

STM8AF61xx STM8AH61xx

Automotive 8-bit MCU, with up to 32 Kbytes Flash, EEPROM, 10-bit ADC, timers, LIN, SPI, I²C, 3 V to 5.5 V

Features

Core

- Max f_{CPU}: 16 MHz
- Advanced STM8A core with Harvard architecture and 3-stage pipeline
- Average 1.6 cycles/instruction resulting in 10 MIPS at 16 MHz f_{CPU} for industry standard benchmark

Memories

- Program memory: 16 to 32 Kbytes Flash; data retention 20 years at 55 °C after 1 kcycle
- Data memory: 0.5 to 1 Kbyte true data EEPROM; endurance 300 kcycles
- RAM: 1 to 2 Kbytes

Clock management

- Low power crystal resonator oscillator with external clock input
- Internal, user-trimmable 16 MHz RC and low power 128 kHz RC oscillators
- Clock security system with clock monitor

Reset and supply management


- Multiple low power modes (wait, slow, auto wakeup, halt) with user definable clock gating
- Low consumption power-on and power-down reset

Interrupt management

- Nested interrupt controller with 32 interrupt vectors
- Up to 34 external interrupts on 5 vectors

Timers

- Up to 2 auto-reload 16-bit PWM timers with up to 3 CAPCOM channels each (IC, OC or PWM)
- Multipurpose timer: 16-bit, 4 CAPCOM channels, 3 complementary outputs, dead-time insertion and flexible synchronization

- 8-bit AR system timer with 8-bit prescaler
- Auto wakeup timer
- Two watchdog timers: Window and standard

Communication interfaces

- LINUART LIN 2.1 compliant, master/slave modes with automatic resynchronization
- SPI interface up to 8 Mbit/s or f_{CPU}/2
- I²C interface up to 400 Kbit/s

Analog-to-digital converter (ADC)

- 10-bit accuracy, 2LSB TUE accuracy, 2 LSB TUE linearity ADC and up to 10 multiplexed channels with individual data buffer
- Analog watchdog, scan and continuous sampling mode

I/Os

- Up to 38 user pins including 10 high sink I/Os
- Highly robust I/O design, immune against current injection

Operating temperature

■ Up to 145 °C

Table 1. Device summary⁽¹⁾

Part numbers: STM8AF61xx/STM8AH61xx

STM8AF6168, STM8AF6148, STM8AF6166, STM8AF6146, STM8AF6126, STM8AH6168, STM8AH6148, STM8AH6166, STM8AH6146, STM8AH6126

 This datasheet applies to product versions with and without data EEPROM. The order code identifier is 'F' or 'H' respectively.

Contents

1	Intro	duction		10
2	Desc	cription .		11
3	Prod	luct line	-up	12
4	Bloc	k diagra	ım	13
5	Prod	luct feat	ures	14
	5.1	Central	processing unit STM8A (CPU)	14
		5.1.1	Architecture and registers	14
		5.1.2	Addressing	14
		5.1.3	Instruction set	14
	5.2	Non-vo	latile memory	15
		5.2.1	Architecture	15
		5.2.2	Write protection (WP)	15
		5.2.3	Protection of user boot code (UBC)	15
		5.2.4	Read-out protection (ROP)	16
	5.3	Single	wire interface module (SWIM) and debug module	16
		5.3.1	SWIM	16
		5.3.2	Debug module	17
	5.4	Clock a	and clock controller	17
		5.4.1	Features	17
		5.4.2	Internal 16 MHz RC oscillator	18
		5.4.3	Internal 128 kHz RC oscillator	18
		5.4.4	Internal high-speed crystal oscillator	18
		5.4.5	External clock input	18
		5.4.6	Clock security system (CSS)	18
	5.5	Low-po	wer operating modes	19
	5.6	Interrup	ot controller	19
	5.7	Input/o	utput specifications	19
	5.8	Timers		19
		5.8.1	Watchdog timers	19
		5.8.2	Auto wakeup counter	20

		5.8.3	Beeper	. 20
		5.8.4	Multipurpose and PWM timers	. 20
		5.8.5	System timer	. 21
	5.9	Commu	ınication interfaces	. 22
		5.9.1	Serial peripheral interface (SPI)	. 22
		5.9.2	Inter integrated circuit (I ² C) interface	. 22
		5.9.3	Universal asynchronous receiver/transmitter with LIN support (LINUART)	. 23
	5.10	Analog-	to-digital converter (ADC)	. 24
6	Pino	uts and	pin description	25
	6.1	Packag	e pinouts	. 25
	6.2	Pin des	cription	. 26
		6.2.1	Alternate function remapping	. 29
7	Mem	ory map)	. 30
8	Inter	rupt tabl	le	. 31
9	Mem	ory map)	. 32
9	Mem 9.1		ster map	
9		I/O regi		. 32
9	9.1	I/O regi Non-vol	ster map	. 32
9	9.1 9.2	I/O regi Non-vol CPU re	ster map	32 33 34
9	9.1 9.2 9.3	I/O regi Non-vol CPU re	ster map	. 32 . 33 . 34
9	9.1 9.2 9.3	I/O reginate Non-volument CPU reginate Miscella	ster map latile memory gisters aneous registers	32 33 34 34
9	9.1 9.2 9.3	I/O regination of the control of the	ster map latile memory gisters aneous registers Global configuration register	32 33 34 34 34
9	9.1 9.2 9.3	I/O regination of the control of the	ster map latile memory gisters aneous registers Global configuration register Reset status register	32 33 34 34 34 34
9	9.1 9.2 9.3 9.4	I/O regination of the control of the	ster map latile memory gisters aneous registers Global configuration register Reset status register Temporary memory unprotection key registers	32 33 34 34 34 35
9	9.1 9.2 9.3 9.4	I/O reginate Non-volume Non-volum	ster map latile memory gisters aneous registers Global configuration register Reset status register Temporary memory unprotection key registers nd clock controller	32 33 34 34 34 35 35
9	9.1 9.2 9.3 9.4 9.5 9.6	I/O reginate Non-volume Non-volum	ster map latile memory gisters aneous registers Global configuration register Reset status register Temporary memory unprotection key registers nd clock controller wer operating modes	32 33 34 34 34 35 35 37
9	9.1 9.2 9.3 9.4 9.5 9.6	I/O regination of the control of the	ster map latile memory gisters aneous registers Global configuration register Reset status register Temporary memory unprotection key registers nd clock controller wer operating modes	32 33 34 34 34 35 35 37 37
9	9.1 9.2 9.3 9.4 9.5 9.6	I/O reginal Non-volume CPU results Miscella 9.4.1 9.4.2 9.4.3 Clock a Low-port Interrup 9.7.1	ster map latile memory gisters aneous registers Global configuration register Reset status register Temporary memory unprotection key registers nd clock controller wer operating modes of controller Interrupt software priority registers	32 33 34 34 34 35 35 37 37 37
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7	I/O regination in the region of the region o	ster map latile memory gisters aneous registers Global configuration register Reset status register Temporary memory unprotection key registers and clock controller wer operating modes at controller Interrupt software priority registers External interrupt control register	32 33 34 34 34 35 35 37 37 37 38
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7	I/O regis Non-vol CPU re Miscella 9.4.1 9.4.2 9.4.3 Clock a Low-por Interrup 9.7.1 9.7.2 Timers	ster map latile memory gisters aneous registers Global configuration register Reset status register Temporary memory unprotection key registers and clock controller wer operating modes at controller Interrupt software priority registers External interrupt control register	32 33 34 34 34 35 35 37 37 38 38
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7	I/O reginal Non-volume CPU results of Miscella 9.4.1 9.4.2 9.4.3 Clock at Low-port Interrup 9.7.1 9.7.2 Timers 9.8.1	latile memory gisters aneous registers Global configuration register Reset status register Temporary memory unprotection key registers and clock controller wer operating modes at controller Interrupt software priority registers External interrupt control register Window watchdog timer	32 33 34 34 34 35 37 37 37 38 38 38

		9.8.4	TIM1	39
		9.8.5	TIM2	41
		9.8.6	TIM3	43
		9.8.7	TIM4	44
	9.9	Commu	ınication interfaces	45
		9.9.1	Serial peripheral interface (SPI)	45
		9.9.2	Inter integrated circuit (I ² C) interface	46
		9.9.3	Universal asynchronous receiver/transmitter with LIN support (LINUART)	47
	9.10	Analog-	to-digital converter (ADC)	48
10	Optio	n bytes		50
11	Elect	rical cha	aracteristics	55
	11.1	Parame	eter conditions	55
		11.1.1	Minimum and maximum values	55
		11.1.2	Typical values	55
		11.1.3	Typical curves	55
		11.1.4	Loading capacitor	55
		11.1.5	Pin input voltage	56
	11.2	Absolut	e maximum ratings	56
	11.3		ng conditions	
		11.3.1	Supply current characteristics	60
		11.3.2	External clock sources and timing characteristics	
		11.3.3	Internal clock sources and timing characteristics	
		11.3.4	Memory characteristics	68
		11.3.5	I/O port pin characteristics	70
		11.3.6	Reset pin characteristics	74
		11.3.7	TIM 1, 2, 3, and 4 timer specifications	75
		11.3.8	SPI serial peripheral interface	76
		11.3.9	I ² C interface characteristics	79
		11.3.10	10-bit ADC characteristics	80
		11.3.11	EMC characteristics	82
	11.4	Therma	ll characteristics	85
		11.4.1	Reference document	85
		11.4.2	Selecting the product temperature range	86

12	Pack	age characteristics
	12.1	Package mechanical data 88
13	Orde	ring information
14	Knov	vn limitations
	14.1	Core 9 ⁻
		14.1.1 Wait for event (WFE) instruction not supported9
		14.1.2 JRIL and JRIH instructions not supported
		14.1.3 CPU does not return to HALT if AL bit is set9
		14.1.4 Main does not resume after ISR resets the AL bit
	14.2	I ² C interface
		14.2.1 Misplaced NACK when receiving 2 bytes
		14.2.2 Data register corrupted92
		14.2.3 Delay in programming of STOP leads to reception of supplementary byte
		14.2.4 START badly generated after misplaced STOP
	14.3	USART interface
		14.3.1 Parity error flag (PE) is not correctly set in overrun condition 93
	14.4	LINUART93
		14.4.1 Framing error issue with data byte 0x0093
		14.4.2 Framing error issue at reception of identifier (ID)94
		14.4.3 Parity error issue at reception of identifier (ID)
		14.4.4 OR flag not correctly set in LIN master mode94
		14.4.5 LIN header error when automatic resynchronization is enabled 94
	14.5	Clock controller
		14.5.1 HSI cannot be switched off in run mode94
	14.6	SPI interface
		14.6.1 Last bit too short if SPI is disabled during communication99
	14.7	ADC99
		14.7.1 EOC interrupt triggered when AWDIE=1 and EOCIE=195
15	STM	B development tools96
	15.1	Emulation and in-circuit debugging tools
		15.1.1 STice key features
	15.2	Software tools

$\overline{}$	_			_		4 -	
G	o	n	t	е	n	ts	

STM8AF61xx, STM8AH61xx

16	Revis	ion hist	ory9	9
	15.3	Program	nming tools 9	8
		15.2.2	C and assembly toolchains9	7
		15.2.1	STM8 toolset9)7

List of tables

Table 1.	Device summary	. 1
Table 2.	STM8AF/H61xx product line-up	
Table 3.	PWM timers	
Table 4.	TIM4	
Table 5.	Legend/abbreviation for <i>Table 6</i>	26
Table 6.	STM8A 32 Kbytes microcontroller pin description	27
Table 7.	Memory model for the devices covered in this datasheet	
Table 8.	STM8A interrupt table	
Table 9.	I/O port hardware register map	32
Table 10.	Non-volatile memory	
Table 11.	CPU registers	
Table 12.	CFG_GCR register map	
Table 13.	RST_SR register map	
Table 14.	TMU register map and reset values	
Table 15.	CLK register map and reset values	
Table 16.	Interrupt software priority registers map	
Table 17.	External interrupt control register map	38
Table 18.	WWDG register map and reset values	
Table 19.	IWDG register map	
Table 20.	AWU register map	
Table 21.	BEEP register map	39
Table 22.	TIM1 register map	39
Table 23.	TIM2 register map	41
Table 24.	TIM3 register map	43
Table 25.	TIM4 register map	
Table 26.	SPI register map and reset value	45
Table 27.	I ² C register map	46
Table 28.	LINUART register map and reset value	47
Table 29.	ADC register map and reset values	48
Table 30.	Option bytes	50
Table 31.	Option byte description	52
Table 32.	Voltage characteristics	56
Table 33.	Current characteristics	57
Table 34.	Thermal characteristics	57
Table 35.	General operating conditions	58
Table 36.	Operating conditions at power-up/power-down	59
Table 37.	Total current consumption in run, wait and slow mode	
Table 38.	Total current consumption in halt and active halt modes	61
Table 39.	Oscillator current consumption	61
Table 40.	Programming current consumption	
Table 41.	Typical peripheral current consumption V _{DD} = 5.0 V	63
Table 42.	HSE user external clock characteristics	64
Table 43.	HSE oscillator characteristics	
Table 44.	HSI oscillator characteristics	66
Table 45.	LSI oscillator characteristics	
Table 46.	Flash program memory/data EEPROM memory	
Table 47.	Program memory	
Table 48.	Data memory	69

List of tables

STM8AF61xx, STM8AH61xx

Table 49.	I/O static characteristics	. 70
Table 50.	NRST pin characteristics	. 74
Table 51.	TIM 1, 2, 3, and 4 electrical specifications	. 75
Table 52.	SPI characteristics	. 76
Table 53.	I ² C characteristics	. 79
Table 54.	ADC characteristics	. 80
Table 55.	ADC accuracy for V _{DDA} = 5 V	. 81
Table 56.	EMS data	. 82
Table 57.	EMI data	. 83
Table 58.	ESD absolute maximum ratings	. 83
Table 59.	Electrical sensitivities	. 84
Table 60.	Thermal characteristics	. 85
Table 61.	48-pin low profile quad flat package mechanical data	. 88
Table 62.	32-pin low profile quad flat package mechanical data	
Table 63	Document revision history	90

List of figures

Figure 1.	STM8A block diagram	13
Figure 2.	Flash memory organization of STM8A products	
Figure 3.	LQFP 48-pin pinout	
Figure 4.	LQFP 32-pin pinout	
Figure 5.	Register and memory map of STM8A products	
Figure 6.	Pin loading conditions	
Figure 7.	Pin input voltage	
Figure 8.	f _{CPI Imax} versus V _{DD}	58
Figure 9.	Typ. I _{DD(RUN)HSE} vs. V _{DD} @f _{CPU} = 16 MHz, periph = on	62
Figure 10.	Typ. $I_{DD(RUN)HSE}$ vs. f_{CPU} @ $V_{DD} = 5.0$ V, periph = on	62
Figure 11.	Typ. I _{DD(RUN)HSI} vs. V _{DD} @ f _{CPU} = 16 MHz, periph = off	62
Figure 12.	Typ. I _{DD(WFI)HSE} vs. V _{DD} @ f _{CPU} = 16 MHz, periph = on	62
Figure 13.	Typ. I _{DD(WFI)HSE} vs. f _{CPU} @ V _{DD} = 5.0 V, periph = on	62
Figure 14.	Typ. I _{DD(WFI)HSI} vs. V _{DD} @ f _{CPU} = 16 MHz, periph = off	62
Figure 15.	HSE external clock source	64
Figure 16.	HSE oscillator circuit diagram	
Figure 17.	Typical HSI frequency vs V _{DD}	
Figure 18.	Typical LSI frequency vs V _{DD}	67
Figure 19.	Typical V _{IL} and V _{IH} vs V _{DD} @ four temperatures	
Figure 20.	Typical pull-up resistance R _{PU} vs V _{DD} @ four temperatures	
Figure 21.	Typical pull-up current I _{pu} vs V _{DD} @ four temperatures	
Figure 22.	Typ. V_{OL} @ V_{DD} = 3.3 \dot{V} (standard ports)	72
Figure 23.	Typ. V _{OL} @ V _{DD} = 5.0 V (standard ports)	72
Figure 24.	Typ. V _{OL} @ V _{DD} = 3.3 V (true open drain ports)	
Figure 25.	Typ. V _{OL} @ V _{DD} = 5.0 V (true open drain ports)	
Figure 26.	Typ. V_{OL} @ V_{DD} = 3.3 V (high sink ports)	
Figure 27.	Typ. V_{OL} @ V_{DD} = 5.0 V (high sink ports)	
Figure 28.	Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (standard ports)	
Figure 29.	Typ. V_{DD} - V_{OH} @ V_{DD} = 5.0 V (standard ports)	
Figure 30.	Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (high sink ports)	
Figure 31.	Typ. V_{DD} - V_{OH} @ V_{DD} = 5.0 V (high sink ports)	
Figure 32.	Typical NRST V_{IL} and V_{IH} vs V_{DD} @ four temperatures	
Figure 33.	Typical NRST pull-up resistance R _{PU} vs V _{DD}	74
Figure 34.	Typical NRST pull-up current I _{pu} vs V _{DD}	75
Figure 35.	Recommended reset pin protection	
Figure 36.	SPI timing diagram where slave mode and CPHA = 0	
Figure 37.	SPI timing diagram where slave mode and CPHA = 1	
Figure 38.	SPI timing diagram - master mode	
Figure 39.	Typical application with ADC	
Figure 40.	ADC accuracy characteristics	
Figure 41.	48-pin low profile quad flat package (7 x 7)	
Figure 42.	32-pin low profile quad flat package (7 x 7)	
Figure 43.	STM8A order codes	90

1 Introduction

This datasheet refers to the STM8AF61xx and STM8AH61xx products with 16 to 32 Kbytes of program memory. The STM8AF61xx and STM8AH61xx are hereafter referred to as the STM8AF/H61xx. 'F' refers to product versions with data EEPROM and 'H' refers to product versions without EEPROM. The identifiers 'F' and 'H' do not both appear in an order code.

The datasheet contains the description of family features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8A microcontroller memory, registers and peripherals, please refer to STM8A microcontroller family reference manual (RM0009).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8 Flash programming manual (PM0047).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

10/100 Doc ID 14952 Rev 3

2 Description

The STM8A automotive 8-bit microcontrollers offer from 16 to 32 Kbytes of program memory and integrated true data EEPROM.

All devices of the STM8A product line provide the following benefits:

- Reduced system cost
 - Integrated true data EEPROM for up to 300 k write/erase cycles
 - High system integration level with internal clock oscillators, watchdog and brownout reset.
- Performance and robustness
 - Average performance 10 MIPS at 16 MHz CPU clock frequency
 - Robust I/O, independent watchdogs with separate clock source
 - Clock security system
- Short development cycles
 - Applications scalability across a common family product architecture with compatible pinout, memory map and and modular peripherals.
 - Full documentation and a wide choice of development tools
- Product longevity
 - Advanced core and peripherals made in a state-of-the art technology
 - Native automotive product family operating both at 3.3 V and 5 V supply

All STM8A and ST7 microcontrollers are supported by the same tools including STVD/STVP development environment, the STice emulator and a low-cost, third party incircuit debugging tool (for more details, see *Section 15: STM8 development tools on page 96*).

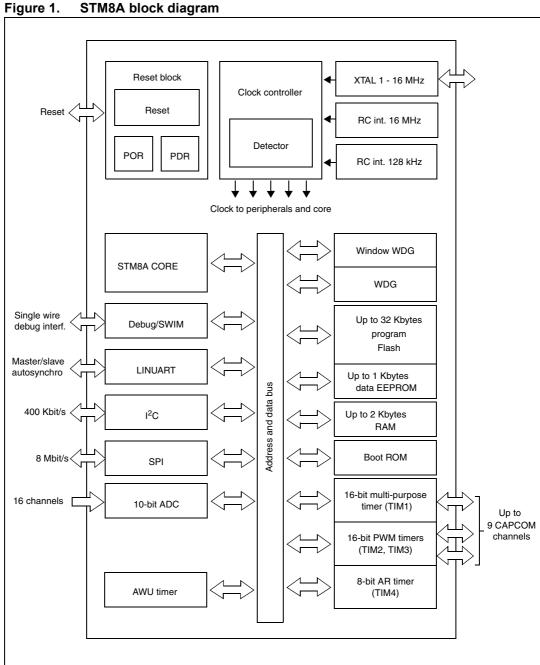

3 Product line-up

Table 2. STM8AF/H61xx product line-up

Order code	Package	Prog. (bytes)	RAM (bytes)	Data EE (bytes)	10-bit A/D ch.	Timers (IC/OC/PWM)	Serial interfaces	I/0 wakeup pins	
STM8AF/H6168T	1.05040	32 K	2 K	1 K		1x8-bit: TIM4	LINI/LIA DT\		
STM8AF/H6148T	LQFP48 (7x7) ⁽¹⁾	16 K	1 K	0.5 K	10	3x16-bit: TIM1, TIM2, TIM3 (9/9/9)	LIN(UART), SPI, I ² C	38/35	
STM8AF/H6166T		32 K	2 K	1 K			1x8-bit: TIM4		
STM8AF/H6146T	LQFP32 (7x7) ⁽¹⁾	16 K	1 K	0.5 K	7	3x16-bit: TIM1, TIM2, TIM3	LIN(UART), SPI, I ² C	25/23	
STM8AF/H6126	, ,,	8 K	512	384			(8/8/8)	- ,	

^{1.} Also QFN package available

Block diagram 4

5 Product features

This section is intended to describe the family features that are actually implemented in the products covered by this datasheet.

For more detailed information on each feature please refer to the STM8A microcontroller family reference manual (RM0009).

5.1 Central processing unit STM8A (CPU)

The 8-bit STM8A core is a modern CISC core and has been designed for code efficiency and performance. It contains 21 internal registers (six directly addressable in each execution context), 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

5.1.1 Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus with single cycle fetching for most instructions
- X and Y 16-bit index registers, enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter with 16-Mbyte linear memory space
- 16-bit stack pointer with access to a 64 Kbyte stack
- 8-bit condition code register with seven condition flags for the result of the last instruction.

5.1.2 Addressing

- 20 addressing modes
- Indexed indirect addressing mode for look-up tables located anywhere in the address space
- Stack pointer relative addressing mode for efficient implementation of local variables and parameter passing

5.1.3 Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

5.2 Non-volatile memory

- 8 Kbytes to 32 Kbytes of single voltage program Flash memory
- Up to 1 Kbytes true (not emulated) data EEPROM
- Read while write: Writing in the data memory is possible while executing code in the program memory
- The device setup is stored in a user option area in the non-volatile memory

5.2.1 Architecture

- The memory is organized in blocks of 128 bytes each
- Read granularity: 1 word = 4 bytes
- Write/erase granularity: 1 word (4 bytes) or 1 block (128 bytes) in parallel
- Writing, erasing, word and block management is handled automatically by the memory interface.

5.2.2 Write protection (WP)

Write protection in application mode is intended to avoid unintentional overwriting of the memory. The write protection can be removed temporarily by executing a specific sequence in the user software.

5.2.3 Protection of user boot code (UBC)

If the user chooses to update the program memory using a specific boot code to perform in application programming (IAP), this boot code needs to be protected against unwanted modification.

In the STM8A a memory area of up to 32 Kbytes can be protected from overwriting at user option level. Other than the standard write protection, the UBC protection can exclusively be modified via the debug interface, the user software cannot modify the UBC protection status.

The UBC memory area contains the reset and interrupt vectors and its size can be adjusted in increments of 512 bytes by programming the UBC and NUBC option bytes (see Section 10: Option bytes on page 50).

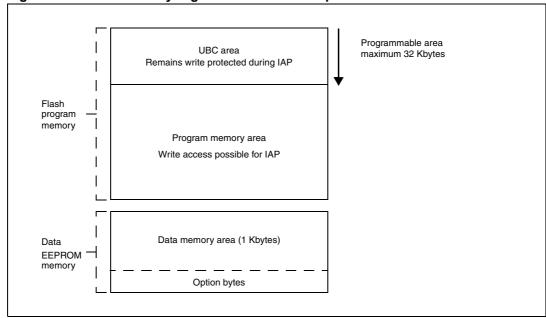


Figure 2. Flash memory organization of STM8A products

5.2.4 Read-out protection (ROP)

The STM8A provides a read-out protection of the code and data memory which can be activated by an option byte setting (see the ROP option byte in section 10).

The read-out protection prevents reading and writing program memory, data memory and option bytes via the debug module and SWIM interface. This protection is active in all device operation modes. Any attempt to remove the protection by overwriting the ROP option byte triggers a global erase of the program and data memory.

The ROP circuit may provide a temporary access for debugging or failure analysis. The temporary read access is protected by a user defined, 8-byte keyword stored in the option byte area. This keyword must be entered via the SWIM interface to temporarily unlock the device.

If desired, the temporary unlock mechanism can be permanently disabled by the user.

5.3 Single wire interface module (SWIM) and debug module

5.3.1 SWIM

The single wire interface module, SWIM, together with an integrated debug module, permits non-intrusive, real-time in-circuit debugging and fast memory programming. The interface can be activated in all device operation modes and can be connected to a running device (hot plugging). The maximum data transmission speed is 145 bytes/ms.

16/100 Doc ID 14952 Rev 3

5.3.2 Debug module

The non-intrusive debugging module features a performance close to a full-flavored emulator. Besides memory and peripheral operation, CPU operation can also be monitored in real-time by means of shadow registers.

- R/W of RAM and peripheral registers in real-time
- R/W for all resources when the application is stopped
- Breakpoints on all program-memory instructions (software breakpoints), except the interrupt vector table
- Two advanced breakpoints and 23 predefined breakpoint configurations

5.4 Clock and clock controller

The clock controller distributes the system clock coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness.

5.4.1 Features

- Clock sources:
 - Internal 16 MHz and 128 kHz RC oscillators
 - Crystal/resonator oscillator
 - External clock input
- Reset: After reset the microcontroller restarts by default with an internal 2-MHz clock (16 MHz/8). The clock source and speed can be changed by the application program as soon as the code execution starts.
- Safe clock switching: Clock sources can be changed safely on the fly in run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management**: To reduce power consumption, the clock controller can stop the clock to the core or individual peripherals.
- Wakeup: In case the device wakes up from low-power modes, the internal RC oscillator (16 MHz/8) is used for quick startup. After a stabilization time, the device switches to the clock source that was selected before halt mode was entered.
- Clock security system (CSS): The CSS permits monitoring of external clock sources and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.
- Configurable main clock output (CCO): This feature permits to outputs a clock signal for use by the application.

5.4.2 Internal 16 MHz RC oscillator

- Default clock after reset 2 MHz (16 MHz/8)
- Fast wakeup time

User trimming

The register CLK_HSITRIMR with three trimming bits plus one additional bit for the sign permits frequency tuning by the application program. The adjustment range covers all possible frequency variations versus supply voltage and temperature. This trimming does not change the initial production setting.

For reason of compatibility with other devices from the STM8A family, a special mode with only two trimming bits plus sign can be selected. This selection is controlled with the bit **16MHZTRIM0** in the option byte registers OPT3 and NOPT3.

5.4.3 Internal 128 kHz RC oscillator

The frequency of this clock is 128 kHz and it is independent from the main clock. It drives the independent watchdog or the AWU wakeup timer.

In systems which do not need independent clock sources for the watchdog counters, the 128 kHz signal can be used as the system clock. This configuration has to be enabled by setting an option byte (OPT3/OPT3N, bit LSI_EN).

5.4.4 Internal high-speed crystal oscillator

The internal high-speed crystal oscillator can be selected to deliver the main clock in normal run mode. It operates with quartz crystals and ceramic resonators.

- Frequency range: 1 MHz to 16 MHz
- Crystal oscillation mode: preferred fundamental
- I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT

5.4.5 External clock input

An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The frequency range is 0 to 16 MHz.

5.4.6 Clock security system (CSS)

The clock security system protects against a system stall in case of an external crystal clock failure.

In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is automatically selected with a frequency of 2 MHz (16 MHz/8).

5.5 Low-power operating modes

The product features various low-power modes:

- Slow mode: prescaled CPU clock, selected peripherals at full clock speed
- Active halt mode: CPU and peripheral clocks are stopped, the device cyclically goes back to run mode, controlled by the AWU timer. Wakeup through external events is possible.
- Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
 Wakeup is triggered by an external interrupt.

In all modes the CPU and peripherals remain permanently powered on, the system clock is applied only to selected modules. The RAM content is preserved and the brown-out reset circuit remains activated.

5.6 Interrupt controller

- Nested interrupts with three software priority levels
- 21 interrupt vectors with hardware priority
- Five vectors for external interrupts (up to 34 depending on the package)
- Trap and reset interrupts

5.7 Input/output specifications

The product features four different I/O types:

- Standard I/O 2 MHz
- Fast I/O 10 MHz
- High sink 8 mA, 2 MHz
- True open drain (I²C interface)

To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.

The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitt-trigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.

STM8A I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A. Thanks to this feature, external protection diodes against current injection are no longer required.

5.8 Timers

5.8.1 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications. The watchdog timer activity is controlled by the application program or option bytes. Once the watchdog is activated, it cannot be disabled by the user program without going through reset.

Window watchdog timer

The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

The window function can be used to trim the watchdog behavior to match the application timing perfectly. The application software must refresh the counter before time-out and during a limited time window. If the counter is refreshed outside this time window, a reset is issued.

Independent watchdog timer

The independent watchdog peripheral can be used to resolve malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure. If the hardware watchdog feature is enabled through the device option bits, the watchdog is automatically enabled at power-on, and generates a reset unless the key register is written by software before the counter reaches the end of count.

5.8.2 Auto wakeup counter

This counter is used to cyclically wakeup the device in active halt mode. It can be clocked by the internal 128 kHz internal low-frequency RC oscillator or external clock

5.8.3 Beeper

This function generates a rectangular signal in the range of 1, 2 or 4 kHz which can be output on a pin. This is useful when audible sounds without interference need to be generated for use in the application.

5.8.4 Multipurpose and PWM timers

STM8A devices described in this datasheet, contain up to three 16-bit multipurpose and PWM timers providing nine CAPCOM channels in total. A CAPCOM channel can be used either as input compare, output compare or PWM channel. These timers are named TIM1, TIM2 and TIM3.

Table 3. PWM timers

Timer	Counter width	Counter type	Prescaler factor	Channels	Inverted outputs	Repetition counter	trigger unit	External trigger	Break input
TIM1	16-bit	Up/down	1 to 65536	4	3	Yes	Yes	Yes	Yes
TIM2	16-bit	Up	2 ⁿ n = 0 to 15	3	None	No	No	No	No
TIM3	16-bit	Up	2 ⁿ n = 0 to 15	2	None	No	No	No	No

TIM1: Multipurpose PWM timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and bridge driver.

- 16-bit up, down and up/down AR (auto-reload) counter with 16-bit fractional prescaler.
- Four independent CAPCOM channels configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Trigger module which allows the interaction of TIM1 with other on-chip peripherals. In the present implementation it is possible to trigger the ADC upon a timer event.
- External trigger to change the timer behavior depending on external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Interrupt sources: 4 x input capture/output compare, 1 x overflow/update, 1 x break

TIM2 and TIM3: 16-bit PWM timers

- 16-bit auto-reload up-counter
- 15-bit prescaler adjustable to fixed power of two ratios 1...32768
- Timers with three or two individually configurable CAPCOM channels
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

5.8.5 System timer

The typical usage of this timer (TIM4) is the generation of a clock tick.

Table 4. TIM4

Timer	Counter width	Counter type	Prescaler factor	Channels	Inverted outputs	Repetition counter	trigger unit	External trigger	Break input
TIM4	8-bit	Up	2^{n} n = 0 to 7	0	None	No	No	No	No

- 8-bit auto-reload, adjustable prescaler ratio to any power of two from 1 to 128
- Clock source: master clock
- Interrupt source: 1 x overflow/update

5.9 Communication interfaces

5.9.1 Serial peripheral interface (SPI)

The devices covered by this datasheet contain one SPI. The SPI is available on all the supported packages.

- Maximum speed: 8 Mbit/s or f_{MASTER}/2 both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave mode/master mode management by hardware or software for both master and slave
- Programmable clock polarity and phase
- Programmable data order with MSB-first or LSB-first shifting
- Dedicated transmission and reception flags with interrupt capability
- SPI bus busy status flag
- Hardware CRC feature for reliable communication:
 - CRC value can be transmitted as last byte in Tx mode
 - CRC error checking for last received byte

5.9.2 Inter integrated circuit (I²C) interface

The devices covered by this datasheet contain one I²C interface. The interface is available on all the supported packages.

- I²C master features:
 - Clock generation
 - Start and stop generation
- I²C slave features:
 - Programmable I²C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
- Supports different communication speeds:
 - Standard speed (up to 100 kHz),
 - Fast speed (up to 400 kHz)
- Status flags:
 - Transmitter/receiver mode flag
 - End-of-byte transmission flag
 - I²C busy flag
- Error flags:
 - Arbitration lost condition for master mode
 - Acknowledgement failure after address/data transmission

- Detection of misplaced start or stop condition
- Overrun/underrun if clock stretching is disabled
- Interrupt:
 - Successful address/data communication
 - Error condition
 - Wakeup from halt
- Wakeup from halt on address detection in slave mode

5.9.3 Universal asynchronous receiver/transmitter with LIN support (LINUART)

The devices covered by this datasheet contain one LINUART interface. The interface is available on all the supported packages. The LINUART is an asynchronous serial communication interface which supports extensive LIN functions tailored for LIN slave applications. In LIN mode it is compliant to the LIN standards rev 1.2 to rev 2.1.

Detailed feature list:

LIN mode

Master mode:

- LIN break and delimiter generation
- LIN break and delimiter detection with separate flag and interrupt source for read back checking.

Slave mode:

- Autonomous header handling one single interrupt per valid header
- Mute mode to filter responses
- Identifier parity error checking
- LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI) clock source
- Break detection at any time, even during a byte reception
- Header errors detection:
 - Delimiter too short
 - Synch field error
 - Deviation error (if automatic resynchronization is enabled)
 - Framing error in synch field or identifier field
 - Header time-out

UART mode

- Full duplex, asynchronous communications NRZ standard format (mark/space)
- High-precision baud rate generator
 - A common programmable transmit and receive baud rates up to f_{MASTER}/16
- Programmable data word length (8 or 9 bits) 1 or 2 stop bits parity control
- Separate enable bits for transmitter and receiver
- Error detection flags
- Reduced power consumption mode
- Multi-processor communication enter mute mode if address match does not occur
- Wakeup from mute mode (by idle line detection or address mark detection)
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line

5.10 Analog-to-digital converter (ADC)

The STM8A products described in this datasheet contain a 10-bit successive approximation ADC with up to 16 multiplexed input channels, depending on the package.

ADC features:

- 10-bit resolution
- Single and continuous conversion modes
- Programmable prescaler: f_{MASTER} divided by 2 to 18
- Conversion trigger on timer events and external events
- Interrupt generation at end of conversion
- Selectable alignment of 10-bit data in 2 x 8 bit result register
- Shadow registers for data consistency
- ADC input range: V_{SSA} = V_{IN} = V_{DDA}
- Analog watchdog
- Schmitt-trigger on analog inputs can be disabled to reduce power consumption
- Scan mode (single and continuous)
- Dedicated result register for each conversion channel
- Buffer mode for continuous conversion

6 Pinouts and pin description

6.1 Package pinouts

Figure 3. LQFP 48-pin pinout

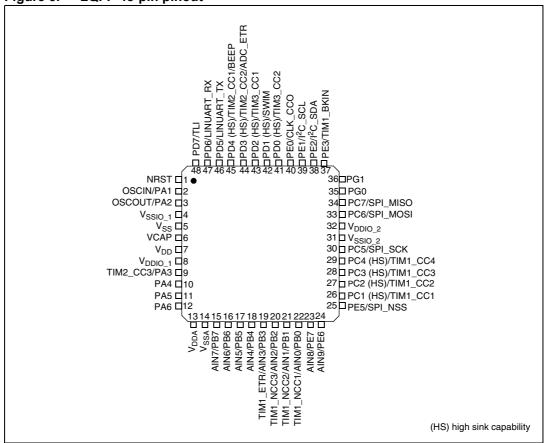
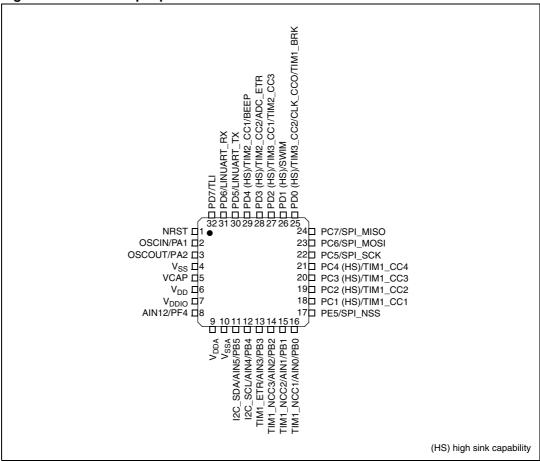



Figure 4. LQFP 32-pin pinout

6.2 Pin description

Table 5. Legend/abbreviation for *Table 6*

Туре	I= input, O =	I= input, O = output, S = power supply								
Level	Input	CM = CMOS (standard for all I/Os)								
	Output	HS = High sink (8 mA)								
Output speed	O2 = Fast (O3 = Fast/s	ard (up to 2 MHz) up to 10 MHz) low programmability with slow as default state after reset low programmability with fast as default state after reset								
Port and control	Input float = floating, wpu = weak pull-up									
Configuration Output T = true open drain, OD = open drain, PP = push pull										

Reset state is shown in **bold**.

Table 6. STM8A 32 Kbytes microcontroller pin description

	in ıber				Inpu			Out			et)		Alternate
LQFP48	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QΟ	ЬР	Main function (after reset)	Default alternate function	function after remap [option bit]
1	1	NRST	I/O	-	X	-	-	-	-	-	Reset		_
2	2	PA1/OSCIN ⁽¹⁾	I/O	X	Χ	-	-	01	Х	Χ	Port A1	Resonator/crystal in	_
3	3	PA2/OSCOUT	I/O	X	Χ	Χ	ı	01	Χ	Χ	Port A2	Resonator/crystal out	_
4	1	V _{SSIO_1}	S	1	,	-	-	,	-	-	I/O groun	d	
5	4	V _{SS}	S	1	1	-	-	1	-	-	Digital gro	ound	_
6	5	VCAP	S	-	-	-	-	-	-	-	1.8 V regi	ulator capacitor	_
7	6	V_{DD}	S	-	-	-	-	-	-	-	Digital po	wer supply	_
8	7	V _{DDIO_1}	S		1	-	-		-	•	I/O power	supply	_
-	8	PF4/AIN12 ⁽²⁾	I/O	X	Х		-	01	Х	Χ	Port F4	Analog input 12	_
9	-	PA3/TIM2_CC3	I/O	X	Х	Х	-	01	Х	Х	Port A3	Timer 2 - channel 3	TIM3_CC1 [AFR1]
10	-	PA4	I/O	X	Χ	Χ	-	О3	Х	Χ	Port A4		_
11	-	PA5	I/O	X	Χ	Χ	-	О3	Х	Χ	Port A5		_
12	-	PA6	I/O	X	Χ	Χ	-	О3	Х	Χ	Port A6		_
13	9	V_{DDA}	S		1	-	-		-	•	Analog po	ower supply	_
14	10	V _{SSA}	S	-	-	-	-	-	-	-	Analog gr	ound	_
15	-	PB7/AIN7	I/O	X	Χ	Χ	-	01	Х	Χ	Port B7	Analog input 7	_
16	-	PB6/AIN6	I/O	X	Χ	Χ	-	01	Х	Χ	Port B6	Analog input 6	_
17	11	PB5/AIN5	I/O	X	Х	Х	-	01	Х	Х	Port B5	Analog input 5	I ² C_SDA [AFR6]
18	12	PB4/AIN4	I/O	X	Х	Х	-	01	Х	Х	Port B4	Analog input 4	I ² C_SCL [AFR6]
19	13	PB3/AIN3	I/O	X	Х	Х	-	01	Х	X	Port B3	Analog input 3	TIM1_ETR [AFR5]
20	14	PB2/AIN2	I/O	x	х	х	-	O1	х	Х	Port B2 Analog input		TIM1_ NCC3 [AFR5]
21	15	PB1/AIN1	I/O	X	х	х	-	O1	Х	Х	Port B1 Analog input 1		TIM1_ NCC2 [AFR5]
22	16	PB0/AIN0	I/O	X	х	х	-	O1	Х	Х	Port B0 Analog input 0		TIM1_ NCC1 [AFR5]
23	-	PE7/AIN8	I/O	X	Χ		-	01	Χ	Х	Port E7	Analog input 8	_

Table 6. STM8A 32 Kbytes microcontroller pin description (continued)

P	ie 6. in iber	51 WISA 32 P			Inpu			Out				,	Alternate
LQFP48	LQFP32	Pin name	Туре	floating	ndw	Ext. interrupt	High sink	Speed	OD	PP	Main function (after reset)	Default alternate function	function after remap [option bit]
24		PE6/AIN9	I/O	X	Χ	Χ	-	01	Х	Χ	Port E7	Analog input 9	_
25	17	PE5/SPI_NSS	I/O	X	Х	Χ	-	01	Х	Χ	Port E5 SPI master/slave select		_
26	18	PC1/TIM1_CC1	I/O	X	Х	Х	HS	О3	Х	Χ	Port C1	Timer 1 - channel 1	_
27	19	PC2/TIM1_CC2	I/O	X	Χ	Χ	HS	О3	Х	Χ	Port C2	Timer 1- channel 2	_
28	20	PC3/TIM1_CC3	I/O	X	X	Χ	HS	03	Х	Χ	Port C3	Timer 1 - channel 3	_
29	21	PC4/TIM1_CC4	I/O	X	X	Χ	HS	О3	Х	Χ	Port C4	Timer 1 - channel 4	_
30	22	PC5/SPI_SCK	I/O	X	Х	Χ		О3	Х	Χ	Port C5 SPI clock		_
31	1	V _{SSIO_2}	S	1	-	-	-	-	-	-	I/O groun	d	_
32	-	V _{DDIO_2}	S		-	-	-	-	-	-	I/O power	supply	_
33	23	PC6/SPI_MOSI	I/O	X	Х	Х	-	О3	Х	Χ	Port C6 SPI master out/ slave in		_
34	24	PC7/SPI_MISO	I/O	X	Χ	Χ	-	О3	Х	Χ	Port C7	SPI master in/ slave out	_
35	-	PG0	I/O	X	Χ	-	-	01	Х	Χ	Port G0	-	_
36	-	PG1	I/O	X	Х	-	1	01	Х	Χ	Port G1	-	_
37	-	PE3/TIM1_BKIN	I/O	X	Х	Χ	-	01	Х	Χ	Port E3	Timer 1 - break input	_
38	1	PE2/I ² C_SDA	I/O	X	X	Χ	1	01	T ⁽³⁾	-	Port E2	I ² C data	_
39	1	PE1/I ² C_SCL	I/O	X	Χ	Χ	-	01	T ⁽³⁾	-	Port E1	I ² C clock	_
40	-	PE0/CLK_CCO	I/O	X	Х	Х	-	О3	Х	Χ	Port E0	Configurable clock output	_
41	25	PD0/TIM3_CC2	I/O	X	Х	Х	HS	О3	х	х	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
42	26	PD1/SWIM	I/O	Х	X	Χ	HS	O4	Х	Χ	Port D1	SWIM data interface	_
43	27	PD2/TIM3_CC1	I/O	x	Х	Х	HS	О3	Х	Х	Port D2 Timer 3 - channel 1		TIM2_CC3 [AFR1]
44	28	PD3/TIM2_CC2	I/O	X	Х	Х	HS	О3	Х	Х			ADC_ETR [AFR0]
45	29	PD4/TIM2_CC1/ BEEP	I/O	X	Х	X	HS	О3	Х	Х			BEEP output [AFR7]
46	30	PD5/ LINUART_TX	I/O	X	X	X	-	01	Х	Х	Port D5 LINUART data transmit		_

Pi num					Inpu	t		Out	put		ion et)		Alternate
LQFP48	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЬР	Main function (after reset)	Default alternate function	function after remap [option bit]
47	33.1	PD6/ LINUART_RX	I/O	x	х	х	-	O1	х	Х	Port D6	LINUART data receive	_
48	32	PD7/TLI ⁽⁴⁾	I/O	X	Х	Х	-	01	Х	Χ	Port D7	Top level interrupt	_

Table 6. STM8A 32 Kbytes microcontroller pin description (continued)

- 1. In halt/active halt mode this pad behaves in the following way:
 - the input/output path is disabled
 - if the HSE clock is used for wakeup, the internal weak pull up is disabled

 - if the HSE clock is off, internal weak pull up setting from corresponding OR bit is used By managing the OR bit correctly, it must be ensured that the pad is not left floating during halt/active halt.
- 2. On this pin, a pull-up resistor as specified in Table 49. I/O static characteristics is enabled during the reset phase of the
- In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer and protection diode to V_{DD} are not
- 4. If this pin is configured as interrupt pin, it will trigger the TLI.

6.2.1 Alternate function remapping

As shown in the rightmost column of Table 6, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to Section 10: Option bytes on page 50. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of the STM8A microcontroller family reference manual, RM0009).

7 **Memory map**

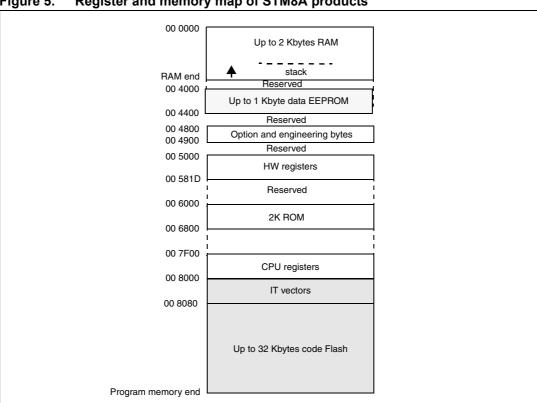


Figure 5. Register and memory map of STM8A products

Table 7. Memory model for the devices covered in this datasheet

Program memory size	Program memory end address	RAMsize	RAM end address	Stack roll-over address
32K	0FFFFh	2K	07FFh	0600h
16K	0BFFFh	1K	03FFh	n/a ⁽¹⁾
8K	09FFFh	512B	01FFh	n/a ⁽¹⁾

^{1.} If the device is containing the super set silicon (salestype contains SSS), the roll-over address is the same as on the superset device. For more information on stack handling refer to section 2.1.2 in the reference manual RM0009. For more information on salestype composition, refer to section *Section 13* in the present document.

30/100 Doc ID 14952 Rev 3

8 Interrupt table

Table 8. STM8A interrupt table

Priority	Source block	Description	Interrupt vector address	Wakeup from halt	Comments	
_	Reset	Reset	6000h	Yes	Reset vector in ROM	
_	TRAP	SW interrupt	8004h	_	_	
0	TLI	External top level interrupt	8008h	_	_	
1	AWU	Auto wakeup from halt	800Ch	Yes	_	
2	Clock controller	Main clock controller	8010h	_	_	
3	MISC	Ext interrupt E0	8014h	Yes	Port A interrupts	
4	MISC	Ext interrupt E1	8018h	Yes	Port B interrupts	
5	MISC	Ext interrupt E2	801Ch	Yes	Port C interrupts	
6	MISC	Ext interrupt E3	8020h	Yes	Port D interrupts	
7	MISC	Ext interrupt E4	8024h	Yes	Port E interrupts	
8	Reserved ⁽¹⁾	_	_	_	_	
9	Reserved ⁽¹⁾	_	_	_	_	
10	SPI	End of transfer	8030h	Yes	_	
11	Timer 1	Update/overflow/ trigger/break	8034h	_	_	
12	Timer 1	Capture/compare	8038h	_	_	
13	Timer 2	Update/overflow	803Ch	_	_	
14	Timer 2	Capture/compare	8040h	_	_	
15	Timer 3	Update/overflow	8044h	_	_	
16	Timer 3	Capture/compare	8048h	_	_	
17	Reserved ⁽¹⁾	_	_	_	_	
18	Reserved ⁽¹⁾	_	_	_	_	
19	I ² C	I ² C interrupts	8054h	Yes	_	
20	LINUART (SCI2)	Tx complete/error	8058h	_	_	
21	LINUART (SCI2)	Receive data full reg.	805Ch	_	_	
22	ADC	End of conversion	8060h	_	_	
23	Timer 4	Update/overflow	8064h		_	
24	EEPROM	End of Programming/ Write in not allowed area	8068h	_	_	

^{1.} All reserved and unused interrupts must be initialized with 'IRET' for robust programming.

9 Memory map

In this section the memory map of the devices covered by this datasheet is described. For a detailed description of the functionality of the registers, refer to the reference manual RM009.

9.1 I/O register map

Table 9. I/O port hardware register map

Address	Block	Register label	Register name	Reset status
00 5000h		PA_ODR	Port A data output latch register	00h
00 5001h		PA_IDR	Port A input pin value register	00h
00 5002h	Port A	PA_DDR	Port A data direction register	00h
00 5003h		PA_CR1	Port A control register 1	00h
00 5004h		PA_CR2	Port A control register 2	00h
00 5005h		PB_ODR	Port B data output latch register	00h
00 5006h		PB_IDR	Port B input pin value register	00h
00 5007h	Port B	PB_DDR	Port B data direction register	00h
00 5008h		PB_CR1	Port B control register 1	00h
00 5009h		PB_CR2	Port B control register 2	00h
00 500Ah		PC_ODR	Port C data output latch register	00h
00 500Bh		PB_IDR	Port C input pin value register	00h
00 500Ch	Port C	PC_DDR	Port C data direction register	00h
00 500Dh		PC_CR1	Port C control register 1	00h
00 500Eh		PC_CR2	Port C control register 2	00h
00 500Fh		PD_ODR	Port D data output latch register	00h
00 5010h		PD_IDR	Port D input pin value register	00h
00 5011h	Port D	PD_DDR	Port D data direction register	00h
00 5012h		PD_CR1	Port D control register 1	02h
00 5013h		PD_CR2	Port D control register 2	00h
00 5014h		PE_ODR	Port E data output latch register	00h
00 5015h		PE_IDR	Port E input pin value register	00h
00 5016h	Port E	PE_DDR	Port E data direction register	00h
00 5017h	PE_CR1		Port E control register 1	00h
00 5018h		PE_CR2	Port E control register 2	00h

Table 9. I/O port hardware register map (continued)

Address	Block	Register label	Register name	Reset status
00 5019h		PF_ODR	Port F data output latch register	00h
00 501Ah		PF_IDR	Port F input pin value register	00h
00 501Bh	Port F	PF_DDR	Port F data direction register	00h
00 501Ch		PF_CR1	Port F control register 1	00h
00 501Dh		PF_CR2	Port F control register 2	00h
00 501Eh		PG_ODR	Port G data output latch register	00h
00 501Fh		PG_IDR	Port G input pin value register	00h
00 5020h	Port G	PG_DDR	Port G data direction register	00h
00 5021h		PG_CR1	Port G control register 1	00h
00 5022h		PG_CR2	Port G control register 2	00h

9.2 Non-volatile memory

Table 10. Non-volatile memory

Address	Register name	7	6	5	4	3	2	1	0
00 505Ah	FLASH_CR1	-	-	-	-	HALT	AHALT	ΙE	FIX
00 505AII	Reset value	0	0	0	0	0	0	0	0
00 505Bh	FLASH_CR2	OPT	WPRG	ERASE	FPRG	-	-	-	PRG
00 303011	Reset value	0	0	0	0	0	0	0	0
00 505Ch	FLASH_NCR2	NOPT	NWPRG	NERASE	NFPRG	-	-	-	NPRG
00 303011	Reset value	1	1	1	1	1	1	1	1
00 505Dh	FLASH_FPR			WPB5	WPB4	WPB3	WPB2	WPB1	WPB0
00 303011	Reset value	-	-	0	0	0	0	0	0
00 505Eh	FLASH_NFPR			NWPB5	NWPB4	NWPB3	NWPB2	NWPB1	NWPB0
00 303EII	Reset value	-	-	1	1	1	1	1	1
00 505Fh	FLASH_IAPSR	-	HVOFF	-	-	DUL	EOP	PUL	WR_PG_DIS
00 303111	Reset value	0	1	0	0	0	0	0	0
00 5060h									
to				Re	eserved				
00 5061h									
00 5062h	FLASH_PUKR	PUK7	PUK6	PUK5	PUK4	PUK3	PUK2	PUK1	PUK0
00 000211	Reset value	0	0	0	0	0	0	0	0
00 5063h				Re	eserved				
00 5064h	FLASH_DUKR	DUK7	DUK6	DUK5	DUK4	DUK3	DUK2	DUK1	DUK0
00 000411	Reset value	0	0	0	0	0	0	0	0

9.3 CPU registers

Table 11. CPU registers

Tubic III.	or o regio			
Address	Block	Register label	Register name	Reset status
00 7F00h		А	Accumulator	00h
00 7F01h		PCE	Program counter extended	00h
00 7F02h		PCH	Program counter high	80h
00 7F03h		PCL	Program counter low	00h
00 7F04h		XH	X index register high	00h
00 7F05h	CPU ⁽¹⁾	XL	X index register low	00h
00 7F06h		YH	Y index register high	00h
00 7F07h		YL	Y index register low	00h
00 7F08h		SPH	Stack pointer high	17h ⁽²⁾
00 7F09h		SPL	Stack pointer low	FFh
00 7F0Ah	1	CC	Condition code register	28h

^{1.} Accessible by debug module only

9.4 Miscellaneous registers

9.4.1 Global configuration register

Table 12. CFG_GCR register map

Address	Register name	7	6	5	4	3	2	1	0
00 7F60h	CFG_GCR	-	-	-	-	-	-	AL	SWD
00 7 6011	Reset value	0	0	0	0	0	0	0	0

9.4.2 Reset status register

Table 13. RST_SR register map

Address	Register name	7	6	5	4	3	2	1	0
00 50B3h	RST_SR	-	-	-	EMCF	SWIMF	ILLOPF	IWDGF	WWDGF
00 300311	Reset value	Х	х	x	X	x	х	Х	Х

^{2.} Product dependent value, see Figure 5: Register and memory map of STM8A products.

9.4.3 Temporary memory unprotection key registers

Table 14. TMU register map and reset values

Address	Register name	7	6	5	4	3	2	1	0
00 5800h	TMU_K1	K7	K6	K5	K4	K3	K2	K1	K0
00 360011	Reset value	0	0	0	0	0	0	0	0
00 50016	TMU_K2	K7	K6	K5	K4	K3	K2	K1	K0
00 5801h	Reset value	0	0	0	0	0	0	K1 0	0
00 5000h	TMU_K3	K7	K6	K5	K4	K3	K2	K1	K0
00 5802h	Reset value	0	0	0	0	0	0	0	0
00 5803h	TMU_K4	K7	K6	K5	K4	K3	K2	K1	K0
	Reset value	0	0	0	0	0	0	0	0
00 5804h	TMU_K5	K7	K6	K5	K4	K3	K2	K1	K0
00 300411	Reset value	0	0	0	0	0	0	0 K1 0 K1 0 K1 0 K1 0 K1 0 TMUB	0
00 5805h	TMU_K6	K7	K6	K5	K4	K3	K2	K1	K0
00 360311	Reset value	0	0	0	0	0	0	0	0
00 5807h	TMU_K8	K7	K6	K5	K4	K3	K2	K1	K0
	Reset value	0	0	0	0	0	0	0	0
00 5808h	TMU_CSR	-	-	-	-	ROPS	TIMUE	TMUB	TMUS
	Reset value	0	0	0	0	0	0	0	0

9.5 Clock and clock controller

Table 15. CLK register map and reset values

Address	Register name	7	6	5	4	3	2	1	0	
00 50C0h 00 50C1h 00 50C2h 00 50C3h	CLK_ICKR	-	-	SWUAH	LSIRDY	LSIEN	FHWU	HSIRDY	HSIEN	
	Reset value	0	0	0	0	0	0	0	1	
00 50C1h	CLK_ ECKR	-	-	-	-	-	-	HSERDY	HSEEN	
	Reset value	0	0	0	0	0	0	0	0	
00 50C2h		Reserved								
00 50C3h	CLK_ CMSR	CKM7	CKM6	CKM5	CKM4	СКМЗ	CKM2	CKM1	CKM0	
	Reset value	1	1	1	0	0	0	0	1	
00 50C4h	CLK_SWR	SWI7	SWI6	SWI5	SWI4	SWI3	SWI2	SWI1	SWI0	
	Reset value	1	1	1	0	0	0	0	1	

Table 15. CLK register map and reset values (continued)

Address	Register name	7	6	5	4	3	2	1	0
00 50C5h	CLK_ SWCR	-	-	-	-	SWIF	SWIEN	SWEN	SWBSY
	Reset value	х	х	х	х	0	0	0	0
00 50C6h	CLK_ CKDIVR	-	-	-	HSIDIV1	HSIDIV0	CPUDIV2	CPUDIV1	CPUDIV
	Reset value	0	0	0	1	1	0	0	0
00 50C7h	CLK_ PCKENR1 Reset	PCK EN17	PCK EN16	PCK EN15	PCK EN14	PCK EN13	Reserved	PCK EN11	PCK EN10
	value	1	1	1	1	1	1	1	1
00 50C8h	CLK_ CSSR	-	-	-	-	CSSD	CSSDIE	AUX	CSSEN
	Reset value	0	0	0	0	0	0	0	0
00 50C9h	CLK_ CCOR Reset	-	CCOBSY	CCORDY	CCO SEL3	CCO SEL2	CCO SEL1	CCO SEL0	CCOEN
	value	0	0	0	0	0	0	0	0
00 50CAh	CLK_PCK ENR2 Reset	Reserved	PCK EN26	Reserved	Reserved	PCK EN23	PCK EN22	Reserved	Reserved
	value	1	1	1	1	1	1	1	1
00 50CCh	CLK_HSIT RIMR Reset	-	-	-		HSI TRIM3 ⁽¹⁾	HSI TRIM2	HSI TRIM1	HSI TRIM0
	value	x	x	x	x	0	0	0	0
00 50CDh	CLK_SWI MCCR Reset	-	-	-	-	-	-	-	SWI MCLK
	value	0	0	0	0	0	0	0	0

^{1.} In compatibility mode, the HSITRIM3 is not available. This mode is selected through the option byte configuration.

9.6 Low-power operating modes

9.7 Interrupt controller

9.7.1 Interrupt software priority registers

Table 16. Interrupt software priority registers map

Address	Register name	7	6	5	4	3	2	1	0
00 7F70h	ITC_SPR1 Reset	VECT3S PR1	VECT3S PR0	VECT2S PR1	VECT2S PR0	VECT1S PR1	VECT1S PR0	Reserved	Reserved
	value	1	1	1	1	1	1	1	1
00 7F71h	ITC_SPR2 Reset	VECT7S PR1	VECT7S PR0	VECT6S PR1	VECT6S PR0	VECT5S PR1	VECT5S PR0	VECT4S PR1	VECT4S PR0
	value	1	1	1	1	1	1	1	1
00 7F72h	ITC_SPR3 Reset	VECT11 SPR1	VECT11 SPR0	VECT10 SPR1	VECT10 SPR0	Reserved	Reserved	Reserved	Reserved
	value	1	1	1	1	1	1	1	1
00 7F73h	ITC_SPR4 Reset	VECT15 SPR1	VECT15 SPR0	VECT14 SPR1	VECT14 SPR0	VECT13 SPR1	VECT13 SPR0	VECT12 SPR1	VECT12 SPR0
	value	1	1	1	1	1	1	1	1
00 7F74h	ITC_SPR5 Reset	VECT19 SPR1	VECT19 SPR0	Reserved	Reserved	Reserved	Reserved	VECT16 SPR1	VECT16 SPR0
	value	1	1	1	1	1	1	1	1
00 7F75h	ITC_SPR6 Reset	VECT23 SPR1	VECT23 SPR0	VECT22 SPR1	VECT22 SPR0	VECT21 SPR1	VECT21 SPR0	VECT20 SPR1	VECT20 SPR0
	value	1	1	1	1	1	1	1	1

9.7.2 External interrupt control register

Table 17. External interrupt control register map

Address	Register name	7	6	5	4	3	2	1	0
00 50A0h	EXTI_CR1	PDIS1	PDIS0	PCIS1	PCIS0	PBIS1	PBIS0	PAIS1	PAIS0
	Reset value	0	0	0	0	0	0	0	0
00 50A1h	EXTI_CR2	Reserved	Reserved	Reserved	Reserved	Reserved	TLIS	PEIS1	PEIS0
	Reset value	0	0	0	0	0	0	0	0

9.8 Timers

9.8.1 Window watchdog timer

Table 18. WWDG register map and reset values

Address	Register name	7	6	5	4	3	2	1	0
00 50D1h	WWDG_CR	WDGA	T6	T5	T4	T3	T2	T1	T0
	Reset value	0	1	1	1	1	1	1	1
00 50D2h	WWDG_WR	-	W6	W5	W4	W3	W2	W1	W0
	Reset value	0	1	1	1	1	1	1	1

9.8.2 Independent watchdog timer

Table 19. IWDG register map

Address	Register name	7	6	5	4	3	2	1	0
00 50E0h	IWDG_KR	KEY7	KEY6	KEY5	KEY4	KEY3	KEY2	KEY1	KEY0
00 302011	Reset value	х	Х	Х	х	х	X	X	х
00 50E1h	IWDG_PR	-	-	-	-	-	PR2	PR1	PR0
00 302 111	Reset value	0	0	0	0	0	0	0	0
00 50E2h	IWDG_RLR	RL7	RL6	RL5	RL4	RL3	RL2	RL1	RL0
00 30E211	Reset value	1	1	1	1	1	1	1	1

9.8.3 Auto wakeup counter and beeper

Table 20. AWU register map

Address	Register name	7	6	5	4	3	2	1	0
00 50F0h	AWU_CSR	-	-	AWUF	AWUEN	-	-	-	MSR
00 50 011	Reset value	0	0	0	0	0	0	0	0
00 50F1h	AWU_APR	-	-	APR5	APR4	APR3	APR2	APR1	APR0
00 507 111	Reset value	0	0	1	1	1	1	1	1
00 50F2h	AWU_TBR	-	-	-	-	AWUTB3	AWUTB2	AWUTB1	AWUTB0
00 50F211	Reset value	0	0	0	0	0	0	0	0

Table 21. BEEP register map

Address	Register name	7	6	5	4	3	2	1	0
00 50F3h	BEEP_CSR	BEEP SEL2	BEEP SEL1	BEEP EN	BEEP DIV4	BEEP DIV3	BEEP DIV2	BEEP DIV1	BEEP DIV0
	Reset value	0	0	0	0	0	0	0	0

9.8.4 TIM1

Table 22. TIM1 register map

Address	Register name	7	6	5	4	3	2	1	0
00 E0E0b	TIM1_CR1	ARPE	CMS1	CMS0	DIR	OPM	URS	UDIS	CEN
00 5250h	Reset value	0	0	0	0	0	0	0	0
00 5251h	TIM1_CR2	TI1S	MMS2	MMS1	MMS0	-	COMS	-	CCPC
00 525 111	Reset value	0	0	0	0	0	0	0	0
00 5252h	TIM1_SMCR	MSM	TS2	TS1	TS0	-	SMS2	SMS1	SMS0
00 525211	Reset value	0	0	0	0	0	0	0	0
00 5253h	TIM1_ETR	ETP	ECE	ETPS1	ETPS0	EFT3	EFT2	EFT1	EFT0
00 525511	Reset value	0	0	0	0	0	0	0	0
00 5254h	TIM1_IER	BIE	TIE	COMIE	CC4IE	CC3IE	CC2IE	CC1IE	UIE
00 323411	Reset value	0	0	0	0	0	0	0	0
00 5255h	TIM1_SR1	BIF	TIF	COMIF	CC4IF	CC3IF	CC2IF	CC1IF	UIF
00 323311	Reset value	0	0	0	0	0	0	0	0
00 5256h	TIM1_SR2	-	-	-	CC4OF	CC3OF	CC2OF	CC1OF	-
00 323011	Reset value	0	0	0	0	0	0	0	0
00 5257h	TIM1_EGR	BG	TG	COMG	CC4G	CC3G	CC2G	CC1G	UG
00 323711	Reset value	0	0	0	0	0	0	0	0

Table 22. TIM1 register map (continued)

Address	Register name	7	6	5	4	3	2	1	0
	TIM1_CCMR1 (output mode)	OC1CE	OC1M2	OC1M1	OC1M0	OC1PE	OC1FE	CC1S1	CC1S0
00 E2E8b	Reset value	0	0	0	0	0	0	0	0
00 5258h	TIM1_CCMR1	IC1F3	IC1F2	IC1F1	IC1F0	IC1PSC1	IC1PSC0	CC1S1	CC1S0
	(input mode) Reset value	0	0	0	0	0	0	0	0
	TIM1_ CCMR2	OC2CE	OC2M2	OC2M1	OC2M0	OC2PE	OC2FE	CC2S1	CC2S0
	(output mode) Reset value	0	0	0	0	0	0	0	0
00 5259h	TIM1_CCMR2 (input mode)	IC2F3	IC2F2	IC2F1	IC2F0	IC2PSC1	IC2PSC0	CC2S1	CC2S0
	Reset value	0	0	0	0	0	0	0	0
	TIM1_CCMR3	OC3CE	OC3M2	OC3M1	OC3M0	OC3PE	OC3FE	CC3S1	CC3S0
00 505 4 h	(output mode) Reset value	0	0	0	0	0	0	0	0
00 525Ah	TIM1_CCMR3	IC3F3	IC3F2	IC3F1	IC3F0	IC3PSC1	IC3PSC0	CC3S1	CC3S0
	(input mode) Reset value	0	0	0	0	0	0	0	0
	TIM1_CCMR4	OC4CE	OC4M2	OC4M1	OC4M0	OC4PE	OC4FE	CC4S1	CC4S0
	(output mode) Reset value	0	0	0	0	0	0	0	0
00 525Bh	TIM1_CCMR4	IC4F3	IC4F2	IC4F1	IC4F0	IC4PSC1	IC4PSC0	CC4S1	CC4S0
	(input mode)	_	_	_	_	_	_		_
	Reset value	0	0	0	0	0	0	0	0
00 525Ch	TIM1_CCER1 Reset value	CC2NP 0	CC2NE 0	CC2P 0	CC2E 0	CC1NP 0	CC1NE 0	CC1P 0	CC1E 0
00 525Dh	TIM1_CCER2	-	-	CC4P	CC4E	CC3NP	CC3NE	CC3P	CC3E
00 525DH	Reset value	0	0	0	0	0	0	0	0
00 525Eh	TIM1_CNTRH	CNT15	CNT14	CNT13	CNT12	CNT11	CNT10	CNT9	CNT8
	Reset value	0	0	0	0 ONT4	0	0	0	0
00 525Fh	TIM1_CNTRL Reset value	CNT7 0	CNT6 0	CNT5 0	CNT4 0	CNT3 0	CNT2 0	CNT1 0	CNT0 0
00 5260h	TIM1_PSCRH	PSC15	PSC14	PSC13	PSC12	PSC11	PSC10	PSC9	PSC8
00 020011	Reset value	0	0	0	0	0	0	0	0
00 5261h	TIM1_PSCRL Reset value	PSC7 0	PSC6 0	PSC5 0	PSC4 0	PSC3 0	PSC2 0	PSC1 0	PSC0 0
00 5262h	TIM1_ARRH Reset value	ARR15	ARR14 1	ARR13	ARR12	ARR11	ARR10	ARR9	ARR8
00.5000	TIM1_ARRL	ARR7	ARR6	ARR5	ARR4	ARR3	ARR2	ARR1	ARR0
00 5263h	Reset value	1	1	1	1	1	1	1	1

Table 22. TIM1 register map (continued)

Address	Register name	7	6	5	4	3	2	1	0
00.5004b	TIM1_RCR	REP7	REP6	REP5	REP4	REP3	REP2	REP1	REP0
00 5264h	Reset value	0	0	0	0	0	0	0	0
00 E06Eb	TIM1_CCR1H	CCR115	CCR114	CCR113	CCR112	CCR111	CCR110	CCR19	CCR18
00 5265h	Reset value	0	0	0	0	0	0	0	0
00 E066h	TIM1_CCR1L	CCR17	CCR16	CCR15	CCR14	CCR13	CCR12	CCR11	CCR10
00 5266h	Reset value	0	0	0	0	0	0	0	0
00 5267h	TIM1_CCR2H	CCR215	CCR214	CCR213	CCR212	CCR211	CCR210	CCR29	CCR28
00 520711	Reset value	0	0	0	0	0	0	0	0
00 5268h	TIM1_CCR2L	CCR27	CCR26	CCR25	CCR24	CCR23	CCR22	CCR21 0	CCR20
00 320011	Reset value	0	0	0	0	0	0		0
00 5269h	TIM1_CCR3H	CCR315	CCR314	CCR313	CCR312	CCR311	CCR310	CCR39	CCR38
00 320911	Reset value	0	0	0	0	0	0	0	0
00 526Ah	TIM1_CCR3L	CCR37	CCR36	CCR35	CCR34	CCR33	CCR32	CCR31	CCR3
00 320AH	Reset value	0	0	0	0	0	0	0	0 0
00 526Bh	TIM1_CCR4H	CCR415	CCR414	CCR413	CCR412	CCR411	CCR410	CCR490	CCR48
00 320011	Reset value	0	0	0	0	0	0		0
00 526Ch	TIM1_CCR4L	CCR47	CCR46	CCR45	CCR44	CCR43	CCR42	CCR41	CCR40
00320011	Reset value	0	0	0	0	0	0	0	0
00 526Dh	TIM1_BKR	MOE	AOE	BKP	BKE	OSSR	OSSI	LOCK	LOCK
00 320011	Reset value	0	0	0	0	0	0	0	0
00 526Eh	TIM1_DTR	DTG7	DTG6	DTG5	DTG4	DTG3	DTG2	DTG1	DTG0
00 020211	Reset value	0	0	0	0	0	0	0	0
00 526Fh	TIM1_OISR	-	OIS4	OIS3N	OIS3	OIS2N	OIS2	OIS1N	OIS1
00 020111	Reset value	0	0	0	0	0	0	0	0

9.8.5 TIM2

Table 23. TIM2 register map

Address	Register name	7	6	5	4	3	2	1	0
00 F200h	TIM2_CR1	ARPE	-	-	-	OPM	URS	UDIS	CEN
00 5300h	Reset value	0	0	0	0	0	0	0	0
00 5301h	TIM2_IER	-	-	-	-	CC3IE	CC2IE	CC1IE	UIE
00 530111	Reset value	0	0	0	0	0	0	0	0
00 5302h	TIM2_SR1	-	-	-	-	CC3IF	CC2IF	CC1IF	UIF
00 530211	Reset value	0	0	0	0	0	0	0	0
00 5303h	TIM2_SR2	-	-	-	-	CC3OF	CC2OF	CC10F	-
00 550511	Reset value	0	0	0	0	0	0	0	0
00 5204h	TIM2_EGR	-	-	-	-	CC3G	CC2G	CC1G	UG
00 5304h	Reset value	0	0	0	0	0	0	0	0

Table 23. TIM2 register map (continued)

Address	Register name	7	6	5	4	3	2	1	0
	TIM2_CCMR1 (output mode)	-	OC1M2	OC1M1	OC1M0	OC1PE	-	CC1S1	CC1S0
00 5305h	Reset value	0	0	0	0	0	0	0	0
00 530511	TIM2_CCMR1 (input mode)	IC1F3	IC1F2	IC1F1	IC1F0	IC1PSC1	IC1PSC0	CC1S1	CC1S0
	Reset value	0	0	0	0	0	0	0	0
	TIM2_ CCMR2 (output mode)	-	OC2M2	OC2M1	OC2M0	OC2PE	-	CC2S1	CC2S0
00 5306h	Reset value	0	0	0	0	0	0	0	0
00 330011	TIM2_CCMR2 (input mode)	IC2F3	IC2F2	IC2F1	IC2F0	IC2PSC1	IC2PSC0	CC2S1	CC2S0
	Reset value	0	0	0	0	0	0	0	0
	TIM2_CCMR3 (output mode)	-	OC3M2	OC3M1	OC3M0	OC3PE	-	CC3S1	CC3S0
00 5307h	Reset value	0	0	0	0	0	0	0	0
00 330711	TIM2_CCMR3 (input mode)	IC3F3	IC3F2	IC3F1	IC3F0	IC3PSC1	IC3PSC0	CC3S1	CC3S0
	Reset value	0	0	0	0	0	0	0	0
00 5308h	TIM2_CCER1	-	-	CC2P	CC2E	-	-	CC1P	CC1E
	Reset value	0	0	0	0	0	0	0	0
00 5309h	TIM2_CCER2 Reset value	- 0	- 0	- 0	- 0	- 0	- 0	CC3P 0	CC3E 0
00 530Ah	TIM2_CNTRH Reset value	CNT15 0	CNT14 0	CNT13 0	CNT12 0	CNT11 0	CNT10 0	CNT9 0	CNT8 0
00 50001	TIM2_CNTRL	CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0
00 530Bh	Reset value	0	0	0	0	0	0	0	0
00 530Ch	TIM2_PSCR Reset value	- 0	- 0	- 0	- 0	PSC3 0	PSC2 0	PSC1 0	PSC0 0
00 530Dh	TIM2_ARRH Reset value	ARR15	ARR14	ARR13	ARR12	ARR11	ARR10	ARR9	ARR8
00 530Eh	TIM2_ARRL Reset value	ARR7	ARR6	ARR5	ARR4	ARR3	ARR2	ARR1	ARR0
	TIM2_CCR1H	CCR115	CCR114	CCR113	CCR112	CCR111	CCR110	CCR19	CCR18
00 530Fh	Reset value	0	0	0	0	0	0	0	0
00 5310h	TIM2_CCR1L Reset value	CCR17 0	CCR16 0	CCR15 0	CCR14 0	CCR13	CCR12	CCR11 0	CCR10 0
00 5311h	TIM2_CCR2H Reset value	CCR215 0	CCR214 0	CCR213 0	CCR212 0	CCR211 0	CCR210 0	CCR29	CCR28
00 5312h	TIM2_CCR2L Reset value	CCR27 0	CCR26	CCR25	CCR24 0	CCR23	CCR22	CCR21	CCR20
				•			Ĭ		J

Table 23. TIM2 register map (continued)

Address	Register name	7	6	5	4	3	2	1	0
00 5313h	TIM2_CCR3H	CCR315	CCR314	CCR313	CCR312	CCR311	CCR310	CCR39	CCR38
00 33 1311	Reset value	0	0	0	0	0	0	0	0
00 5314h	TIM2_CCR3L	CCR37	CCR36	CCR35	CCR34	CCR33	CCR32	CCR31	CCR30
00 55 1411	Reset value	0	0	0	0	0	0	0	0

9.8.6 TIM3

Table 24. TIM3 register map

Address	Register name	7	6	5	4	3	2	1	0
00 5320h	TIM3_CR1	ARPE	-	-	-	OPM	URS	UDIS	CEN
00 302011	Reset value	0	0	0	0	0	0	0	0
00 5321h	TIM3_IER	-	-	-	-	-	CC2IE	CC1IE	UIE
00 002 111	Reset value	0	0	0	0	0	0	0	0
00 5322h	TIM3_SR1	-	-	-	-	-	CC2IF	CC1IF	UIF
	Reset value	0	0	0	0	0	0	0	0
00 5323h	TIM3_SR2	-	-	-	-	-	CC2OF	CC10F	-
	Reset value	0	0	0	0	0	0	0	0
00 5324h	TIM3_EGR	-	-	-	-	-	CC2G	CC1G	UG
	Reset value	0	0	0	0	0	0	0	0
	TIM3_CCMR1 (output mode)	-	OC1M2	OC1M1	OC1M0	OC1PE	-	CC1S1	CC1S0
00 F00Fb	Reset value	0	0	0	0	0	0	0	0
00 5325h	TIM3_CCMR1 (input mode)	IC1F3	IC1F2	IC1F1	IC1F0	IC1PSC1	IC1PSC0	CC1S1	CC1S0
	Reset value	0	0	0	0	0	0	0	0
	TIM3_ CCMR2 (output mode)	-	OC2M2	OC2M1	OC2M0	OC2PE	-	CC2S1	CC2S0
00 5326h	Reset value	0	0	0	0	0	0	0	0
00 332011	TIM3_CCMR2 (input mode)	IC2F3	IC2F2	IC2F1	IC2F0	IC2PSC1	IC2PSC0	CC2S1	CC2S0
	Reset value	0	0	0	0	0	0	0	0
00 5327h	TIM3_CCER1	-	-	CC2P	CC2E	-	-	CC1P	CC1E
	Reset value	0	0	0	0	0	0	0	0
00 5328h	TIM3_CNTRH	CNT15	CNT14	CNT13	CNT12	CNT11	CNT10	CNT9	CNT8
00 532011	Reset value	0	0	0	0	0	0	0	0
00 5329h	TIM3_CNTRL	CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0
00 552911	Reset value	0	0	0	0	0	0	0	0
00 532Ah	TIM3_PSCR	-	-	-	-	PSC3	PSC2	PSC1	PSC0
00 302AII	Reset value	0	0	0	0	0	0	0	0

Table 24. TIM3 register map (continued)

Address	Register name	7	6	5	4	3	2	1	0
00 E20Bh	TIM3_ARRH	ARR15	ARR14	ARR13	ARR12	ARR11	ARR10	ARR9	ARR8
00 532Bh	Reset value	1	1	1	1	1	1	1	1
00 E20Ch	TIM3_ARRL	ARR7	ARR6	ARR5	ARR4	ARR3	ARR2	ARR1	ARR0
00 532Ch	Reset value	1	1	1	1	1	1	1	1
00 50004	TIM3_CCR1H	CCR115	CCR114	CCR113	CCR112	CCR111	CCR110	CCR19	CCR18
00 532Dh	Reset value	0	0	0	0	0	0	0	0
00 F20Fh	TIM3_CCR1L	CCR17	CCR16	CCR15	CCR14	CCR13	CCR12	CCR11	CCR10
00 532Eh	Reset value	0	0	0	0	0	0	0	0
00 F00Fb	TIM3_CCR2H	CCR215	CCR214	CCR213	CCR212	CCR211	CCR210	CCR29	CCR28
00 532Fh	Reset value	0	0	0	0	0	0	0	0
00 F000h	TIM3_CCR2L	CCR27	CCR26	CCR25	CCR24	CCR23	CCR22	CCR21	CCR20
00 5330h	Reset value	0	0	0	0	0	0	0	0

9.8.7 TIM4

Table 25. TIM4 register map

Address	Register name	7	6	5	4	3	2	1	0
00 5340h	TIM4_CR1	ARPE	-	-	-	OPM	URS	UDIS	CEN
00 554011	Reset value	0	0	0	0	0	0	0	0
00 5341h	TIM4_IER	-	-	-	-	-	-	-	UIE
00 554111	Reset value	0	0	0	0	0	0	0	0
00 5342h	TIM4_SR1	-	-	-	-	-	-	-	UIF
00 554211	Reset value	0	0	0	0	0	0	0	0
00 5343h	TIM4_EGR	-	-	-	-	-	-	-	UG
00 554511	Reset value	0	0	0	0	0	0	0	0
00 5344h	TIM4_CNTR	CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0
00 554411	Reset value	0	0	0	0	0	0	0	0
00 5345h	TIM4_PSCR	-	-	-	-	-	PSC2	PSC1	PSC0
00 554511	Reset value	0	0	0	0	0	0	0	0
00 5346h	TIM4_ARR	ARR7	ARR6	ARR5	ARR4	ARR3	ARR2	ARR1	ARR0
00 554611	Reset value	1	1	1	1	1	1	1	1

9.9 Communication interfaces

9.9.1 Serial peripheral interface (SPI)

Table 26. SPI register map and reset value

Address	Register name	7	6	5	4	3	2	1	0
005200h	SPI_CR1	LSBFIRST	SPE	BR2	BR1	BR1	MSTR	CPOL	CPHA
00320011	Reset value	0	0	0	0	0	0	0	0
005201h	SPI_CR2	BDM	BDOE	CRCEN	CRCNEXT	Reserved	RXONLY	SSM	SSI
00320111	Reset value	0	0	0	0	0	0	0	0
005202h	SPI_ICR	TXIE	RXIE	ERRIE	WKIE	Reserved	Reserved	Reserved	Reserved
00320211	Reset value	0	0	0	0	0	0	0	0
005203h	SPI_SR	BSY	OVR	MODF	CRCERR	WKUP	Reserved	TXE	RXNE
00320311	Reset value	0	0	0	0	0	0	1	0
00 E004h	SPI_DR	MSB	-	-	-	-	-	-	LSB
005204h	Reset value	0	0	0	0	0	0	0	0
00 E00Eb	SPI_CRCPR	MSB	-	-	-	-	-	-	LSB
005205h	Reset value	0	0	0	0	0	1	1	1
005206h	SPI_ RXCRCR	MSB	-	-	-	-	-	-	LSB
	Reset value	0	0	0	0	0	0	0	0
005207h	SPI_ TXCRCR	MSB	-	-	-	-	-	-	LSB
	Reset value	0	0	0	0	0	0	0	0

9.9.2 Inter integrated circuit (I²C) interface

Table 27. I²C register map

Address	Register name	7	6	5	4	3	2	1	0		
00 5210h	I2C_CR1	NO STRETCH	ENGC	-	-	-	-	-	PE		
	Reset value	0	0	0	0	0	0	0	0		
00 5211h	I2C_CR2	SWRST	-	-	-	POS	ACK	STOP	START		
	Reset value	0	0	0	0	0	0	0	0		
00 5212h	I2C_ FREQR	-	-	FREQ5	FREQ4	FREQ3	FREQ2	FREQ1	FREQ0		
	Reset value	0	0	0	0	0	0	0	0		
00 5213h	I2C_OARL Reset value	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0		
	neset value	0	0	0	0	0	0	0	0		
00 5214h	I2C_OARH	ADD MODE	ADD CONF	-	-	-	ADD9	ADD8	-		
	Reset value	0	0	0	0	0	0	0	0		
00 5215h		Reserved									
00 5216h	I2C_DR	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0		
	Reset value	0	0	0	0	0	0	0	0		
00 5217h	I2C_SR1 Reset value	TxE	RxNE	-	STOPF	ADD10	BTF	ADDR	SB		
	neset value	0	0	0	0	0	0	0	0		
00 5218h	I2C_SR2 Reset value	-	-	WUFH	-	OVR	AF	ARLO	BERR		
	neset value	0	0	0	0	0	0	0	0		
00 5219h	I2C_SR3	-	-	-	GEN CALL	-	TRA	BUSY	MSL		
00 02 1011	Reset value	0	0	0	0	0	0	0	0		
00 521Ah	I2C_ITR	-	-	-	-	-	ITBUFEN	ITEVTEN	ITERREN		
	Reset value		0	0	0	0	0	0	0		
00 521Bh	I2C_CCRL	CCR7	CCR6	CCR5	CCR4	CCR3	CCR2	CCR1	CCR0		
	Reset value	0	0	0	0	0	0	0	0		

Table 27. I²C register map (continued)

Address	Register name	7	6	5	4	3	2	1	0
00 521Ch	I2C_CCRH	FS	DUTY	-	-	CCR11	CCR10	CCR9	CCR8
	Reset value	0	0	0	0	0	0	0	0
00 521Dh	I2C_ TRISER	-	-	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0
	Reset value	0	0	0	0	0	0	1	0

9.9.3 Universal asynchronous receiver/transmitter with LIN support (LINUART)

Table 28. LINUART register map and reset value

Address	Register name	7	6	5	4	3	2	1	0			
00 5240h	LINUART_SR	TXE	TC	RXNE	IDLE	OR/LHE	NF	FE	PE			
00 524011	Reset value	1	1	0	0	0	0	0	0			
005241h	LINUART_DR	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0			
00524111	Reset value	0	0	0	0	0	0	0	0			
00 5242h	LINUART_BRR1	LDIV[11:8]										
00 524211	Reset value				0000	0000						
00 5243h	LINUART_BRR2		LDIV[15:12]		LDIV[3:0]						
00 524311	Reset value		00	00		0000						
00 5244h	LINUART_CR1	R8	T8	UARTD	М	WAKE	PCEN	PS	PIEN			
00 524411	Reset value	0	0	0	0	0	0	0	0			
00 5245h	LINUART_CR2	TIEN	TCIEN	RIEN	ILIEN	TEN	REN	RWU	SBK			
00 324311	Reset value	0	0	0	0	0	0	0	0			
00 5246h	LINUART_CR3	-	LINEN	ST	ЮP	-	-	-	-			
00 324011	Reset value	0	0	(00	0	0	0	0			
00 5247h	LINUART_CR4	-	LBDIEN	LBDL	LBDF		ADD	[3:0]				
00 524711	Reset value						00	00				
00 5248h				Re	served							
00 5249h	LINUART_CR6	LDUM	-	LSLV	LASE	-	LHDIEN	LHDF	LSF			
00 324311	Reset value	0	0	0	0	0	0	0	0			

9.10 Analog-to-digital converter (ADC)

Table 29. ADC register map and reset values

Address	Register name	7	6	5	4	3	2	1	0
00 53E0h	ADC _DB0RH ⁽¹⁾ Reset value	DATA9 0	DATA8 0	DATA7 0	DATA6 0	DATA5 0	DATA4 0	DATA3 0	DATA2 0
00 53E1h	ADC_DB0RL ⁽¹⁾ Reset value	DATA1 0	DATA0 0	- 0	- 0	- 0	- 0	- 0	- 0
00 53F2h	ADC _DB9RH ⁽¹⁾ Reset value	DATA9 0	DATA8 0	DATA7 0	DATA6 0	DATA5 0	DATA4 0	DATA3 0	DATA2 0
00 53F3h	ADC_DB9RL ⁽¹⁾ Reset value	DATA1 0	DATA0 0	- 0	- 0	- 0	- 0	- 0	- 0
00 5400h	ADC _CSR Reset value	EOC 0	AWD 0	EOCIE 0	AWDIE 0	CH3 0	CH2 0	CH1 0	CH0 0
00 5401h	ADC_CR1 Reset value	- 0	SPSEL2 0	SPSEL1 0	SPSEL0 0	- 0	- 0	CONT 0	ADON 0
00 5402h	ADC_CR2 Reset value	- 0	EXTTRI G 0	EXTSEL1 0	EXTSEL0 0	ALIGN 0	- 0	SCAN 0	- 0
00 5403h	ADC_CR3 Reset value	DBUF 0	OVR 0	- 0	- 0	- 0	- 0	- 0	- 0
00 5404h	ADC_DRH1 Reset value	DATA9 0	DATA8 0	DATA7 0	DATA6 0	DATA5 0	DATA4 0	DATA3 0	DATA2 0
00 5405h	ADC_DRL1 Reset value	DATA1 0	DATA0 0	- 0	- 0	- 0	- 0	- 0	- 0
00 5406h	ADC_TDRH Reset value	- 0	- 0	- 0	- 0	- 0	- 0	TD9 0	TD8 0
00 5407h	ADC_TDRL Reset value	TD7 0	TD6 0	TD5 0	TD4 0	TD3 0	TD2 0	TD1 0	TD0 0
00 5408h	ADC _HTRH Reset value	HT9 1	HT8 1	HT7 1	HT6 1	HT5 1	HT4 1	HT3 1	HT2 1
00 5409h	ADC_HTRL Reset value	HT1 1	HT0 1	- 0	- 0	- 0	- 0	- 0	- 0
00 540Ah	ADC _LTRH Reset value	LT9 0	LT8 0	LT7 0	LT6 0	LT5 0	LT4 0	LT3 0	LT2 0
00 540Bh	ADC_LTRL Reset value	LT1 0	LT0 0	- 0	- 0	- 0	- 0	- 0	- 0
00 540Ch	ADC _AWSRH Reset value	- 0	- 0	- 0	- 0	- 0	- 0	AWS9	AWS8
00 540Dh	ADC_AWSRL Reset value	AWS7	AWS6 0	AWS5 0	AWS4 0	AWS3 0	AWS2 0	AWS1 0	AWS0 0

Table 29. ADC register map and reset values (continued)

Address	Register name	7	6	5	4	3	2	1	0
00 540Eh	ADC _AWCRH Reset value	0 .	0	- 0	- 0	- 0	- 0	AWEN9 0	AWEN8 0
00 540Fh	ADC_AWCRL Reset value	AWEN7	AWEN6 0	AWEN5 0	AWEN4 0	AWEN3 0	AWEN2 0	AWEN1 0	AWEN0 0

^{1.} In this table, the default alignment of the register is shown. The register alignment can be chosen by software.

10 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Each option byte has to be stored twice, for redundancy, in a regular form (OPTx) and a complemented one (NOPTx), except for the ROP (read-out protection) option byte and option bytes 8 to 16.

Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in *Table 30: Option bytes* below.

Option bytes can also be modified 'on the fly' by the application in IAP mode, except the ROP and UBC options that can only be toggled in ICP mode (via SWIM).

Refer to the STM8 Flash programming manual (PM0047) and STM8 SWIM communication protocol and debug modulel user manual (UM0470) for information on SWIM programming procedures.

Table 30. Option bytes

Addr.	Option	Option		Option bits							
Addr.	name	byte no.	7	6	5	4	3	2	1	0	default setting
4800h	Read-out protection (ROP)	OPT0		ROP[7:0]							
4801h	User boot	OPT1	Rese	Reserved UBC[5:0]							00h
4802h	code (UBC)	NOPT1	Reserved			NUB	C[5:0]			FFh	
4803h	Alternate	OPT2	AFR7	AFR7 AFR6 AFR5		AFR4	AFR3	AFR2	AFR1	AFR0	00h
4804h	function remapping (AFR)	NOPT2	NAFR 7				NAFR 3	NAFR 2	NAFR 1	NAFR 0	FFh
4805h	Watchdog	OPT3	1	Reserved 16MHZ TRIM0				IWDG _HW	WWDG _HW	WWDG _HALT	00h
4806h	option	NOPT3		Reserved N16MH TRIMO			NLSI _EN	NIWDG _HW	NWWD G_HW	NWWG _HALT	FFh
4807h	Clock	OPT4		Res	served		EXT CLK	CKAWU SEL	PRS C1	PRS C0	00h
4808h	option	NOPT4		Res	served		NEXT CLK	NCKAW USEL	NPR SC1	NPR SC0	FFh
4809h	HSE clock	OPT5				HSEC	NT[7:0]				00h
480Ah	startup	NOPT5				NHSE	CNT[7:0]				FFh
480Bh	TMU	OPT6				TMU	J[3:0]				00h
480Ch	TIVIO	NOPT6		NTMU[3:0]							
480Dh	Flash wait	OPT7	Reserved WAIT STATE							00h	
480Eh	states	NOPT7		Reserved NWAIT STATE							FFh
480Fh			Reserved								

Table 30. Option bytes (continued)

	Option	Option				Optio	on bits				Factory	
Addr.	name	byte no.	7	6	5	4	3	2	1	0	default setting	
4810h		OPT8			•	TMU_K	EY 1 [7:0]			•	00h	
4811h		OPT9		TMU_KEY 2 [7:0]								
4812h		OPT10		TMU_KEY 3 [7:0]								
4813h		OPT11		TMU_KEY 4 [7:0]								
4814h	TMU	OPT12		TMU_KEY 5 [7:0]								
4815h		OPT13		TMU_KEY 6 [7:0]								
4816h		OPT14				TMU_K	EY 7 [7:0]				00h	
4817h		OPT15				TMU_K	EY 8 [7:0]				00h	
4818h		OPT16				TMU MAX	X_ATT [7:	0]			00h	
4819h to 487D				Reserved								
487E	Boot-	OPT17				BL_E	N [7:0]				00h	
487F	loader	NOPT17	NBL_EN [7:0]								00h	

Table 31. Option byte description

Option byte no.	Description
ОРТ0	ROP[7:0]: Memory readout protection (ROP) AAh: Enable readout protection (write access via SWIM protocol) Note: Refer to the STM8A microcontroller family reference manual (RM0009) section on Flash/EEPROM memory readout protection for details.
OPT1	UBC[5:0]: User boot code area 00h: No UBC, no write-protection 01h: Page 0 to 1 defined as UBC, memory write-protected 02h: Page 0 to 3 defined as UBC, memory write-protected 03h to 3Fh: Pages 4 to 63 defined as UBC, memory write-protected Note: Refer to the STM8A microcontroller family reference manual (RM0009) section on Flash/EEPROM write protection for more details.
OPT2	AFR7: Alternate function remapping option 7 0: Port D4 alternate function = TIM2_CC1 1: Port D4 alternate function = BEEP AFR6: Alternate function remapping option 6 0: Port B5 alternate function = AIN5, port B4 alternate function = AIN4 1: Port B5 alternate function = I²C_SDA, port B4 alternate function = I²C_SCL. AFR5: Alternate function remapping option 5 0: Port B3 alternate function = AIN3, port B2 alternate function = AIN2, port B1 alternate function = AIN1, port B0 alternate function = AIN0. 1: Port B3 alternate function = TIM1_ETR, port B2 alternate function = TIM1_NCC3, port B1 alternate function = TIM1_NCC2, port B0 alternate function = TIM1_NCC3, both B1 alternate function = TIM1_NCC2, port B0 alternate function = TIM1_NCC1. AFR4: Alternate function remapping option 4 Reserved, bit must be kept at "0" AFR3: Alternate function remapping option 3 0: Port D0 alternate function = TIM3_CC2 1: Port D0 alternate function remapping option 1 0: Port A3 alternate function = TIM2_CC3, port D2 alternate function TIM3_CC1. 1: Port A3 alternate function = TIM3_CC1, port D2 alternate function TIM3_CC3. AFR0: Alternate function remapping option 0 0: Port D3 alternate function = TIM2_CC2 1: Port D3 alternate function = TIM2_CC2 1: Port D3 alternate function = ADC_ETR

Table 31. Option byte description (continued)

Option byte no.	Description
	HSITRIM: Trimming option for 16 MHz internal RC oscillator
	3-bit on-the-fly trimming (compatible with devices based on the 128K silicon) 1: 4-bit on-the-fly trimming
	LSI_EN: Low speed internal clock enable
	0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
OPT3	IWDG_HW: Independent watchdog
0113	IWDG independent watchdog activated by software IWDG independent watchdog activated by hardware
	WWDG_HW: Window watchdog activation
	WWDG window watchdog activated by software WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on halt
	No reset generated on halt if WWDG active Reset generated on halt if WWDG active
	EXTCLK: External clock selection
	O: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
	CKAWUSEL: Auto wakeup unit/clock
OPT4	Use clock source selected for AWU HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0]: AWU clock prescaler
	00: Reserved
	01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler
	11: 4 MHz to 128 kHz prescaler
	HSECNT[7:0]: HSE crystal oscillator stabilization time
OPT5	This configures the stabilisation time to 0.5, 8, 128, and 2048 HSE cycles with corresponding option byte values of E1h, D2h, B4h, and 00h.
	TMU[3:0]: Enable temporary memory unprotection
OPT6	0101: TMU disabled (permanent ROP). Any other value: TMU enabled.
OPT7	Reserved
OPT8	TMU_KEY 1 [7:0]: Temporary unprotection key 0
OF 10	Temporary unprotection key: Must be different from 00h or FFh
OPT9	TMU_KEY 2 [7:0]: Temporary unprotection key 1
0, 19	Temporary unprotection key: Must be different from 00h or FFh
OPT10	TMU_KEY 3 [7:0]: Temporary unprotection key 2 Temporary unprotection key: Must be different from 00h or FFh
ODT11	TMU_KEY 4 [7:0]: Temporary unprotection key 3
OPT11	Temporary unprotection key: Must be different from 00h or FFh

Table 31. Option byte description (continued)

Option byte no.	Description
OPT12	TMU_KEY 5 [7:0]: Temporary unprotection key 4 Temporary unprotection key: Must be different from 00h or FFh
OPT13	TMU_KEY 6 [7:0]: Temporary unprotection key 5 Temporary unprotection key: Must be different from 00h or FFh
OPT14	TMU_KEY 7 [7:0]: Temporary unprotection key 6 Temporary unprotection key: Must be different from 00h or FFh
OPT15	TMU_KEY 8 [7:0]: Temporary unprotection key 7 Temporary unprotection key: Must be different from 00h or FFh
OPT16	TMU_MAXATT [7:0]: TMU access failure counter Every unsuccessful trial to enter the temporary unprotection procedure increments the counter. More than 64 unsuccessful trials trigger the global erase of the code and data memory.
OPT17	BL_EN [7:0]: Bootloader enable If this optionbyte is set to 55h (complementary value AAh) the bootloader program is activated also in case of a programmed code memory (for more details, see the bootloader user manual, UM0500).

11 Electrical characteristics

11.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

11.1.1 Minimum and maximum values

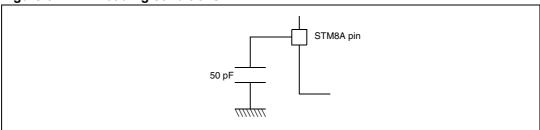
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100 % of the devices with an ambient temperature at $T_A = -40$ °C, $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

11.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.

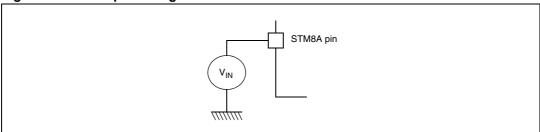
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.


11.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

11.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 6.


Figure 6. Pin loading conditions

11.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.

Figure 7. Pin input voltage

11.2 Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 32. Voltage characteristics

Symbol	Ratings	Min	Max	Unit	
V _{DDx} - V _{SS}	Supply voltage (including V _{DDA and} V _{DDIO}) ⁽¹⁾	-0.3	6.5	V	
V	Input voltage on true open drain pins (PE1, PE2) ⁽²⁾	V _{SS} - 0.3	6.5	V	
V _{IN}	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	V	
IV _{DDx} - V _{DD} I	Variations between different power pins	_	50	mV	
IV _{SSx} - V _{SS} I	Variations between all the different ground pins	_	50	IIIV	
V _{ESD}	Electrostatic discharge voltage	see Absolute maximum rating (electrical sensitivity) on page 83		_	

^{1.} All power (V_{DD} , V_{DDIO} , V_{DDA}) and ground (V_{SS} , V_{SSIO} , V_{SSA}) pins must always be connected to the external power supply

^{2.} I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

Table 33. Current characteristics

Symbol	Ratings	Max.	Unit
I _{VDDIO}	Total current into V _{DDIO} power lines (source) ⁽¹⁾⁽²⁾⁽³⁾	100	
I _{VSSIO}	Total current out of V _{SS IO} ground lines (sink) ⁽¹⁾⁽²⁾⁽³⁾	100	
I _{IO}	Output current sunk by any I/O and control pin	20	mA
	Output current source by any I/Os and control pin	-20	IIIA
I _{INJ(PIN)} ⁽⁴⁾	Injected current on any pin	±10	
I _{INJ(TOT)}	Sum of injected currents	50	

- 1. All power (V_{DD} , V_{DDIO} , V_{DDA}) and ground (V_{SS} , V_{SSIO} , V_{SSA}) pins must always be connected to the external supply.
- 2. The total limit applies to the sum of operation and injected currents.
- V_{DDIO} includes the sum of the positive injection currents. V_{SSIO} includes the sum of the negative injection currents..
- 4. This condition is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the $I_{IN,J(PIN)}$ value. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. For true open-drain pads, there is no positive injection current allowed and the corresponding V_{IN} maximum must always be respected.

Table 34. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to 150	°C
T _J	Maximum junction temperature	160	

11.3 Operating conditions

Table 35. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CPU}	Internal CPU clock frequency	$T_A = -40 ^{\circ}\text{C} \text{ to } 145 ^{\circ}\text{C}$	0	16	MHz
$V_{\rm DD/}V_{\rm DDIO}$	Standard operating voltage	_	3.0	5.5	V
V _{CAP} ⁽¹⁾	Voltage regulator stabilization capacitor	_	470 nF ⁽²⁾	IμF	
	Ambient temperature	Suffix A		85	
т		Suffix B	-40	105	
T _A		Suffix C		125	
		Suffix D		145	°C
		A suffix version	-40 -	90	C
T_J		B suffix version		110	
	Junction temperature range	C suffix version		130	
		D suffix version		150	

^{1.} V_{CAP} capacitor should have an ESR smaller than 0.3 Ω . Such values are valid for frequencies and temperatures within the interval 1 MHz to 100 MHz. The ESL should be less than 2 nH.

2. The minimum V_{CAP} value should be 470 nF, taking all tolerances into account.

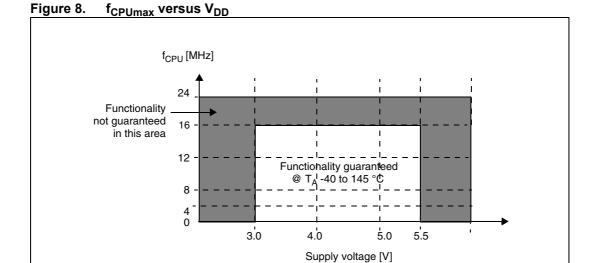


Table 36. Operating conditions at power-up/power-down

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	V _{DD} rise time rate	_	20 ⁽¹⁾	_	∞	по/М
t _{VDD}	V _{DD} fall time rate	_	20 ⁽¹⁾	_	∞	μs/V
	Reset release delay	V _{DD} rising	_	3	_	ms
t _{TEMP}	Reset generation delay	V _{DD} falling	_	3	_	μs
V _{IT+}	Power-on reset threshold ⁽²⁾	_	2.65	2.8	2.95	V
V _{IT-}	Brown-out reset threshold	_	2.58	2.73	2.88	V
V _{HYS(BOR)}	Brown-out reset hysteresis	_	_	70 ⁽¹⁾		mV

^{1.} Guaranteed by design, not tested in production

^{2.} If V_{DD} is below 3 V, the code exectution is guaranteed above the V_{IT-} and V_{IT+} thresholds. RAM content is kept. The EEPROM programming sequence must not be initiated.

11.3.1 Supply current characteristics

The current consumption is measured as described in *Figure 6 on page 55* and *Figure 7 on page 56*.

If not explicitly stated, general conditions of temperature and voltage apply.

General conditions for VDD apply. TA = -40 °C to 145 °C

Table 37. Total current consumption in run, wait and slow mode.

Symbol	Parameter	Conditions		Тур	Max	Unit
		All peripherals	f _{CPU} = 16 MHz	7.4	14	
I _{DD(RUN)} ⁽¹⁾	Supply current in	clocked, code executed from	$f_{CPU} = 8 MHz$	4.0	7.4 ⁽²⁾	
	run mode	EEPROM, HSE	f _{CPU} = 4 MHz	2.4	4.1 ⁽²⁾	
		external clock	f _{CPU} = 2 MHz	1.5	2.5	
I _{DD(RUN)} ⁽¹⁾ Supply current in run mode		All peripherals	f _{CPU} = 16 MHz	3.7	5.0	
		clocked, code executed from RAM and EEPROM, HSE external clock	$f_{CPU} = 8 MHz$	2.2	3.0 ⁽²⁾	
			f _{CPU} = 4 MHz	1.4	2.0 ⁽²⁾	
			f _{CPU} = 2 MHz	1.0	1.5	mA
			f _{CPU} = 16 MHz	1.65	2.5	
I _{DD(WFI)} ⁽¹⁾	Supply current in wait mode	CPU stopped, all peripherals off, HSE	f _{CPU} = 8 MHz	1.15	1.9 ⁽²⁾	
'DD(WFI)` '		external clock	f _{CPU} = 4 MHz	0.90	1.6 ⁽²⁾	
			f _{CPU} = 2 MHz	0.80	1.5	
(1)	Supply current in slow mode	f _{CPU} scaled down, all peripherals off, code executed from RAM	Extclock 16 MHz f _{CPU} = 125 kHz	1.50	1.95	
I _{DD(SLOW)} ⁽¹⁾			LSI internal RC f _{CPU} = 128 kHz	1.50	1.80 ⁽²⁾	

^{1.} The current due to I/O utilization is not taken into account in these values.

^{2.} Values not tested in production. Design guidelines only.

General conditions for VDD apply. TA = -40 °C to 55 °C unless otherwise stated

Table 38. Total current consumption in halt and active halt modes.

Symbol	Parameter	Conditions	Тур	Max	Unit
		Clocks stopped, Flash in power-down mode	5	35 ⁽¹⁾	
I _{DD(H)}	Supply current in halt mode	Clocks stopped, Flash in power-down mode, $T_A = 25$ °C	5	25	
I _{DD(FAH)}	Supply current in fast active halt mode	Extclock 16 MHz f _{MASTER} = 125 kHz	770	900 ⁽¹⁾	μΑ
(,		LSI clock 128 kHz	150	230 ⁽¹⁾	
	Supply current in slow active halt	LSI clock 128 kHz	25	42 ⁽¹⁾	
I _{DD(SAH)}	mode	LSI clock 128 kHz, T _A = 25 °C	25	30	
t _{WU(FAH)}	Wakeup time from fast active halt mode	T _Δ = -40 °C to 145 °C	10	30 ⁽¹⁾	116
t _{WU(SAH)}	Wakeup time from slow active halt mode	1 _A = -40 0 to 145 0	50	80 ⁽¹⁾	μs

^{1.} Data based on characterization results. Not tested in production.

On-chip peripherals

Table 39. Oscillator current consumption

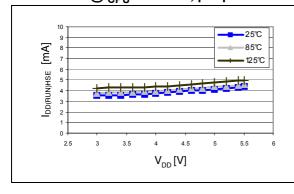
Symbol	Parameter	Conditions		Тур	Max ⁽¹⁾	Unit
		Quartz or	f _{OSC} = 24 MHz	1	2.0 ⁽³⁾	
I _{DD(OSC)}	HSE oscillator current	ceramic resonator,	f _{OSC} = 16 MHz	0.6		
	consumption ⁽²⁾	CL = 33 pF $V_{DD} = 5 V$	f _{OSC} = 8 MHz	0.57		- mA
I _{DD(OSC)}	HSE oscillator current consumption ⁽²⁾	Quartz or ceramic resonator, CL = 33 pF V _{DD} = 3.3 V	f _{OSC} = 24 MHz	0.5	1.0 ⁽³⁾	IIIA
			f _{OSC} = 16 MHz	0.25	_	
			f _{OSC} = 8 MHz	0.18	_	

^{1.} During startup, the oscillator current consumption may reach 6 mA.

Table 40. Programming current consumption

Symbol	Parameter	Conditions	Тур	Max	Unit
I _{DD(PROG)}	Programming current	V _{DD} = 5 V, -40 °C to 145 °C, erasing and programming data or program memory	1.0	1.7	mA

^{2.} The supply current of the oscillator can be further optimized by selecting a high quality resonator with small $R_{\rm m}$ value. Refer to crystal manufacturer for more details


^{3.} Informative data.

Current consumption curves

Figure 9 to Figure 14 show typical current consumption measured with code executing in RAM.

Figure 9. Typ. $I_{DD(RUN)HSE}$ vs. V_{DD} @f_{CPU} = 16 MHz, periph = on

Figure 10. Typ. $I_{DD(RUN)HSE}$ vs. f_{CPU} @ V_{DD} = 5.0 V, periph = on

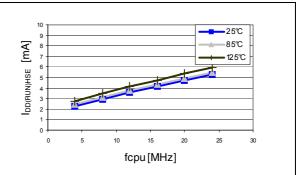
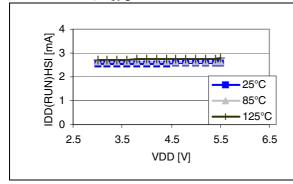



Figure 11. Typ. $I_{DD(RUN)HSI}$ vs. V_{DD} @ f_{CPU} = 16 MHz, periph = off

Figure 12. Typ. $I_{DD(WFI)HSE}$ vs. V_{DD} @ f_{CPU} = 16 MHz, periph = on

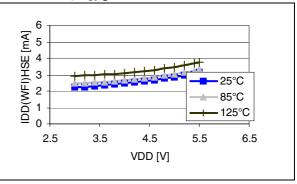
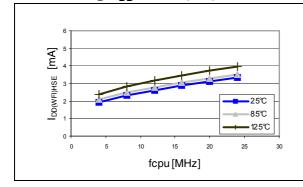
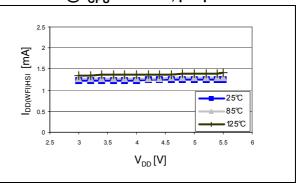




Figure 13. Typ. $I_{DD(WFI)HSE}$ vs. f_{CPU} @ V_{DD} = 5.0 V, periph = on

Figure 14. Typ. $I_{DD(WFI)HSI}$ vs. V_{DD} @ f_{CPU} = 16 MHz, periph = off

<u>Table 41.</u> Typical peripheral current consumption $V_{DD} = 5.0 V^{(1)}$

Symbol	Parameter	Typ. f _{master} = 2 MHz	Typ. f _{master} = 16 MHz	Unit
I _{DD(TIM1)}	TIM1 supply current ⁽²⁾	0.03	0.23	
I _{DD(TIM2)}	TIM2 supply current (2)	0.02	0.12	
I _{DD(TIM3)}	TIM3 supply current ⁽²⁾	0.01	0.1	
I _{DD(TIM4)}	TIM4 supply current ⁽²⁾	0.004	0.03	
I _{DD(USART)}	USART supply current ⁽²⁾	0.03	0.09	
I _{DD(LINUART)}	LINUART supply current ⁽²⁾	0.03	0.11	
I _{DD(SPI)}	SPI supply current ⁽²⁾	0.01	0.04	mA
I _{DD(I²C)}	I ² C supply current ⁽²⁾	0.02	0.06	
I _{DD(CAN)}	CAN supply current ⁽³⁾	0.06	0.30	
I _{DD(AWU)}	AWU supply current ⁽²⁾	0.003	0.02	
I _{DD(TOT_DIG)}	All digital peripherals on	0.22	1	
I _{DD(ADC)}	ADC supply current when converting ⁽⁴⁾	0.93	0.95	

Typical values not tested in production. Since the peripherals are powered by an internally regulated, constant digital supply voltage, the values are similar in the full supply voltage range.

Data based on a differential I_{DD} measurement between no peripheral clocked and a single active peripheral. This measurement does not include the pad toggling consumption.

Data based on a differential I_{DD} measurement between reset configuration (CAN disabled) and a
permanent CAN data transmit sequence in loopback mode at 1 MHz. This measurement does not include
the pad toggling consumption.

Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions.

11.3.2 External clock sources and timing characteristics

HSE user external clock

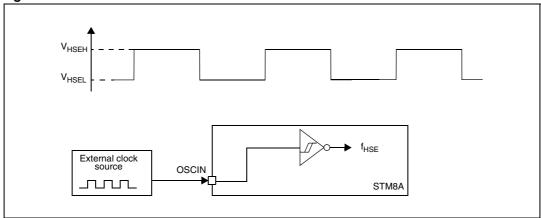

Subject to general operating conditions for V_{DD} and T_A.

Table 42. HSE user external clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	T _A is -40 to 145 °C	0 ⁽¹⁾	_	16	MHz
V _{HSEdHL}	Comparator hysteresis	_	0.1 x V _{DD}	_	_	
V _{HSEH}	OSCIN input pin high level voltage	_	0.7 x V _{DD}	_	V_{DD}	٧
V _{HSEL}	OSCIN input pin low level voltage	_	V_{SS}	_	0.3 x V _{DD}	
I _{LEAK_HSE}	OSCIN input leakage current	V _{SS} < V _{IN} < V _{DD}	-1	_	+1	μΑ

^{1.} In CSS is used, the external clock must have a frequency above 500 kHz.

Figure 15. HSE external clock source

HSE crystal/ceramic resonator oscillator

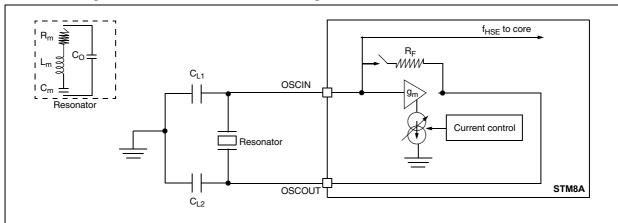

The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 16 MHz. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Table 43. HSE oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor	_	_	220	_	kΩ
C _{L1} /C _{L2} ⁽¹⁾	Recommended load capacitance	_	_	_	20	pF
g _m	Oscillator transconductance	_	5	_	_	mA/V
t _{SU(HSE)} ⁽²⁾	Startup time	V _{DD} is stabilized	_	2.8	_	ms

- 1. The oscillator needs two load capacitors, C_{L1} and C_{L2} , to act as load for the crystal. The total load capacitance (Cload) is $(C_{L1} * C_{L2})/(C_{L1} + C_{L2})$. If $C_{L1} = C_{L2}$, Cload = C_{L1} / 2. Some oscillators have built-in load capacitors, C_{L1} and C_{L2} .
- This value is the startup time, measured from the moment it is enabled (by software) until a stabilized 16 MHz oscillation is reached. It can vary with the crystal type that is used.

Figure 16. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

The crystal characteristics have to be checked with the following formula:

$$g_m \gg g_{mcrit}$$

where g_{mcrit} can be calculated with the crystal parameters as follows:

$$g_{mcrit} = (2 \times \Pi \times {}^{f}HSE)^{2} \times R_{m}(2Co + C)^{2}$$

R_m: Notional resistance (see crystal specification)

L_m: Notional inductance (see crystal specification)

C_m: Notional capacitance (see crystal specification)

Co: Shunt capacitance (see crystal specification)

 $C_{L1} = C_{L2} = C$: Grounded external capacitance

11.3.3 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and T_{A} .

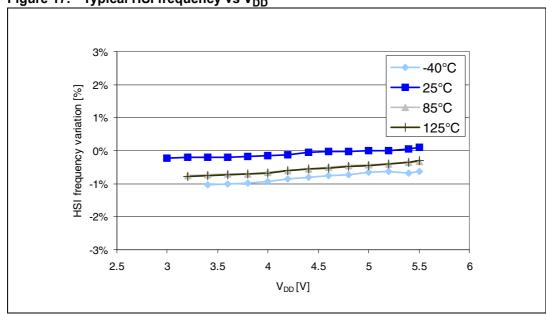

High speed internal RC oscillator (HSI)

Table 44. HSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	_	_	16	_	MHz
ACC _{HS}	HSI oscillator user	Trimmed by the application	-1 ⁽¹⁾	_	1 ⁽¹⁾	%
	trimming accuracy	for any V _{DD} and T _A conditions	-0.5 ⁽¹⁾		0.5 ⁽¹⁾	
	HSI oscillator accuracy (factory calibrated)	$V_{DD} = 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$ -40 °C $\le T_A \le 145 \text{ °C}$	-5	_	5	
t _{su(HSI)}	HSI oscillator wakeup time	_		1	2 ⁽²⁾	μs

- 1. Depending on option byte setting (OPT3 and NOPT3)
- 2. Guaranteed by characterization, not tested in production

Figure 17. Typical HSI frequency vs V_{DD}

Low speed internal RC oscillator (LSI)

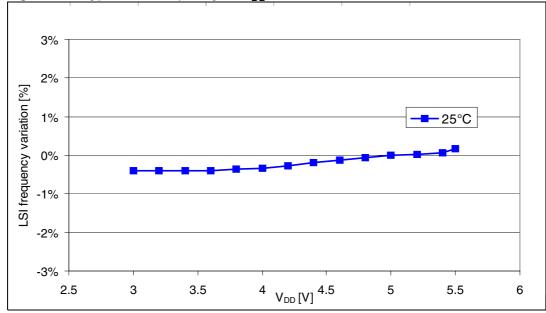

Subject to general operating conditions for V_{DD} and T_{A} .

Table 45. LSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency	_	112	128	144	kHz
t _{su(LSI)}	LSI oscillator wakeup time	_	_	_	7 ⁽¹⁾	μs

^{1.} Data based on characterization results, not tested in production.

11.3.4 Memory characteristics

Flash program memory/data EEPROM memory

General conditions: $T_A = -40$ to 125 °C.

Table 46. Flash program memory/data EEPROM memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	Operating voltage (all modes, execution/write/erase)	f _{CPU} is 0 to 16 MHz with 0 ws	3.0 — 5.5 2.6 — 5.5		V	
V _{DD}	Operating voltage (code execution)	f _{CPU} is 0 to 16 MHz with 0 ws			v	
t _{prog}	Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes)	_	_	6	6.6	ms
	Fast programming time for 1 block (128 bytes)	_	_	3	3.3	
t _{erase}	Erase time for 1 block (128 bytes)	_	_	3	3.3	ms

Table 47. Program memory

Symbol	Parameter	Condition	Min	Max	Unit
T _{WE}	Temperature for writing and erasing	_	-40	125	°C
N _{WE}	Program memory endurance (erase/write cycles) ⁽¹⁾	T _A = 25 °C	1000	_	cycles
t _{RET}	Data retention time	$T_A = 25 ^{\circ}C$	40		voore
	Data retention time	T _A = 55 °C 2	20	_	years

^{1.} The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.

Table 48. Data memory

Symbol	Parameter	Condition	Min	Max	Unit			
T _{WE}	Temperature for writing and erasing	40 _	125	°C				
	remperature for writing and erasing	_	-40	145				
N _{WE}	Data memory endurance ⁽¹⁾	T _A = 25 °C	300 k	_	cycles			
	(erase/write cycles)	$T_A = -40$ °C to 125 °C	100 k ⁽²⁾	_	Cycles			
t _{RET}	Data retention time	T _A = 25 °C	40 ⁽²⁾⁽³⁾	_	voore			
	Data retention time	T _A = 55 °C	20 ⁽²⁾⁽³⁾	_	years			

- The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.
- 2. More information on the relationship between data retention time and number of write/erase cycles is available in a separate technical document.
- 3. Retention time for 256B of data memory after up to 1000 cycles at 125 $^{\circ}$ C.

11.3.5 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Table 49. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V_{IL}	Input low level voltage		-0.3 V		0.3 x V _{DD}		
V _{IH}	Input high level voltage	_	0.7 x V _{DD}		V _{DD} + 0.3 V		
V _{hys}	Hysteresis ⁽¹⁾		_	0.1 x V _{DD}	_		
V _{OH}	Output high level voltage	Standard I/0, V _{DD} = 5 V, I = 3 mA	V _{DD} - 0.5 V	_	_	_	
	Output high level voltage	Standard I/0, V _{DD} = 3 V, I = 1.5 mA	V _{DD} - 0.4 V	_	_		
V _{OL}		High sink and true open drain I/0, V _{DD} = 5 V I = 8 mA	_	_	0.5		
	Output low level voltage	Standard I/0, V _{DD} = 5 V I = 3 mA	_	_	0.6	V	
		Standard I/0, V _{DD} = 3 V I = 1.5 mA	_	_	0.4		
R _{pu}	Pull-up resistor	$V_{DD} = 5 \text{ V}, V_{IN} = V_{SS}$	35	50	65	kΩ	
	Rise and fall time	Fast I/Os Load = 50 pF	_	_	20 ⁽²⁾		
t _R , t _F	(10% - 90%)	Standard and high sink I/Os Load = 50 pF	_	_	125 ⁽²⁾	ns	
I _{lkg}	Digital input pad leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	_	_	±1	μΑ	
I _{lkg ana}	Analog input pad leakage current	$V_{SS} \le V_{IN} \le V_{DD}$ -40 °C < T _A < 125 °C	_	_	±250	- ^	
I _{lkg ana}	Analog input pad leakage current	$V_{SS} \le V_{IN} \le V_{DD}$ -40 °C < T_A < 145 °C	_	_	TBD	nA	
I _{lkg(inj)}	Leakage current in adjacent I/O ⁽²⁾	Injection current ±4 mA	_	_	±1 ⁽²⁾	μΑ	
I _{DDIO}	Total current on either V _{DDIO} or V _{SSIO}	Including injection currents		_	60	mA	

^{1.} Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

^{2.} Data based on characterization results, not tested in production.

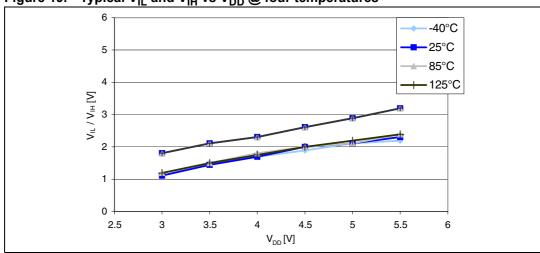
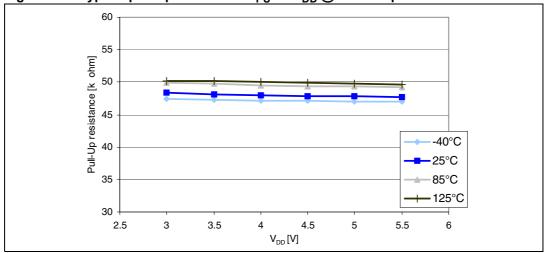
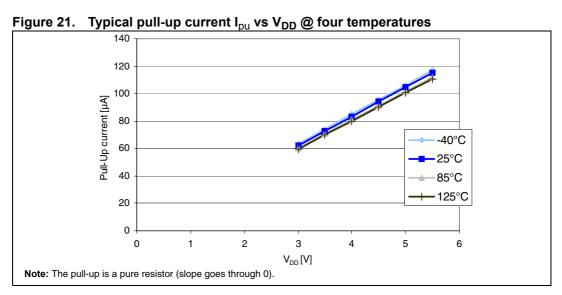




Figure 19. Typical V_{IL} and V_{IH} vs V_{DD} @ four temperatures

Typical output level curves

Figure 22 to Figure 31 show typical output level curves measured with output on a single pin.

Figure 22. Typ. V_{OL} @ V_{DD} = 3.3 V (standard ports) Figure 23. Typ. V_{OL} @ V_{DD} = 5.0 V (standard ports)

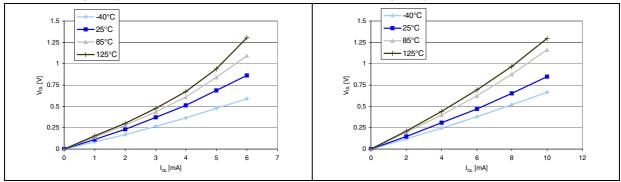


Figure 24. Typ. $V_{OL} @ V_{DD} = 3.3 \text{ V}$ (true open drain ports) Figure 25. Typ. $V_{OL} @ V_{DD} = 5.0 \text{ V}$ (true open drain ports)

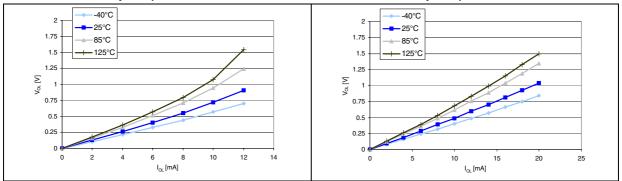


Figure 26. Typ. $V_{OL} @ V_{DD} = 3.3 \text{ V (high sink ports)}$ Figure 27. Typ. $V_{OL} @ V_{DD} = 5.0 \text{ V (high sink ports)}$

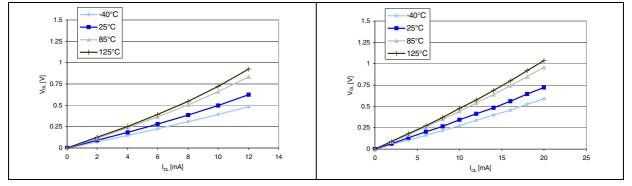


Figure 28. Typ. V_{DD} V_{OH} (V_{DD} = 3.3 V_{OH} (standard ports)

Figure 29. Typ. V_{DD} - V_{OH} @ V_{DD} = 5.0 V (standard ports)

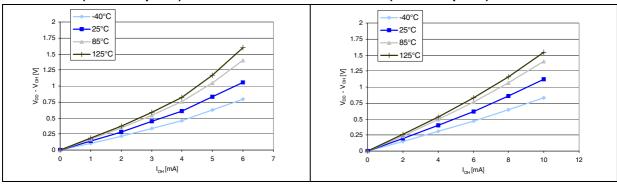
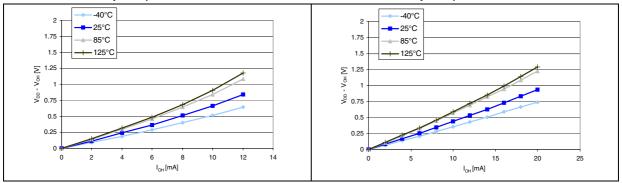
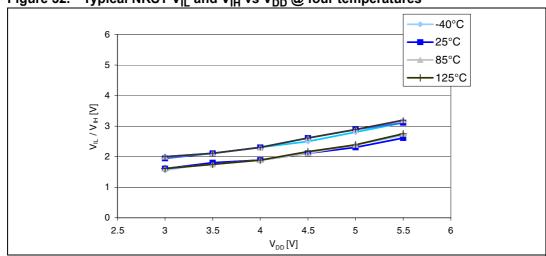
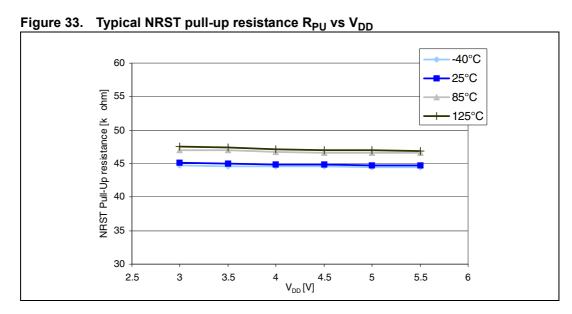



Figure 30. Typ. $V_{DD} = V_{OH} \otimes V_{DD} = 3.3 \text{ V (high }$ Figure 31. Typ. $V_{DD} = V_{OH} \otimes V_{DD} = 5.0 \text{ V (high sink ports)}$

11.3.6 Reset pin characteristics


Subject to general operating conditions for $V_{\mbox{\scriptsize DD}}$ and $T_{\mbox{\scriptsize A}}$ unless otherwise specified.


Table 50. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	_	V_{SS}	_	0.3 x V _{DD}	
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	_	0.7 x V _{DD}	_	V_{DD}	
V _{OL(NRST)}	NRST output low level voltage ⁽¹⁾	I _{OL} = 3 mA		_	0.6	V
R _{PU(NRST)}	NRST pull-up resistor	_	30	40	60	kΩ
V _{F(NRST)}	NRST input filtered pulse ⁽¹⁾	_	85	1	315	ns

^{1.} Data based on characterization results, not tested in production.

Figure 32. Typical NRST V_{IL} and V_{IH} vs V_{DD} @ four temperatures

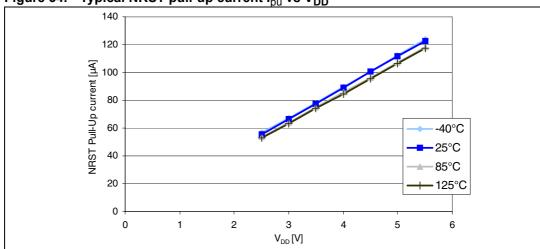
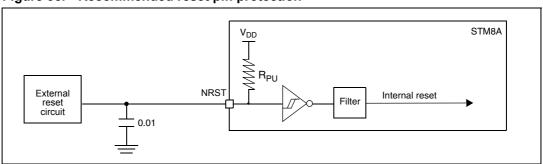



Figure 34. Typical NRST pull-up current I_{pu} vs V_{DD}

The reset network shown in *Figure 35* protects the device against parasitic resets.

Figure 35. Recommended reset pin protection

11.3.7 TIM 1, 2, 3, and 4 timer specifications

Subject to general operating conditions for V_{DD} , f_{MASTER} , and T_A unless otherwise specified.

Table 51. TIM 1, 2, 3, and 4 electrical specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{EXT}	Timer external clock frequency ⁽¹⁾	_	_	_	16	MHz

1. Not tested in production. On 64 Kbyte devices, the frequency is limited to 16 MHz.

11.3.8 SPI serial peripheral interface

Unless otherwise specified, the parameters given in *Table 52* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Table 52. SPI characteristics

Symbol	Parameter	Cond	ditions	Min	Max	Unit		
		Master mode		0	10			
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	V _{DD} < 4.5 V	0	6 ⁽¹⁾	MHz		
····C(SCK)		Slave mode	V _{DD} = 4.5 V to 5.5 V	0	8 ⁽¹⁾			
t _{r(SCK)}	SPI clock rise and fall time	Capacitive load: C =	= 30 pF		25 ⁽²⁾			
t _{su(NSS)} ⁽³⁾	NSS setup time	Slave mode		4 * t _{MASTER}	_			
t _{h(NSS)} (3)	NSS hold time	Slave mode		70	_			
$t_{\text{w(SCKL)}}^{(3)}$	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f ₅	110	140				
t _{su(MI)} (3)	Data input setup time	Master mode		5				
t _{su(SI)} (3)	Data input setup time	Slave mode		5	_			
t _{h(MI)} (3) t _{h(SI)} (3)	Data input hold time	Master mode		7	_	ns		
t _{h(SI)} (3)	Data input floid time	Slave mode		10	_			
t _{a(SO)} (3)(4)	Data output access time	Slave mode		_	3* t _{MASTER}			
t _{dis(SO)} (3)(5)	Data output disable time	Slave mode		25				
t _{v(SO)} (3)	Data output valid time	Slave mode	V _{DD} < 4.5 V	_	75			
v(SO)`	Data output valid liffle	(after enable edge) $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$		(after enable edge) $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$	(after enable edge) $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$	_	53	
t _{v(MO)} ⁽³⁾	Data output valid time	Master mode (after enable edge)		_	30			
t _{h(SO)} (3)	Data output hold time	Slave mode (after enable edge)		31	_			
t _{h(MO)} (3)	Data output Hold time	Master mode (after	aster mode (after enable edge)		_			

^{1.} f_{MAX} is f_{MASTER}/2.

^{2.} The pad has to be configured accordingly (fast mode).

^{3.} Values based on design simulation and/or characterization results, and not tested in production.

^{4.} Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

^{5.} Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

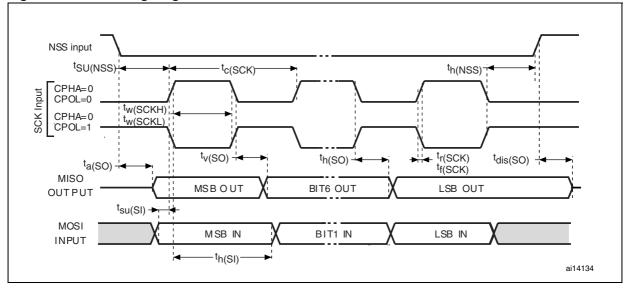
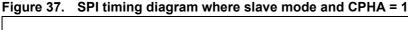
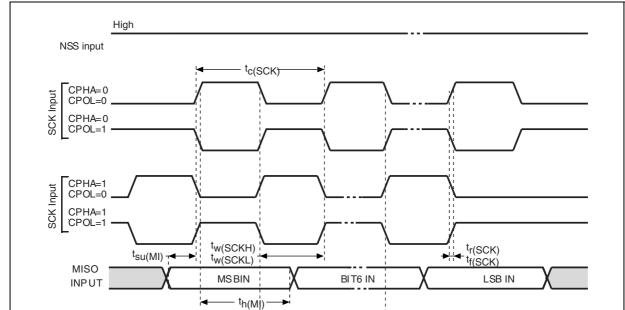



Figure 36. SPI timing diagram where slave mode and CPHA = 0

1. Measurement points are at CMOS levels: 0.3 $V_{\rm DD}$ and 0.7 $V_{\rm DD}$.



1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD} .

MOSI

OUTUT

BIT1 OUT

^th(MO) →

LSB OUT

ai14136

Figure 38. SPI timing diagram - master mode

1. Measurement points are at CMOS levels: 0.3 $\rm V_{DD}$ and 0.7 $\rm V_{DD}$

M SB OUT

t_V(MO) '✓

11.3.9 I²C interface characteristics

Table 53. I²C characteristics

Symbol	Parameter	Standard	mode I ² C	Fast mode I ² C ⁽¹⁾		Unit
Symbol	Falanielei	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Oill
t _{w(SCLL)}	SCL clock low time	4.7	_	1.3	_	ш
t _{w(SCLH)}	SCL clock high time	4.0	_	0.6	_	μs
t _{su(SDA)}	SDA setup time	250	_	100	_	
t _{h(SDA)}	SDA data hold time	0(3)	_	0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time (V _{DD} 3 5.5 V)	_	1000	_	300	ns
t _{f(SDA)}	SDA and SCL fall time (V _{DD} 3 5.5 V)	_	300	_	300	
t _{h(STA)}	START condition hold time	4.0	_	0.6	_	
t _{su(STA)}	Repeated START condition setup time	4.7	_	0.6	_	μs
t _{su(STO)}	STOP condition setup time	4.0	_	0.6	_	μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	_	1.3	_	μs
C _b	Capacitive load for each bus line	_	400	_	400	pF

^{1.} f_{MASTER} , must be at least 8 MHz to achieve max fast I^2C speed (400 kHz)

^{2.} Data based on standard I^2C protocol requirement, not tested in production

^{3.} The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

11.3.10 10-bit ADC characteristics

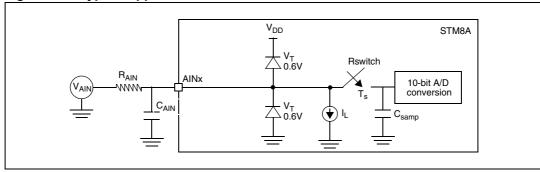

Subject to general operating conditions for V_{DDA} , f_{MASTER} , and T_{A} unless otherwise specified.

Table 54. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{ADC}	ADC clock frequency	_	111 kHz	_	4 MHz	kHz/MHz
V _{DDA}	Analog supply	_	3	_	5.5	
V _{REF+}	Positive reference voltage	_	2.75	_	V_{DDA}	
V _{REF-}	Negative reference voltage	_	V_{SSA}	_	0.5	V
		_	V_{SSA}	_	V_{DDA}	-
V _{AIN}	Conversion voltage range ⁽¹⁾	Devices with external V _{REF+} / V _{REF-} pins	V _{REF-}	_	V _{REF+}	
C _{samp}	Internal sample and hold capacitor	_	_	_	3	pF
t _S ⁽¹⁾	Sampling time	f _{ADC} = 2 MHz	_	1.5	_	
us.	(3 x 1/f _{ADC})	f _{ADC} = 4 MHz	_	0.75	_	
+ .	Wakeup time from standby	f _{ADC} = 2 MHz	_	7	_	μs
t _{STAB}	wakeup time nom standby	f _{ADC} = 4 MHz		3.5		
	Total conversion time including	f _{ADC} = 2 MHz	_	7	_	
t _{CONV}	sampling time (14 x 1/f _{ADC})	f _{ADC} = 4 MHz	_	3.5	_	
R _{switch}	Equivalent switch resistance	_	_	_	30	kΩ

During the sample time, the sampling capicitance, C_{samp} (3 pF typ), can be charged/discharged by the
external source. The internal resistance of the analog source must allow the capacitance to reach its final
voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no
effect on the conversion result.

Figure 39. Typical application with ADC

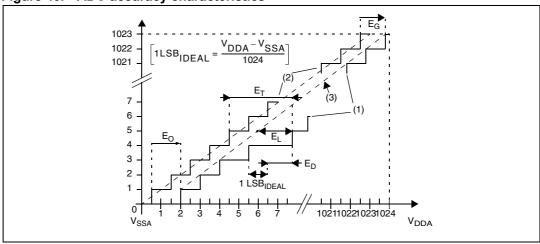

1. Legend: R_{AIN} = external resistance, C_{AIN} = capacitors, C_{samp} = internal sample and hold capacitor.

Table 55.	Abo decuracy for VDDA – 5 V					
Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit	
IE _T I	Total unadjusted error ⁽²⁾		1.4	3 ⁽³⁾		
IE _O I	Offset error ⁽²⁾]	0.8	3		
IE _G I	Gain error ⁽²⁾	f _{ADC} = 2 MHz	0.1	2		
IE _D I	Differential linearity error ⁽²⁾		0.9	1		
IE _L I	Integral linearity error ⁽²⁾		0.7	1.5		
IE _T I	Total unadjusted error ⁽²⁾		1.9 ⁽⁴⁾	4 ⁽⁴⁾	LSB	
IE _O I	Offset error ⁽²⁾		1.3 ⁽⁴⁾	4 ⁽⁴⁾		
IE _G I	Gain error ⁽²⁾	f _{ADC} = 4 MHz	0.6 ⁽⁴⁾	3 ⁽⁴⁾		
IE _D I	Differential linearity error ⁽²⁾		1.5 ⁽⁴⁾	2 ⁽⁴⁾		
IE _I I	Integral linearity error ⁽²⁾]	1.2 ⁽⁴⁾	1.5 ⁽⁴⁾		

Table 55. ADC accuracy for VDDA = 5 V

- Max value is based on characterization, not tested in production.
- ADC accuracy vs. injection current: Any positive or negative injection current within the limits specified for $I_{\text{INJ(PIN)}}$ and $\Sigma I_{\text{INJ(PIN)}}$ in *Section 11.3.5* does not affect the ADC accuracy.
- TUE 2LSB can be reached on specific salestypes in the whole temperature range.
- 4. Target values.

ADC accuracy characteristics Figure 40.

- 1. Example of an actual transfer curve
- 2. The ideal transfer curve
- End point correlation line
 - $\mathbf{E}_{\mathbf{T}}$ = Total unadjusted error: Maximum deviation between the actual and the ideal transfer curves.

 - E_O = Offset error: Deviation between the first actual transition and the first ideal one.
 E_G = Gain error: Deviation between the last ideal transition and the last actual one.
 E_D = Differential linearity error: Maximum deviation between actual steps and the ideal one.
 E_L = Integral linearity error: Maximum deviation between any actual transition and the end point correlation line.

11.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Table 56. EMS data

Symbol	Parameter	Conditions	Level/class
V _{FESD}		V_{DD} = 3.3 V, T_A = 25 °C, f_{MASTER} = 16 MHz (HSI clock), Conforms to IEC 1000-4-2	ЗВ
V _{EFTB}		V_{DD} = 3.3 V, T_A = 25 °C, f_{MASTER} = 16 MHz (HSI clock), Conforms to IEC 1000-4-4	4A

Electromagnetic interference (EMI)

Emission tests conform to the SAE J 1752/3 standard for test software, board layout and pin loading.

Table 57. EMI data

Symbol		Conditions				
	Parameter		Max f _{CPU} ⁽¹⁾		CPU ⁽¹⁾	Unit
		General conditions	frequency band	8 MHz	16 MHz	
		V _{DD} = 5 V, T _A = 25 °C, LQFP80 package conforming to SAE J	0.1 MHz to 30 MHz	15	17	
c	Peak level		30 MHz to 130 MHz	18	22	dΒμV
S _{EMI}			130 MHz to 1 GHz	-1	3	чъμν
	SAE EMI level	1752/3	_	2	2.5	

^{1.} Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Table 58. ESD absolute maximum ratings

Symbol	Ratings Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	T _A = 25°C, conforming to JESD22-A114	ЗА	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to JESD22-C101	3	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine model)	T _A = 25°C, conforming to JESD22-A115	В	200	

^{1.} Data based on characterization results, not tested in production

Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

- A supply overvoltage (applied to each power supply pin) and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Table 59. Electrical sensitivities

Symbol	Parameter	Conditions	Class ⁽¹⁾
		T _A = 25 °C	
LU	Static latch-up class	T _A = 85 °C	Α
LO		T _A = 125 °C	A
		T _A = 145 °C	

Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).

11.4 Thermal characteristics

In case the maximum chip junction temperature (T_{Jmax}) specified in *Table 35: General operating conditions on page 58* is exceeded, the functionality of the device cannot be guaranteed.

T_{.lmax}, in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in $^{\circ}$ C/W
- P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax}$ ($P_{Dmax} = P_{INTmax} + P_{I/Omax}$)
- P_{INTmax} is the product of I_{DD} and V_{DD} , expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins Where:

$$P_{I/Omax} = \Sigma \left(V_{OL} * I_{OL} \right) + \Sigma ((V_{DD} - V_{OH}) * I_{OH}),$$
 taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table 60. Thermal characteristics⁽¹⁾

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	57	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	59	°C/W

Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

11.4.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

11.4.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code (see *Figure 43: STM8A order codes on page 90*).

The following example shows how to calculate the temperature range needed for a given application.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 14 mA, V_{DD} = 5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V

 $P_{INTmax} = 14 \text{ mA } x 5 \text{ V} = 70 \text{ mW}$

 $P_{IOmax} = 20 x 8 mA x 0.4 V = 64 mW$

This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} 64 \text{ mW}$:

 $P_{Dmax} = 70 \text{ mW} + 64 \text{ mW}$

Thus: P_{Dmax} = 134 mW.

Using the values obtained in *Table 60: Thermal characteristics on page 85* T_{Jmax} is calculated as follows:

For LQFP64 46 °C/W

 $T_{Jmax} = 82 \, ^{\circ}C + (46 \, ^{\circ}C/W \, x \, 134 \, mW) = 82 \, ^{\circ}C + 6 \, ^{\circ}C = 88 \, ^{\circ}C$

This is within the range of the suffix B version parts (-40 < $T_{.1}$ < 105 °C).

Parts must be ordered at least with the temperature range suffix B.

12 Package characteristics

To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions, and product status are available at www.st.com.

12.1 Package mechanical data

Figure 41. 48-pin low profile quad flat package (7 x 7)

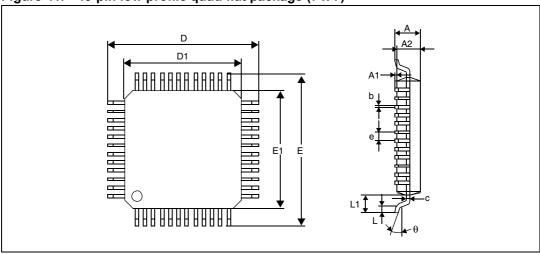
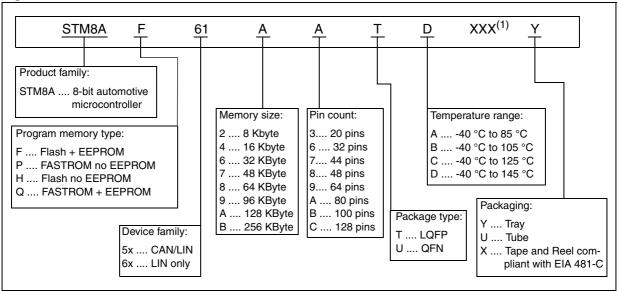


Table 61. 48-pin low profile quad flat package mechanical data

Dim		mm			inches ⁽¹⁾	
Dim.	Min	Тур	Max	Min	Тур	Max
Α	_	_	1.60	_	_	0.0630
A1	0.05	_	0.15	0.0020	_	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
С	0.09	_	0.20	0.0035	_	0.0079
D	_	9.00	_	_	0.3543	_
D1	_	7.00	_	_	0.2756	_
Е	_	9.00	_	_	0.3543	_
E1	_	7.00	_	_	0.2756	_
е	_	0.50	_	_	0.0197	_
θ	0°	3.5°	7°	0°	3.5°	7°
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1	_	1.00	_	_	0.0394	_

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits

Figure 42. 32-pin low profile quad flat package (7 x 7)


Table 62. 32-pin low profile quad flat package mechanical data

Dim.	mm			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	_	_	1.60	_	_	0.0630
A1	0.05	_	0.15	0.0020	_	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b	0.30	0.37	0.45	0.0118	0.0146	0.0177
С	0.09	_	0.20	0.0035	_	0.0079
D	_	9.00	_	_	0.3543	_
D1	_	7.00	_	_	0.2756	_
Е	_	9.00	_	_	0.3543	_
E1	_	7.00	_	_	0.2756	_
е	_	0.80	_	_	0.0315	_
θ	0°	3.5°	7°	0°	3.5°	7°
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1	_	1.00	_	_	0.0394	_

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits

13 Ordering information

Figure 43. STM8A order codes

^{1.} Customer specific FASTROM code or custom device configuration. This field shows 'SSS' if the device contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed to be replaced later by the target silicon

14 Known limitations

14.1 Core

14.1.1 Wait for event (WFE) instruction not supported

Description

The WFE instruction is not implemented in devices covered by this datasheet. The WFE instruction is used to synchronize computing resources and not relevant for the present implementation. For further details on this instruction, see the STM8 CPU programming manual (PM0044) on www.st.com.

Workaround

Not applicable.

14.1.2 JRIL and JRIH instructions not supported

Description

JRIL (jump if port INT pin = 0) and JRIH (jump if port INT pin = 1) are not supported in devices covered by this datasheet. If implemented, they are conditional jumps: JRIL jumps if one of the external interrupt lines is low and JRIH jumps if one of the extrenal interrupt lines is high. In these devices, JRIL is equivalent to an unconditional jump and JRIH is equivalent to NOP. For further details on these instructions, see the STM8 CPU programming manual (PM0044) on www.st.com.

Workaround

Not applicable.

14.1.3 CPU does not return to HALT if AL bit is set

Description

When the AL bit is set, the cpu does not return to HALT mode after exiting an ISR. It returns to main and executes the next instruction after the HALT instruction.

Workaround

Not applicable.

14.1.4 Main does not resume after ISR resets the AL bit

Description

If the core is in wait for interrupt state and the AL bit is set, the core returns to the wait for interrupt state after executing an ISR. If it is needed to continue the main program, the AL bit has to be reset inside the ISR. In case resetting the bit is performed just before exiting the ISR, the core may remain stalled.

Workaround

The AL bit has to be reset at least two instructions before the IRET instruction.

14.2 I²C interface

14.2.1 Misplaced NACK when receiving 2 bytes

Description

When receiving two bytes (in Master mode) the usual flow is:

- 1. Set POS and ACK to '1'
- 2. Wait for ADDR event, program ACK to '0' and clear ADDR
- Wait for BTF event, program STOP to '1' and read the 2 received bytes.

As there is a limitation in the interpretation of the POS bit, it may occur that the NACK bit is sent erroneously after the first byte. The sender will receive a wrongly placed NACK.

Workaround

Use a different software flow for ADDR and ACK clearing:

- Wait for ADDR flag to be set
- Mask interrupts
- 3. Clear ADDR
- 4. Clear ACK bit
- Re-enable interrupts

As the TLI is not maskable, this sw workaround can not be applied in an application that makes use of the TLI.

14.2.2 Data register corrupted

Description

When BTF = 1 (last data received) and the SW sequence

SET STOP

READ N-1

READ N

is delayed - for instance by an interrupt - and the N-1 data is not read before the next SCL rising edge, the content of the shift register may be shifted to the left by 1 bit. In this case the second data cannot be read correctly.

Workaround

Mask all active interrupts between the SET STOP and the READ N-1 instruction. As the TLI is not maskable, this sw workaround can not be applied in an application that makes use of the TLI.

14.2.3 Delay in programming of STOP leads to reception of supplementary byte

Description

Usually, when receiving one byte in master mode the STOP bit in the control register will be programmed right after the ADDR clearing in order to generate a STOP condition after the reception of the byte. If the programming of the STOP bit is delayed after the end of the

reception of the first byte, the master may receive another byte before the STOP condition assertion.

Consequently one false data is received.

Workaround

Mask interrupts while performing ADDR clear and the STOP bit programming. As the TLI is not maskable, this sw workaround can not be applied in an application that makes use of the TLI.

14.2.4 START badly generated after misplaced STOP

Description

In case START is requested in the control register I²C_CR2 and a misplaced STOP occurs on the bus, leading to a bus error, the START condition on the bus may be badly generated by the I²C peripheral (glitch on SDA then SDA and SCL tied low at the same time).

Workaround

If a bus error is detected (via flag and/or interrupt), the sw should check whether a START condition was requested through the control register. If this is the case, a STOP condition should be generated followed by a new START condition. This does not avoid the badly generated START condition, but the network is able to re-synchronize on the new START condition.

14.3 USART interface

14.3.1 Parity error flag (PE) is not correctly set in overrun condition

Description

If an overrun condition occurs, the parity error flag is not set for the frame which is leading to the overrun condition. The PE flag represents the status of the last correctly received frame.

Workaround

Not applicable.

14.4 LINUART

14.4.1 Framing error issue with data byte 0x00

Description

If LINUART is configured in LIN slave mode and active mode with break detection threshold set to 11-bit, receiving a data byte with value 0x00 with a framing error, followed by a recessive state, will not set FE and RXNE flags. This occurs only if the dominant state length is in between 9.56 and 10.56 bit times.

Workaround

The LIN driver sw can handle this exceptional case by implementing frame timeouts in sw. In this case the application behavior is conform to the LIN standard. This methode is implemented in the ST LIN 2.1 driver stack which passes the LIN conformance tests.

14.4.2 Framing error issue at reception of identifier (ID)

Description

In case of ID framing error when the IP is in active mode, both flags LHE and LHDF are set at the end of the LIN header with ID framing error.

Workaround

The LIN driver sw can handle this case by evaluating both all of the flags upon header reception.

14.4.3 Parity error issue at reception of identifier (ID)

Description

In case of ID parity error IP wakes up from mute mode and both flags LHE and LHDF are set at the end of the LIN header with parity error. The PE flag is also set.

Workaround

The LIN driver sw can handle this case by evaluating all of the flags upon header reception.

14.4.4 OR flag not correctly set in LIN master mode

Description

If the LINUART operates in master mode, the OR flag is not set in case an overrun condition occurs.

Workaround

The LIN driver sw will detect this case through a LIN protocol error.

14.4.5 LIN header error when automatic resynchronization is enabled

Description

If the LINUART is configured in LIN slave mode (LSLV bit is set) and if automatic resynchronization is enabled (LASE bit is set), LHE flag may be set instead of LHDF flag when receiving a valid header.

Workaround

There is no workaround.

14.5 Clock controller

14.5.1 HSI cannot be switched off in run mode

Description

The internal 16MHz RC oscillator cannot be switched off in run mode, even if the HSIEN bit is programmed to "0".

Workaround

Not applicable.

14.6 SPI interface

14.6.1 Last bit too short if SPI is disabled during communication

Description

The issue may arise in the case that the SPI is acting as a master, the baud rate generator has his prescaler equal to 2. If under these conditions, the SPI is disabled during an ongoing communication, the AFOEN (alternate function output enable) signal of the data and clock output are switched off at the last strobing edge of the SPI clock.

As a consequence the length of the last bit is out of specification and its reception on the bus is not ensured.

Workaround

Check whether a communication is ongoing before disabling the SPI by observing the BSY bit.

14.7 ADC

14.7.1 EOC interrupt triggered when AWDIE=1 and EOCIE=1

Description

When the analog watchdog is enabled and AWDIE and EOCIE are both set to one, the ADC interrupt should only be triggered in case the conversion result exceeds one of the analog watchdog thresholds (see table 79 in the reference manual RM 0009).

In the present device however, in this configuration, the interrupt is triggered after each conversion, leading to a high interrupt load.

Workaround

Use the configuration AWDIE=1 and EOCIE=0 instead and stop the conversions inside the ISR by resetting the CONT bit. However the latest conversion result having triggered the watchdog may be overwritten.

15 STM8 development tools

Development tools for the STM8A microcontrollers include the

- STice emulation system offering tracing and code profiling
- STVD high-level language debugger including assembler and visual development environment - seamless integration of third party C compilers.
- STVP Flash programming software

In addition, the STM8A comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

15.1 Emulation and in-circuit debugging tools

The STM8 tool line includes the STice emulation system offering a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8A application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full-featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including tracing, profiling and code coverage analysis to help detect execution bottlenecks and dead code.

In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet your development requirements and to adapt your emulation system to support existing and future ST microcontrollers.

15.1.1 STice key features

- Program and data trace recording up to 128 K records
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Real-time read/write of all device ressources during emulation
- Occurrence and time profiling and code coverage analysis (new features)
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- USB 2.0 high speed interface to host PC
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows you to specify the components you need to meet your development requirements and adapt to future requirements.
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

15.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual programmer (STVP) software interface. STVD provides seamless integration of the Cosmic C compiler for STM8, which is available in a free version that outputs up to 16 Kbytes of code.

15.2.1 STM8 toolset

The STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at www.st.com/mcu. This package includes:

ST visual develop

Full-featured integrated development environment from STMicroelectronics, featuring:

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST visual programmer (STVP)

Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8A microcontroller's Flash memory. STVP also offers project mode for saving programming configurations and automating programming sequences.

15.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of your application directly from an easy-to-use graphical interface.

Available toolchains include:

C compiler for STM8

Available in a free version that outputs up to 16 Kbytes of code. For more information, see www.cosmic-software.com, www.raisonance.com

STM8 assembler linker

Free assembly toolchain included in the STM8 toolset, which allows you to assemble and link your application source code.

15.3 Programming tools

During the development cycle, STice provides in-circuit programming of the STM8A Flash microcontroller on your application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming your STM8A.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

16 Revision history

Table 63. Document revision history

Date	Revision	Changes	
22-Aug-2008	1	Initial release	
10-Aug-2009	2	Document revised as the following: Updated Features on page 1; Updated Table 1: Device summary; Updated Section 3: Product line-up; Changed Section 5: Product features; Updated Section 6: Pinouts and pin description; Changed Section 9: Memory map; Updated Section 8: Interrupt table; Updated Section 10: Option bytes; Updated Section 11: Electrical characteristics; Updated Section 12: Package characteristics; Updated Section 13: Ordering information; Added Section 14: Known limitations.	
22-Oct-2009	3	Apdated Table 6: STM8A 32 Kbytes microcontroller pin description. Added Section 14.4.5: LIN header error when automatic resynchronization is enabled.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

