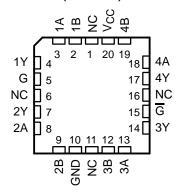

SLLS104H - DECEMBER 1990 - REVISED FEBRUARY 2002

- Meets or Exceeds the Requirements of ANSI TIA/EIA-422-B, TIA/EIA-423-B, and ITU Recommendation V.10 and V.11
- Low Power, I_{CC} = 10 mA Typ
- ±7-V Common-Mode Range With ±200-mV Sensitivity
- Input Hysteresis . . . 60 mV Typ
- t_{pd} = 17 ns Typ
- Operates From a Single 5-V Supply
- 3-State Outputs
- Input Fail-Safe Circuitry
- Improved Replacements for AM26LS32
- Available in Q-Temp Automotive
 - High Reliability Automotive Applications
 - Configuration Control/Print Support
 - Qualification to Automotive Standards


description

The AM26C32 is a quadruple differential line receiver for balanced or unbalanced digital data transmission. The enable function is common to all four receivers and offers a choice of active-high or active-low input. The 3-state outputs permit connection directly to a bus-organized system. Fail-safe design specifies that if the inputs are open, the outputs are always high.

AM26C32C, AM26C32I, AM26C32Q . . . D, N, OR NS PACKAGE AM26C32M . . . J OR W PACKAGE

AM26C32M . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

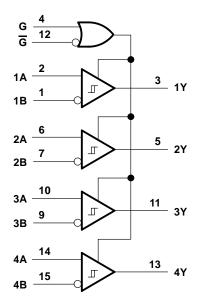
The AM26C32 devices are manufactured using a BiCMOS process, which is a combination of bipolar and CMOS transistors. This process provides the high voltage and current of bipolar with the low power of CMOS to reduce the power consumption to about one-fifth that of the standard AM26LS32, while maintaining ac and dc performance.

The AM26C32C is characterized for operation from 0°C to 70°C. The AM26C32I is characterized for operation from –40°C to 85°C. The AM26C32Q is characterized for operation from –40°C to 125°C. The AM26C32M is characterized for operation over the full military temperature range of –55°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

AVAILABLE OPTIONS

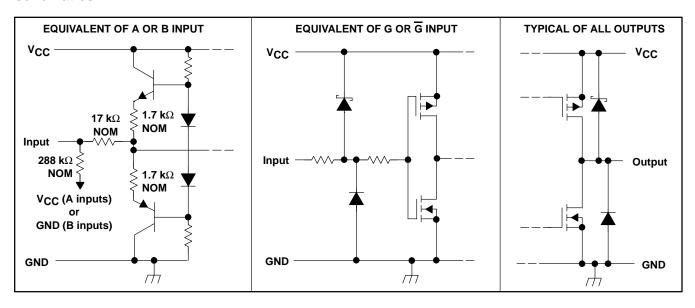
	PACKAGED DEVICES							
TA	SMALL OUTLINE (D, NS)	PLASTIC DIP (N)	CERAMIC CHIP CARRIER (FK)	CERAMIC DIP (J)	CERAMIC FLATPACK (W)			
0°C to 70°C	AM26C32CD AM26C32CNS	AM26C32CN —	_	_	_			
-40°C to 85°C	AM26C32ID AM26C32INS	AM26C32IN —			_			
-40°C to 125°C	AM26C32QD	AM26C32QN			_			
–55°C to 125°C	_	_	AM26C32MFK	AM26C32MJ	AM26C32MW			


The D package is available taped and reeled. Add the suffix R to the device type (e.g., AM26C32CDR). The NS package is only available taped and reeled.

FUNCTION TABLE (each receiver)

DIFFERENTIAL	ENA	BLES	ОИТРИТ	
INPUT	G	G	Y	
\/:= > \/:=	Н	Х	Н	
VID ≥ VIT+	Х	L	Н	
\\	Н	Х	?	
V _{IT} < V _{ID} < V _{IT} +	Х	L	?	
\\ < \\	Н	Х	L	
VID ≤ VIT-	Х	L	L	
Х	L	Н	Z	

H = high level, L = low level, X = irrelevant Z = high impedance (off), ? = indeterminate


logic diagram (positive logic)

Pin numbers shown are for the D, J, N, NS, and W packages.

schematics

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage range, V _I : A or B inputs	
G or G inputs	\dots -0.5 V to V _{CC} + 0.5 V
Differential input voltage range, V _{ID}	
Output voltage range, VO	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output current, IO	±25 mA
Package thermal impedance, θ _{JA} (see Notes 2 and 3): D package	73°C/W
N package	67°C/W
NS package	64°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential output voltage, V_{OD}, are with respect to network GND. Currents into the device are positive and currents out of the device are negative.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SLLS104H - DECEMBER 1990 - REVISED FEBRUARY 2002

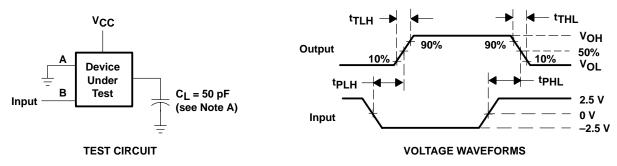
recommended operating conditions

			MIN	NOM	MAX	UNIT
VCC	V _{CC} Supply voltage			5	5.5	V
VIH	High-level input voltage		2			V
V _{IL}	V _{IL} Low-level input voltage				0.8	V
VIC	V _{IC} Common-mode input voltage				±7	V
ЮН	IOH High-level output current				-6	mA
loL	OL Low-level output current				6	mA
		AM26C32C	0		70	
_{T.}	Operating free-air temperature	AM26C32I	-40		85	°C
TA	Operating nee-an temperature	AM26C32Q	-40		125	C
		AM26C32M	-55		125	

electrical characteristics over recommended ranges of $\rm V_{CC},\ V_{IC},\ and\ operating$ free-air temperature (unless otherwise noted)

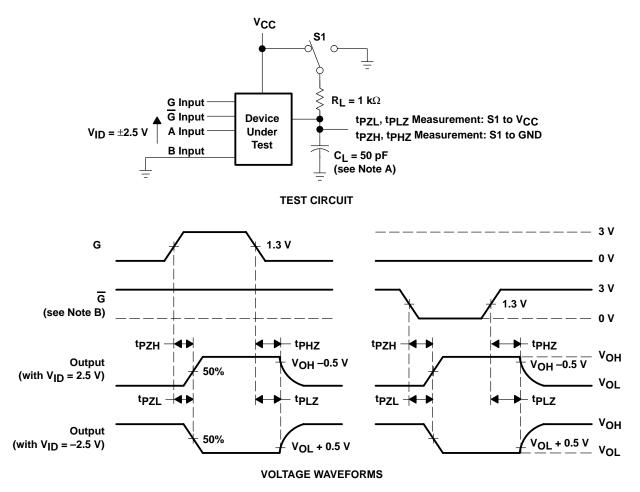
PARAMETER		TEST C	MIN	TYP [†]	MAX	UNIT		
\/:-	Differential input high-threshold voltage	$V_O = V_{OH}(min),$	$V_{IC} = -7 V \text{ to } 7 V$			0.2	V	
VIT+		$I_{OH} = -440 \mu A$	$V_{IC} = 0 \text{ to } 5.5 \text{ V}$			0.1	v	
\/-	Differential input low-threshold voltage	$V_{O} = 0.45 \text{ V},$	$V_{IC} = -7 V \text{ to } 7 V$	-0.2‡			V	
VIT-	Differential input low-tiffeshold voltage	IOL = 8 mA	V _{IC} = 0 to 5.5 V	-0.1‡			V	
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT})				60		mV	
VIK	Enable input clamp voltage	$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.5	V	
Vон	High-level output voltage	$V_{ID} = 200 \text{ mV},$	$I_{OH} = -6 \text{ mA}$	3.8			V	
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$	$I_{OL} = 6 \text{ mA}$		0.2	0.3	V	
loz	Off-state (high-impedance state) output current	$V_O = V_{CC}$ or GND			±0.5	±5	μΑ	
1.	Line input current	V _I = 10 V,	Other input at 0 V			1.5	mA	
ΙΙ	Line input current	$V_{I} = -10 \text{ V},$	Other input at 0 V			-2.5	IIIA	
lіН	High-level enable current	V _I = 2.7 V				20	μΑ	
IIL	Low-level enable current	V _I = 0.4 V				-100	μΑ	
rį	Input resistance	One input to ground	d	12	17	·	kΩ	
ICC	Supply current	V _{CC} = 5.5 V			10	15	mA	

[†] All typical values are at V_{CC} = 5 V, V_{IC} = 0, and T_A = 25°C. ‡ The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage.


SLLS104H - DECEMBER 1990 - REVISED FEBRUARY 2002

switching characteristics over recommended ranges of operation conditions, C_L = 50 pF (unless otherwise noted)

PARAMETER		TEST CONDITIONS	AM26C32C AM26C32I			AM26C32Q AM26C32M			UNIT
			MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
tPLH	Propagation delay time, low- to high-level output	See Figure 1	9	17	27	9	17	27	ns
tPHL	Propagation delay time, high- to low-level output		9	17	27	9	17	27	ns
tTLH	Output transition time, low- to high-level output	See Figure 1		4	9		4	10	ns
tTHL	Output transition time, high- to low-level output	See Figure 1		4	9		4	9	ns
^t PZH	Output enable time to high level	See Figure 2		13	22		13	22	ns
tPZL	Output enable time to low level	See Figure 2		13	22		13	22	ns
t _{PHZ}	Output disable time from high level	See Figure 2		13	22		13	26	ns
tPLZ	Output disable time from low level			13	22		13	25	ns


[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

PARAMETER MEASUREMENT INFORMATION

NOTE A: C_L includes probe and jig capacitance.

Figure 1. Switching Test Circuit and Voltage Waveforms

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle \leq 50%, $t_r = t_f = 6$ ns.

Figure 2. Enable/Disable Time Test Circuit and Output Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated