TOSHIBA TC7SZ02F/FU

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7SZ02F, TC7SZ02FU

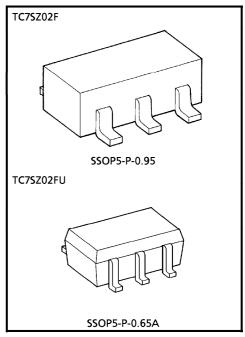
2 INPUT NOR GATE

FEATURES

: $\pm 24mA (Typ.) (V_{CC} = 3V)$ High Output Drive

Super High Speed Operation : $t_{PD} = 2.4 \text{ns}$ (Typ.)

 $(V_{CC} = 5V, 50pF)$


Operation Voltage Range : $V_{CC (opr)} = 1.8 \sim 5.5 V$

5V Toleratnt Function

Matches the Performance of TC74LCX Series when Operated at 3.3V V_{CC}

MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	V _C C	-0.5~6	V
DC Input Voltage	VIN	-0.5~6	V
DC Output Voltage	VOUT	-0.5~6	V
Input Diode Current	ΙΚ	± 20	mA
Output Diode Current	^I ОК	± 20	mA
DC Output Current	IOUT	± 50	mA
DC V _{CC} / Ground Current	lcc	± 50	mA
Power Dissipation	PD	200	mW
Storage Temperature	T _{stg}	-65∼150	°C
Lead Temperature (10s)	TL	260	°C

Weight

SSOP5-P-0.95 : 0.016g (Typ.) SSOP5-P-0.65A : 0.006g (Typ.)

The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to foreign exchange and foreign trade laws.

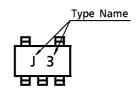
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

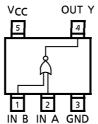
DC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	CAMBOI	TEST CONDITION		Vcc	V _C C Ta = 25°C		C	Ta = -4	UNIT		
CHARACTERISTIC	STIVIBUL	1631 (NOTION	Vcc (V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
High-Level	\/			1.8	0.88 × V _C C	1	_	0.88 × V _C C		٧	
Input Voltage	V _{IH}			2.3~ 5.5	0.75 x V _{CC}	_	_	0.75 × V _C C	_	V	
Low-Level				1.8	_	_	0.12 × V _C C	_	0.12 x V _{CC}	٧	
Input Voltage	V _{IL}			2.3~ 5.5	_	_	0.25 × V _C C	_	0.25 x V _{CC}	V	
			I _{OH} = -100μA	1.8	1.7	1.8	_	1.7	_	V	
				2.3	2.2	2.3	_	2.2	_		
				3.0	2.9	3.0	_	2.9	_		
High-Level Output Voltage	\ \/ ~ · ·	OH VIN = VIH		4.5	4.4	4.5	_	4.4	_		
	voh		I _{OH} = -8mA	2.3	1.9	2.15	_	1.9	_	V	
			I _{OH} = - 16mA	3.0	2.4	2.8	_	2.4	_		
			I _{OH} = - 24mA	3.0	2.3	2.68	_	2.3	_		
			$I_{OH} = -32mA$	4.5	3.8	4.2	_	3.8			
			I _{OH} = 100μA	1.8	_	0	0.1	_	0.1	V	
				2.3	_	0	0.1	_	0.1		
				3.0	_	0	0.1	_	0.1		
Low-Level	\ \/ ~ .	OL VIN = VIH or VIL	$V_{IN} = V_{IH}$		4.5	_	0	0.1	_	0.1	
Output Voltage	VOL		I _{OH} = 8mA	2.3	_	0.1	0.3	_	0.3	V	
			I _{OH} = 16mA	3.0	_	0.15	0.4	_	0.4		
			I _{OH} = 24mA	3.0		0.22	0.55	_	0.55		
			I _{OH} = 32mA	4.5	_	0.22	0.55	_	0.55		
Input Leakage Current	IN	V _{IN} = 5.5V	or GND	0~ 5.5	_	_	± 1	_	± 10	μΑ	
Power Off Leakage Current	lOFF	V _{IN} or V _{OUT} = 5.5V		0.0	_	_	1	_	10	μΑ	
Quiescent Supply Current	lcc	V _{IN} = V _{CC} o	or GND	5.5		_	2	_	20	μΑ	

AC ELECTRICAL CHARACTERISTICS (Input	$t_r = t$	f = 3ns
--------------------------------------	-----------	---------

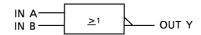

CHADACTERISTIC	CVMADOL	TEST CONDITION	Vcc	Ta = 25°C			Ta = -40~85°C		LINUT
CHARACTERISTIC	STIMBOL	TEST CONDITION	\ (S)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
		$c_L = 15 pF, R_L = 1 M\Omega$	1.8	2.0	4.4	9.5	2.0	10.0	
			2.5 ± 0.2	0.8	2.9	6.5	0.8	7.0	
Propagation			3.3 ± 0.3	0.5	2.3	4.5	0.5	4.7	
Delay Time			5.0 ± 0.5	0.5	1.9	3.9	0.5	4.1	ns
		C F0pE	3.3 ± 0.3	1.5	2.9	5.0	1.5	5.2	
		$C_L = 50 pF, R_L = 500 \Omega$	5.0 ± 0.5	0.8	2.4	4.3	0.8	4.5	
Input	CIN		0~5.5		4				рF
Capacitance	C _{IN}	0 - 5.5		4				ρı	
Power		(1)	3.3	_	23	_	_	_	1
Dissipation Capacitance	C _{PD}	(Note 1)	5.5	1	30	_	_	_	pF

(Note 1): CpD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

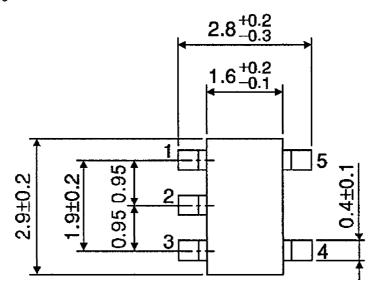

Average operating current can be obtained by the equation.

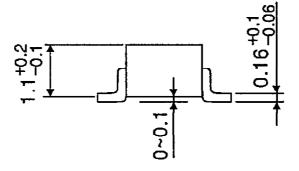
$$ICC (opr) = CPD \cdot VCC \cdot fIN + ICC$$

MARKING


PIN ASSIGNMENT (TOP VIEW)

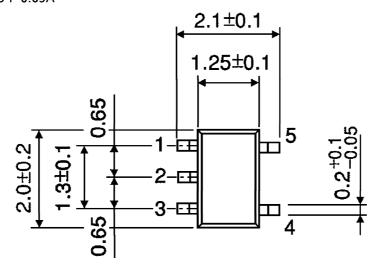
TRUTH TABLE

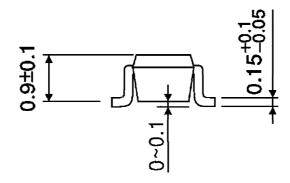

Α	В	Υ
L	L	Н
L	Н	L
Н	L	L
Н	Н	L


LOGIC DIAGRAM

OUTLINE DRAWING SSOP5-P-0.95

Unit: mm





Weight: 0.016g (Typ.)

OUTLINE DRAWING SSOP5-P-0.65A

Unit: mm

Weight: 0.006g (Typ.)