

Typical Applications

The HMC565LC5 is ideal for use as a LNA or driver amplifier for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment and Sensors
- Military & Space

Functional Diagram

Features

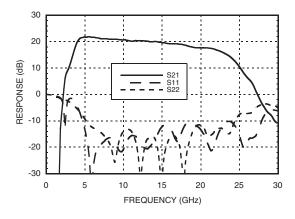
Noise Figure: 2.5 dB

Gain: 21 dB OIP3: 20 dBm

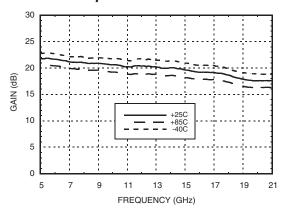
Single Supply: +3V @ 53 mA 50 Ohm Matched Input/Output RoHS Compliant 5 x 5 mm Package

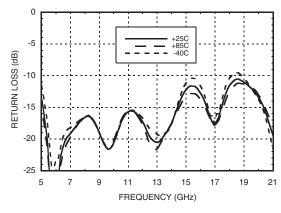
General Description

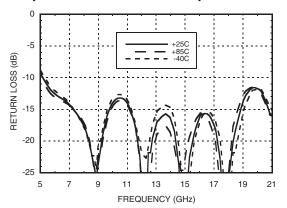
The HMC565LC5 is a high dynamic range GaAs PHEMT MMIC Low Noise Amplifier housed in a leadless RoHS compliant 5x5mm SMT package. Operating from 6 to 20 GHz, the HMC565LC5 features 21 dB of small signal gain, 2.5 dB noise figure and IP3 of +20 dBm across the operating band. This self-biased LNA is ideal for microwave radios due to its single +3V supply operation, and DC blocked RF I/O's.

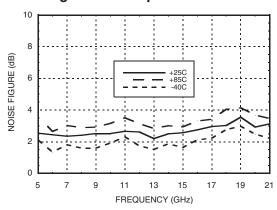

Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C, Vdd 1, 2, 3 = +3V

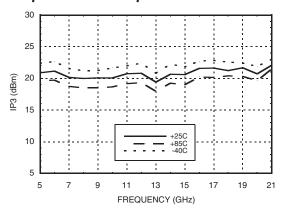
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		6 - 12		12 - 20		GHz	
Gain	19	21		16	18.5		dB
Gain Variation Over Temperature		0.025	0.035		0.025	0.035	dB/ °C
Noise Figure		2.5	2.8		2.5	3	dB
Input Return Loss		15			12		dB
Output Return Loss		13			15		dB
Output Power for 1 dB Compression (P1dB)	8	10		9	11		dBm
Saturated Output Power (Psat)		11			13		dBm
Output Third Order Intercept (IP3)		20			21		dBm
Total Supply Current (ldd)(Vdd = +3V)		53	75		53	75	mA



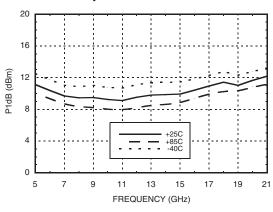

Broadband Gain & Return Loss

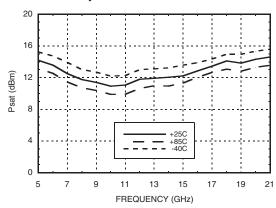

Gain vs. Temperature

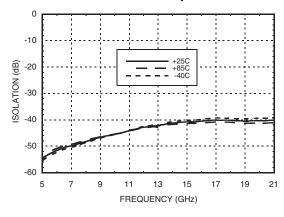

Input Return Loss vs. Temperature

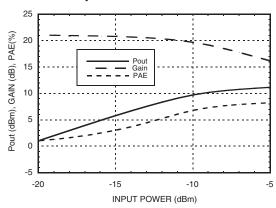

Output Return Loss vs. Temperature

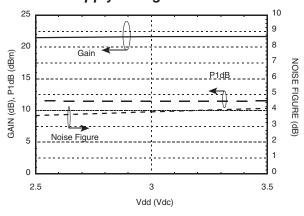
Noise Figure vs. Temperature


Output IP3 vs. Temperature




P1dB vs. Temperature

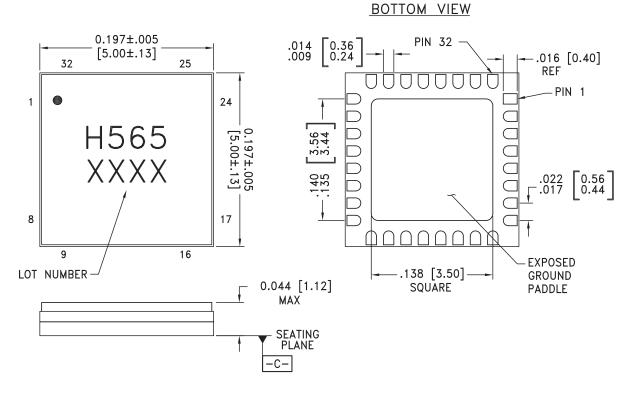

Psat vs. Temperature


Reverse Isolation vs. Temperature

Power Compression @ 12 GHz

Gain, Noise Figure & Power vs. Supply Voltage @ 12 GHz

Absolute Maximum Ratings


Drain Bias Voltage (Vdd1, Vdd2, Vdd3)	+3.5 Vdc		
RF Input Power (RFIN)(Vdd = +3.0 Vdc)	0 dBm		
Channel Temperature	175 °C		
Continuous Pdiss (T= 85 °C) (derate 8.5 mW/°C above 85 °C)	0.753 W		
Thermal Resistance (channel to ground paddle)	119.5 °C/W		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		

Typical Supply Current vs. Vdd

Vdd (Vdc)	ldd (mA)
+2.5	51
+3.0	53
+3.5	56

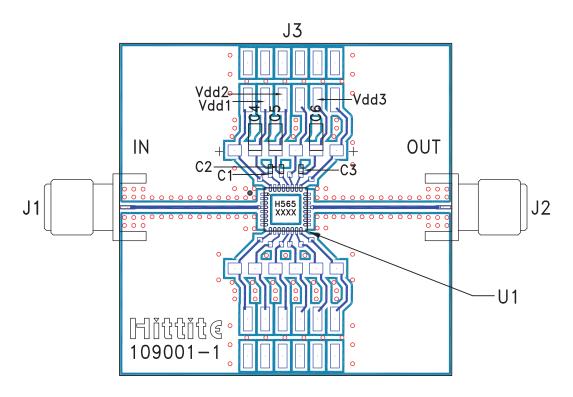
Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 2, 6-19, 23-25, 27, 29, 31, 32	N/C	This pin may be connected to RF/DC ground. Performance will not be affected.		
3, 5, 20, 22	GND	These pins and package bottom must be connected to RF/DC ground.	GND =	
4	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN ○── ├──	
21	RFOUT	This pin is AC coupled and matched to 50 Ohms.	—	
30, 28, 26	Vdd1, 2, 3	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF and 2.2 μF are required.	○ Vdd1,2,3	


Application Circuit

Component	Value					
C1, C2, C3	100 pF		Vdd1	Vdd2	Vdd3	
C4, C5, C6	2.2 µF		Ĭ	Y	ľ	
			=C1 C4	C2 C5	C3 C6	=
			30	28	26	
	RFII	1>	4		21	

Evaluation PCB

List of Materials for Evaluation PCB 110431 [1]

Item	Description
J1 - J2	PCB Mount K Connector
J3	2 mm DC Header
C1 - C3	100 pF Capacitor, 0402 Pkg.
C4 - C6	2.2 μF Capacitor, Tantalum
U1	HMC565LC5 Amplifier
PCB [2]	109001 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350