

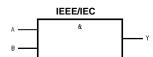
January 1997 Revised August 2004

NC7ST08

TinyLogic® HST 2-Input AND Gate

General Description

The NC7ST08 is a single 2-Input high performance CMOS AND Gate, with TTL-compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both inputs and output with respect to the V_{CC} and GND rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL-compatible inputs facilitate TTL to NM OS/CMOS interfacing. Device performance is similar to MM74HCT but with 1/2 the output current drive of HC/HCT.


Features

- Space saving SOT23 or SC70 5-lead package
- Ultra small MicroPak™ leadless package
- High Speed: t_{PD} 6 ns (typ), V_{CC} = 5V, C_L = 15 pF, T_A = 25°C
- Low Quiescent Power, $I_{CC} < 1 \mu A$, $V_{CC} = 5.5 V$
- \blacksquare Balanced Output Drive; 2 mA I_OL, -2 mA I_OH
- TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7ST08M5X	MA05B	8808	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7ST08P5X	MAA05A	T08	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7ST08L6X	MAC06A	NN	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

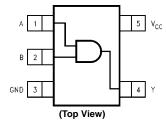
Logic Symbol

Pin Descriptions

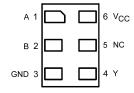
Pin Names	Description
A, B	Inputs
Y	Output
NC	No Connect

Function Table

Y = AB


Inp	Output	
Α	В	Y
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

H = HIGH Logic Level


L = LOW Logic Level

Connection Diagrams

Pin Assignments for SC70 and SOT23

Pad Assignment for MicroPak

(Top Thru View)

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. $\label{eq:microPak} \mbox{MicroPak}^{\mbox{\tiny TM}} \mbox{ is a trademark of Fairchild Semiconductor Corporation}.$

Absolute Maximum Ratings(Note 1) Reco

_{-0.5V to +7.0V} Conditions (Note 2

Supply Voltage (V $_{\rm CC}$) $-0.5{\rm V}$ to +7.0V DC Input Diode Current (I $_{\rm IK}$)

DC Input Voltage (V_{IN}) -0.5V to V_{CC} + 0.5V

DC Output Diode Current (I_{OK})

 $V_{OUT} < -0.5V$ –20 mA

 $V_{OUT} > V_{CC} + 0.5V \hspace{1cm} +20 \hspace{1cm} mA$

Output Voltage (V $_{OUT}$) -0.5V to $V_{CC}+0.5V$

DC Output Source or Sink Current

 (I_{OUT}) ±12.5 mA

DC V_{CC} or Ground Current per

Supply Pin (I $_{\rm CC}$ or I $_{\rm GND}$) ± 25 mA Storage Temperature (T $_{\rm STG}$) $-65^{\circ}{\rm C}$ to $+150^{\circ}{\rm C}$

Junction Temperature (T_J) 150°C

Lead Temperature (T_L);

(Soldering, 10 seconds) 260°C

Power Dissipation (P_D) @+85°C

SOT23-5 200 mW SC70-5 150 mW

Recommended Operating Conditions (Note 2)

Input Rise and Fall Time (t_r, t_f)

 $V_{CC} = 5.0V$ 0 ns to 500 ns

Thermal Resistance (θ_{JA})

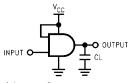
SOT23-5 300°C/W

SC70-5 425°C/W

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside the databook specifications.

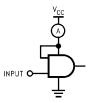
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


Symbol	Parameter	v _{cc}		$T_A = +25^{\circ}C$		$T_A = 40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Cymbol		(V)	Min	Тур	Max	Min	Max	Onnes	Conditions	
V _{IH}	HIGH Level Input Voltage	4.5–5.5	2.0			2.0		V		
V _{IL}	LOW Level Input Voltage	4.5–5.5			8.0		0.8	V		
V _{OH}	HIGH Level Output Voltage	4.5	4.4	4.5		4.4			$I_{OH} = -20 \mu A$	
		4.5	4.18	4.35		4.13		V	$I_{OH} = -2 \text{ mA}$	
									$V_{IN} = V_{IH}$	
V _{OL}	LOW Level Output Voltage	4.5		0	0.1		0.1		$I_{OL} = 20 \mu A$	
		4.5		0.10	0.26		0.33	V	$I_{OL} = 2 \text{ mA}$	
									$V_{IN} = V_{IL}$	
I _{IN}	Input Leakage Current	5.5			±0.1		±1.0	μΑ	$0 \le V_{IN} \le 5.5V$	
I _{CC}	Quiescent Supply Current	5.5			1.0		10.0	μΑ	$V_{IN} = V_{CC}$ or GND	
I _{CCT}	I _{CC} per Input	5.5			2.0		2.9	mA	One Input $V_{IN} = 0.5V$ or 2.4V,	
									Other Input V _{CC} or GND	

AC Electrical Characteristics

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = 40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Figure	
		(V)	Min	Тур	Max	Min	Max	Units		Number
t _{PLH} ,	Propagation Delay	5.0		4	12				C 45 pF	
t_{PHL}				6	17			ns	C _L = 15 pF	
		4.5		6	16		20			Figures
				12	27		31	ns (C ₁ = 50 pF	1, 3
		5.5		5	14		18	115	GL = 50 pr	
				11	26		30			
t _{TLH} ,	Output Transition Time	5.0		4	10			ns	C _L = 15 pF	
t_{THL}		4.5		11	25		31	ns	C ₁ = 50 pF	Figures 1, 3
		5.5		10	21		26	113	OL = 30 pi	., -
C _{IN}	Input Capacitance	Open			10			pF		
C _{PD}	Power Dissipation Capacitance	5.0		6				pF	(Note 3)	Figure 2


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{|N}) + (I_{CC}static)$.

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_w = 500 ns

FIGURE 1. AC Test Circuit

 $Input = AC \ Waveform; \ PRR = variable; \ Duty \ Cycle = 50\%$

FIGURE 2. $I_{\rm CCD}$ Test Circuit

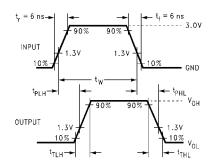
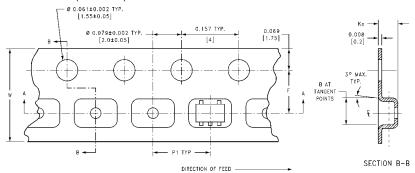
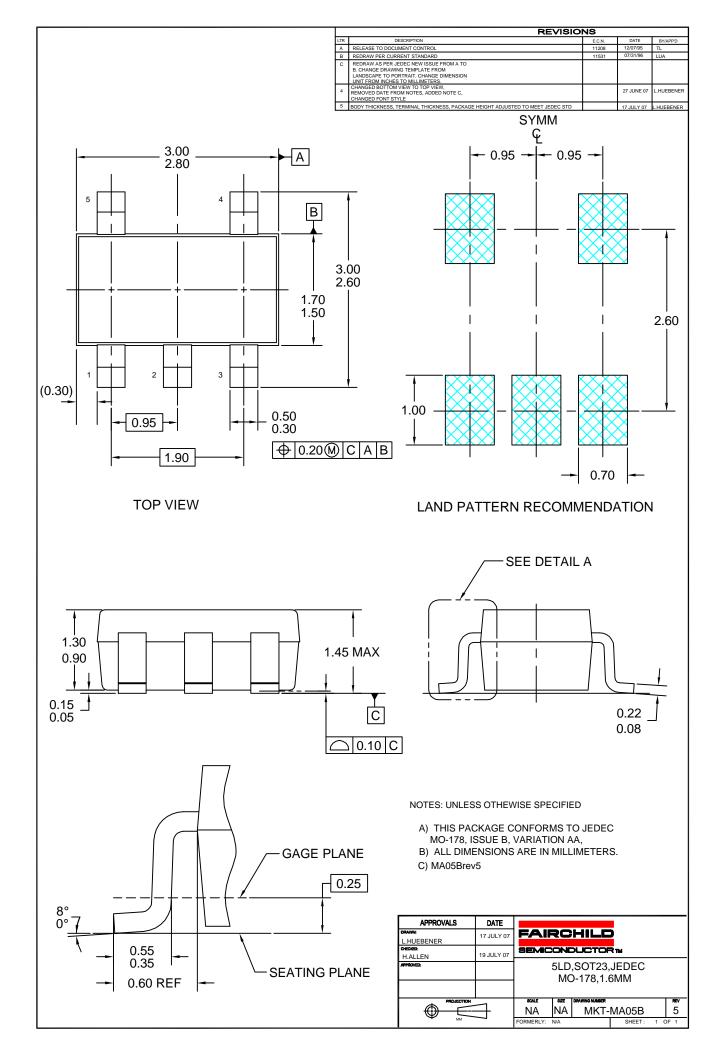



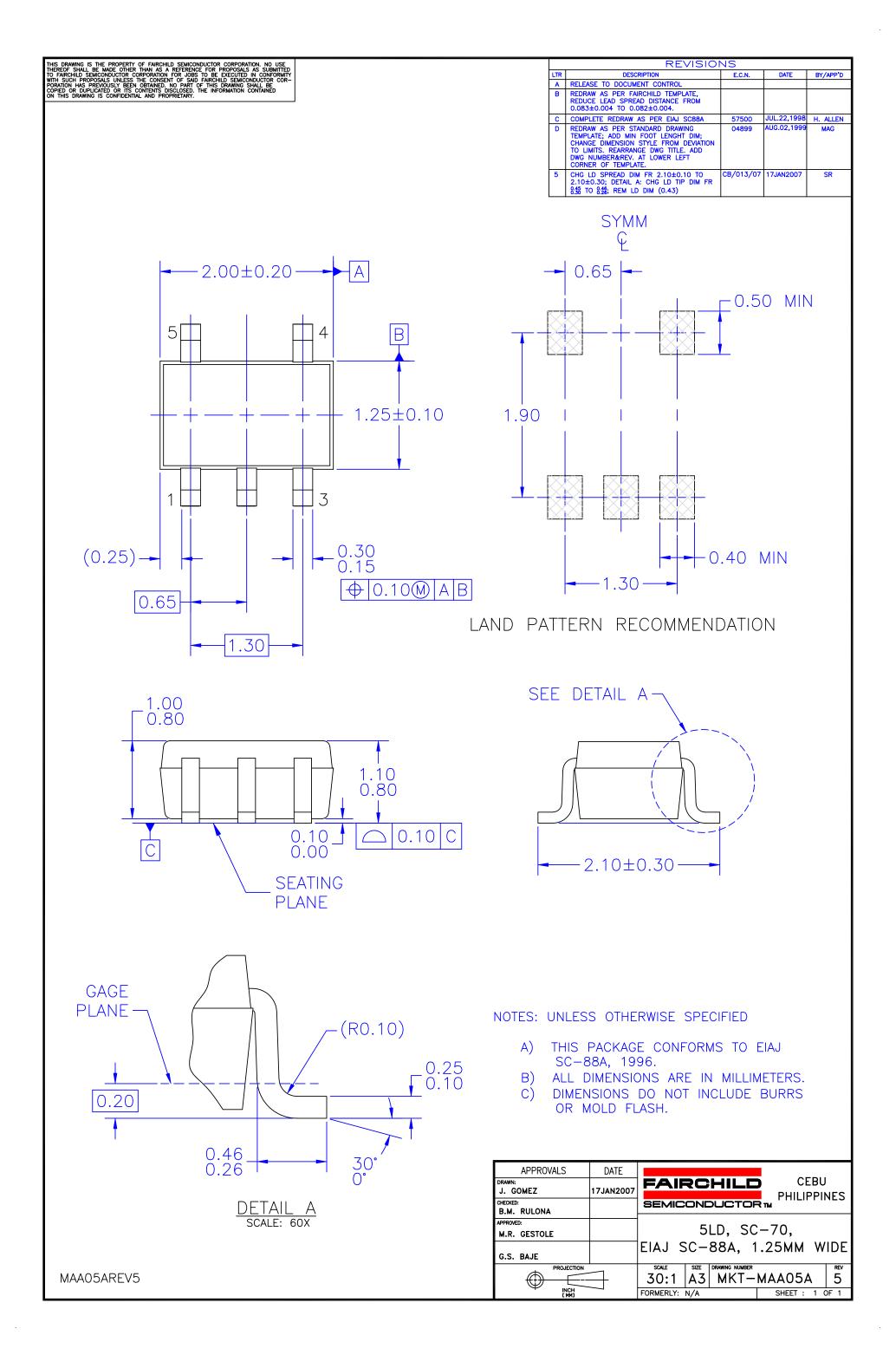
FIGURE 3. AC Waveforms

Tape and Reel Specification TAPE FORMAT for SC70 and SOT23


Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
M5X, P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)


SECTION A-A



BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
	O IIIIII	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
		(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)

Tape and Reel Specification (Continued) TAPE FORMAT for MircoPak Package Tape Number Cavity Cover Tape Designator Section Cavities Status Status Leader (Start End) 125 (typ) Empty Sealed L6X Carrier 5000 Filled Sealed Trailer (Hub End) 75 (typ) **Empty** Sealed 2.00-1.75±0.10 В 8.00 ^{+0.30} -0.10 3.50±0.05 1.15±0.05 **-** → В◄ -ø 0.50 ±0.05 SECTION B-B DIRECTION OF FEED SCALE:10X 0.254±0.020 Г 0.70±0.05 SECTION A-A SCALE:10X **REEL DIMENSIONS** inches (millimeters) TAPE SLOT DETAIL X DETAIL X SCALE: 3X W1 W2 W3 Tape В С D Ν Α Size W1 + 0.078/-0.039 0.331 + 0.059/-0.000 7.0 0.567 0.059 0.512 0.795 2.165 8 mm (177.8)(1.50)(13.00)(20.20)(55.00) (8.40 + 1.50 / -0.00)(W1 + 2.00/-1.00)(14.40)

- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994
- 4. FILENAME AND REVISION: MAC06AREV4
- 5. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY OTHER LINE IN THE MARK CODE LAYOUT.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ FRFET® AccuPower™ Global Power ResourceSM AX-CAP™ GreenBridge™ BitSiC™ Build it Now™ Green FPS™ CorePLUS™ Green FPS™ e-Series™

CorePOWER™ Gmax™ GTO™ $CROSSVOLT^{\text{\tiny TM}}$ IntelliMAX™ CTL™

ISOPLANAR™ Current Transfer Logic™ Making Small Speakers Sound Louder **DEUXPEED**[©]

and Better™ Dual Cool™ EcoSPARK® MegaBuck™ MICROCOUPLER™ EfficientMax™ **ESBC™** MicroFET™

F® MicroPak™ MicroPak2™ Fairchild® MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ mWSaver™ OptoHiT™

FACT FAST® **OPTOLOGIC®** FastvCore™ OPTOPLANAR® FFTBench™ FlashWriter®*

PowerTrench® PowerXS™

QFĔT[®]

Programmable Active Droop™

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM

GENERAL®*

puwer* franchis TinyBoost™ TinyBuck™

The Power Franchise®

TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 162

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.