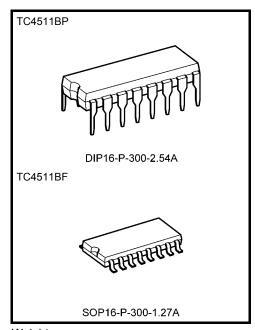
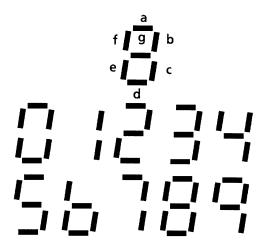

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic


TC4511BP, TC4511BF

TC4511B BCD-to-Seven Segment Latch/Decoder/Driver

TC4511B is decoder which converts the input of BCD code into the 7 segment display element driving signal and the output has complementary connection of NPN bipolar transistor and N-channel MOS FET. Therefore, not only capability of directly driving cathode common type LED, this has capability of driving various display elements with simple interface circuits. \overline{LT} input and \overline{BI} input are to force all the outputs to be "H" (illuminated) and "L" (not illuminated) respectively regardless of BCD input. As the latch controlled by common LE input is inserted in each of four input lines, static display of dynamic information can be achieved. When an invalid BCD input, "10" or higher is applied, all the outputs become "L" (not illuminated).

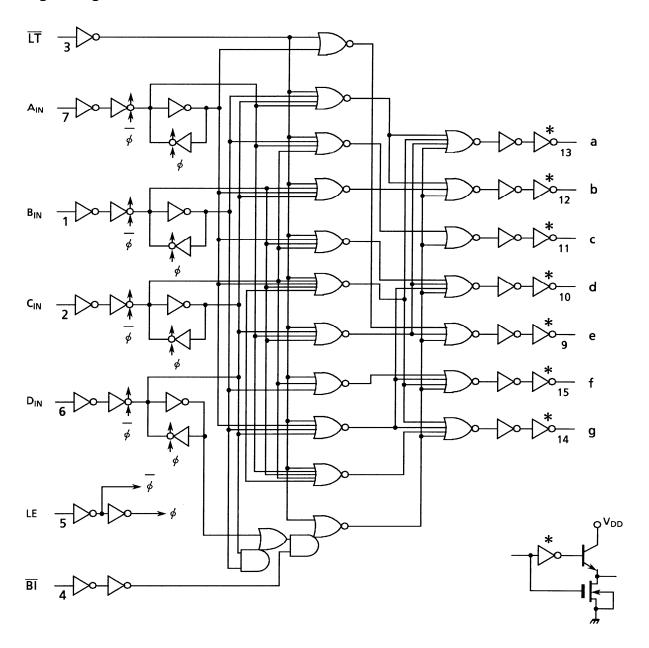
Pin Assignment



Weight

DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.)

Display


Truth Table

Inputs						Outputs					Display			
LE	BI	ΙΤ	D	С	В	Α	а	b	С	d	е	f	g	Mode
*	*	L	*	*	*	*	Н	Н	Н	Н	Н	Н	Н	8
*	L	Н	*	*	*	*	L	L	L	L	L	L	L	Blank
L	Н	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	L	0
L	Н	Н	L	L	L	Н	L	Н	Н	L	L	L	L	1
L	Н	Н	L	L	Н	L	Н	Н	L	Н	Н	L	Н	2
L	Н	Н	L	L	Н	Н	Н	Н	Н	Н	L	L	Н	3
L	Н	Н	L	Η	L	L	L	Н	Н	L	L	Н	Н	4
L	Н	Н	L	Н	L	Н	Н	L	Н	Н	L	Н	Н	5
L	Н	Н	L	Н	Н	L	L	L	Н	Н	Н	Н	Н	6
L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	L	L	L	7
L	Н	Н	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	8
L	Н	Н	Н	L	L	Н	Н	Н	Н	L	L	Н	Н	9
L	Н	Н	Н	L	Н	L	L	L	L	L	L	L	L	Blank
L	Н	Н	Н	L	Н	Н	L	L	L	L	L	L	L	Blank
L	Н	Н	Н	Н	*	*	L	L	L	L	L	L	L	Blank
Н	Н	Н	*	*	*	*	ΔΔ							

^{*:} Don't care

 $\Delta\!\Delta\!$. Depends upon the BCD code previously applied when LE "L"

Logic Diagram

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
DC supply voltage	V_{DD}	V_{SS} – 0.5 to V_{SS} + 20	V
Input voltage	V _{IN}	$V_{SS} - 0.5$ to $V_{DD} + 0.5$	٧
Output voltage	V _{OUT}	$V_{SS} - 0.5$ to $V_{DD} + 0.5$	٧
DC input current	I _{IN}	±10	mA
Output high current	I _{OH}	-50	mA
Power dissipation	P _D	300 (DIP)/180 (SOIC)	mW
Operating temperature range	T _{opr}	-40 to 85	°C
Storage temperature range	T _{stg}	-65 to 150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

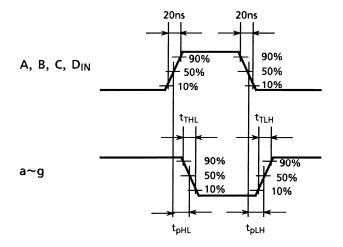
Operating Range (V_{SS} = 0 V) (Note)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
DC supply voltage	V_{DD}	_	3	_	18	V
Input voltage	V _{IN}	_	0	_	V_{DD}	V

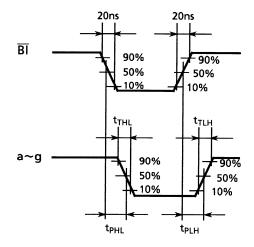
Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{DD} or V_{SS} .

Static Electrical Characteristics ($V_{SS} = 0 V$)

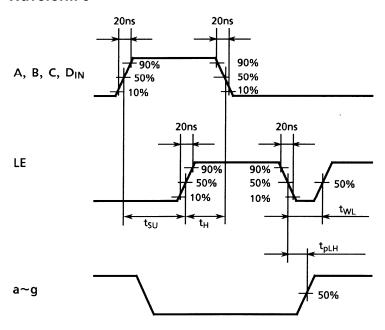
		Sym-	Test Condition		–40°C		25°C			85°C		11. 11
Charac	teristics	bol		V _{DD} (V)	Min	Max	Min	Тур.	Max	Min	Max	Unit
				5	4.1	_	4.1	4.41	_	4.2	_	
High-level voltage	output	V _{OH}		10	9.1	_	9.1	9.41	_	9.2	_	V
			VIN = VSS, VDD	15	14.1	_	14.1	14.41	_	14.2	_	
				5	_	0.05	_	0.00	0.05	_	0.05	
Low-level voltage	output	V _{OL}		10	_	0.05	_	0.00	0.05	_	0.05	V
romago			VIN = VSS, VDD	15	_	0.05	_	0.00	0.05	_	0.05	
			I _{OH} = 0 mA		4.10	_	4.10	4.41	_	4.20	_	
			I _{OH} = 10 mA	5	3.90	_	3.90	4.25	_	3.90	_	
			I _{OH} = 20 mA		3.55	_	3.55	4.19	_	3.30	_	
			$V_{IN} = V_{DD}, V_{SS}$									
			I _{OH} = 0 mA		9.10	_	9.10	9.41	_	9.20	_	
Output bio	ıb valtasa	V	I _{OH} = 10 mA	10	9.00	_	9.00	9.25	_	9.00	_	V
Output nig	jn voltage	VOH	I _{OH} = 20 mA		8.70	_	8.70	9.20	_	8.40	_	V
			$V_{IN} = V_{DD}, V_{SS}$									
			I _{OH} = 0 mA		14.10	_	14.10	14.41	_	14.20	_	
			I _{OH} = 10 mA	15	14.00	_	14.00	14.26	_	14.00	_	
			I _{OH} = 20 mA		13.75	_	13.75	14.21	_	13.50	_	
			$V_{IN} = V_{DD}, V_{SS}$									
			V _{OUT} = 0.4 V	5	0.61	_	0.51	1.2	_	0.42	_	
Outrout Inv			V _{OUT} = 0.5 V	10	1.5	_	1.3	3.2	_	1.1	_	A
Output low	v voitage	IOL	V _{OUT} = 1.5 V	15	4.0	_	3.4	12.0	_	2.8	_	mA
			$V_{IN} = V_{DD}, V_{SS}$									
			V _{OUT} = 0.5 V, 4.5 V	5	3.5	_	3.5	2.75	_	3.5	_	
lanut biab	voltogo	V	V _{OUT} = 1.0 V, 9.0 V	10	7.0	_	7.0	5.50	_	7.0	_	V
input nign	Part Part	_	11.0	_	V							
			I _{OUT} < 1 μA									
			V _{OUT} = 0.5 V, 4.5 V	5	_	1.5	_	2.25	1.5	_	1.5	
lament land		.,	V _{OUT} = 1.0 V, 9.0 V	10	_	3.0	_	4.5	3.0	_	3.0	V
input low \	voitage	VIL	V _{OUT} = 1.5 V, 13.5 V	15	_	4.0	_	6.75	4.0	_	4.0	
			I _{OUT} < 1 μA									
Input	"H" level	l _{IH}	V _{IH} = 18 V	18	_	0.1	_	10 ⁻⁵	0.1	_	1.0	^
current	"L" level	I _{IL}	V _{IL} = 0 V	18	_	-0.1	_	-10 ⁻⁵	-0.1	_	-1.0	μΑ
				5	_	5	_	0.005	5	_	150	
Quiescent current	supply	I _{DD}		10	_	10	_	0.010	10	_	300	μΑ
			(Note)	15	_	20	_	0.015	20	—	600	

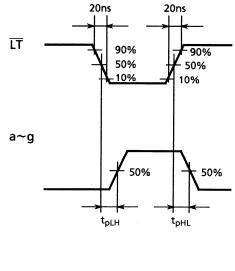

Note: All valid input combinations.

Dynamic Electrical Characteristics (Ta = 25°C, V_{SS} = 0 V, C_L = 50 pF, R_L = 10 k Ω)

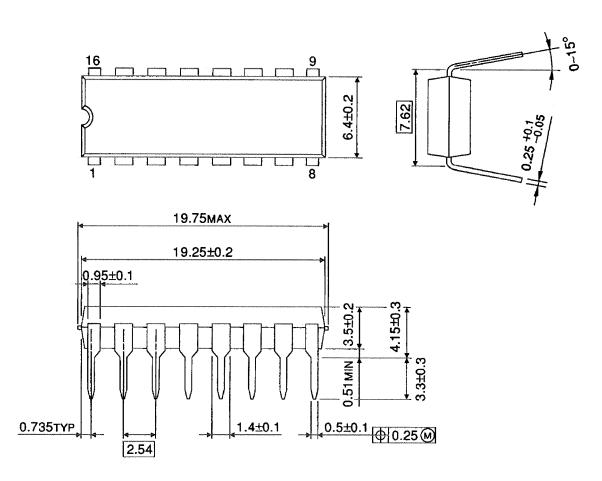

		Test Condition		Min	Тур.	Max	Unit
Characteristics	Symbol		V _{DD} (V)				
			5	_	25	80	
Output transition time	t _{TLH}	_	10	_	15	60	ns
(low to high)			15	_	15	50	
Outrant transition times			5	_	70	200	
Output transition time	t _{THL}	_	10	_	35	100	ns
(high to low)			15	_	30	80	
Propagation delay time			5	_	200	1040	
(DATA-OUT)	t _{pLH}	_	10	_	90	420	ns
(BATA-001)			15	_	65	300	
Propagation delay time			5	_	230	1040	
(DATA-OUT)	t _{pHL}	_	10	_	110	420	ns
(BATA GOT)			15	_	80	300	
Propagation delay time			5	_	75	640	
(BI -OUT)	t _{pLH}	_	10	_	45	260	ns
(51 661)			15	_	35	200	
Propagation delay time			5	_	90	640	
(BI -OUT)	t _{pHL}	_	10	_	50	260	ns
(3. 33.)			15	_	45	200	
Propagation delay time			5	_	60	300	
(LT -OUT)	t _{pLH}	_	10	_	40	150	ns
			15	_	35	100	
Propagation delay time			5	_	75	300	
(LT -OUT)	t _{pHL}	_	10	_	45	150	ns
,			15	_	35	100	<u> </u>
Propagation delay time			5	_	180	600	
(LE-OUT)	t _{pLH}	_	10	_	90	300	ns
			15		65	250	
Propagation delay time			5	_	230	600	
(LE-OUT)	t _{pHL}	_	10	_	110	300	ns
			15	_	85	250	
Min pulse time			5	_	40	300	
(LE)	t _{WL}	_	10	_	20	150	ns
			15	_	15	120	
Min set-up time			5	_	35	150	
(DATA-LE)	tsu	_	10	_	15	70	ns
			15		10	40	
Min hold time	4.		5	_	_	0	20
(DATA-LE)	t _H	_	10	_		0	ns
Innut conceitance			15	_	_		
Input capacitance	C _{IN}	_		_	5	7.5	pF

Waveform for Measurement of Dynamic Characteristics


Waveform 1


Waveform 2

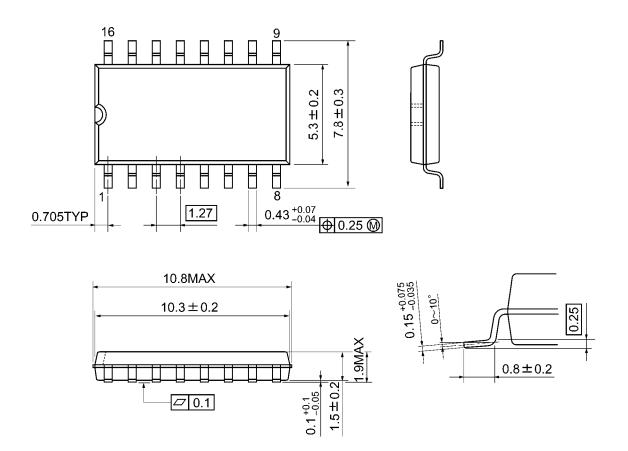
Waveform 3



Waveform 4

Package Dimensions

DIP16-P-300-2.54A Unit: mm



8

Weight: 1.00 g (typ.)

Package Dimensions

SOP16-P-300-1.27A Unit: mm

9

Weight: 0.18 g (typ.)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

10