

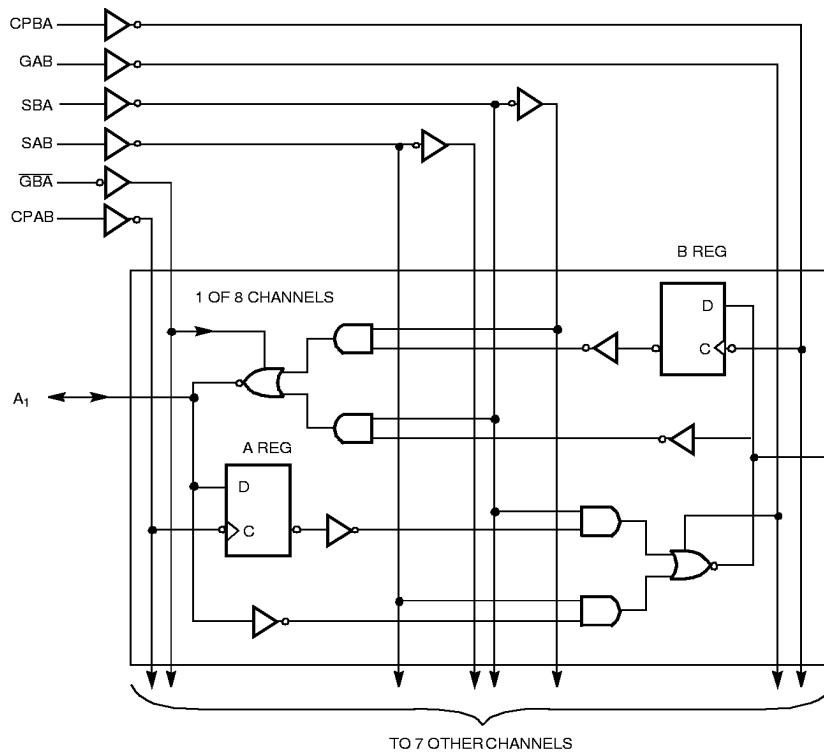
CYPRESS

CY74FCT652T

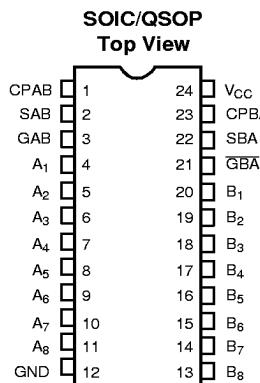
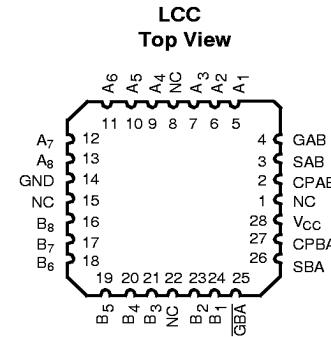
8-Bit Registered Transceiver

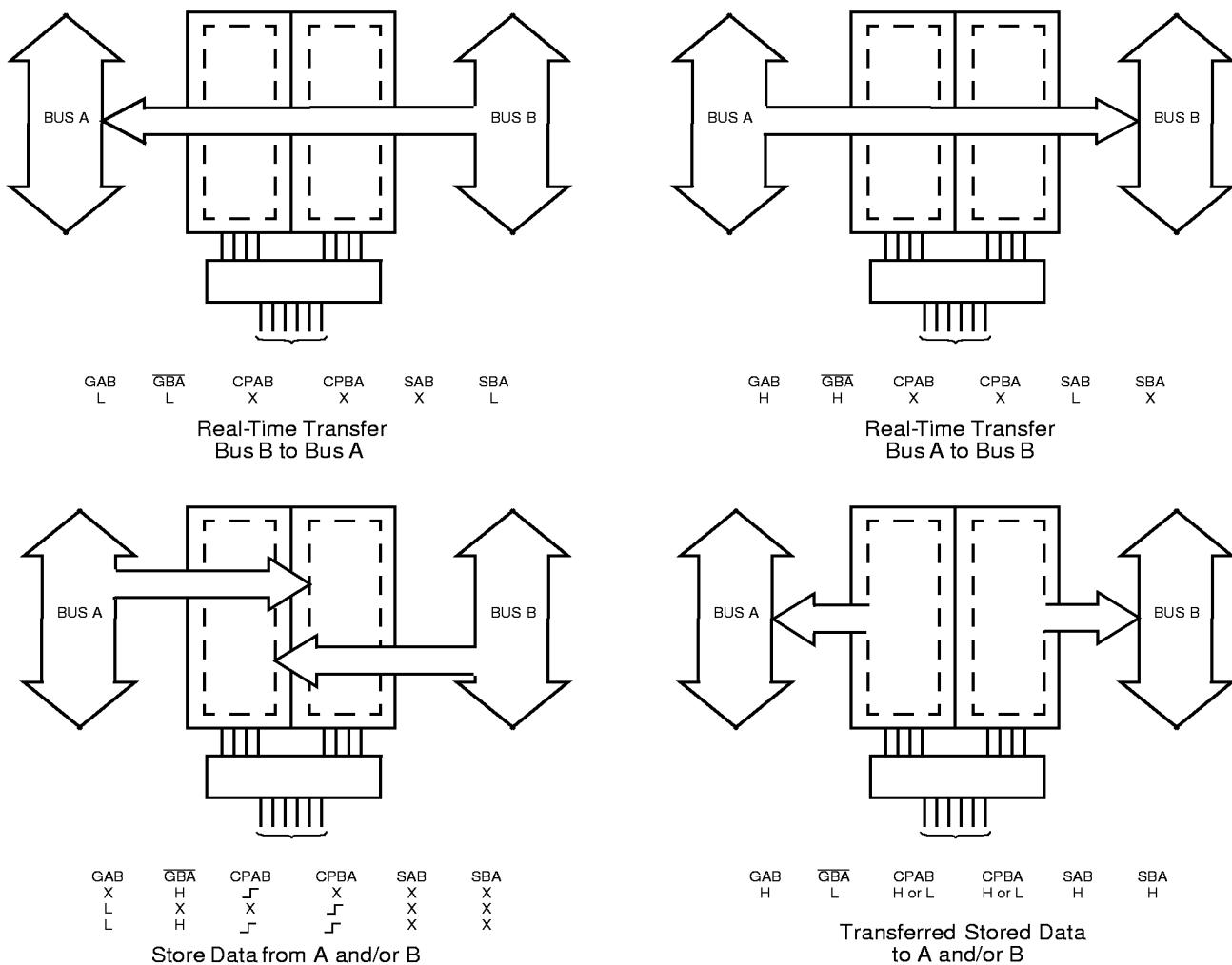
Features

- Function, pinout, and drive compatible with FCT and F logic
- FCT-C speed at 5.4 ns max. (Com'l)
FCT-A speed at 6.3 ns max. (Com'l)
- Reduced V_{OH} (typically = 3.3V) versions of equivalent FCT functions
- Edge-rate control circuitry for significantly improved noise characteristics
- Power-off disable feature
- Matched rise and fall times
- Fully compatible with TTL input and output logic levels
- Sink Current 64 mA
Source Current 32 mA
- Independent register for A and B buses
- Multiplexed real-time and stored data transfer
- Extended commercial range of -40°C to $+85^{\circ}\text{C}$


Functional Description

The FCT652T consists of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal storage registers. GAB and GBA control pins are provided to control the transceiver functions. SAB and SBA control pins are provided to select either real-time or stored data transfer. The circuitry used for select control will eliminate the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A LOW input level selects real-time data and a HIGH selects stored data.



Data on the A or B data bus, or both, can be stored in the internal D flip-flops by LOW-to-HIGH transitions at the appropriate clock pins (CPAB or CPBA), regardless of the select or enable control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling GAB and GBA. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain at its last state.


The outputs are designed with a power-off disable feature to allow for live insertion of boards.

Logic Block Diagram

Pin Configurations

Function Table^[1]

Inputs						Data I/O		Operation or Function
GAB	GBA	CPAB	CPBA	SAB	SBA	A ₁ thru A ₈	B ₁ thru B ₈	
L	H	H or L ◻	H or L ◻	X	X	Input	Input	Isolation Store A and B Data
L	H	◻	◻	X	X	Input	Unspecified ^[2] Output	Store A, Hold B Store A in both registers
X	H	◻	H or L ◻	X ^[1]	X	Input	Unspecified ^[2] Output	Hold A, Store B Store B in both registers
L	X	H or L ◻	◻	X	X ^[1]	Input	Input	Real-Time B Data to A Bus Stored B Data to A Bus
L	L	◻	X	X	L	Output	Input	Real-Time A Data to B Bus Stored A Data to B Bus
H	H	X	X	L	X	Input	Output	Stored A Data to B Bus and Stored B Data to A Bus
H	L	H or L	H or L	H	H	Output	Output	

Notes:

1. Select control=L: clocks can occur simultaneously. Select control=H: clocks must be staggered in order to load both registers.
H = HIGH Voltage Level. L = LOW Voltage Level. X = Don't Care. ◻ = LOW-to-HIGH Transition.
2. The data output functions may be enabled or disabled by various signals at the GAB or GBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.

Maximum Ratings^[3, 4]

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Ambient Temperature with

Power Applied -65°C to $+135^{\circ}\text{C}$

Supply Voltage to Ground Potential -0.5V to $+7.0\text{V}$

DC Input Voltage -0.5V to $+7.0\text{V}$

DC Output Voltage -0.5V to $+7.0\text{V}$

DC Output Current (Maximum Sink Current/Pin) 120 mA

Power Dissipation 0.5W

Static Discharge Voltage $>2001\text{V}$
(per MIL-STD-883, Method 3015)

Operating Range

Range	Range	Ambient Temperature	V_{CC}
Commercial	DT	0°C to $+70^{\circ}\text{C}$	$5\text{V} \pm 5\%$
Commercial	T, AT, CT	-40°C to $+85^{\circ}\text{C}$	$5\text{V} \pm 5\%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Typ. ^[5]	Max.	Unit
V_{OH}	Output HIGH Voltage	$V_{CC}=\text{Min.}$, $I_{OH}=-32\text{ mA}$	2.0			V
		$V_{CC}=\text{Min.}$, $I_{OH}=-15\text{ mA}$	2.4	3.3		V
V_{OL}	Output LOW Voltage	$V_{CC}=\text{Min.}$, $I_{OL}=64\text{ mA}$		0.3	0.55	V
V_{IH}	Input HIGH Voltage		2.0			V
V_{IL}	Input LOW Voltage				0.8	V
V_H	Hysteresis ^[6]	All inputs		0.2		V
V_{IK}	Input Clamp Diode Voltage	$V_{CC}=\text{Min.}$, $I_{IN}=-18\text{ mA}$		-0.7	-1.2	V
I_I	Input HIGH Current	$V_{CC}=\text{Max.}$, $V_{IN}=V_{CC}$		5		μA
I_{IH}	Input HIGH Current ^[6]	$V_{CC}=\text{Max.}$, $V_{IN}=2.7\text{V}$			± 1	μA
I_{IL}	Input LOW Current ^[6]	$V_{CC}=\text{Max.}$, $V_{IN}=0.5\text{V}$			± 1	μA
I_{OZH}	Off State HIGH-Level Output Current	$V_{CC}=\text{Max.}$, $V_{OUT}=2.7\text{V}$			10	μA
I_{OZL}	Off State LOW-Level Output Current	$V_{CC}=\text{Max.}$, $V_{OUT}=0.5\text{V}$			-10	μA
I_{OS}	Output Short Circuit Current ^[7]	$V_{CC}=\text{Max.}$, $V_{OUT}=0.0\text{V}$	-60	-120	-225	mA
I_{OFF}	Power-Off Disable	$V_{CC}=0\text{V}$, $V_{OUT}=4.5\text{V}$			± 1	μA

Capacitance^[6]

Parameter	Description	Typ. ^[5]	Max.	Unit
C_{IN}	Input Capacitance	5	10	pF
C_{OUT}	Output Capacitance	9	12	pF

Notes:

3. Unless otherwise noted, these limits are over the operating free-air temperature range.

4. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{CC} or ground.

5. Typical values are at $V_{CC}=5.0\text{V}$, $T_A=+25^{\circ}\text{C}$ ambient.

6. This parameter is guaranteed but not tested.

7. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

Power Supply Characteristics

Parameter	Description	Test Conditions	Typ. ^[5]	Max.	Unit
I_{CC}	Quiescent Power Supply Current	$V_{CC}=\text{Max.}$, $V_{IN} \leq 0.2V$, $V_{IN} \geq V_{CC} - 0.2V$	0.1	0.2	mA
ΔI_{CC}	Quiescent Power Supply Current (TTL inputs HIGH)	$V_{CC}=\text{Max.}$, $V_{IN}=3.4V$, $f_1=0$, Outputs Open ^[8]	0.5	2.0	mA
I_{CCD}	Dynamic Power Supply Current ^[9]	$V_{CC}=\text{Max.}$, One Input Toggling, 50% Duty Cycle, Outputs Open, $GAB=GND$, $GBA=GND$, $V_{IN} \leq 0.2V$ or $V_{IN} \geq V_{CC} - 0.2V$	0.06	0.12	mA/MHz
I_C	Total Power Supply Current ^[10]	$V_{CC}=\text{Max.}$, $f_0=10$ MHz, 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_1=5$ MHz, $GAB=GND$, $GBA=GND$, $SAB=CPAB=GND$ $SBA=V_{CC}$, $V_{IN} \leq 0.2V$ or $V_{IN} \geq V_{CC} - 0.2V$	0.7	1.4	mA
		$V_{CC}=\text{Max.}$, $f_0=10$ MHz, 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_1=5$ MHz, $GAB=GND$, $GBA=GND$, $SAB=CPAB=GND$ $SBA=V_{CC}$, $V_{IN}=3.4V$ or $V_{IN}=GND$	1.2	3.4	mA
		$V_{CC}=\text{Max.}$, $f_0=10$ MHz, 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_1=5$ MHz, $GAB=GBA=GND$, $SAB=CPAB=GND$ $SBA=V_{CC}$, $V_{IN} \leq 0.2V$ or $V_{IN} \geq V_{CC} - 0.2V$	2.8	5.6 ^[11]	mA
		$V_{CC}=\text{Max.}$, $f_0=10$ MHz, 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_1=5$ MHz, $GAB=GBA=GND$, $SAB=CPAB=GND$ $SBA=V_{CC}$, $V_{IN}=3.4V$ or $V_{IN}=GND$	5.1	14.6 ^[11]	mA

Notes:

8. Per TTL driven input ($V_{IN}=3.4V$); all other inputs at V_{CC} or GND.
9. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
10. $I_C = I_{\text{QUIESCENT}} + I_{\text{INPUTS}} + I_{\text{DYNAMIC}}$
 $I_C = I_{CC} + \Delta I_{CC} D_H N_T + I_{CCD} (f_0/2 + f_1 N_1)$
 I_{CC} = Quiescent Current with CMOS input levels
 ΔI_{CC} = Power Supply Current for a TTL HIGH input ($V_{IN}=3.4V$)
 D_H = Duty Cycle for TTL inputs HIGH
 N_T = Number of TTL inputs at D_H
 I_{CCD} = Dynamic Current caused by an input transition pair (HLH or LHL)
 f_0 = Clock frequency for registered devices, otherwise zero
 f_1 = Input signal frequency
 N_1 = Number of inputs changing at f_1
All currents are in millamps and all frequencies are in megahertz.
11. Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

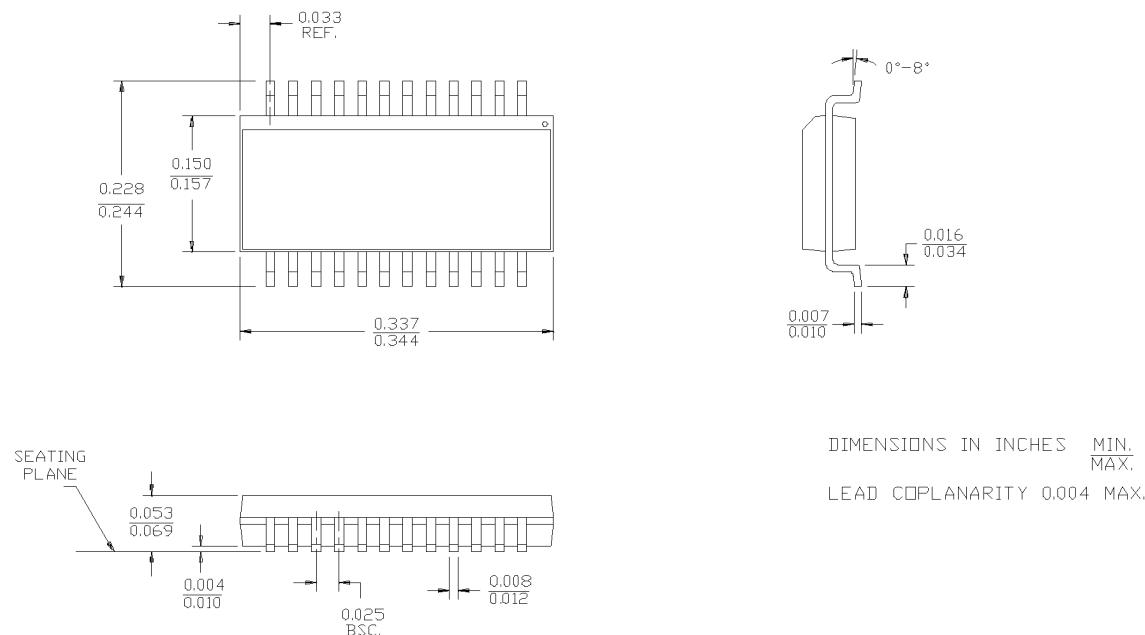
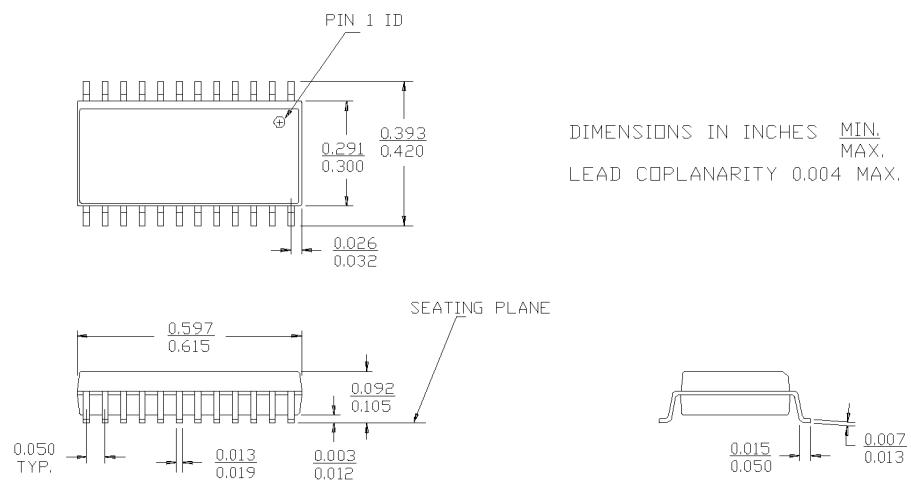
Switching Characteristics Over the Operating Range^[12]

Parameter	Description	FCT652T		FCT652AT		FCT652CT		FCT652DT		Unit	Fig. No. ^[13]		
		Commercial		Commercial		Commercial		Commercial					
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.				
t_{PLH} t_{PHL}	Propagation Delay Bus to Bus	1.5	9.0	1.5	6.3	1.5	5.4	1.5	4.4	ns	1, 3		
t_{PZH} t_{PZL}	Output Enable Time Enable to Bus	1.5	14.0	1.5	9.8	1.5	7.8	1.5	5.0	ns	1, 7, 8		
t_{PHZ} t_{PLZ}	Output Disable Time Enable to Bus	1.5	9.0	1.5	6.3	1.5	6.3	1.5	4.3	ns	1, 7, 8		
t_{PLH} t_{PHL}	Propagation Delay Clock to Bus	1.5	9.0	1.5	6.3	1.5	5.7	1.5	4.4	ns	1, 5		
t_{PLH} t_{PHL}	Propagation Delay SBA or SAB to A or B	1.5	11.0	1.5	7.7	1.5	6.2	1.5	5.0	ns	1, 5		
t_S	Set-Up Time HIGH or LOW Bus to Clock	4.0		2.0		2.0		1.5		ns	4		
t_H	Hold Time HIGH or LOW Bus to Clock	2.0		1.5		1.5		1.0		ns	4		
t_W	Clock Pulse Width, ^[14] HIGH or LOW	6.0		5.0		5.0		3.0		ns	5		

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
4.4	CY74FCT652DTQC	Q13	24-Lead (150-Mil) QSOP	Commercial
	CY74FCT652DTSOC	S13	24-Lead (300-Mil) Molded SOIC	
5.4	CY74FCT652CTQC	Q13	24-Lead (150-Mil) QSOP	Commercial
	CY74FCT652CTSOC	S13	24-Lead (300-Mil) Molded SOIC	
6.3	CY74FCT652ATQC	Q13	24-Lead (150-Mil) QSOP	Commercial
	CY74FCT652ATSOC	S13	24-Lead (300-Mil) Molded SOIC	
9.0	CY74FCT652TQC	Q13	24-Lead (150-Mil) QSOP	Commercial

Shaded areas contain preliminary information.



Notes:

12. Minimum limits are guaranteed but not tested on Propagation Delays.

13. See "Parameter Measurement Information" in the General Information section.

14. With one data channel toggling, $t_W(L)=t_W(H)=4.0$ ns and $t_F=t_F=1.0$ ns.

Document #: 38-00268-B

Package Diagrams
24-Lead Quarter Size Outline Q13

24-Lead (300-Mil) Molded SOIC S13

© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.