#### INTEGRATED CIRCUITS

# DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

# **74HC/HCT573**Octal D-type transparent latch; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990





## Octal D-type transparent latch; 3-state

#### 74HC/HCT573

#### **FEATURES**

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors/microcomputers
- 3-state non-inverting outputs for bus oriented applications
- Common 3-state output enable input
- Functionally identical to the "563" and "373"
- · Output capability: bus driver
- I<sub>CC</sub> category: MSI

#### **GENERAL DESCRIPTION**

The 74HC/HCT573 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT573 are octal D-type transparent latches featuring separate D-type inputs for each latch and 3-state outputs for bus oriented applications.

A latch enable (LE) input and an output enable (OE) input are common to all latches.

The "573" consists of eight D-type transparent latches with 3-state true outputs. When LE is HIGH, data at

the  $D_n$  inputs enter the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its corresponding D-input changes.

When LE is LOW the latches store the information that was present at the D-inputs a set-up time preceding the HIGH-to-LOW transition of LE. When  $\overline{OE}$  is LOW, the contents of the 8 latches are available at the outputs. When  $\overline{OE}$  is HIGH, the outputs go to the high impedance OFF-state. Operation of the  $\overline{OE}$  input does not affect the state of the latches.

The "573" is functionally identical to the "563" and "373", but the "563" has inverted outputs and the "373" has a different pin arrangement.

#### **QUICK REFERENCE DATA**

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$ 

| SYMBOL                              | PARAMETER                               | CONDITIONS                                  | TYP | UNIT |      |
|-------------------------------------|-----------------------------------------|---------------------------------------------|-----|------|------|
|                                     | PARAWETER                               | CONDITIONS                                  | нс  | нст  | UNII |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay                       | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ |     |      |      |
|                                     | D <sub>n</sub> to Q <sub>n</sub>        |                                             | 14  | 17   | ns   |
|                                     | LE to Q <sub>n</sub>                    |                                             | 15  | 15   | ns   |
| C <sub>I</sub>                      | input capacitance                       |                                             | 3.5 | 3.5  | pF   |
| C <sub>PD</sub>                     | power dissipation capacitance per latch | notes 1 and 2                               | 26  | 26   | pF   |

#### **Notes**

1.  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

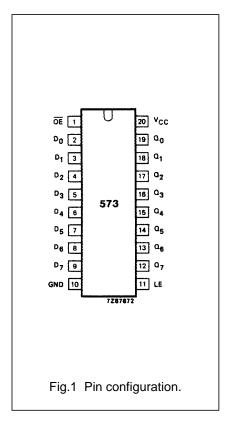
f<sub>i</sub> = input frequency in MHz; f<sub>o</sub> = output frequency in MHz

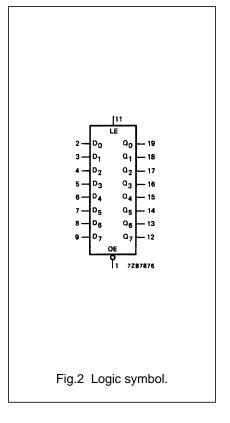
$$\sum (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$$

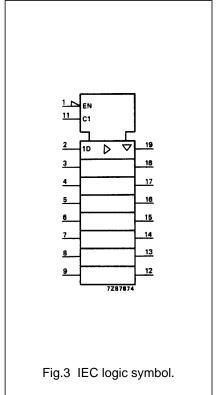
 $C_L$  = output load capacitance in pF;  $V_{CC}$  = supply voltage in V

2. For HC the condition is  $V_I = GND$  to  $V_{CC}$ ; for HCT the condition is  $V_I = GND$  to  $V_{CC} - 1.5$  V

#### **ORDERING INFORMATION**


See "74HC/HCT/HCU/HCMOS Logic Package Information".

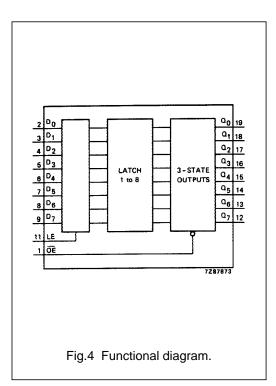

# Octal D-type transparent latch; 3-state


# 74HC/HCT573

#### **PIN DESCRIPTION**

| PIN NO. SYMBOL                                                  |  | NAME AND FUNCTION                        |  |  |  |  |  |
|-----------------------------------------------------------------|--|------------------------------------------|--|--|--|--|--|
| 2, 3, 4, 5, 6, 7, 8, 9 D <sub>0</sub> to D <sub>7</sub>         |  | data inputs                              |  |  |  |  |  |
| 11 LE                                                           |  | latch enable input (active HIGH)         |  |  |  |  |  |
| 1 $\overline{\text{OE}}$                                        |  | 3-state output enable input (active LOW) |  |  |  |  |  |
| 10 GND                                                          |  | ground (0 V)                             |  |  |  |  |  |
| 19, 18, 17, 16, 15, 14, 13, 12 Q <sub>0</sub> to Q <sub>7</sub> |  | 3-state latch outputs                    |  |  |  |  |  |
| 20 V <sub>CC</sub>                                              |  | positive supply voltage                  |  |  |  |  |  |



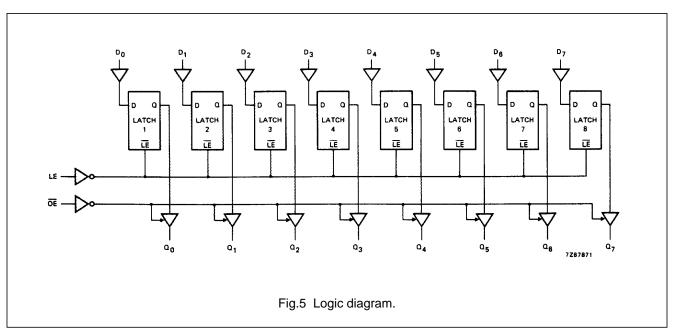





Philips Semiconductors Product specification

# Octal D-type transparent latch; 3-state

### 74HC/HCT573




#### **FUNCTION TABLE**

| OPERATING                                         | I      | INPUT  | S              | INTERNAL | OUTPUTS                          |
|---------------------------------------------------|--------|--------|----------------|----------|----------------------------------|
| MODES                                             | ŌΕ     | LE     | D <sub>N</sub> | LATCHES  | Q <sub>0</sub> to Q <sub>7</sub> |
| enable and read<br>register<br>(transparent mode) | L<br>L | H<br>H | L<br>H         | L<br>H   | L<br>H                           |
| latch and read register                           | L<br>L | L<br>L | l<br>h         | L<br>H   | L<br>H                           |
| latch register and disable outputs                | H<br>H | L      | l<br>h         | L<br>H   | Z<br>Z                           |

#### **Notes**

- 1. H = HIGH voltage level
  - h = HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition
  - L = LOW voltage level
  - I = LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition
  - Z = high impedance OFF-state



Philips Semiconductors Product specification

# Octal D-type transparent latch; 3-state

74HC/HCT573

#### DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I<sub>CC</sub> category: MSI

#### **AC CHARACTERISTICS FOR 74HC**

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

| SYMBOL                              | PARAMETER                                            | T <sub>amb</sub> (°C) |                |                 |                 |                 |                 |                 |      | TEST CONDITIONS   |           |
|-------------------------------------|------------------------------------------------------|-----------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------|-------------------|-----------|
|                                     |                                                      | 74HC                  |                |                 |                 |                 |                 |                 |      |                   |           |
|                                     |                                                      | +25                   |                |                 | -40 to +85      |                 | -40 to +125     |                 | UNIT | V <sub>CC</sub>   | WAVEFORMS |
|                                     |                                                      | min.                  | typ.           | max.            | min.            | max.            | min.            | max.            |      | (',               |           |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay D <sub>n</sub> to Q <sub>n</sub>   |                       | 47<br>17<br>14 | 150<br>30<br>26 |                 | 190<br>38<br>33 |                 | 225<br>45<br>38 | ns   | 2.0<br>4.5<br>6.0 | Fig.6     |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>LE to Q <sub>n</sub>            |                       | 50<br>18<br>14 | 150<br>30<br>26 |                 | 190<br>38<br>33 |                 | 225<br>45<br>38 | ns   | 2.0<br>4.5<br>6.0 | Fig.7     |
| t <sub>PZH</sub> / t <sub>PZL</sub> | 3-state output enable time $\overline{OE}$ to $Q_n$  |                       | 44<br>16<br>13 | 140<br>28<br>24 |                 | 175<br>35<br>30 |                 | 210<br>42<br>36 | ns   | 2.0<br>4.5<br>6.0 | Fig.8     |
| t <sub>PHZ</sub> / t <sub>PLZ</sub> | 3-state output disable time $\overline{OE}$ to $Q_n$ |                       | 55<br>20<br>16 | 150<br>30<br>26 |                 | 190<br>38<br>33 |                 | 225<br>45<br>38 | ns   | 2.0<br>4.5<br>6.0 | Fig.8     |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                               |                       | 14<br>5<br>4   | 60<br>12<br>10  |                 | 75<br>15<br>13  |                 | 90<br>18<br>15  | ns   | 2.0<br>4.5<br>6.0 | Fig.6     |
| t <sub>W</sub>                      | enable pulse width<br>HIGH                           | 80<br>16<br>14        | 14<br>5<br>4   |                 | 100<br>20<br>17 |                 | 120<br>24<br>20 |                 | ns   | 2.0<br>4.5<br>6.0 | Fig.7     |
| t <sub>su</sub>                     | set-up time<br>D <sub>n</sub> to LE                  | 50<br>10<br>9         | 11<br>4<br>3   |                 | 65<br>13<br>11  |                 | 75<br>15<br>13  |                 | ns   | 2.0<br>4.5<br>6.0 | Fig.9     |
| t <sub>h</sub>                      | hold time<br>D <sub>n</sub> to LE                    | 5<br>5<br>5           | 3<br>1<br>1    |                 | 5<br>5<br>5     |                 | 5<br>5<br>5     |                 | ns   | 2.0<br>4.5<br>6.0 | Fig.9     |

Philips Semiconductors Product specification

# Octal D-type transparent latch; 3-state

74HC/HCT573

#### DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I<sub>CC</sub> category: MSI

#### Note to HCT types

The value of additional quiescent supply current ( $\Delta I_{CC}$ ) for a unit load of 1 is given in the family specifications. To determine  $\Delta I_{CC}$  per input, multiply this value by the unit load coefficient shown in the table below.

| INPUT          | UNIT LOAD COEFFICIENT |
|----------------|-----------------------|
| D <sub>n</sub> | 0.35                  |
| LE             | 0.65                  |
| ŌE             | 1.25                  |

#### **AC CHARACTERISTICS FOR 74HCT**

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

| SYMBOL                              | PARAMETER                                          | T <sub>amb</sub> (°C) |       |      |            |      |             |      |      | TEST CONDITIONS |           |
|-------------------------------------|----------------------------------------------------|-----------------------|-------|------|------------|------|-------------|------|------|-----------------|-----------|
|                                     |                                                    |                       | 74HCT |      |            |      |             |      |      |                 |           |
|                                     |                                                    | +25                   |       |      | −40 to +85 |      | -40 to +125 |      | UNIT | V <sub>CC</sub> | WAVEFORMS |
|                                     |                                                    | min.                  | typ.  | max. | min.       | max. | min.        | max. |      | (*)             |           |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay D <sub>n</sub> to Q <sub>n</sub> |                       | 20    | 35   |            | 44   |             | 53   | ns   | 4.5             | Fig.6     |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>LE to Q <sub>n</sub>          |                       | 18    | 35   |            | 44   |             | 53   | ns   | 4.5             | Fig.7     |
| t <sub>PZH</sub> / t <sub>PZL</sub> | 3-state output enable time OE to Q <sub>n</sub>    |                       | 17    | 30   |            | 38   |             | 45   | ns   | 4.5             | Fig.8     |
| t <sub>PHZ</sub> / t <sub>PLZ</sub> | 3-state output disable time OE to Q <sub>n</sub>   |                       | 18    | 30   |            | 38   |             | 45   | ns   | 4.5             | Fig.8     |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                             |                       | 5     | 12   |            | 15   |             | 18   | ns   | 4.5             | Fig.6     |
| t <sub>W</sub>                      | enable pulse width<br>HIGH                         | 16                    | 5     |      | 20         |      | 24          |      | ns   | 4.5             | Fig.7     |
| t <sub>su</sub>                     | set-up time<br>D <sub>n</sub> to LE                | 13                    | 7     |      | 16         |      | 20          |      | ns   | 4.5             | Fig.9     |
| t <sub>h</sub>                      | hold time<br>D <sub>n</sub> to LE                  | 9                     | 4     |      | 11         |      | 14          |      | ns   | 4.5             | Fig.9     |

# Octal D-type transparent latch; 3-state

#### 74HC/HCT573

#### **AC WAVEFORMS**

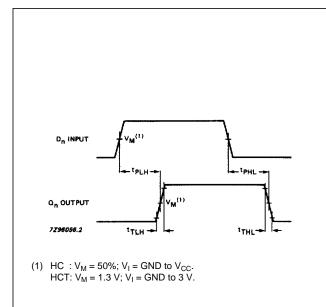
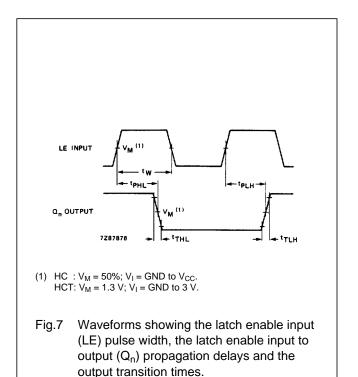




Fig.6 Waveforms showing the data input  $(D_n)$  to output  $(Q_n)$  propagation delays and the output transition times.



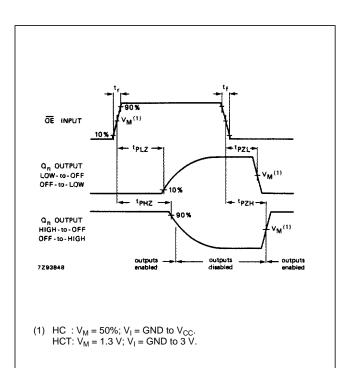
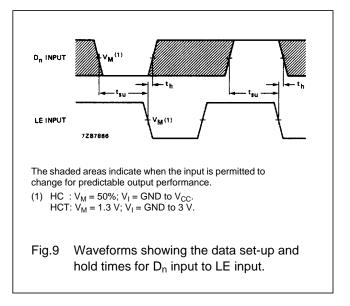




Fig.8 Waveforms showing the 3-state enable and disable times.



#### **PACKAGE OUTLINES**

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".