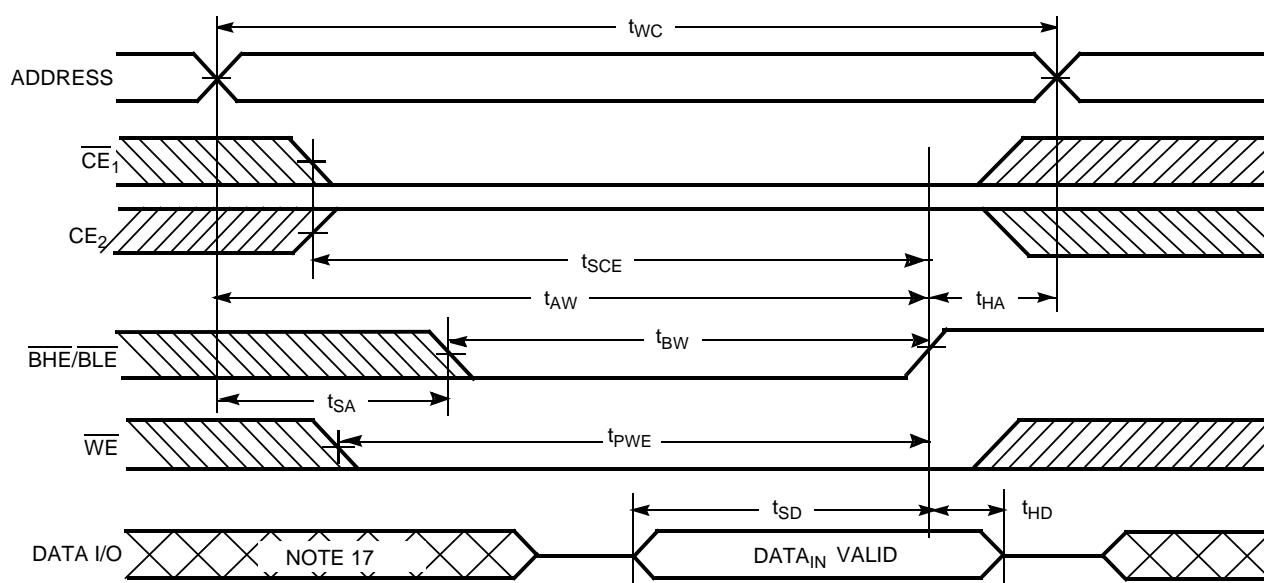
Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled) [11, 15, 16]

Write Cycle No. 2 (CE1 or CE2 Controlled) [11, 15, 16]

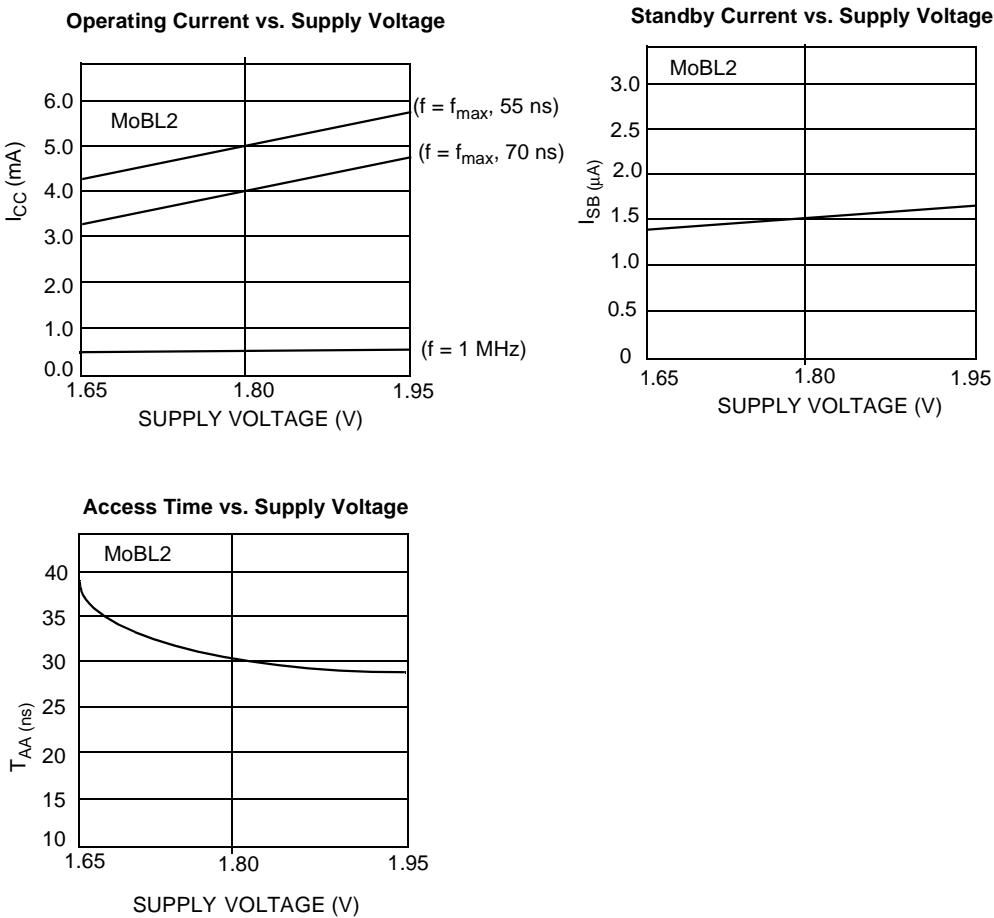


Notes:


15. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
16. If \overline{CE}_1 goes HIGH and \overline{CE}_2 goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high-impedance state.
17. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

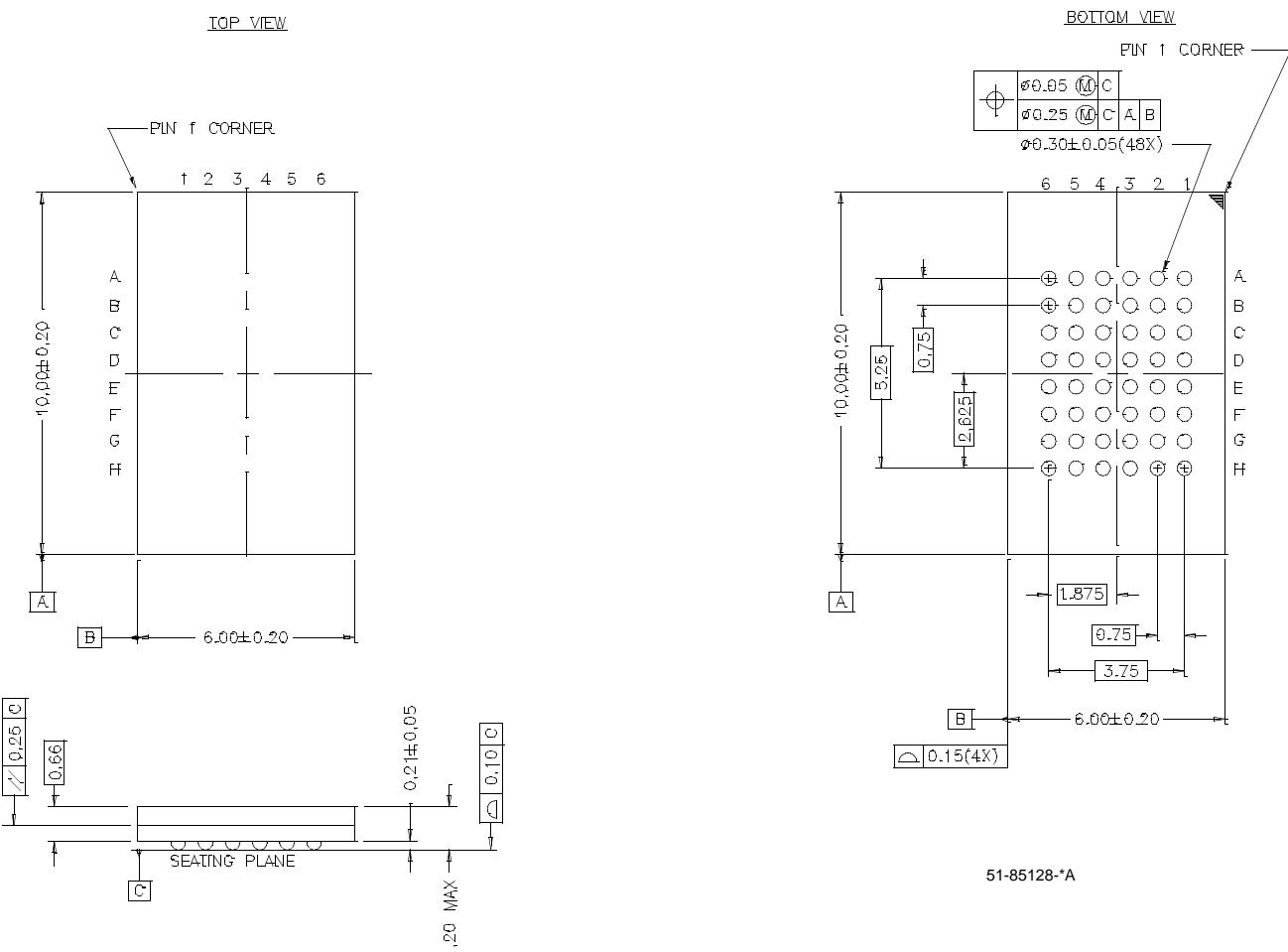
Write Cycle No. 3 (WE Controlled, OE LOW)^[16]



Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [16]

Typical DC and AC Characteristics

(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(\text{typ.})}$, $T_A = 25^\circ\text{C}$)



Truth Table

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
H	X	X	X	X	X	High Z	Deselect/Power-Down	Standby (I_{SB})
X	L	X	X	X	X	High Z	Deselect/Power-Down	Standby (I_{SB})
X	X	X	X	H	H	High Z	Deselect/Power-Down	Standby (I_{SB})
L	H	H	L	L	L	Data Out (I/O0–I/O15)	Read	Active (I_{CC})
L	H	H	L	H	L	Data Out (I/O0–I/O7); High Z (I/O8–I/O15)	Read	Active (I_{CC})
L	H	H	L	L	H	High Z (I/O0–I/O7); Data Out (I/O8–I/O15)	Read	Active (I_{CC})
L	H	H	H	L	H	High Z	Output Disabled	Active (I_{CC})
L	H	H	H	H	L	High Z	Output Disabled	Active (I_{CC})
L	H	H	H	L	L	High Z	Output Disabled	Active (I_{CC})
L	H	L	X	L	L	Data In (I/O0–I/O15)	Write	Active (I_{CC})
L	H	L	X	H	L	Data In (I/O0–I/O7); High Z (I/O8–I/O15)	Write	Active (I_{CC})
L	H	L	X	L	H	High Z (I/O0–I/O7); Data In (I/O8–I/O15)	Write	Active (I_{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62157CV18LL-55BAI	BA48F	48-Ball Fine Pitch BGA	Industrial
70	CY62157CV18LL-70BAI			

Package Diagram
48-Ball (6 mm x 10 mm x 1.2 mm) Fine Pitch BGA BA48F

Document Title: CY62157CV18 MoBL2™ 512K x 16 Static RAM				
Document Number: 38-05012				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	106158	04/06/01	MGN	New Data Sheet, replaces CY62157BV18.
*A	107242	07/31/01	MGN	Changing from Preliminary to Final.
*B	109231	08/31/01	MGN	Add comment on front page about Active Current at different frequencies.
*C	110574	11/02/01	MGN	Improved t_{DOE} from 35 ns to 25 ns (@55 ns). Added Typical DC & AC Characteristics. Format standardization