

Automotive Electronics

Semiconductors and sensors

Product overview 2011

Spring 2011 edition

Components for **vehicle electronics**

Bosch Automotive Electronics (AE) – headquartered in Reutlingen, Germany – is the largest manufacturer of micromechanical products and one of the largest automotive semiconductor manufacturers in Europe. We are the undisputed market leader for automotive MEMS (Micro-Electro-Mechanical Systems) sensors. We design, manufacture and sell sensors, ASICs, ASSPs and power semiconductors, based on experience in automotive electronics components of more than 40 years. With sales and application forces located in Europe, North America, Japan, China, and South Korea, we offer worldwide customer support. In addition to the Bosch Group itself, our customer base includes many well-known ECU makers in the Automotive sector.

The division Automotive Electronics is the competence center for electronics within Bosch. For more than 40 years, we have designed and manufactured a wide range of automotive specific semiconductors and sensors.

Combustion engines of today and tomorrow are expected to be clean, economical, and have high-performance. Also, modern vehicle electronics should protect the driver and passengers in the best way possible.

Our devices address the two major aspects in automobile electronics:

- ▶ Safety and
- ▶ Clean and economical driving.

Our products for passenger safety include components for airbag systems, Vehicle Dynamics Control VDC, active suspension, Electric Power Steering EPS, in-vehicle communication, and IP modules.

Our product range for clean and economical driving includes system components for engine management, transmission

control, alternator electronics, and IP modules. The newest products in our portfolio are power modules for electric drives. Over the next few years, this new product area will be continuously expanded.

Your advantage as our customer:

- ▶ Semiconductors, sensors, and IP modules, developed and thoroughly tested by Bosch, one of the driving forces within the automotive world.
- ▶ Innovative products
- ▶ Robustness and reliability
- ▶ Best quality
- ▶ Long availability

This brochure lists all the devices that we currently sell.

For your convenience, all new products are marked accordingly.

More product details can be found on our websites:

www.bosch-semiconductors.com

www.bosch-sensors.com.

Content



Airbag systems			
Airbag system ICs	4	CAN transceivers	13
System supply ICs	5	CAN controllers	14
Safety controllers	5	PSI5 receivers	15
Firing loop drivers	6		
Sensor interfaces	7	Intellectual Property	
Peripheral sensor devices (pressure and acceleration)	8	IP modules	16
Acceleration sensors	9		
Angular rate sensors	10		
Pressure sensors	11		
Vehicle Dynamics Control VDC			
Angular rate sensors	12		
Acceleration sensors	12		
Combined inertial sensors	12		
Acceleration sensors for active suspension	12		
		In-vehicle communication	
		CAN transceivers	13
		CAN controllers	14
		PSI5 receivers	15
		Intellectual Property	
		IP modules	16
		Engine management systems	
		System basis ICs	18
		Power supply ICs	18
		Injection valve drivers	19
		Low-side power switches	20
		Multi-Purpose MOSFET drivers	21
		A/D converters	22
		Sensor interfaces	22
		Ignition stage drivers	23
		Lambda probe interfaces	24
		H-bridges	24
		Barometric pressure sensors	25
		Transmission control systems	
		System basis ICs	26
		System watchdog ICs	26
		Current regulators	27
		Shunt evaluation	27
		Pressure sensors	28
		Electric Power Steering EPS	
		Torque Sensor Steering TSS	29
		Electric drives control	
		MCPP modules for EV inverters	30
		MCPP modules for E-Bike	30
		Alternator electronics	
		Press fit diodes	31
		Voltage regulators	32
		Intellectual Property	
		IP modules	33
		Package overview	
		Packages and dimensions	34

Airbag systems:

Single-chip airbag system ICs

Compact airbag ECUs are now possible by using fully integrated airbag system ICs. The only other active components required are a microcontroller and an on-board acceleration sensor.

Application	Product	V _{DD} typ. [V]	V _{VAS} typ. [V]	V _{VZP} typ. [V]	V _{VER} typ. [V]	Peripheral sensor interfaces	Analog interfaces	Interfaces	Firing loops	Features	T _j min. [°C]	T _j max. [°C]	Package
Single-chip integrated airbag system	CG101	3.3 + 5	6.7	14	24.4 or 33 (programmable)	n/a	2 x AIN 2 x AIO	SPI, 16 bit (3.3V), K-Line/LIN	4 x 1.2A or 1.75A	<ul style="list-style-type: none"> Sophisticated safety concept: safety controller; 3 watchdogs Integrated monitoring of voltages and overtemperature Support of sensor test, C_{ER} diagnosis, polarity protection test and squib diagnosis 7bit firing current counter 	-40	150	LQFP100
Single-chip integrated airbag system	CG102	3.3 + 5	6.7	14	24.4 or 33 (programmable)	2 x PSI5a	4 x AIN 2 x AIO	SPI, 16 bit (3.3V), K-Line/LIN	8 x 1.2A or 1.75A	<ul style="list-style-type: none"> Sophisticated safety concept: safety controller; 3 watchdogs Integrated monitoring of voltages and overtemperature Support of sensor test, C_{ER} diagnosis, polarity protection test and squib diagnosis 7bit firing current counter 	-40	150	LQFP100
Single-chip integrated airbag system	CG103	3.3 + 5	6.7	14	24.4 or 33 (programmable)	4 x PSI5a	6 x AIN 2 x AIO	SPI, 16 bit (3.3V), K-Line/LIN	12 x 1.2A or 1.75A	<ul style="list-style-type: none"> Sophisticated safety concept: safety controller; 3 watchdogs Integrated monitoring of voltages and overtemperature Support of sensor test, C_{ER} diagnosis, polarity protection test and squib diagnosis 7bit firing current counter 	-40	150	LQFP100
Single-chip integrated airbag system	CG108	3.3 + 5	6.7	14	24.4 or 33 (programmable)	2 x PSI5a	4 x AIN 2 x AIO	SPI, 16 bit (3.3V), K-Line/LIN	6 x 1.5A or 2.0A	<ul style="list-style-type: none"> Sophisticated safety concept: safety controller; 3 watchdogs Integrated monitoring of voltages and overtemperature Support of sensor test, C_{ER} diagnosis, polarity protection test and squib diagnosis 2 independent 7bit firing current counters per channel PWM controlled GPIO Special firing modes 	-40	150	LQFP100
Single-chip integrated airbag system	CG109	3.3 + 5	6.7	14	24.4 or 33 (programmable)	4 x PSI5a	6 x AIN 2 x AIO	SPI, 16 bit (3.3V), K-Line/LIN	10 x 1.5A or 2.0A	<ul style="list-style-type: none"> Sophisticated safety concept: safety controller; 3 watchdogs Integrated monitoring of voltages and overtemperature Support of sensor test, C_{ER} diagnosis, polarity protection test and squib diagnosis 2 independent 7bit firing current counters per channel PWM controlled GPIO Special firing modes 	-40	150	LQFP100
New	CG147	enhanced 3.3 + 5	6.7	14	24.4 or 33 (programmable)	4 x PSI5 (V1.2)	6 x AIN 2 x AIO	SPI, 16 bit (3.3V), K-Line/LIN	12 x 1.5A or 2.0A	<ul style="list-style-type: none"> Sophisticated safety concept: safety controller; 3 watchdogs Integrated monitoring of voltages and overtemperature Support of sensor test, C_{ER} diagnosis, polarity protection test and squib diagnosis 2 independent 7bit firing current counters per channel PWM controlled GPIO Special firing modes Enhanced safety concept 16...64 bit data words possible 	-40	150	TQFP100ePad
Companion Chip for integrated airbag system ICs	CG143	enhanced 3.3 + 5	6.7	14	24.4 or 33 (programmable)	6 x PSI5a	6 x AIN 2 x AIO	SPI, 16 bit (3.3V), K-Line/LIN	12 x 1.2A or 1.75A	<ul style="list-style-type: none"> Sophisticated safety concept: ECLK-watchdog Integrated monitoring of voltages and overtemperature C_{ER} diagnosis, polarity protection test and squib diagnosis 7bit firing current counter PWM controlled GPIO 	-40	150	LQFP100

PSI = Peripheral Sensor Interface Bus
 SPI = Synchronous Serial Peripheral Interface
 C_{ER} = Energy reserve capacitor

V_{VZP} = Supply voltage
 V_{DD} = System supply

Airbag systems:

System supply ICs, safety controllers

Airbag system supply ICs combine power supply with various input and output control functions and sensor interfaces.

Application	Product	V _{bat} typ. [V]	Interfaces	Supply voltages	Analog interfaces	Outputs	Features	T _j min. [°C]	T _j max. [°C]	Package
System supply IC for airbag systems	CG680	14	1 x SPI, 8 bit (5V) 2 x COM (K-Line) 2 x PAS2	Energy reserve: 25/45 V System: 4.8 V	• 6 AI-interfaces for interior sensing • 2 x test current sources for one external seat occupancy detector	• 2 x warning lamp drivers	• Over/under voltage reset • Window watchdog • Extensive diagnosis functionality • Support of C _{ER} diagnosis	-40	150	PLCC44
System supply IC for airbag systems	CG683	14	1 x SPI, 8 bit/16 bit (5V) 2 x COM (K-Line) 2 x PAS3	Energy reserve: 25/45 V System: 4.8 V	• 5 AI-interfaces for interior sensing • 2 x test current sources for one external seat occupancy detector	• 2 x warning lamp drivers	• Over/under voltage reset • Window watchdog • Extensive diagnosis functionality • Support of C _{ER} diagnosis • EMC optimized supply	-40	150	PLCC44

Safety controllers are cost attractive alternatives to secondary airbag CPUs.

Application	Product	V _{DD} typ. [V]	V _{PAS} typ. [V]	V _{VZP} typ. [V]	V _{VER} typ. [V]	Peripheral sensor interfaces	Analog interfaces	Disable outputs	Interfaces	Features	T _j min. [°C]	T _j max. [°C]	Package
Airbag safety controller and PAS interface	CG975	3.3 + 4.9	8.7	14	33	3 x PAS3/PAS4	8 x AIO	2 x general disable, up to 5 special disable	SPI, 16bit	• Integrated safety controller • 3 watchdogs • Integrated voltage monitoring • Support of sensor test	-40	150	LQFP44

PAS = Peripheral Airbag Sensor Interface
 C_{ER} = Energy reserve capacitor
 SPI = Synchronous Serial Peripheral Interface
 V_{DD} = System supply
 V_{VZP} = Supply voltage
 V_{VER} = Energy reserve voltage

Airbag systems: Firing loop drivers

All CG98x carry a superior safety concept: The IC is bared in case of no supply voltage.

Integrated cross coupling ensures secure firing. Dedicated groups of firing loops can be disabled.

Application	Product	V _{DD} typ. [V]	V _{VER} typ. [V]	Interfaces	Firing loops	Features	Diagnostics	T _j min. [°C]	T _j max. [°C]	Package
Firing Loop IC	CG685	4.8	25	SPI, 8 bit (5V)	4 x 1.75A	<ul style="list-style-type: none"> Power stage test Firing loop monitoring Firing enable pin 	<ul style="list-style-type: none"> Short circuit Leakage Integrated voltage monitoring 	-40	150	SOIC24w
Firing Loop IC	CG687	4.8	25	SPI, 8 bit (5V)	2 x 1.75A	<ul style="list-style-type: none"> Power stage test Firing loop monitoring Firing enable pin 	<ul style="list-style-type: none"> Short circuit Leakage Integrated voltage monitoring 	-40	150	SOIC24w
Firing Loop IC	CG983	3.3 + 4.9	25 or 33	SPI, 16 bit (3.3 V or 4.9 V)	4 x 1.75A	<ul style="list-style-type: none"> Power stage test Firing loop monitoring Firing enable pin 	<ul style="list-style-type: none"> Short circuit Leakage Integrated voltage monitoring 4 bit firing current counter 	-40	150	LQFP44
Firing Loop IC	CG984	3.3 + 4.9	25 or 33	SPI, 16 bit (3.3 V or 4.9 V)	4 x 2.0A dual firing mode	<ul style="list-style-type: none"> Power stage test Firing loop monitoring Firing enable pin 	<ul style="list-style-type: none"> Short circuit Leakage Integrated voltage monitoring 4 bit firing current counter 	-40	150	LQFP44
Firing Loop IC	CG985	3.3 + 4.9	25 or 33	SPI, 16 bit (3.3 V or 4.9 V)	4 x 1.2A or 1.75A (programmable)	<ul style="list-style-type: none"> Power stage test Firing loop monitoring Firing enable pin 	<ul style="list-style-type: none"> Short circuit Leakage Integrated voltage monitoring 4 bit firing current counter 	-40	150	LQFP44
Firing Loop IC	CG987	3.3 + 4.9	25 or 33	SPI, 16 bit (3.3 V or 4.9 V)	8 x 2.0A	<ul style="list-style-type: none"> Power stage test Firing loop monitoring Firing enable pin 	<ul style="list-style-type: none"> Short circuit Leakage Integrated voltage monitoring 4 bit firing current counter 	-40	150	LQFP44
Firing Loop IC	CG988	3.3 + 4.9	25 or 33	SPI, 16 bit (3.3 V or 4.9 V)	8 x 2.0A dual firing mode	<ul style="list-style-type: none"> Power stage test Firing loop monitoring Firing enable pin 	<ul style="list-style-type: none"> Short circuit Leakage Integrated voltage monitoring 4 bit firing current counter 	-40	150	LQFP44
Firing Loop IC	CG989	3.3 + 4.9	25 or 33	SPI, 16 bit (3.3 V or 4.9 V)	8 x 1.2A or 1.75A (programmable)	<ul style="list-style-type: none"> Power stage test Firing loop monitoring Firing enable pin 	<ul style="list-style-type: none"> Short circuit Leakage Integrated voltage monitoring 4 bit firing current counter 	-40	150	LQFP44

V_{DD} = System supply

V_{VER} = Energy reserve voltage

SPI = Synchronous Serial Peripheral Interface

Airbag systems: Sensor interfaces

Sensor interfaces connect peripheral sensors to the ECU. They combine sensor supply and digital communication. Suitable acceleration and pressure sensors with digital PAS interface are described on pages 8 and 9.

Application	Product	V _{DD} typ. [V]	V _{VZP} typ. [V]	V _{VER} typ. [V]	V _{PASOx} typ. [V]	Peripheral sensor interfaces	Interfaces	Features	T _j min. [°C]	T _j max. [°C]	Package
Dual peripheral sensor interface	CG570	4.8	14	33	8.7	2 x PAS3	SPI, 8 bit/16 bit (5V)	<ul style="list-style-type: none"> • Integrated voltage monitoring • Support of sensor test 	-40	150	SOIC16w
Triple peripheral sensor interface	CG974	3.3 + 4.9	14	33	8.7	3 x PAS3/PAS4	SPI, 16 bit (3.3 or 4.9V)	<ul style="list-style-type: none"> • Integrated voltage monitoring • Support of sensor test • Support of SID coding 	-40	150	SOIC24w

Matrix ICs for seat mats with resistive elements provide information about the passenger weight and help the system to decide for appropriate action.

Application	Product	V _{DD} typ. [V]	Inputs	Interfaces	Features	T _j min. [°C]	T _j max. [°C]	Package
OC-sensor IC for FSR seat matrix	CG642	5	23 x low current 2 x high current	SPI K-Line	<ul style="list-style-type: none"> • SPI controlled multiplexer • Analog out for voltage and current measurement result • Window watchdog • Overvoltage protection 	-40	150	PLCC44

V_{DD} = System supply
 V_{VZP} = Protected supply voltage
 V_{VER} = Energy reserve voltage
 V_{PASOx} = Sensor supply voltage
 PAS = Peripheral Airbag Sensor Interface
 SPI = Synchronous Serial Peripheral Interface

Airbag systems:

Peripheral sensor devices

In cases of head-on or side collisions, fractions of a second are decisive for deploying the airbags at the correct instant. Our peripheral sensors are fitted in the side and front areas of the vehicle and supply valuable data within the shortest possible time to the central airbag control unit for a decision to deploy. Suitable sensor interface ASICs with PAS interface are described on page 7.

Application	Product	Range	Output	Sensitivity $\Delta p/p$ [LSB/%]	Tolerance [%]	V_{DD} typ. [V]	T_{min} [°C]	T_{max} [°C]	Package
Peripheral pressure sensor	PPS2	Absolute pressure measurement range: p_{abs} 50 kPa...126.5 kPa Relative pressure p_{rel} measurement range with ref. to p_{abs} : -5 %...+15 %	PSI5, 10 bit Resolution abs. pressure p_{abs} : 12 bit (mapped into 10 bit words) Resolution of relative pressure: 10 bit	20.48	p_{abs} : 3.5 kPa (4.58 % of FS) p_{rel} : 7 % (for $p_{abs} \geq 70$ kPa), 10 % (for $p_{abs} < 70$ kPa)	6.4	-40	85	Customer specific

Application	Product	Range [g]	Output	Sensitivity [LSB/g]	Tolerance [%]	V_{DD} typ. [V]	T_{min} [°C]	T_{max} [°C]	Package
Peripheral acceleration sensor	PAS4	50 / 100	PAS4, 8 bit	1 / 2	≤ 9	5-11	-40	85	Customer specific
Peripheral acceleration sensor	UFS2	200	PAS4, 8 bit	0.5	≤ 15	5-11	-40	120	Customer specific

LSB = Least significant bit
 PPS = Peripheral Pressure Sensor
 PAS = Peripheral Airbag Sensor Interface

Airbag systems: Acceleration sensors

In case of an accident, MEMS acceleration sensors securely detect crash situations.

They are available in various sensitivity ranges and with either analog or digital output.

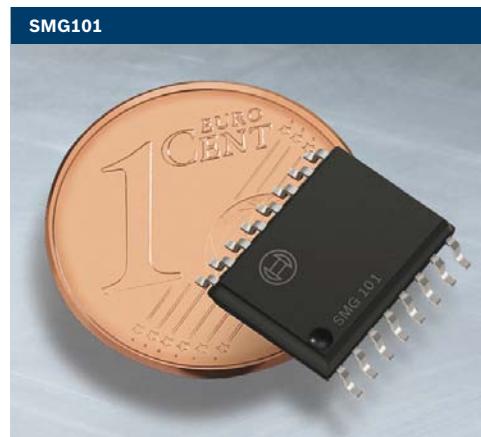
Suitable sensor interface ASICs with PAS interface are described on page 7 and PSI5 receivers on page 15.

Single axis acceleration sensors

Type	Product	Range [g]	Output	Sensitivity	Tolerance [%]	V _{DD} typ. [V]	T _{min} [°C]	T _{max} [°C]	Package
Single axis, x	SMB253	±50	Analog	38.5 mV/g	5	5	-40	95	SOIC16w
Single axis, x	SMB256	±100	Analog	19.25 mV/g	5	5	-40	95	SOIC16w
Single axis, x	SMB257	±140	Analog	13.75 mV/g	5	5	-40	95	SOIC16w
Single axis, x	SMB180	±100	PAS4, 8 bit	1 LSB/g	9	5-11	-40	85	SOIC16w
Single axis, x	SMB190	±200	PAS4, 8 bit	0.5 LSB/g	15	5-11	-40	120	SOIC16w
Single axis, x	SMB455	±25/35/50/70	SPI, 10 bit	18.2/13.9/1.6.5 LSB/g	5	3.3	-40	105	SOIC14n
Single axis, y	SMB482	±120/240	PSI5, 10 bit	4/2 LSB/g	7	5-11	-40	125	SOIC14n
Single axis, x	SMB483	±120/240	PSI5, 10 bit	4/2 LSB/g	7	5-11	-40	125	SOIC14n
Single axis, y	SMB492	±480	PSI5, 10 bit	1 LSB/g	7	5-11	-40	125	SOIC14n
Single axis, x	SMB493	±480	PSI5, 10 bit	1 LSB/g	7	5-11	-40	125	SOIC14n

Dual axis acceleration sensors

Type	Product	Range [g]	Output	Sensitivity	Tolerance [%]	V _{DD} typ. [V]	T _{min} [°C]	T _{max} [°C]	Package
Dual axis, x/y	SMB262	±35	Analog	55 mV/g	5	5	-40	95	SOIC16w
Dual axis, x/y	SMB263	±50	Analog	38.5 mV/g	5	5	-40	95	SOIC16w
Dual axis, x/y	SMB266	±100/50	Analog	19.25/38.5 mV/g	5	5	-40	95	SOIC16w
Dual axis, x/z	SMB200	±4.8	SPI, 10 bit	100 LSB/g	9	3.3 or 5	-40	105	SOIC16w
Dual axis, x/y	SMB460	±96	SPI, 10 bit	5 LSB/g	5	3.3	-40	105	SOIC16w
Dual axis, x/y	SMB461	±50	SPI, 10 bit	9.1 LSB/g	5	3.3	-40	105	SOIC14n
Dual axis, x/y	SMB465	±25/35/50/70	SPI, 10 bit	18.2/13.9/1.6.5 LSB/g	5	3.3	-40	105	SOIC14n
New									
Dual axis, x/y	SMA560	±35/48/70/96	SPI, 10 bit	5/6.75/10/13.5 LSB/g	5	3.3 or 5	-40	105	SOIC8


Airbag systems: Angular rate sensors

In case of an accident, a rollover situation can be securely detected with these MEMS angular rate sensors. The sensors are available with either analog or digital output.

Type	Product	Range [°/s]	Output	Sensitivity	Tolerance [%]	V _{DD} typ. [V]	T _{min} [°C]	T _{max} [°C]	Package
Angular rate sensor Ω_x	SMG060	±240	SPI (Bosch)	2 LSB/°/s	±7	Analog: 5 Digital: 5 or 3.3	-40	105	PLCC44
Angular rate sensor Ω_x	SMG061	±240	Analog	7 mV/°/s	±7	Analog: 5 Digital: 5 or 3.3	-40	105	PLCC44
New									
Angular rate sensor Ω_x	SMG101	±240	SPI (open)	2 LSB/°/s	±7	5	-40	105	SOIC16w
New									
Angular rate sensor Ω_x	SMG102	±240	SPI (Bosch)	2 LSB/°/s	±7	3.3	-40	105	SOIC16w


SPI = Synchronous Serial Peripheral Interface
Other configurations are possible on customer demand.

Airbag systems:

Pressure sensors

High accuracy and fast crash information. Pressure sensors detect the pressure change in a side door of an automotive vehicle due to the deformation of the door during an impact.

Application	Product	Range	Output	Sensitivity $\Delta p/p$ [LSB/%]	Tolerance	V_{DD} typ. [V]	T_{min} [°C]	T_{max} [°C]	Package
Pressure sensor for occupant protection	SMD187	Absolute pressure measurement range: p_{abs} 50 kPa...126.5 kPa Relative pressure p_{rel} measurement range with ref. to p_{abs} : -5 %...+15 %	PSI5, 10 bit Resolution abs. pressure p_{abs} : 12 bit (mapped into 10 bit words) Resolution of relative pressure: 10 bit	20.48	p_{abs} : 3.5 kPa (4.58 % of FS) p_{rel} : 5 % (for $p_{abs} \geq 70$ kPa), 6 % (for $p_{abs} < 70$ kPa)	6.9	-40	125	Mold-Premold (MPM) SOIC16

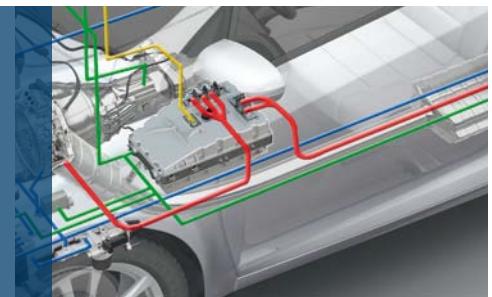
Vehicle Dynamics Control VDC:

Sensors for VDC and active suspension

Modern ESP®/ESC systems require precise and fast information on a car's movements.

Our high precision MEMS sensors come with digital SPI interface for onboard application.

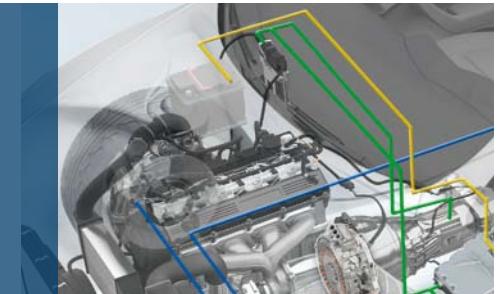
Type	Product	Range	Output	Sensitivity	Tolerance [%]	V _{DD} typ. [V]	T _{min} [°C]	T _{max} [°C]	Package
Angular rate sensors for VDC									
Angular rate sensor Ω_z	SMG074	± 187 °/s	SPI, 16 bit	± 175 LSB/°/s	± 2.5	3.3 or 5	-40	120	PM16
Angular rate sensor Ω_z	SMG075	± 244 °/s	SPI, 16 bit	± 134 LSB/°/s	± 2.5	3.3 or 5	-40	120	PM16
Acceleration sensors for VDC									
Dual axis accelerometer, x/y	SMB225	4.9 g	SPI, 16 bit	6667 LSB/g	± 3	3.3 or 5	-40	120	PM12
Dual axis accelerometer, y/z	SMB227	3.3 g	SPI, 16 bit	10000 LSB/g	± 5	5	-40	135	PM12
Combined inertial sensors for VDC									
New	Angular rate sensor (Ω_z) and dual axis accelerometer (x/y)	± 160 °/s ± 2 g	SPI	175 LSB/°/s 6667 LSB/g	± 3 ± 2	3.3 or 5	-40	105	SOIC16w


Low-g acceleration sensors for active suspension. Active suspension systems help to shorten stopping distances, reduce the risk of rollover accidents and contribute to a more comfortable drive thanks to less chassis movements and a reduced noise in the interior of the vehicle.

Type	Product	Range [g]	Output	Sensitivity [LSB/g]	Tolerance [%]	V _{DD} typ. [V]	T _{min} [°C]	T _{max} [°C]	Package	
Acceleration sensors for active suspension										
New	Single axis, y	SMB431	1.6	PSI5	300	± 5	5-11	-40	125	SOIC14n

In-vehicle communication:

CAN transceivers

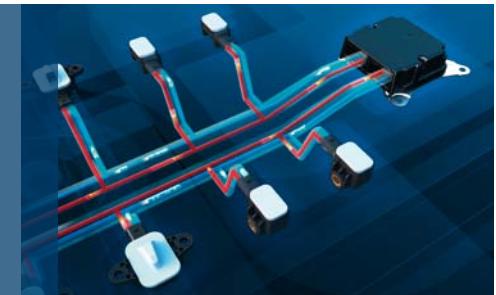


From the beginning, Bosch has been the driving force for CAN bus applications in automotive and industrial environment. A wide range of transceivers with individual features covers all applications. All devices feature a short circuit protection for the CAN bus lines.

Application	Product	V _{DD} typ. [V]	Interfaces	Features	T _j min. [°C]	T _j max. [°C]	Package
CAN transceiver (ISO 11898)	CF150	5	5 V µC interface	<ul style="list-style-type: none"> • High Speed • For new applications please use CF151 	-40	150	SOIC8n
CAN transceiver (ISO 11898)	CF151	5	5 V µC interface	<ul style="list-style-type: none"> • High/low speed • Slew rate control 	-40	150	SOIC8n
CAN transceiver (ISO 11898)	CF160	5	5 V µC interface	<ul style="list-style-type: none"> • Supports up to 1 MBaud • Optimized slew rate 	-40	150	SOIC8n
CAN transceiver (ISO 11898)	CF163	5	3.3 V µC interface	<ul style="list-style-type: none"> • Supports up to 1 MBaud • Optimized slew rate 	-40	150	SOIC8n
				<ul style="list-style-type: none"> • Supports up to 1 MBaud • Optimized slew rate • Standby mode • Wake-up detection • Suitable also for truck application 			
CAN transceiver (ISO 11898)	CF173	5	3.3 V µC interface	<ul style="list-style-type: none"> • Supports up to 1 MBaud • Optimized slew rate • Standby mode • Wake-up detection • Suitable also for truck application 	-40	150	SOIC8n
				<ul style="list-style-type: none"> • Supports up to 1 MBaud • Optimized slew rate • Standby mode • Wake-up detection • Suitable also for truck application 			
CAN transceiver (ISO 11898)	CF175	5	5 V µC interface		-40	150	SOIC8n

In-vehicle communication: CAN controllers

Our CAN controllers support the CAN Protocol version 2.0 A,B.


The CC770 CAN Controller is available in two packages.

Application	Product	V _{DD} typ. [V]	Interfaces	Features	T _j min. [°C]	T _j max. [°C]	Package
CAN controller	CC750	5	1 x SPI	<ul style="list-style-type: none"> • Programmable global mask • 15 message objects of 8-byte data length • Programmable bit rate 	-40	150	SOIC16w
CAN controller	CC770	5	1 x SPI 4 x parallel bus 2 x 8bit IO	<ul style="list-style-type: none"> • Programmable global mask • 15 message objects of 8-byte data length • Programmable bit rate • Flexible CPU interface • Programmable clock output 	-40	150	LQFP44 PLCC44

In-vehicle communication: PSI5 receivers

The Peripheral Sensor Interface 5 (PSI5) is an open standard based on existing sensor interfaces for peripheral airbag sensors, already proven in millions of airbag systems. PSI5 also suitable for many other automotive sensor applications.

Application	Product	Inputs	V _{ER} typ. [V]	Peripheral Sensor interfaces	Interfaces	Features	T _j min. [°C]	T _j max. [°C]	Package
New									
2 channel PSI5 receiver	CF190	V _{DD} typ.: 3.3 V or 5 V V _{AS} : 6.35...11 V V _{ER} typ.: (V _{AS} +2 V)...35 V V _{SYNC} typ.: (V _{AS} +4.5 V)...35 V	24.4 or 33 (programmable)	2 x PSI5 (V1.3)	SPI (3.3V or 5V)	<ul style="list-style-type: none"> • max. 8 sensors • bidirectional communication • Bosch AB, EM and Open SPI protocol • Integrated monitoring of voltages and overtemperature • Integrated diagnosis 	-40	150	LQFP32, QFN36 (on request)

IP modules

for networking applications

Whether you are dealing with FlexRay, CAN, TTCAN, LIN or timer platforms – our IP modules solve your communication problems.

E-Ray:

FlexRay Communication Controller IP

The E-Ray IP module can be integrated as stand-alone device, as part of an ASIC, or as a micro controller peripheral. It is described in VHDL on RTL level, prepared for synthesis. The E-Ray IP module performs communication according to the FlexRay protocol specification v2.1. Up to 128 message buffers with a payload of up to 254 data bytes can be configured for communication on a FlexRay network. The E-Ray IP module comes with an 8/16/32 bit generic CPU Interface connectable to a wide range of customer-specific Host CPUs.

CAN Protocol License

The CAN Protocol is developed by Robert Bosch GmbH and is protected by patents. Additionally to the CAN IP modules offered by Bosch, a CAN Protocol License is required. The CAN Protocol License is also required for self-developed CAN modules, or for CAN modules purchased from other vendors.

VHDL Reference CAN

The VHDL Reference CAN model is intended for semiconductor designers/manufacturers who want to build their own implementation of a CAN device using VHDL as hardware description language. It is provided in addition to the existing C Reference CAN model.

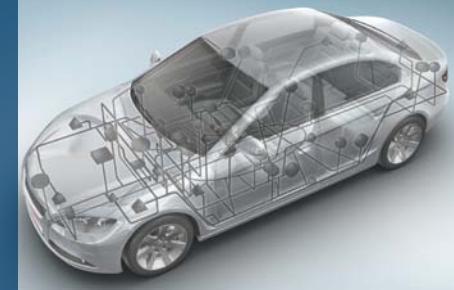
C_CAN

The C_CAN is a CAN IP module that can be realized as a stand-alone device, as part of an ASIC, or as a FPGA. The C_CAN performs communication according to ISO 11898-1 (identical to Bosch CAN specification 2.0 parts A and B). For connection to the physical layer additional transceiver hardware is required.

For communication on a CAN network, individual Message Objects are configured. The Message Objects and Identifier Masks are stored in the Message RAM. All functions concerning the handling of messages are implemented in the Message Handler. Those functions are

the acceptance filtering, the transfer of messages between the CAN_Core and the Message RAM, and the handling of transmission requests as well as the generation of the module interrupt. The register set of the C_CAN can be accessed directly by an external CPU via the module interface. These registers are used to control/configure the CAN_Core and the Message Handler and to access the Message RAM. The ASIC version is delivered with the AMBA APB bus interface from ARM. For Altera FPGAs the Altera Avalon bus interface is provided, for Lattice FPGAs the Wishbone interface. They can easily be replaced by a user-defined module interface.

D_CAN


The D_CAN is a CAN IP module that can be realized as a standalone device, as part of an ASIC, or as a FPGA. The D_CAN performs communication according to ISO 11898-1 (identical to Bosch CAN specification 2.0 parts A and B). For connection to the physical layer additional transceiver hardware is required.

The dual clock design provides highest performance in CPU access and highest accuracy for the CAN bus sampling. The D_CAN can be implemented with 16, 32, 64, or 128 Message Objects. The Message Objects and Identifier Masks are stored in the Message RAM. All functions concerning the handling of messages, like acceptance filtering, transfer of messages between CAN_Core and Message RAM, handling of transmission requests as well as generation of module interrupt are implemented in the Message Handler. The register set of the D_CAN can be accessed directly by an external CPU via the module interface. These registers are used to control/configure the CAN_Core and the Message Handler and to access the Message RAM. The ASIC version is delivered with the Altera Avalon bus interface. For Altera FPGAs the Altera Avalon bus interface is provided, for Lattice FPGAs the Wishbone interface. They can easily be replaced by a user-defined module interface.

IP modules

for networking applications

M_CAN

The M_CAN is a CAN IP module that can be realized as a stand-alone device, as part of an ASIC, or as a FPGA. The M_CAN performs communication according to ISO 11898-1 (identical to Bosch CAN specification 2.0 parts A and B). For connection to the physical layer additional transceiver hardware is required.

The message storage is intended to be a single- or dual-ported Message RAM outside of the module. It is connected to the M_CAN via the Generic Master Interface. Depending on the chosen integration, multiple M_CAN controllers can share the same Message RAM. The Host CPU is connected via the 32-bit Generic Slave Interface.

For reception two receive FIFOs for storage of up 64 messages each can be setup. Acceptance filtering is implemented by a combination of up to 128 filter elements whereas each one can be configured as a range, as a bit mask, or as a dedicated ID filter. For transmission 32 Tx Buffers are available. They can be configured as dedicated Tx Buffers, as part of a Tx FIFO, or as part of a Tx Queue. A Tx Event FIFO stores time stamp and identifier of transmitted messages.

For Altera FPGAs the Altera Avalon bus interface is provided, for Lattice FPGAs the Wishbone interface. They can easily be replaced by a user-defined module interface.

C_TTCAN / M_TTCAN

The C_TTCAN and M_TTCAN IP modules are Time Triggered CAN IP modules derived from the C_CAN and M_CAN IP modules. The TTCAN IP modules perform communication according to ISO 11898-1 (identical to Bosch CAN specification 2.0 parts A and B) and according to ISO 11898-4 (Time Triggered Communication on CAN). They are intended for low-cost time triggered applications with bit rates up to 1Mbit/s. Both TTCAN IP modules are also available for Altera and Lattice FPGA.

LIN Communication Controller Module (C_LIN)

The C_LIN IP module is targeting low cost LIN slave designs. The C_LIN module is an autonomous LIN 1.3 or 2.1 protocol controller with embedded message handling for integration in a system on chip. It is described in VHDL on RTL level, prepared for synthesis.

Outputs from the receive message buffers can be used to directly control application blocks. Vice versa, inputs from the application layer can be directly connected as inputs to the transmit message buffers. Easy configuration methods enable the adaption of the module to specific applications for optimized designs.

Engine management systems:

System basis ICs, power supply ICs

System basis ICs and power supplies provide the CPU with power, communication channels and necessary input and output functions.

Application	Product	V _{DD} typ. [V]	Interfaces	Supply voltages	Inputs	Outputs	Features	T _j min. [°C]	T _j max. [°C]	Package
System basis IC	CJ910	14	1 x ISO	<ul style="list-style-type: none"> • System: 5 V • Standby: 5 V, 5 V (operation) • Sensors: 2 x 5 V 	<ul style="list-style-type: none"> • Ignition • RPM-sensor (typ. glitch filter delay time: 28 µs) • Sustaining control reset 	<ul style="list-style-type: none"> • Switched battery: 1 • Main relay control: 1 x LSPS • Signal drivers: 4 x LSPS • Ignition reset • Flash EPROM enable 	<ul style="list-style-type: none"> • Overvoltage shutdown 	-40	150	PSO36
System basis IC	CJ911	14	1 x ISO	<ul style="list-style-type: none"> • System: 5 V • Standby: 5 V • 5 V (operation) • Sensors: 2 x 5 V 	<ul style="list-style-type: none"> • Ignition • RPM-sensor (typ. glitch filter delay time: 12.5 µs) • Sustaining control reset 	<ul style="list-style-type: none"> • Switched battery: 1 x HSPS • Main relay control: 1 x LSPS • Signal drivers: 4 x LSPS • Ignition reset 	<ul style="list-style-type: none"> • Overvoltage shutdown 	-40	150	PSO36
System basis IC	CY310	14	SPI, 16 bit (5V)	<ul style="list-style-type: none"> 1 x CAN 2 x ISO • System: 5 V, 3.3 V • Standby: 3.3 V • Sensors: 3 x 5 V 	<ul style="list-style-type: none"> • RPM sensor 	<ul style="list-style-type: none"> • 4 x LSS • 1 x HSS 		-40	150	Hiquad64
System basis IC	CY317	14	SPI, 16 bit (5V)	<ul style="list-style-type: none"> 1 x CAN 2 x ISO • System: 5 V, 3.3 V, 2.6 V • Standby: 3.3 V • Sensors: 3 x 5 V 	<ul style="list-style-type: none"> • Ignition • Wakeup • RPM sensor 	<ul style="list-style-type: none"> • Switched battery: 1 x HSPS • Main relay control: 1 x LSPS • Signal drivers: 4 x LSPS 	<ul style="list-style-type: none"> • Reverse polarity protection • Digital watchdog 	-40	150	Hiquad64
System basis IC	CY320	14	SPI, 16 bit (5V)	<ul style="list-style-type: none"> 1 x CAN 1 x ISO • System: 5V, 3.3V, 2.6V, 1.5V • Sensors: 3 x 3.3/5V programmable 	<ul style="list-style-type: none"> • Ignition • Wakeup 		<ul style="list-style-type: none"> • 2 pre-regulator modes (switched, linear) • Advanced 3-level watchdog • µC-reset & system reset • Stop counter functions 	-40	150	PSO36
New	CY325	14	SPI, 16 bit (3.3V)	<ul style="list-style-type: none"> • System: 5V, 3.3V, 2.6V, 1.5V (optional 1.2V) • Standby: 1V • Sensors: 2 x 5V 	<ul style="list-style-type: none"> • Ignition • Wake • Wake via CAN 	<ul style="list-style-type: none"> • Main relay control: 1 x LSPS 	<ul style="list-style-type: none"> • 3 pre-regulator modes (buck, boost, linear) • Advanced 3-level watchdog for Infineon TriCore and Freescale SNAKE µC • µC-reset & system reset • Stop counter functions • Low quiescent current for permanent supplied systems 	-40	150	TQFP64ePad or bare die
µC supply and CAN transceiver	CA500	14	1 x CAN	<ul style="list-style-type: none"> • µC: 5 V • Analog: 5 V 	<ul style="list-style-type: none"> • 3 x line 	<ul style="list-style-type: none"> • 3 x LSPS (line) • 1 x µC reset 		-40	150	PS020
µC supply and CAN transceiver	CA510	14	1 x CAN	<ul style="list-style-type: none"> • µC: 5V, 200mA • I/O: 5V 	<ul style="list-style-type: none"> • Watchdog 	<ul style="list-style-type: none"> • Watchdog reset 	<ul style="list-style-type: none"> * current limitation * undervoltage reset * overtemperature protection 	-40	150	MLF 5x5 or QFN28
Pre-regulator for 24 V boardnet Main relay substitute	CY141	24...42	SPI, 16 bit (5V)	<ul style="list-style-type: none"> • 5.5...14 V 		<ul style="list-style-type: none"> • 5 x gate control for ext. main relay switches • 1 x main relay 	<ul style="list-style-type: none"> • Adjustable step-up/step-down regulator • Short circuit monitoring 	-40	150	PSO36

SPI = Synchronous Serial Peripheral Interface

HSPS = High side power switch

LSPS = Low side power switch

Engine management systems: Injection valve drivers

Injection valve drivers are the key to efficient fuel and diesel consumption.

Application	Product	V _{bat} typ. V _{DD} typ. [V]	Interfaces	Inputs	Outputs	Features	T _j min. [°C]	T _j max. [°C]	Package
4-fold integrated power stage for GDI injectors	CJ840	14 5	SPI	TTL/CMOS logic	2 x HSPS (battery) 2 x HSPS (booster) 4 x LSPS (injectors)	<ul style="list-style-type: none"> • 1- or 2-bank operation, parallel and/or double injection mode • DC/DC boost converter • Selective valve disable • Current level control • Diagnosis via SPI • Programmable parameters 	-40	150	Hiquad64
4-fold integrated power stage for GDI injectors	CJ841	14 5	SPI	TTL/CMOS logic	2 x HSPS (battery) 2 x HSPS (booster) 4 x LSPS (injectors)	<ul style="list-style-type: none"> • 1- or 2-bank operation, parallel and/or double injection mode • DC/DC boost converter • Selective valve disable • Current level control • Diagnosis via SPI • Programmable parameters • Higher current capability than CJ840 	-40	150	Hiquad64

SPI = Synchronous Serial Peripheral Interface
 HSPS = High side power switch
 LSPS = Low side power switch

Engine management systems: Low-side power switches

Low-side power switches with integrated short circuit detection for better system safety.

Application	Product	V _{bat} typ. [V]	V _{DD} typ. [V]	Interfaces	Inputs	Outputs	Features	T _j min. [°C]	T _j max. [°C]	Package
4-fold Low-side Power Switch	CJ406	14		Serial diagnostics interface	TTL/CMOS logic	4 x 2.2 A/500mΩ/70 V		-40	150	MultiWatt15
4-fold Low-side Power Switch	CJ420	14		Serial diagnostics interface	TTL/CMOS logic	4 x 2.2 A/500mΩ/70 V	• Overtemperature detection	-40	150	PSO20
4-fold Low-side Power Switch	CJ450		5	Serial diagnostics interface	TTL/CMOS logic	4 x 0.6 A/1 Ω/46 V	• Open-circuit detection • Overtemperature detection	-40	150	PLCC28
14-fold Low-side Power Switch	CJ920	14	5	Serial diagnostics interface	TTL/CMOS logic	4 x 0.6 A/1 Ω/40 V 2 x 2.2 A/500mΩ/45 V 6 x 2.2 A/500mΩ/70 V 2 x 2.7 A/500mΩ/45 V	• Open-circuit detection • Overtemperature detection	-40	150	HIQUAD64
18-fold Low-side Power Switch	CJ945	14	5	SPI, µsec bus	TTL/CMOS logic	4 x 1.1 A/780mΩ/45 V 6 x 2.2 A/380mΩ/45 V 6 x 2.2 A/400mΩ/70 V 2 x 3 A/280mΩ/45 V	• Open-circuit detection • Overtemperature detection	-40	150	HIQUAD64
New 18-fold Low-side Power Switch	CJ950	14		SPI (3.3V or 5V), µsec bus	TTL/CMOS logic, withstands 36V permanently	4 x 0.6 A/920mΩ/55 V 10 x 2.2 A/270mΩ/55 V 2 x 3 A/260mΩ/55 V 2 x 8 A/150mΩ/55 V	• Diagnosis: OL, SCG, SCB and OT • OUT1, 3 with current monitoring • 5V monitoring • 2nd independent shut down path • 2 x lambda probe heater	-40	150	PSO36
				4 parallel ports in case SPI is used						

SPI = Synchronous Serial Peripheral Interface

Engine management systems:

Multi-Purpose MOSFET drivers

Application	Product	V _{DD} typ [V]	Interfaces	Inputs	Outputs	Features	T _j min. [°C]	T _j max. [°C]	Package
Configurable HS-/LS-Driver, H-Bridge or Half bridge	CY146	5	SPI, 16 bit (3.3 or 5V)	UBAT, VDD: 5V CLK	6 x HS-/LS-switch	3 x Half-bridge or individually configurable for HS/LS application	-40	150	LQFP44

Engine management systems: A/D converters, sensor interfaces

A/D converter with integrated multiplexer to select from up to eight analog inputs.

Application	Product	V _{DD} typ. [V]	Inputs	ADC resolution	Conversion range	Conversion time	Interfaces	Features	T _j min. [°C]	T _j max. [°C]	Package
A/D converter	CY100	5	8 channels multiplexed	10bit	5 V	120 µs	ISO SPI (3 V)	<ul style="list-style-type: none"> • 2 x digital out • Open drain 	-40	150	LQFP32

Interfaces for engine sensors.

Application	Product	V _{DD} typ. [V]	Inputs	Interfaces	Features	T _j min. [°C]	T _j max. [°C]	Package
Single-channel rotation speed signal evaluation	CY30	5	1xRPM sensor	Analog	<ul style="list-style-type: none"> • Differential inputs • Selectable thresholds • Open drain output 	-40	150	SOIC8n
Knock sensor evaluation	CC195	5	2 x symmetric or 4 x asymmetric, switchable	Analog	<ul style="list-style-type: none"> • Knock sensor evaluation • Programmable gain and band pass filter • Band pass filter in SC-filter technology 	-40	150	PLCC28
Knock sensor evaluation	CC196	5	2 x symmetric or 4 x asymmetric, switchable	SPI	<ul style="list-style-type: none"> • Knock sensor evaluation • Programmable gain and BP filter • Digital band pass filter (FIR) 	-40	150	SOIC16w
Knock sensor evaluation and multichannel A/D converter	CC650	5	2 x symmetric or 4 x asymmetric	Digital I/O ports	<ul style="list-style-type: none"> • Knock sensor evaluation • 16-channel A/D converter (8 bit) • Reset module • Post-run module 	-40	150	MQFP80

SPI = Synchronous Serial Peripheral Interface

Engine management systems: Ignition stage drivers

Drivers for external ignition stages with integrated monitoring function for ignition harness and coil.

Application	Product	V _{DD} typ. [V]	Channels	Interfaces	Features	T _j min. [°C]	T _j max. [°C]	Package
6-channel inverting driver for external ignition stages	CK110	5	6	n/a	<ul style="list-style-type: none"> • Short-circuit protection • Diagnosis 	-40	150	SOIC20w
6-channel inverting driver for external ignition stages	CK200	5	6	SPI	<ul style="list-style-type: none"> • Short-circuit protection • Diagnosis • Wire and ignition coil diagnosis 	-40	150	Bare die
4-channel inverting driver for external ignition stages	CK240	5	4	SPI	<ul style="list-style-type: none"> • Short-circuit protection • Diagnosis • Wire and ignition coil diagnosis 	-40	150	Bare die or SOIC16w
6-channel inverting driver for external ignition stages	CK260	5	6	SPI	<ul style="list-style-type: none"> • Short-circuit protection • Diagnosis • Wire and ignition coil diagnosis 	-40	150	SOIC20w

Engine management systems:

Lambda probe interfaces, H-bridges

These Lambda probe interfaces provide all that is needed to drive Nernst cells: Pump current sense amplifier, reference voltage, virtual ground voltage source and diagnosis features.

Application	Product	V _{bat} typ. [V]	V _{DD} typ. [V]	Inputs	Interfaces	Features	T _j min. [°C]	T _j max. [°C]	Package
Bosch Lambda probe (LSU)	CJ110	14	5	Lambda probe signals	Analog	<ul style="list-style-type: none"> Lambda measurement 	-40	150	SOIC16w
Bosch Lambda probe (LSU)	CJ120	14	5	Lambda probe signals	SPI	<ul style="list-style-type: none"> Lambda measurement Probe temperature measurement Diagnostics For new applications please use CJ125 	-40	150	SOIC24w
Bosch Lambda probe (LSU)	CJ125	14	5	Lambda probe signals	SPI	<ul style="list-style-type: none"> Lambda measurement Probe temperature measurement Programmable reference pump current Diagnostics Recommended for new applications 	-40	150	SOIC24w, LQFP32
New Lambda probe control for Bosch & NTK lambda probes	CJ135	14	3 / 5	Lambda probe signals	SPI	<ul style="list-style-type: none"> Lambda measurement Probe temperature evaluation SPI programmable controls Diagnostic features Support LSU 4.9, ADV and NTK ZFAS-U2 	-40	150	TQFP32ePad, QFN36 (on demand)

Intelligent H-bridge for precise flap control.

Application	Product	V _{bat} typ. [V]	Interfaces	Features	T _j min. [°C]	T _j max. [°C]	Package
Intelligent full H-bridge	CJ220	14	TTL/CMOS logic	<ul style="list-style-type: none"> R_{DSON} = 150 mΩ, I_{max} = 6.6 A, f_{max} = 30 kHz Integrated free-wheeling diodes output current limitation Undervoltage lockout overtemperature protection Short-circuit shutdown Diagnosis function 	-40	150	PSO20

SPI = Synchronous Serial Peripheral Interface

Engine management systems:

Barometric pressure sensors

Barometric pressure sensors for precise engine control.

Application	Product	Range [kPa]	Output	Sensitivity	Tolerance	V _{DD} typ. [V]	T _{min} [°C]	T _{max} [°C]	Package
Barometric pressure sensor	SMD288	40...115	Analog	45 mV/kPa (@ V _{DD} = 5 V)	1.5 kPa (0 °C...85 °C) / 2.25 kPa	5	-40	125	PM8

Transmission control systems:

System basis ICs, system watchdog ICs

Application	Product	V _{DD} typ. [V]	Interfaces	Supply Voltages	Inputs	Outputs	Features	T _j min. [°C]	T _j max. [°C]	Package
System basis IC	CG124	14	ISO/LIN SPI (5V)	3.3V 5V 9V	3 x speed sensor Wake Up	Startup Reset Shutdown for µC	Permanent Supply reset control HS switch for starter enable For Renesas SH7 16-channel multiplexer for diagnosis:OL, SCG and SCB	-40	150	TQFP64ePad or bare die

Application	Product	V _{DD} typ. [V]	Interfaces	Inputs	Outputs	Features	T _j min. [°C]	T _j max. [°C]	Package
System watchdog IC	CG130	14	SPI (3.3 or 5V)	V _{ASIC}	High Side driver Sequencing Control	<ul style="list-style-type: none"> • Voltage monitoring with µC core voltage monitoring • Question / Answer watchdog • Periphery clock monitoring • Periphery reset circuit 	-40	150	LQFP32 or bare die

Transmission control systems:

Current regulators, shunt evaluation

Integrated current regulators for precise control of oil pressure valves in hydraulic systems.

Programmable hardware loop for low CPU load.

Application	Product	V _{bat} typ. [V]	V _{DD} typ. [V]	Interfaces	Outputs	Features	T _j min. [°C]	T _j max. [°C]	Package
Single-channel current regulator for inductive loads for low-side or high-side application	CG202	14		PWM	PWM signal for ext. power switch	<ul style="list-style-type: none"> For use with external power switch, shunt and free wheeling diode current regulation range with ext. 1 Ω shunt: 0...1,200 mA Accuracy with 1 Ω shunt: ±7 mA Adjustable PWM frequency Opt. external sync 	-40	150	SOIC16w
Dual-channel fully integrated current regulator for inductive loads for low-side application	CG207	14	5	1 x SPI (5V) PWM	2 x regulated load current	<ul style="list-style-type: none"> Power Switch, shunt and free wheeling diode integrated current regulation range: 0...1023 mA Accuracy <2.5% Overcurrent protection Overtemperature protection PWM controlled regulation loop characteristics 	-40	150	Bare die, PSO36
Dual-channel fully integrated current regulator for inductive loads for low-side application	CG208	14	5	1 x SPI (3.3V or 5V) SPI	2 x regulated load current	<ul style="list-style-type: none"> Power Switch, shunt and free wheeling diode integrated current regulation range: 0...1200 mA Accuracy <1 % Dither function Overcurrent protection Overtemperature protection SPI controlled regulation loop characteristics 	-40	150	Bare die, TQFP44ePad

Application	Product	V _{DD} typ. [V]	V _{bat} typ. [V]	Interfaces	Outputs	Features	T _j min. [°C]	T _j max. [°C]	Package
Quad-channel shunt evaluation	CG211	3.3 or 5	14	4 x shunt voltage evaluation	4 x bit stream 2 x Diagnosis	<ul style="list-style-type: none"> * temperature measurement * low-side, high-side or bridge application * integrated diagnosis (overcurrent, overtemperature, system clock, supply voltages) 	-40	150	LQFP32

SPI = Synchronous Serial Peripheral Interface

Transmission control systems:

Pressure sensors

Medium pressure sensors for applications such as regulation of the hydraulic pressure at the transmission (DCT) clutch, optimized drive belt adjustment in CVT systems (sliding point) and the regulation of the hydraulic reservoir pressure.

Application	Product	Range [bar]	P_Burst [bar]	Output	Sensitivity [mV/bar]	Tolerance [% V _{cc}]	V _{DD} typ. [V]	T _{min.} [°C]	T _{max.} [°C]	Package
New Medium pressure sensor for transmission control	SMP132	0.5...22	80	analog	186	1.5...2.5	5	-40	150	Hermetic metal package
New Medium pressure sensor for transmission control	SMP137	0.5...70	140	analog	58	1.5...2.5	5	-40	150	Hermetic metal package

Electric Power Steering EPS:

Torque sensor for electric power steering

The Torque Sensor Steering TSS was developed for vehicles with Electric Power Steering EPS.

The sensor measures the steering force applied by the driver and thus enables sensitive control of the electric steering support.

Application	Product	Range [°]	Output	Resolution [°]	Accuracy [°]	V _{DD} typ. [V]	T _{min} [°C]	T _{max} [°C]	Package
New									
Torque sensor for EPS	TSS	±4	PAS4/PSI5 or PWM (other interfaces on request)	0.002	0.3	5	-40	125	Customer specific

Electric drives control:

Multi-chip power packages

Extremely compact high power mold modules, optimized for use in (H)EV and E-Bike inverters where high currents have to be handled, space is limited, heat dissipation is critical and high reliability is a must.

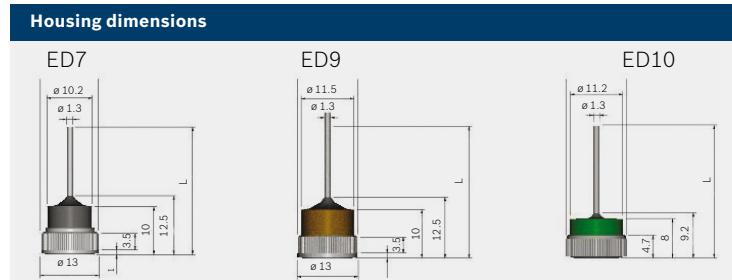
Application	Product	V _{DS} max [V]	I _D max [A]	R _{DS on} [mΩ]	R _{th (j-c)} per MOSFET switch [W/K]	Features	T _j min [°C]	T _j max [°C]	Package
New									
MOSFET B6 bridge for E-Bike inverters	MB0608A	60	130	4	0.4	<ul style="list-style-type: none"> MOSFET module in B6 bridge configuration with integrated free-wheeling diodes optimized for E-Bike application Normal level MOSFETs optimized R_{th}, Z_{th} Pb free, Halogen-free 	-40	150	Mold module with THRS contacts, 40 mm (L) x 15 mm (W) x 3 mm (H)

Application	Product	V _{CE} max [V]	I _c max [A]	U _{GE sat} [V]	R _{th (j-c)} per IGBT switch [W/K]	Features	T _j min [°C]	T _j max [°C]	Package
New									
IGBT half bridge for (H)EV inverters	MH6560B	650	600	1.65 (@I _{CE mod} =600 A, V _{GE} =15 V, 25 °C, 600 A)	0.07	<ul style="list-style-type: none"> IGBT module in half bridge configuration with integrated free-wheeling diodes optimized for (H)EV application integrated T-Sense (NTC) optimized R_{th}, Z_{th} exposed pad for thermal contact Pb-free, Halogen-free Availability on demand 	-40	150	Mold module with customer specific contacts, 63 mm (L) x 57 mm (W) x 6.6 mm (H)

Alternator electronics:

Press fit diodes

Press fit diodes for automotive alternators, designed for long life at high ambient temperatures.


Type	I _{FAV} Forward Current [A]	Diode Package	I _{FSM} T=150°C Surge Current Limit value [A]	I _R T=25°C, 16/28V* Reverse Current Upper limit [µA]	V _F 100A Forward voltage at 25°C [V]	R _{th} Thermal Resistance [K/W]	T _{max} Max. barrier layer temp. [°C]	I _{ZM} Max. Zener Peak Current [A]	V _Z 5 mA, Zener Operating Voltage (1) [V]	Polarity C+/A- (2)
ZH2 (14V)	35	ED7	300	50	1.14	0.8	215	65	19-23	C/A
ZH6 (14V)	50	ED9	380	50	1.08	0.6	215	100	19-23	C/A
ZH2850 (28V)	50	ED10	380	50*	1.10	0.6	215	54	34-40	C/A

Type	I _{FAV} Forward Current [A]	Diode Package	I _{FSM} T=150°C Surge Current Limit value [A]	I _R T=25°C, 16V Reverse Current Upper limit [µA]	V _F 100/200A* Forward voltage at 25°C [V]	R _{th} Thermal Resistance [K/W]	T _{max} Max. barrier layer temp. [°C]	I _{ZM} Max. Zener Peak Current [A]	V _Z 5 mA, Zener Operating Voltage (2) [V]	Polarity C+/A- (3)
ZR1435 (14V)	35	ED10	275	100	1.15	0.8	225	60	19-25	C/A
ZR1450 (14V)	50	ED10	380	100	1.10	0.6	225	80	19-25	C/A
ZR1465 (14V)	65	ED10	500	100	1.07	0.5	225	100	19-25	C/A
ZR1480 (14V)	80	ED10	600	100	1.17*	0.45	225	125	19-25	C/A

(1) Classified in 1V steps

(2) Classified in 1.5V steps

(3) C+/ Positive diodes have the cathode at the heat sink; A-/ Negative diodes have the anode at the heat sink

Alternator electronics:

Voltage regulators

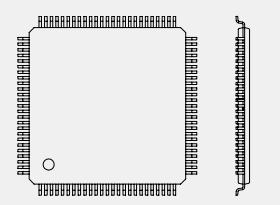
Alternator regulators keep the alternator output voltage on the desired level. The interface allows for various control and monitoring functions.

Application	Product	V _{DD} typ. [V]	Interfaces	Outputs	Features	T _j min. [°C]	T _j max. [°C]	Package
Voltage regulator for 14V alternators	CR665	14	LIN1.3; LIN2.1	excitation current	<ul style="list-style-type: none"> • LIN control function acc. to VDA specification • Programmable 	-40	175	TO220-5, bare die

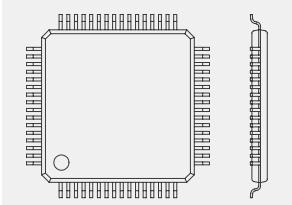
IP modules

for timer applications

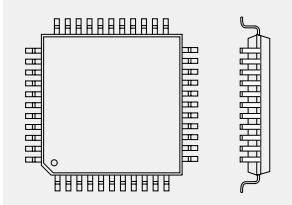
Generic Timer Module (GTM)

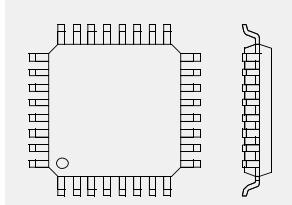

The GTM IP module forms a generic timer platform for complex applications in the automotive industry like power train, power steering, chassis and transmission control. To serve these different application domains, the GTM provides a wide range of timer functions like:

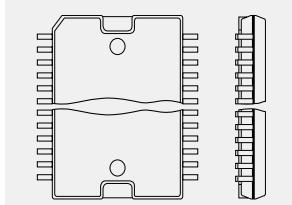
- ▶ Counters (free running and resettable)
- ▶ Multi-action capture/compare
- ▶ PWM input
- ▶ Complex PWM output function
- ▶ Duty-cycle measurement
- ▶ Global time bases
- ▶ Complex angle clock mechanism for power train applications
- ▶ Input signal filtering
- ▶ Internal RISC-like programmable cores for data processing and complex output sequence generation


The GTM IP is designed to offer flexible solutions for different application domains and for different application classes within one specific application domain. The IP is designed to run with minimal CPU interaction and to unload the CPU from handling interrupt service requests as much as possible.

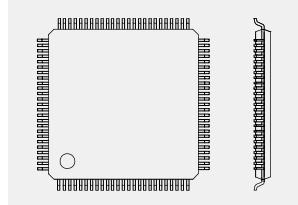
Generic interfaces and the hierarchical system architecture make the GTM an ideal solution as IP core for various microcontroller architectures.

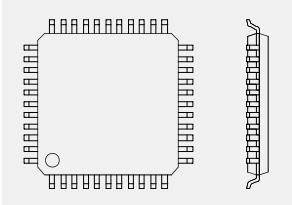

TQFP100_ePad (14 x 14 mm)

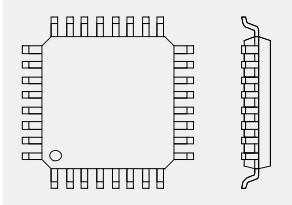

TQFP64_ePad (10 x 10 mm)

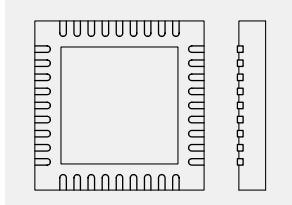

TQFP_44ePad (10 x 10 mm)

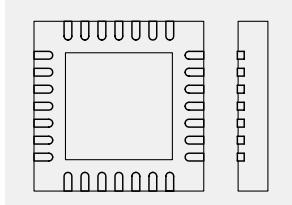
TQFP_32ePad (7 x 7 mm)

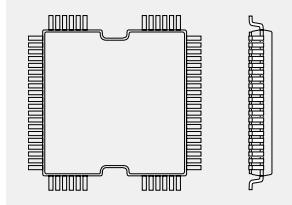

PSO36 (11.1 x 16 mm)

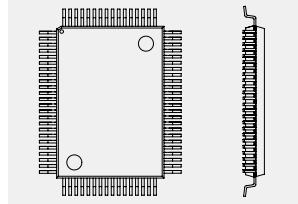

PSO20 (11.1 x 16 mm)

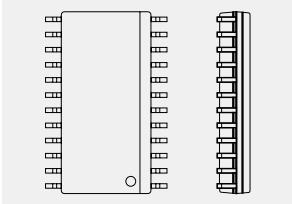

LQFP100 (14 x 14 mm)

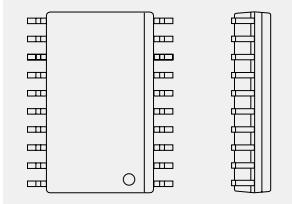

LQFP44 (10 x 10 mm)

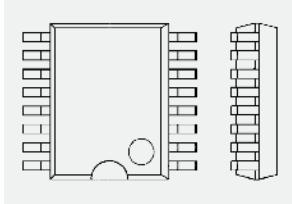

LQFP32 (7 x 7 mm)

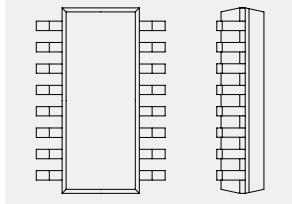

QFN36 (6 x 6 mm)

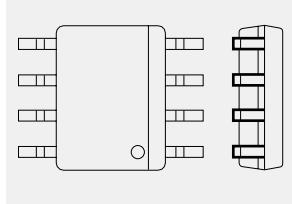

QFN28 (5 x 5 mm)

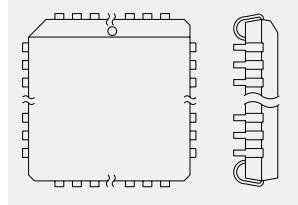

HIQUAD64 (14 x 14 mm)

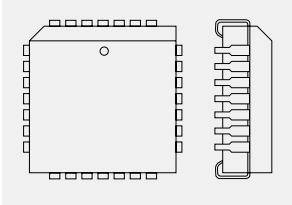

MQFP80 (14 x 20 mm)

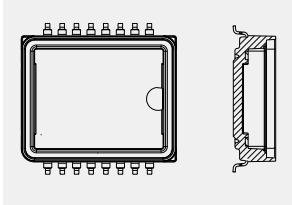

SOIC24w (7.5 x 15.4 mm)

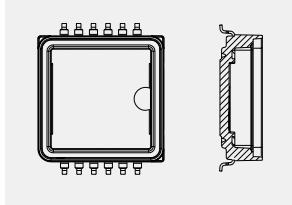

SOIC20w (7.5 x 12.8 mm)

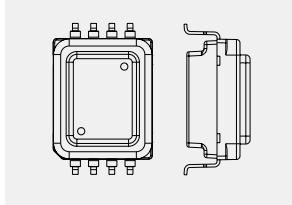

SOIC16w (7.5 x 10.3 mm)

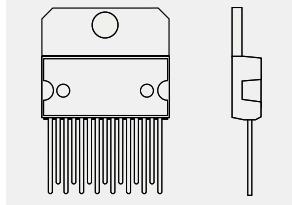

SOIC14n (3.9 x 8.6 mm)

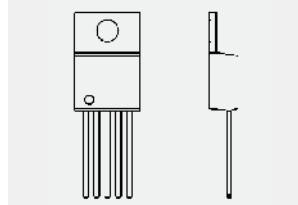

SOIC8n (3.9 x 4.9 mm)

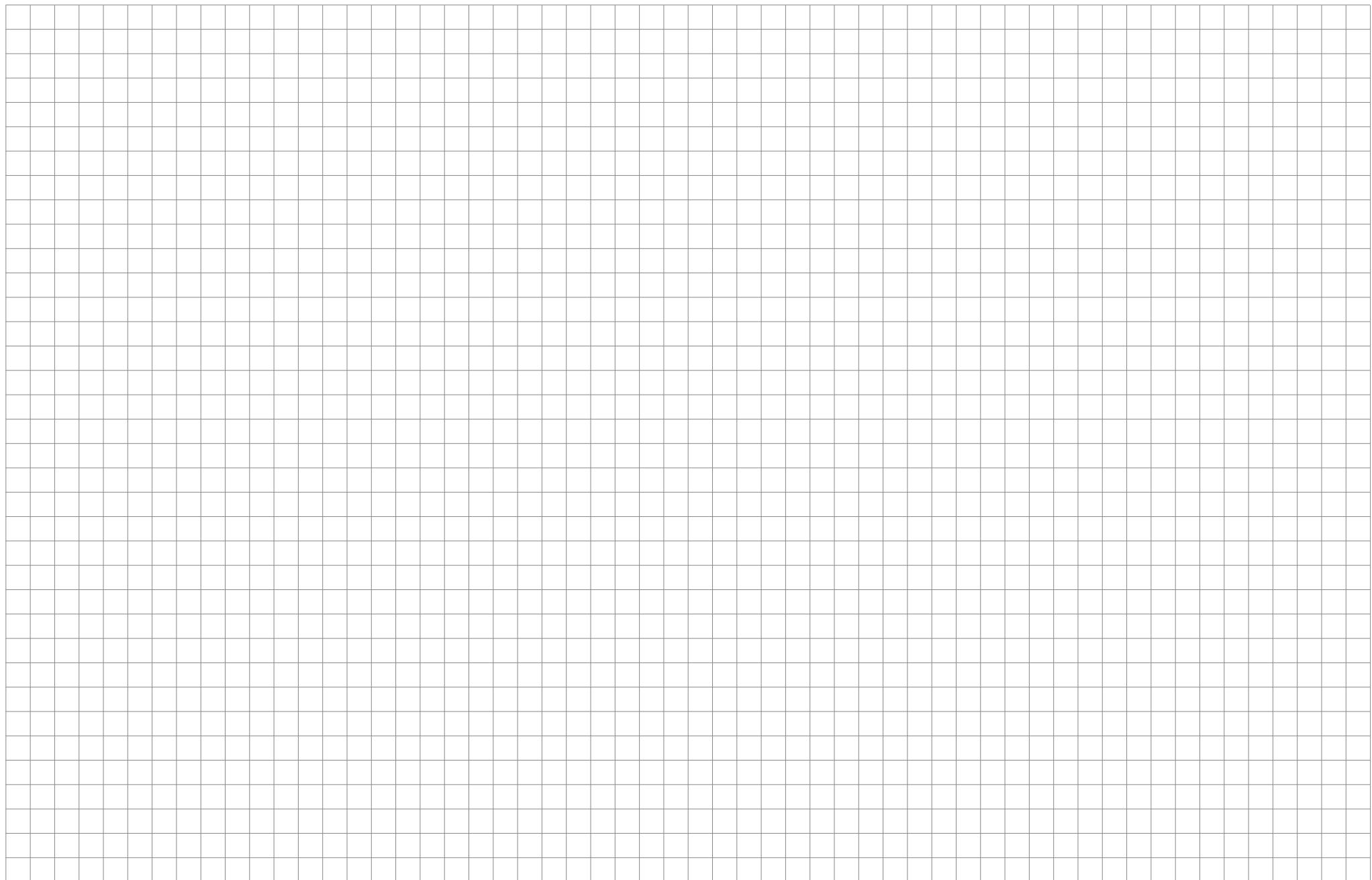

PLCC44 (16.6 x 16.6 mm)


PLCC28 (11.5 x 11.5 mm)


PM16 (11 x 13.5 mm)


PM12 (11 x 11 mm)


PM8 (6.9 x 8.4 mm)


Multiwatt15 (In-Line)

TO220-5

Notes

Europe**Robert Bosch GmbH**

Component Sales

Postfach 1342
72703 Reutlingen
Germany

bosch.semiconductors@de.bosch.com

www.bosch-semiconductors.com

www.bosch-sensors.com

Printed in Germany
292000P0MW-C/CCA-201010-En

USA**Robert Bosch LLC**

Component Sales

15000 Haggerty Road
Plymouth, MI 48170
U.S.A.

bosch.semiconductors@us.bosch.com

Japan**Bosch Corporation**

Automotive Electronics Sales Dept., Sales Gr. 2

3-6-7, Shibuya, Shibuya-ku
Tokyo 150-8360
Japan

bosch.semiconductors@de.bosch.com

Korea**Robert Bosch Korea**

Component Sales

298 Bojeong-dong, Giheung-gu
Yongin-si, Gyeonggi-do
Korea, 446-850

bosch.semiconductors@kr.bosch.com

China**Bosch Automotive Products (Suzhou) Co.,Ltd.**

Component Sales

9F, 168#, Yincheng Mid Road
Bank of Shanghai
Shanghai 200120
P.R. China

bosch.semiconductors@cn.bosch.com

In 2011, the Bosch Group is celebrating a double anniversary: the 125th anniversary of the company's establishment, and the company founder's 150th birthday. This is cause for more than mere retrospection – it prompts us to show how the company's past fuels its future. The history of the company has had its ups and downs, but at the same time has always been vibrant. We see this history as one that drives us forward to new – and above all beneficial – achievements.