

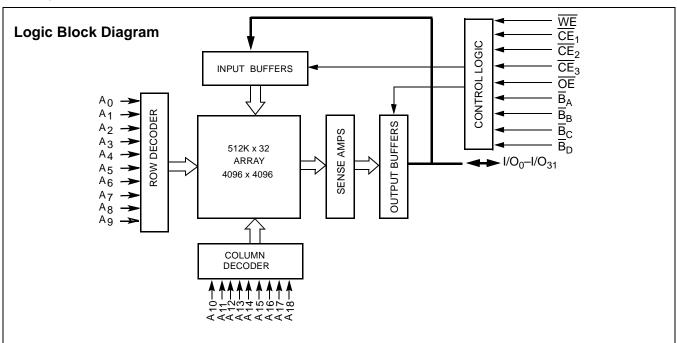
512K x 32 Static RAM

Features

- · High speed
 - $-t_{AA} = 8, 10, 12 \text{ ns}$
- · Low active power
 - -1080 mW (max.)
- Operating voltages of 3.3 ± 0.3V
- 2.0V data retention
- · Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE₁, CE₂, and CE₃ features

Functional Description

The CY7C1062AV33 is a high-performance CMOS Static RAM organized as 524,288 words by 32 bits.


Writing to the device is accomplished by enabling the chip $(\overline{CE}_1, \overline{CE}_2)$ and $(\overline{CE}_3, \overline{CE}_3)$ and forcing the Write Enable (\overline{WE}) input LOW. If Byte Enable A (\overline{B}_A) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on

the address pins (A $_0$ through A $_{18}$). If Byte Enable B ($\overline{\rm B}_{\rm B}$) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{18}$). Likewise, $\overline{\rm B}_{\rm C}$ and $\overline{\rm B}_{\rm D}$ correspond with the I/O pins I/O $_{16}$ to I/O $_{23}$ and I/O $_{24}$ to I/O $_{31}$, respectively.

Reading from the device is accomplished by enabling the chip $(\overline{CE}_1, \overline{CE}_2, \text{ and } \overline{CE}_3 \text{ LOW})$ while forcing the Output Enable (\overline{OE}) LOW and Write Enable (\overline{WE}) HIGH. If the first Byte Enable (\overline{B}_A) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte Enable B (\overline{B}_B) is LOW, then data from memory will appear on I/O $_8$ to I/O $_15$. Similarly, \overline{B}_c and \overline{B}_D correspond to the third and fourth bytes. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O $_0$ through I/O $_{31}$) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 , \overline{CE}_2 or \overline{CE}_3 HIGH), the outputs are disabled (\overline{OE} HIGH), the byte selects are disabled (\overline{B}_{A-D} HIGH), or during a write operation (\overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 LOW, and \overline{WE} LOW).

The CY7C1062AV33 is available in a 119-ball pitch ball grid array (PBGA) package.

Selection Guide

		-8	-10	-12	Unit
Maximum Access Time		8	10	12	ns
Maximum Operating Current	Com'l	300	275	260	mA
	Ind'I	300	275	260	
Maximum CMOS Standby Current	Com'l/Ind'l	50	50	50	mA

Pin Configuration

119-ball PBGA (Top View)

			· · ·				
	1	2	3	4	5	6	7
Α	I/O ₁₆	Α	Α	Α	Α	Α	I/O ₀
В	I/O ₁₇	Α	Α	CE ₁	Α	Α	I/O ₁
С	I/O ₁₈	B _c	CE ₂	NC	CE ₃	B _a	I/O ₂
D	I/O ₁₉	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₃
Е	I/O ₂₀	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₄
F	I/O ₂₁	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₅
G	I/O ₂₂	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₆
Н	I/O ₂₃	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₇
J	NC	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	DNU
K	I/O ₂₄	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₈
L	I/O ₂₅	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₉
M	I/O ₂₆	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₁₀
N	I/O ₂₇	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	I/O ₁₁
Р	I/O ₂₈	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	I/O ₁₂
R	I/O ₂₉	Α	B _d	NC	B _b	Α	I/O ₁₃
Т	I/O ₃₀	Α	Α	WE	Α	Α	I/O ₁₄
U	I/O ₃₁	Α	Α	ŌĒ	Α	Α	I/O ₁₅

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Supply Voltage on V_{CC} to Relative GND^[1] –0.5V to +4.6V

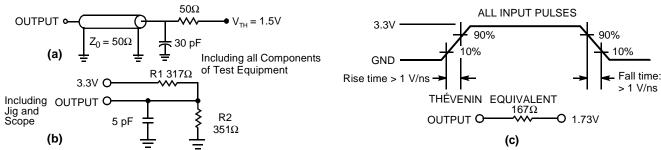
DC Voltage Applied to Outputs

in High-Z State^[1].....–0.5V to V_{CC} + 0.5V

DC Input Voltage ^[1]	0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	$3.3V \pm 0.3V$
Industrial	-40°C to +85°C	

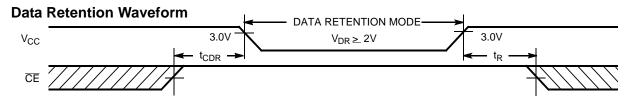

DC Electrical Characteristics Over the Operating Range

				-	8	-1	10	-1	12	
Parameter	Description	Test Condit	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min.,$ $I_{OL} = 8.0 \text{ mA}$			0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage[1]		-0.3	0.8	-0.3	0.8	-0.3	0.8	V	
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		-1	+1	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}, Output$ Disabled		-1	+1	-1	+1	-1	+1	μА
I _{CC}	V _{CC} Operating	$V_{CC} = Max., f = f_{MAX}$	Com'l		300		275		260	mΑ
	Supply Current	= 1/t _{RC}	Ind'I		300		275		260	mΑ
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f} = \text{f}_{\text{MAX}} \end{aligned}$			70		70		70	mA
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\label{eq:max.vcc} \begin{split} &\frac{\text{Max. V}_{\text{CC}},}{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3\text{V},\\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V},\\ &\text{or V}_{\text{IN}} \leq 0.3\text{V}, \text{f} = 0 \end{split}$	Com'l/Ind'l		50		50		50	mA

Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = 3.3V$	8	pF
C _{OUT}	I/O Capacitance		10	pF

AC Test Loads and Waveforms^[3]


Notes:

- V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- Tested initially and after any design or process changes that may affect these parameters. Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). As soon as 1ms (T_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR}, 2.0V) voltage.

AC Switching Characteristics Over the Operating Range^[4]

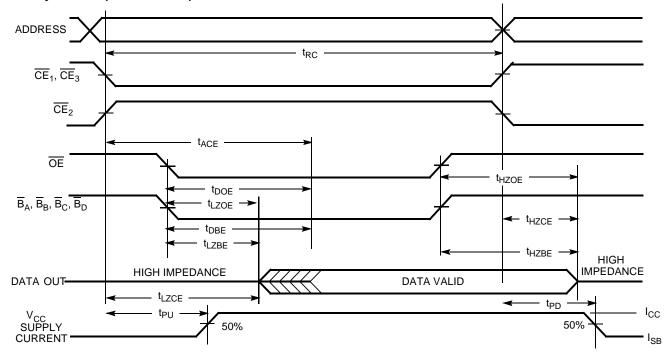
		-	-8		-10		-12	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle		'	•		•		•	
t _{power}	V _{CC} (typical) to the first access ^[5]	1		1		1		ms
t _{RC}	Read Cycle Time	8		10		12		ns
t _{AA}	Address to Data Valid		8		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE ₁ , CE ₂ , or CE ₃ LOW to Data Valid		8		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		5		6	ns
t _{LZOE}	OE LOW to Low-Z ^[6]	1		1		1		ns
t _{HZOE}	OE HIGH to High-Z ^[6]		5		5		6	ns
t _{LZCE}	$\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$, or $\overline{\text{CE}}_3$ LOW to Low-Z ^[6]	3		3		3		ns
t _{HZCE}	CE ₁ , CE ₂ , or CE ₃ HIGH to High-Z ^[6]		5		5		6	ns
t _{PU}	$\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$, or $\overline{\text{CE}}_3$ LOW to Power-up ^[7]	0		0		0		ns
t _{PD}	CE ₁ , CE ₂ , or CE ₃ HIGH to Power-down ^[7]		8		10		12	ns
t _{DBE}	Byte Enable to Data Valid		5		5		6	ns
t _{LZBE}	Byte Enable to Low-Z ^[6]	1		1		1		ns
t _{HZBE}	Byte Disable to High-Z ^[6]		5		5		6	ns
Write Cycle ^{[8}	, 9]	'	•		•		•	
t _{WC}	Write Cycle Time	8		10		12		ns
t _{SCE}	$\overline{\text{CE}}_1$, $\overline{\text{CE}}_2$, or $\overline{\text{CE}}_3$ LOW to Write End	6		7		8		ns
t _{AW}	Address Set-up to Write End	6		7		8		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	6		7		8		ns
t _{SD}	Data Set-up to Write End	5		5.5		6		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[6]	3		3		3		ns
t _{HZWE}	WE LOW to High-Z ^[6]		5		5		6	ns
t _{BW}	Byte Enable to End of Write	6		7		8		ns

Notes:

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and transmission line loads. Test conditions for the read cycle use output loading as shown in (a) of AC Test Loads, unless specified otherwise.

This part has a voltage regulator that steps down the voltage from 3V to 2V internally. t_{power} time has to be provided initially before a read/write operation is started. t_{HZOE}, t_{HZWE}, t_{HZWE}, t_{HZWE}, and t_{LZOE}, t_{LZCE}, t_{LZWE}, and t_{LZDE} are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.

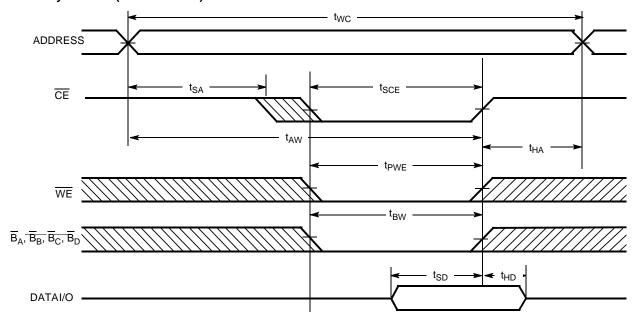
These parameters are guaranteed by design and are not tested.


The internal write time of the memory is defined by the overlap of CE1 LOW, CE 2 HIGH, CE3 LOW, and WE LOW. The chip enables must be active and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. to the leading edge of the signal that terminates the <u>write</u>. The minimum write cycle time for Write Cycle No. 3 (WE controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .

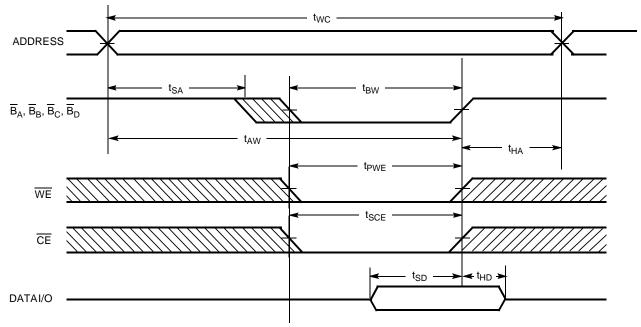
Switching Waveforms

Read Cycle No. 1^[10, 11] t_{RC} **ADDRESS** t_{AA} t_{OHA} DATA OUT PREVIOUS DATA VALID DATA VALID

Read Cycle No. 2 (OE Controlled) [11, 12]



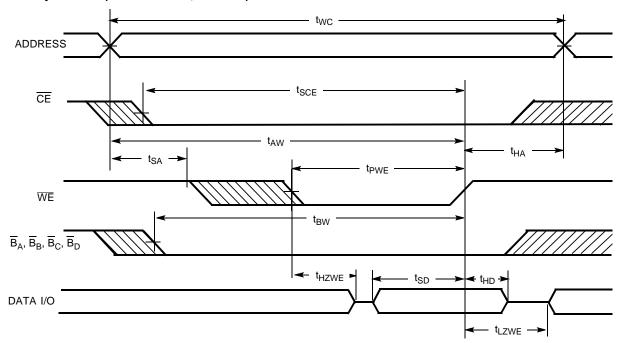
- Device is continuously selected. OE, CE, BA, BB, BC, BD = VIL.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[13, 14, 15]

Write Cycle No. 2 (BLE or BHE Controlled)^[13, 14, 15]


Notes:

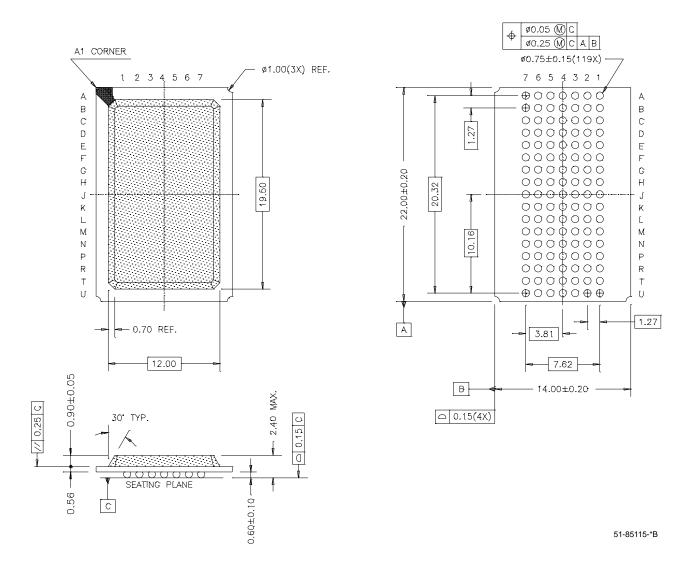
- 13. CE indicates a combination of <u>all</u> three chip enables. When ACTIVE LOW, CE indicates the CE₁, CE₂ and CE₃ are LOW.
 14. Data I/O is high-impedance if OE or B_A, B_B, B_C, B_D = V_{IH}.
 15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)

Truth Table

CE ₁	CE ₂	CE ₃	ŌE	WE	B _A	B _B	B _c	\overline{B}_{D}	I/O ₀ - I/O ₇	I/O ₈ – I/O ₁₅	I/O ₁₆ - I/O ₂₃	I/O ₂₄ - I/O ₃₁	Mode	Power
Н	L	Н	Χ	Χ	Х	Χ	Х	Х	High-Z	High-Z	High-Z	High-Z	Power Down	(I _{SB})
L	Н	L	Χ	Χ	Χ	Χ	Χ	Х	High-Z	High-Z	High-Z	High-Z	Power Down	(I _{SB})
L	L	L	L	Н	L	L	L	L	Data Out	Data Out	Data Out	Data Out	Read All Bits	(I _{CC})
L	L	Г	Г	Н	∟	I	Η	Н	Data Out	High-Z	High-Z	High-Z	Read Byte A Bits Only	(I _{CC})
L	L	L	L	Ι	Η	L	Η	Н	High-Z	Data Out	High-Z	High-Z	Read Byte B Bits Only	(I _{CC})
L	L	L	L	I	I	I	L	Н	High-Z	High-Z	Data Out	High-Z	Read Byte C Bits Only	(I _{CC})
L	L	L	L	Ι	Η	I	Η	L	High-Z	High-Z	High-Z	Data Out	Read Byte D Bits Only	(I _{CC})
L	L	L	Χ	L	L	L	L	L	Data In	Data In	Data In	Data In	Write All Bits	(I _{CC})
L	L	L	Х	L	L	I	Η	Н	Data In	High-Z	High-Z	High-Z	Write Byte A Bits Only	(I _{CC})
L	L	L	Х	L	Н	L	Н	Н	High-Z	Data In	High-Z	High-Z	Write Byte B Bits Only	(I _{CC})
L	L	L	Х	L	Н	Н	L	Н	High-Z	High-Z	Data In	High-Z	Write Byte C Bits Only	(I _{CC})
L	L	L	Х	L	Н	Н	Н	L	High-Z	High-Z	High-Z	Data In	Write Byte D Bits Only	(I _{CC})
L	L	L	I	H	Х	Х	Х	Х	High-Z	High-Z	High-Z	High-Z	Selected, Outputs Disabled	(I _{CC})



Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
8	CY7C1062AV33-8BGC	BG119	14 x 22 mm 119-ball PBGA	Commercial
	CY7C1062AV33-8BGI			Industrial
10	CY7C1062AV33-10BGC			Commercial
	CY7C1062AV33-10BGI			Industrial
12	CY7C1062AV33-12BGC			Commercial
	CY7C1062AV33-12BGI			Industrial

Package Diagram

119-ball PBGA (14 x 22 x 2.4 mm) BG119

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

	Number: 38	1062AV33 512 -05137		T. CAIN
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109752	02/27/02	HGK	New Data Sheet
*A	117059	09/19/02	DFP	Removed 15-ns bin and added 8-ns bin. Changed CE_2 TO CE_2 . Changed C_{IN} – input capacitance – from 6 pF to 8 pF. Changed C_{OUT} – output capacitance – from 8 pF to 10 pF.
*B	119389	10/07/02	DFP	Updated I_{CC} , T_{sd} , and T_{doe} parameters. Removed note 7 (I_Z/h_Z comment).
*C	120384	11/13/02	DFP	Final Data Sheet. Removed note 2. Added note 3 to "AC Test Loads and Waveforms" and note 7 to t _{pu} and t _{pd}
*D	124440	2/25/03	MEG	Changed ISB1 from 100 mA to 70 mA