

GS2978 HD-LINX® III Multi-Rate Dual Slew-Rate Cable Driver

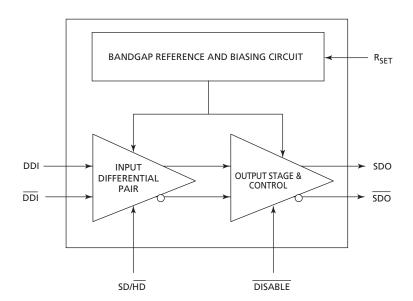
Features

- SMPTE 424M, SMPTE 292M, SMPTE 344M and SMPTE 259M compliant
- Dual coaxial cable driving outputs with selectable slew rate
- 50Ω differential PECL input
- Pb-free and RoHS compliant
- Seamless interface to other HD-LINX® III family products
- Single 3.3V power supply operation
- Operating temperature range: 0°C to 70°C

Applications

 SMPTE 424M, SMPTE 292M, SMPTE 344M and SMPTE 259M Coaxial Cable Serial Digital Interfaces.

Description


The GS2978 is a high-speed BiCMOS integrated circuit designed to drive one or two 75 Ω co-axial cables.

The GS2978 may drive data rates up to 2.97Gb/s and provides two selectable slew rates in order to achieve compliance to SMPTE 424M, SMPTE 259M, SMPTE 344M and SMPTE 292M.

The GS2978 accepts a LVPECL level differential input that may be AC coupled. External biasing resistors at the inputs are not required.

Power consumption is typically 168mW using a 3.3V power supply. The GS2978 is Pb-free, and the encapsulation compound does not contain halogenated flame retardant.

This component and all homogeneous subcomponents are RoHS compliant.

Functional Block Diagram

Revision History

Version	ECR	PCN	Date	Changes and/or Modifications
7	151357	-	March 2009	Added 2.5k reel option to section 6.6 Ordering Information. Added maximum power consumption value to Table 2-1: DC Electrical Characteristics.
6	150277	-	August 2008	Updated data sheet format. Added Tape & Reel Part Number to 6.6 Ordering Information.
5	147849	_	October 2007	Changed minimum value of differential input signal amplitude in Section 4.1.
4	147552	-	September 2007	Changed Input Voltage Swing in Table 2-2: AC Electrical Characteristics.
3	146309	-	July 2007	Corrected part number typo in Ordering Information on page 14.
2	144827	41693	April 2007	Added Table 4-1: RSET vs. VOD.
1	142318	-	November 2006	Converting to Data Sheet. Added section 6.4 Solder Reflow Profiles. Added typical ORL values in AC Electrical Characteristics.
0	140608	-	May 2006	Changed to Preliminary Data Sheet. Removed references to trial publication for SMPTE 424M. Modified I_{IH}/I_{IL} conditions to $10\mu A$ in DC Electrical Characteristics and additive jitter in AC Electrical Characteristics. Added section 4.3 Output Return Loss Measurement.
В	139766	-	March 2006	Corrected pad standoff height and tolerances for pad width & package dimension. Corrected pad shape.
А	138454	-	February 2006	New document.

Contents

Features	1
Applications	1
Description	1
Revision History	2
1. Pin Out	4
1.1 Pin Assignment	4
1.2 Pin Descriptions	4
2. Electrical Characteristics	5
2.1 Absolute Maximum Ratings	5
2.2 DC Electrical Characteristics	5
2.3 AC Electrical Characteristics	6
3. Input/Output Circuits	7
4. Detailed Description	8
4.1 Input Interfacing	8
4.2 Output Interfacing	8
4.2.1 Output Amplitude (RSET)	9
4.2.2 Output Disable	9
4.3 Output Return Loss Measurement	9
5. Application Information	10
5.1 PCB Layout	10
5.2 Typical Application Circuit	10
6. Package & Ordering Information	11
6.1 Package Dimensions	11
6.2 Recommended PCB Footprint	12
6.3 Packaging Data	12
6.4 Solder Reflow Profiles	13
6.5 Marking Diagram	14
6.6 Ordering Information	14

1. Pin Out

1.1 Pin Assignment

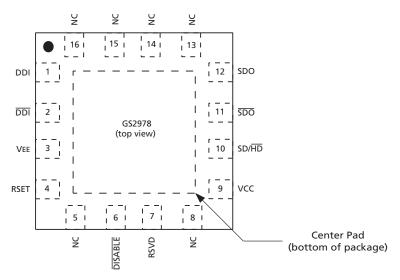


Figure 1-1: 16-Pin QFN

1.2 Pin Descriptions

Table 1-1: Pin Descriptions

Pin Number	Name	Timing	Туре	Description
1,2	DDI, DDI	Analog	Input	Serial digital differential input.
3	V _{EE}	-	Power	Most negative power supply connection. Connect to GND.
4	R _{SET}	Analog	Input	External output amplitude control resistor.
5,8,13,14, 15,16	NC	-	-	No Connect. Not bonded internally.
7	RSVD	-	Reserved	Do not connect.
6	DISABLE	Non Synchronous	Input	Serial output disable. When asserted LOW, the SDO/ $\overline{\text{SDO}}$ output driver is powered off. SDO/ $\overline{\text{SDO}}$ will float to V_{CC} through the pull-up resistor.
9	V _{CC}	-	Power	Most positive power supply connection. Connect to +3.3V.
10	SD/HD	Non Synchronous	Input	Output slew rate control. When set HIGH, the output will meet SMPTE 259M rise/fall time specifications. When set LOW, the serial outputs will meet SMPTE424M and SMPTE 292M rise/fall time specifications.

Table 1-1: Pin Descriptions

Pin Number	Name	Timing	Туре	Description
11,12	SDO, SDO	Analog	Output	Serial digital differential output.
-	Center Pad	-	Power	Connect to most negative power supply plane following the recommendations in Recommended PCB Footprint on page 12.

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Parameter	Value	
Supply Voltage	-0.5V to 3.6 V _{DC}	
Input ESD Voltage	4kV	
Storage Temperature Range	-50°C < T _s < 125°C	
Input Voltage Range (any input)	-0.3 to (V _{CC} +0.3)V	
Operating Temperature Range	0°C to 70°C	
Solder Reflow Temperature	260°C	

NOTE: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions or at any other condition beyond those indicated in the AC/DC Electrical Characteristic sections is not implied.

2.2 DC Electrical Characteristics

Table 2-1: DC Electrical Characteristics

 V_{CC} = 3.3V ±5%; T_A = 0°C to 70°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Supply Voltage	V _{CC}	-	3.135	3.3	3.465	V
Power Consumption	P_{D}	T _A = 25°C, SDO/SDO enabled	-	168	180	mW
		$T_A = 25$ °C, SDO/SDO disabled	-	96	-	mW
Supply Current	I _s	T _A = 25°C, SDO/SDO enabled	-	51	-	mA
		$T_A = 25^{\circ}C$, SDO/SDO disabled	-	29	-	mA
Output Voltage	V _{CMOUT}	Common mode	-	V _{CC} - V _{OUT}	-	V

Table 2-1: DC Electrical Characteristics

 V_{CC} = 3.3V ±5%; T_A = 0°C to 70°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Voltage	V _{CMIN}	Common mode	1.4 + ΔV _{DDI} /2	-	V _{CC} - ΔV _{DDI} /2	V
SD/HD, DISABLE Input	V _{IH}	I _{IH} <= 10 μA	2.0	-	-	V
	V _{IL}	I _{IL} <= 10 μA	-	-	0.8	V

2.3 AC Electrical Characteristics

Table 2-2: AC Electrical Characteristics

 V_{CC} = 3.3V ±5%; T_A = 0°C to 70°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
Serial input data rate	DR _{SDO}	-	_	_	2.97	Gb/s	1
Additive jitter	_	2.97Gb/s	_	22	_	ps _{p-p}	_
	_	1.485Gb/s	_	20	_	ps _{p-p}	_
	_	270Mb/s	_	16	_	ps _{p-p}	_
Rise/Fall time	t _r , t _f	SD/ HD =0	-	-	135	ps	2
	t _n t _f	SD/ HD =1	400	_	800	ps	2
Mismatch in rise/fall time	$\triangle t_r \ \triangle t_f$	-	_	_	35	ps	_
Duty cycle distortion	_	SD/HD=0, 2.97 Gb/s	_	_	27	ps	3
	_	SD/HD=0, 1.485 Gb/s	-	_	30	ps	3
	_	SD/HD=1	-	-	100	ps	3
Overshoot	_	SD/HD=0,	-	_	10	%	3
	_	SD/HD=1	-	-	8	%	3
Output Return Loss	ORL	5 MHz – 1.485 GHz	15	20	-	dB	4
		1.485 GHz – 2.97 GHz	10	12	-	dB	4
Output Voltage Swing	V _{OUT}	$R_{SET} = 750\Omega$	750	800	850	mV_{p-p}	3
Input Voltage Swing	$\triangle V_{DDI}$	Differential	100	_	2200	mV _{p-p}	_

NOTES:

- 1. The input coupling capacitor must be set accordingly for lower data rates.
- 2. Rise/Fall time measured between 20% and 80%.
- 3. Single Ended into 75Ω external load.
- $4. \ \ ORL\ depends\ on\ board\ design.\ The\ GS2978\ achieves\ this\ specification\ on\ Gennum's\ evaluation\ boards.$

3. Input/Output Circuits

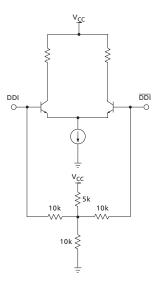


Figure 3-1: Differential Input Stage (DDI/\overline{DDI})

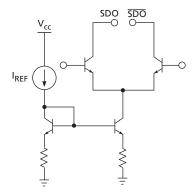


Figure 3-2: Differential Output Stage (SDO/SDO)

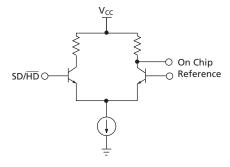


Figure 3-3: Slew Rate Select Input Stage

4. Detailed Description

4.1 Input Interfacing

DDI/\overline{\text{DDI}} are high impedance differential inputs. The equivalent input circuit is shown in Figure 3-1.

Several conditions must be observed when interfacing to these inputs:

- The differential input signal amplitude must be between 100 and 2200mVpp.
- The common mode voltage range must be as specified in the DC Electrical Characteristics on page 5.
- For input trace lengths longer than approximately 1cm, the inputs should be terminated as shown in the Typical Application Circuit.

The GS2978 inputs are self-biased, allowing for simple AC coupling to the device. For serial digital video, a minimum capacitor value of $4.7\mu F$ should be used to allow coupling of pathological test signals. A tantalum capacitor is recommended.

SD/HD Input Pin

The GS2978 SDO rise and fall times can be set to comply with both SMPTE 259M/344M and SMPTE 424M / SMPTE 292M. For all SMPTE 259M standards, or any data rate that requires longer rise and fall time characteristics, the SD/\overline{HD} pin must be set HIGH by the application layer. For SMPTE 424M and SMPTE 292M standards and signals which require faster rise and fall times, this pin should be set LOW.

4.2 Output Interfacing

The GS2978 outputs are current mode, and will drive typically 800mV into a 75 Ω load. These outputs are protected from accidental static damage with internal ESD protection diodes.

In order for a DDI output circuit using the GS2978 to meet this specification, the output application circuit shown in Typical Application Circuit on page 10 is recommended.

The value of L_{COMP} will vary depending on the PCB layout, with a typical value of 5.6nH. A 4.7 μ F capacitor is used for AC coupling the output of the device. This value is chosen to ensure that pathological signals can be coupled without a significant DC component occurring. Please see Application Information on page 10 for more details.

4.2.1 Output Amplitude (RSET)

The output amplitude of the GS2978 can be adjusted by changing the value of the R_{SET} resistor as shown in Table 4-1. For an $800 mV_{p-p}$ output with a nominal $\pm 7\%$ tolerance, a value of 750Ω is required. A $\pm 1\%$ SMT resistor should be used.

The R_{SET} resistor is part of the high speed output circuit of the GS2978. The resistor should be placed as close as possible to the R_{SET} pin. In addition, the PCB capacitance should be minimized at this node by removing the PCB groundplane beneath the R_{SET} resistor and the R_{SET} pin.

Table 4-1: R_{SET} vs. V_{OD}

R _{SET} R (Ω)	Output Swing (mVp-p)
995	608
824	734
750	800
680	884
573	1040

NOTE: For reliable operation of the GS2978 over the full temperature range, do not use an R_{SET} value below 573 Ω .

4.2.2 Output Disable

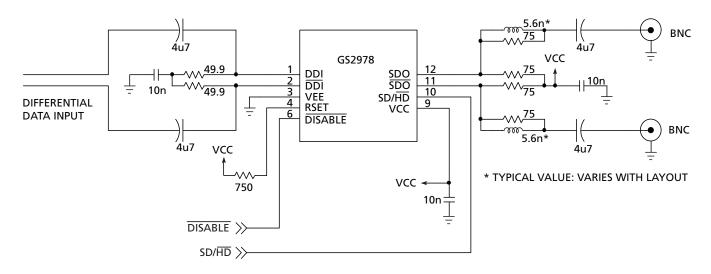
The serial output disable ($\overline{DISABLE}$), disables power to the current mode serial digital output driver. When asserted LOW, the SDO/ \overline{SDO} output driver is powered off. SDO/ \overline{SDO} will float to V_{CC} through the pull-up resistor.

NOTE: If the $\overline{\text{DISABLE}}$ pin is left as a No Connect (NC), the SDO/ $\overline{\text{SDO}}$ outputs are still active.

4.3 Output Return Loss Measurement

To perform a practical return loss measurement, it is necessary to force the GS2978 output to a DC high or low condition. The actual measured return loss will be based on the outputs being static at V_{CC} or $V_{CC}\text{-}1.6V$. Under normal operating conditions the outputs of the device swing between $V_{CC}\text{-}0.4V$ and $V_{CC}\text{-}1.2V$.

5. Application Information


5.1 PCB Layout

Special attention must be paid to component layout when designing serial digital interfaces for HDTV.

An FR-4 dielectric can be used, however, controlled impedance transmission lines are required for PCB traces longer than approximately 1cm. Note the following PCB artwork features used to optimize performance:

- The PCB trace width for HD rate signals is closely matched to SMT component width to minimize reflections due to changes in trace impedance.
- The PCB ground plane is removed under the GS2978 output components to minimize parasitic capacitance.
- The PCB ground plane is removed under the GS2978 R_{SET} pin and resistor to minimize parasitic capacitance.
- Input and output BNC connectors are surface mounted in-line to eliminate a transmission line stub caused by a BNC mounting via high speed traces which are curved to minimize impedance variations due to change of PCB trace width.

5.2 Typical Application Circuit

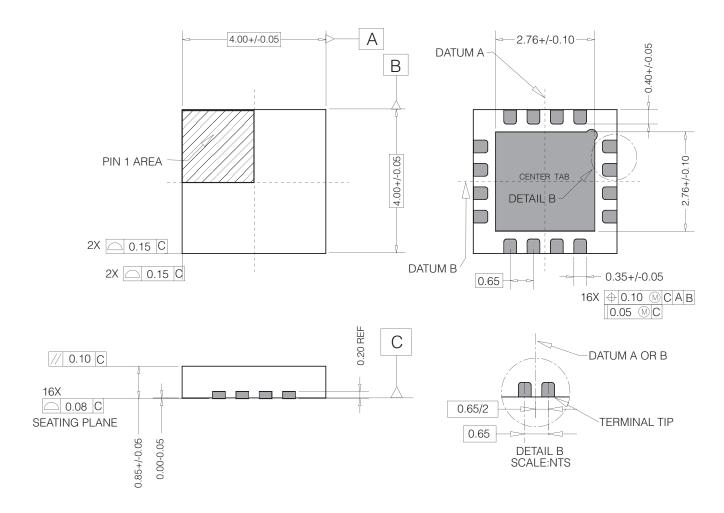
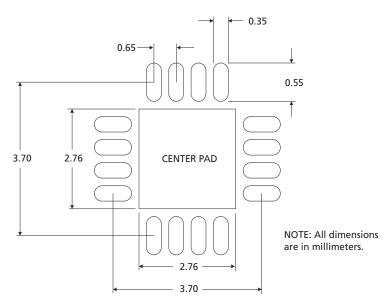

NOTE: All resistors in Ohms, capacitors in Farads, and inductors in Henrys, unless otherwise noted.

Figure 5-1: Typical Application Circuit


6. Package & Ordering Information

6.1 Package Dimensions

6.2 Recommended PCB Footprint

The Center Pad should be connected to the most negative power supply plane (VEE) by a minimum of 5 vias.

NOTE: Suggested dimensions only. Final dimensions should conform to customer design rules and process optimizations.

6.3 Packaging Data

Parameter	Value		
Package Type	4mm x 4mm 16-pin QFN		
Package Drawing Reference	JEDEC M0220		
Moisture Sensitivity Level	3		
Junction to Case Thermal Resistance, $\theta_{\text{j-c}}$	31.0°C/W		
Junction to Air Thermal Resistance, $\theta_{j\text{-a}}$ (at zero airflow)	43.8°C/W		
Psi, Ψ	11.0°C/W		
Pb-free and RoHS compliant	Yes		

6.4 Solder Reflow Profiles

The device is manufactured with Matte-Sn terminations and is compatible with both standard eutectic and Pb-free solder reflow profiles. MSL qualification was performed using the maximum Pb-free reflow profile shown in Figure 6-1. The recommended standard Pb reflow profile is shown in Figure 6-2.

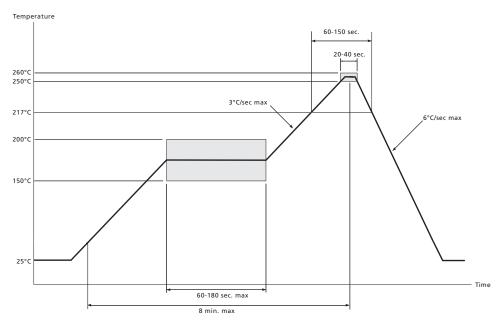


Figure 6-1: Maximum Pb-free Solder Reflow Profile (Preferred)

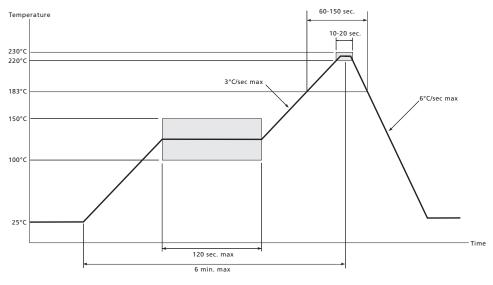
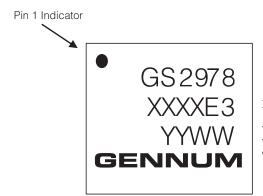



Figure 6-2: Standard Pb Reflow Profile

6.5 Marking Diagram

XXXX - Lot/Work Order ID

YYWW - Date Code YY - 2-digit year WW - 2-digit week number

6.6 Ordering Information

	Part Number	Package	Temperature Range
GS2978	GS2978-CNE3	16-pin QFN	0°C to 70°C
GS2978	GS2978-CTE3	16-pin QFN 250pc Reel	0°C to 70°C
GS2978	GS2978-CNTE3Z	16-pin QFN 2,500pc Reel	0°C to 70°C

DOCUMENT IDENTIFICATION DATA SHEET

The product is in production. Gennum reserves the right to make changes to the product at any time without notice to improve reliability, function or design, in order to provide the best product possible.

CAUTION

Phone: +1 (905) 632-2996

E-mail: corporate@gennum.com

ELECTROSTATIC SENSITIVE DEVICES

DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A STATIC-FREE WORKSTATION

GENNUM CORPORATE HEADQUARTERS

4281 Harvester Road, Burlington, Ontario L7L 5M4 Canada

OTTAWA

232 Herzberg Road, Suite 101 Kanata, Ontario K2K 2A1 Canada

Phone: +1 (613) 270-0458 Fax: +1 (613) 270-0429

CALGARY

3553 - 31st St. N.W., Suite 210 Calgary, Alberta T2L 2K7

Phone: +1 (403) 284-2672

UNITED KINGDOM

North Building, Walden Court Parsonage Lane, Bishop's Stortford Hertfordshire, CM23 5DB United Kingdom

Phone: +44 1279 714170 Fax: +44 1279 714171

INDIA

#208(A), Nirmala Plaza, Airport Road, Forest Park Square Bhubaneswar 751009

India

Phone: +91 (674) 653-4815 Fax: +91 (674) 259-5733

SNOWBUSH IP - A DIVISION OF GENNUM

439 University Ave. Suite 1700 Toronto, Ontario M5G 1Y8

Canada

Phone: +1 (416) 925-5643 Fax: +1 (416) 925-0581 E-mail: sales@snowbush.com

Web Site: http://www.snowbush.com

MEXICO

288-A Paseo de Maravillas Jesus Ma., Aguascalientes

Mexico 20900

Phone: +1 (416) 848-0328

JAPAN KK

Shinjuku Green Tower Building 27F 6-14-1, Nishi Shinjuku Shinjuku-ku, Tokyo, 160-0023 Japan

Phone: +81 (03) 3349-5501 Fax: +81 (03) 3349-5505

E-mail: gennum-japan@gennum.com Web Site: http://www.gennum.co.jp

TAIWA

6F-4, No.51, Sec.2, Keelung Rd. Sinyi District, Taipei City 11502

Taiwan R.O.C.

Phone: (886) 2-8732-8879 Fax: (886) 2-8732-8870

E-mail: gennum-taiwan@gennum.com

GERMANY

Hainbuchenstraße 2 80935 Muenchen (Munich), Germany

Fax: +1 (905) 632-2055

www.gennum.com

Phone: +49-89-35831696 Fax: +49-89-35804653

E-mail: gennum-germany@gennum.com

NORTH AMERICA WESTERN REGION

Bayshore Plaza 2107 N 1st Street, Suite #300

2107 N 1st Street, Suite #30 San Jose, CA 95131 United States

Phone: +1 (408) 392-9454 Fax: +1 (408) 392-9427

E-mail: naw_sales@gennum.com

NORTH AMERICA EASTERN REGION

4281 Harvester Road Burlington, Ontario L7L 5M4

Canada

Phone: +1 (905) 632-2996 Fax: +1 (905) 632-2055

E-mail: nae_sales@gennum.com

KOREA

8F Jinnex Lakeview Bldg. 65-2, Bangidong, Songpagu Seoul, Korea 138-828

Phone: +82-2-414-2991 Fax: +82-2-414-2998

E-mail: gennum-korea@gennum.com

Gennum Corporation assumes no liability for any errors or omissions in this document, or for the use of the circuits or devices described herein. The sale of the circuit or device described herein does not imply any patent license, and Gennum makes no representation that the circuit or device is free from patent infringement.

All other trademarks mentioned are the properties of their respective owners.

GENNUM and the Gennum logo are registered trademarks of Gennum Corporation.

© Copyright 2006 Gennum Corporation. All rights reserved.

www.gennum.com

