Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 154862

DIP TANTALUM SOLID ELECTROLYTIC CAPACITOR

CB Series (Lead-Free)

1. General

1.1 Range of Applications

This document applies to miniaturized dip tantalum solid electrolytic capacitors for applications in transistorized circuits of electronic devices.

1.2 Patents

Any claim brought by any third party in respect of patent matters shall be settled between sellers and respective claimants in the country where capacitors are shipped.

1.3 Quality

Capacitors are manufactured under strict quality control and high reliability is maintained. Measuring methods are based on JIS C 5102, 5140 and 5143.

1.4 Test Conditions

Unless specified otherwise, tests are made at temperatures of ± 5 to $\pm 35^{\circ}$ C with humidity of 45 to 85% and atmospheric pressure of 86 to 106 kPa. If there is any doubt arising in judgement of the test, Tests are made at the temperature of $\pm 20^{\circ}$ C, humidity of 60% to 70%, atmospheric pressure of 86 to 106 kPa.

1.5 Working Temperature Range

-55°C to + 125°C (For use over + 85°C, temperature derated voltage shall be applied.)

2. Designation

	- 12		Tolera	The second of the second	Code r to Tab	Length Ammo
Symbo1	DC Rated Voltage (VDC)	Capacitance (µ F)	Symbol	Picofarad (pF)	Symbo1	Tolerance (%
OG	4	1.5	155	15×10 ⁵	K	± 10
OJ	6.3	4.7	475	47×10 ⁵	M	±20
1A	10	15	156	15×10 ⁶		
10	16	22	226	22×10 ⁶		
1D	20	100	107	10×10 ⁷	36	3.
1E	25					
1 V	35			pressed by three		
1 H	50		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) as the unit, th showing the sign		

Δ	REVISION	DATE	SIGN		REVISION	DATE	SIGN
	u .						
L		77.77.17.77	DECOR I DE	LON	× •		
DA.	DONE OF ROME HAVE BEEN AND AND AND AND AND AND AND AND AND AN	TITLE/	DESCRIPTI CI		ALUM SOLID ELECTROLYT	IC CAPACITOR	
LANNE	D BY CHECKED BY APPROVED BY	PART N	0		DRAWING NO		1/1

4.Characteristics

4.1 Electrical characteristics

No.	Items	Conditions	Specifi	cations
1	Rated voltage	-55°C to + 85°C`	6.3 to 50 V DC	
2	Maximum permissible Ripple Voltage	Keep the sum of peak DC voltage and ripple voltage within the rated voltage and never go over it.	Refer to page 10	
3	Nominal Capacitance	Measuring frequency 120±12Hz Measuring voltage 0.5Vrms+0.5~2.0VDC Measurement circuit Equivalent series circuit (○────────────────────────────────────	0.1μ F to 330 μF (±10% or ±20%	6)
		Measurement shall be made under the	Capacitance (µ F)	tano
4	Tangent of loss angle	same conditions as those given for	0.1 to 1.5	Less than 0.04
4	(tano)	the measurement of capacitance.	2.2 to 6.8	Less than 0.06
			10 to 68	Less than 0.08
5	Leakage current	Apply the rated voltage through 1000±100Ω protective resistor, and measure the current after 5 minutes voltage application. D Sl R S2 Cx R: Series Protective Resistor D C Current Meter or Electronic Current Meter D: DC Voltage Meter S1: Switch S2: Protective switch for Current Meter. Cx: Capacitor Sample	Less than 0.01CV(whichever is the	MI NOT , OR CONTRACTOR TO SERVICE
		AC voltage (0.5Vrms or less) of a frequency specified below, shall be applied and the	Capacitance (µ F)	Impedance Value
		voltage drop across the capacitor terminals shall be measured. The impedance shall be	Less than 0.47	
		calculated by the following equation.	0.68 to 1.5	Less than 20Ω
		Frequency: 100±10kHz Impedance: (Z)=E/I	2.2 to 6.8	Less than 10Ω
6	Impedance high frequency	where E: Voltage drop across the capacitor	More than 10	Less than 4Ω
	Trequency	terminals I: Current flowing through the capacitor	Cx : Capacitor S : AC Power S (a) : AC Current (y) : AC Voltage	ource Meter

Δ	REVISION	DATE	SIGN	Δ	REVISION	DATE	SIGN
							- 1
				1			

4.Characteristics

4.1 Electrical characteristics

No.	Items	Conditions	Specifi	cations
1	Rated voltage	-55°C to + 85°C`	6.3 to 50 V DC	
2	Maximum permissible Ripple Voltage	Keep the sum of peak DC voltage and ripple voltage within the rated voltage and never go over it.	Refer to page 10	
3	Nominal Capacitance	Measuring frequency 120±12Hz Measuring voltage 0.5Vrms+0.5~2.0VDC Measurement circuit Equivalent series circuit (○────────────────────────────────────	0.1μ F to 330 μF (±10% or ±20%	6)
		Measurement shall be made under the	Capacitance (µ F)	tano
4	Tangent of loss angle	same conditions as those given for	0.1 to 1.5	Less than 0.04
4	(tano)	the measurement of capacitance.	2.2 to 6.8	Less than 0.06
			10 to 68	Less than 0.08
5	Leakage current	Apply the rated voltage through 1000±100Ω protective resistor, and measure the current after 5 minutes voltage application. D Sl R S2 Cx R: Series Protective Resistor D C Current Meter or Electronic Current Meter D: DC Voltage Meter S1: Switch S2: Protective switch for Current Meter. Cx: Capacitor Sample	Less than 0.01CV(whichever is the	MI NOT , OR CONTRACTOR TO SERVICE
		AC voltage (0.5Vrms or less) of a frequency specified below, shall be applied and the	Capacitance (µ F)	Impedance Value
		voltage drop across the capacitor terminals shall be measured. The impedance shall be	Less than 0.47	
		calculated by the following equation.	0.68 to 1.5	Less than 20Ω
		Frequency: 100±10kHz Impedance: (Z)=E/I	2.2 to 6.8	Less than 10Ω
6	Impedance high frequency	where E: Voltage drop across the capacitor	More than 10	Less than 4Ω
	Trequency	terminals I: Current flowing through the capacitor	Cx : Capacitor S : AC Power S (a) : AC Current (y) : AC Voltage	ource Meter

Δ	REVISION	DATE	SIGN	REVISION	DATE	SIGN
		1 1				
						1

No.	Items			Condit	tions				į.	Speci	fica	atio	ns		
		Step	Temperat	uro T	Durat	tion	Ster	Change					to the		
		1	20±2°		рига	LIOII	2	Tangen	t of	N	ot n	nore	than	the	
		2	-55±3°		2 ho	urs]	loss at	7.5	-		-	Table		
	1	3	20±2°		0.25 h			Change			CAR CONTRACTOR		to the		1
		5	85±2° 125±2°		2 ho 2 ho	7.77.75	Step 4	Leakage	е	0		V or	5μ A		
				ble 3				Tangen loss at		U 6/83			than Table		
			F)			-125°C		Change		. 1003			to the		
7	Temperature characteristics	4100201_01	.0 1.0	.09	ess than Le 0.07 ess than Le	0.09	Ste	Leakage	е	0	1 - 2 11 - 22	5CV	or 6.2		To La
			0 220 Les	.10	0.08 ess than Le 0.10	0.10		Tangen loss a	t of	11/2/20	100000		than Table	C. 100 C. 100	
			made a	t a te	mperatur subject	re dera	the sur		step	5.	ifie	ed b	efow i	n a	
			o Lu om	in wh	ich cons	sists o	of a char	ge perio	d of	$30 \pm$	5 56	ec.	follow	ed by	V
	Surge test	a disch capacit	narge perio tor shall b	od of a	approx. red unde	5 min. er stan urement	30 sec dard atm shall i	nospheric be made.	2°C con	for 1 ditio	000 ns 1	cyc to o	les. A btain	nd th	1e
8	Surge test	a disch capacit equilib	narge perio tor shall l prium. afte :Series P	od of a be sto er whi	approx. red unde ch measu	5 min. er stan rement ister	30 secondard atmospherical shall lichange capacita	at 85± mospheric mospheric made. in mose	2°C con Rela	for 1 ditional	ons to	to o	les. A btain value	nd therm	1e
8		a disch capacit equilib R1	harge period for shall be prium. after Series P (33Ω)	od of a be sto er which rotect	approx. red unde ch measu live Resi	5 min. er stan urement ister	30 sec. ndard atm shall b Change	at 85± nospheric ne made. in nnce of	2°C con	for 1 ditional	ons to	to o	les. A btain value	nd therm	1e
8	⊕ R1 }	a disch capacit equilib	harge period for shall be prium. after Series P (33Ω) Discharg (33Ω)	od of a be sto er which rotect e Resi	approx. red unde ch measu live Resi	5 min. er stan irement ister	30 secondard atmosphered atmos	at 85± nospheric ne made. in nnce of gle	Relabef Clasat	for 1 ditio	to est	the ±54 sh	les. A btain value %	nd therm	1e
8	⊕ R1 }	a disch capacit equilib R1 S R2 Cx 2 D Cx	enarge period tor shall be tor shall be tor shall be torium. after a series P (33Ω): Discharg (33Ω): DC Voltm: Test cap	od of a be sto er whi rotect e Resi	approx. red unde ch measu ive Resi	5 min. er stan irement ister	30 secondard atmospherical shall leakage	at 85± nospheric ne made. in nnce of gle	Relabef Clasat Classati	for 1 ditio	to est	the ±54 shall	les. A btain value %	nd th	ne mal
8	# R1 R1 R2 R2	a disch capacit equilib R1 S R2 Cx 2 D Cx	narge period tor shall be prium. after Series P (33Ω) Discharg (33Ω)	od of a be sto er whi rotect e Resi	approx. red unde ch measu ive Resi	5 min. er stan urement ister	30 secondard atmospherical shall in Change capacita Tangent loss and Leakage	at 85± nospheric ne made. in nnce of gle current	2°C con Relabef Clasat Classati	for l dition ative ore tuse 4 isfied 6.3	000 ons to est	the ±54 sh	value % all be	nd them	ne mal
8	# R1 R1 R2 R2	a disch capacit equilib	enarge period tor shall be tor shall be tor shall be torium. after a series P (33Ω): Discharg (33Ω): DC Voltm: Test cap	od of a be storer which rotect e Resi eter acitor	approx. red unde ch measu live Resi ster ambient	5 min. er stan urement ister Ra Su	30 secondard atmospheric shall in Change capacita Tangent loss and Leakage inted volume volum	at 85± nospheric no made. in nance of gle current tage (V) tage (V) range fring volt	2°C con Reliber Class at Clausati Satisfation 8 age	for 1 dition ative ore tuse 4 isfied 6.3 8	0000 ons 1 to cest1dd110 110 113	the ± 5 4 shall ± 16 20 $\pm 25^{\circ}\text{C}$ as s	value value value 20 25 26 32 , the	35 45	5 6
9	⊕ R1 R1 R2	a disch capacit equilib	tor shall be to shall b	od of a be storer which rotect e Resi eter acitor	approx. red unde ch measu live Resi ster ambient	5 min. er stan urement ister Ra Su	30 secondard atmospheric shall in Change capacita Tangent loss and Leakage atted volume a derat	at 85± nospheric noe made. in nance of gle current tage (V) tage (V)	2°C con Reliber Classt Classt 4 5 om 8 age	for I dition ative ore tuse 4 isfied 6.3 8 5°C to r 1e age V and the	000 ons to to est	the ±54 shall 16 20 25°C sas s	value	35 45 eratupe	5 6
7,00	⊕ R1 R1 R2	a disch capacit equilib	tor shall be to shall be	od of a be storer which rotect e Resident action	approx. red unde ch measu ive Res ster ambient rried or	5 min. er stan irement ister Ra Su tempe ut at	30 secondard atmospheric shall in Change capacita Tangent loss and Leakage atted volume a derat	at 85± nospheric no made. in nance of sle current tage (V) tage (V) range fr ing volt erating between alculate	2°C con Reliber Classat Classat 4 5 om 8 age volt. 85°C d by	for I dition ative one tuse 4 isfied 6.3 8 5°C to age V and the Vr - 40 volta	000 ons to est14d 1.5 10 113 113 125 foll Vd (the ±54 shall 16 20 25°C as stany	value	35 45 45 erature mula.	5 6
7,00	⊕ R1 R1 R2	Rated Rated	tor shall be to shall b	od of a be storer which rotect e Resident and an be ca	approx. red unde ch measu ive Res ster ambient rried or	5 min. er stan irement ister Ra Su tempe ut at 85 °C)	30 secondard atmospheric shall in Change capacita Tangent loss and Leakage inted volume a derat	at 85± nospheric no made. In mance of sile current tage (V) tage (V) range fr ing volt erating between alculate Vt=V Vr: Ra Vd: De	2°C con Reliber Classat Classat 4 5 om 8 age volt. 85°C d by	for I dition ative one tuse 4 isfied 6.3 8 5°C to age V and the Vr - 40 volta	000 ons to est14d 1.5 10 113 113 125 foll Vd (the ±54 shall 16 20 25°C as stany	value	35 45 45 erature mula.	5 6
7,00	⊕ R1 R1 R2	Rated Rated	series P (33Ω) : Discharg (33Ω) : DC Voltm : Test cap : Switch perating a ion shall 100 40 20 0 -55	od of a be storer which rotect e Resident and an be ca	approx. red unde ch measu ive Resi ster ambient rried of ature (°	S min. er stan irement ister Ra Su tempe ut at 85 °C)	30 secondard atmospheric shall in Change capacita Tangent loss and Leakage inted volume a derat	at 85± nospheric no made. In mance of sle current tage (V) tage (V) range fr ing volt erating between alculate Vt=V Vr: Ra Vd: De	2°C con Reliber Classat Classat 4 5 om 8 age volt. 85°C d by	for I dition ative one tuse 4 isfied 6.3 8 5°C to age V and the Vr - 40 volta	000 ons to est14d 1.5 10 113 113 125 foll Vd (the ±54 shall 16 20 25°C as stany	value	35 45 45 erature mula.	50 6:

		1				
- 1		1	1 1			
1	20	1			18	4

Δ

4.2 Endurance characteristics

No.	Items	Conditions	Sı	pecifications
1	Solderability	Test Temperature: $235\pm5^{\circ}\text{C}$ for 2 ± 0.5 seconds. Others are based on JIS C 5102 clause 8.4 (Test Method is according to Clause 1.)	shall cover	om coating of solder a minimum of 75% of being immersed.
		The methods are in accordance with JIS C 5143 Appendix I and II.	Change in capacitance	Relative to the value before test $\pm 5\%$
		After preheat of 5 minutes at 150°C	Tangent of loss angle Leakage	Clause 4.1.4 shall be satisfited Clause 4.1.5
		Immersion at 260±5°C	current	shall be satisfited
6	Resistance to	10 ± 1 seconds for A,B cases. 5 ± 0.5 seconds for C,D,E cases.	Appearance	There shall be no defo- mation of case or distinct looseness of electrodes.
2	soldering heat	$\frac{\text{Reflow}}{10\pm1} \text{ at } 260\pm5^{\circ}\text{C}$		
		Soldering iron method (1)25 watt soldering iron: Less than 3 seconds at one side with 350-10°C (2)30 watt soldering iron: Less than 3 seconds at one side with 300±10°C Re-soldering shall be one time only.	٠	2
you		Only endurance conditioning by sweeping shall be made. The entire frequency range, from 10 to 55Hz and return to 10Hz. shall be transversed in 1 min.	Capacitance	There shall be no intermittent contacts, or open or short-circuiting.
3	Vibration	Amplitude (total excursion): 1.5mm This motion shall be applied for a period of 2 hours in each of 3 mutually perpendicular directions (a total of 6 hours) during the last 30 min. of vibration in each direction, electrical test shall be conducted.	Appearance	There shall be no such mechanical damage as terminal damage etc. or leakage of electrolyte or swelling of the case. The marking shall be legible.
		The capacitor shall be stored at a	Change in capacitance	Relative to the value before test $\pm 10\%$
		temperature of $40\pm2^{\circ}\text{C}$ and ralative humidity of 90% to 95% for $500^{+24}_{0}\text{hours}$.	ACCOUNT OF THE PARTY OF THE PAR	Clause 4.1.4
4	Damp heat	And then the capacitor shall be subjected		shall be satisfited Clause 4.1.5
	(steady state)	to standard atmopheric conditions for	current	shall be satisfited
		1 to 2 hours, after which measurements shall be made.	Appearance	No remarkable abnomality and markings shall be legible.
		The rated voltage shall be applied		Relative to the value before test $\pm 10\%$
		continuously to the capacitor at a temperature of $85\pm2^{\circ}\text{C}$ for 2000^{+72}_{0} hours.	200 1000 00	Clause 4.1.4
5	Electrical endurance	And then the capacitor shall be subjected to standard atmospheric conditions for 1 to 2 hours, after which measurements	Leakage current	shall be satisfited Not more than 125% of initial value (Clause 4.1.5)
		shall be made. (Power sourse impedance shall be 3 ohms.)	Appearance	No remarkable abnomality and markings shall be legible.

REVISION	DATE	SIGN		REVISION	DATE	SIGN
		-				
		1				- 1
	1 1	1	1 1		1 (16)	

No.	Items	Conditions	Specifications
6	Change in temperature	The capacitor shall be subjected to each specified temperature for each specified period shown in the table below. These asteps constitutes one rotation. 5 continuous rotations shall be carried out $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Capacitance before test ±10% Tangent of Clause 4.1.4 Loss angle shall be satisfited
7	Resisitance to	Expose the capacitor to $40\pm2^{\circ}\text{C}$ at $90\sim95\%$ RH and apply DC voltage equal to rated voltage through 1K ohm series protective resistor 500 ± 12 hours. After then expose it for 4 hours in the standard	rd Not more than 200% of
	7	atmospheric conditions and then, carry out the measurment.	initial value (Clause 4.1.5) No remarkable abnomality and markings shall be legible.
8	Terminal Strength	The solder bath to use shall be composed in tin/lead. Let the tin be 59.5 to 61.5%. The temperature of the bath is maintained at 235°C (±5°C). The flux to use shall be colophane or isopropylic alcohol. The temperature of the flux is maintained at room temperature. Flux bath for 5 to 10 seconds.	It shall with no evidance of mechanical degradation in terminals and the unit.
9	Resistance to Solvent	(1)Cleaning by Immersion I Solvent: IPA Immersion time: 5±1 minutes Temperature: 20~25°C (2)Cleaning by Immersion II Solvent: Water Immersion time: 5±1 minutes Temperature: 55±5°C (3)Ultrasonic cleaning Frequency: 25±4kHz or 40 ⁴⁶ kHz	Change in capacitance before test ±3% Tangent of Clause 4.1.4 loss angle shall be satisfited Leakage Clause 4.1.5 current shall be satisfited No abnormality between the capacitor and terminals.
		Out put power: Less than 20W/L Time: 5 minutes Temperature: IPA: 20~25°C Water: 55±5°C	

Δ	REVISION	DATE	SIGN		REVISION	DATE	SIGN
4		1 1	ŧ				
				1 1			10
			(3)	-1 1			100

5. FEATURES:

- * Specially designed of general purpose.
- * Highly reliable resin dipped type.
- * Excellent frequency and temperature characteristics.
- * Non-flammable epoxy resin (UL94-V-0)

Ratings and Part Number Reference

Part No.	Case Size	Capacitance µF	DCL (μA) Max.	DF % Max.	ESR max. (Ω) @ 100kHz
6.3 volt @ 85°C (4	4 volt. @	125°C)	Maxi	T MILLIA.	6 1001112
CB 0J335##A##	A	3.3	0.5	6	13.0
CB 0J475##A##	Α	4.7	0.5	. 6	10.0
CB 0J685##A##	A	6.8	0.5	6	8.0
CB 0J106##B##	В	10	0.5	8	6.0
CB 0J156##B##	В	15	0.8	8	5.0
CB 0J226##C##	C	22	1.1	8	3.7
CB 0J336##C##	C	33	1.7	. 8	3.0
CB 0J476##D##	D	47	2.4	8	2.0
CB 0J686##D##	D	68	3.4	: 8	1.8
CB 0J107##E##	E	100	5.0	10	1.6
CB 0J157##E##	E	150	7.6	10	0.9
CB 0J227##E##	E	220	11.0	10	0.9
CB 0J337##F##	F	330	16.6	10	0.7
10 volt @ 85°C (6	11 12/	@125°C)	10.0	10	0.7
CB 1A225##A##	A	2.2	0.5	6	13.0
CB 1A335##A##	Α	3.3	0.5	6	10.0
CB 1A475##A##	A	4.7	0.5	6	8.0
CB 1A685##B##	В	6.8	0.5	6	6.0
CB 1A106##B##	В	10	0.8	8	5.0
CB 1A156##C##	C	15	1.2	8	3.7
CB 1A226##C##	C	22	1.7	8	2.7
CB 1A336##D##	D	33	2.6	8	2.1
CB 1A476##D##	D	47	3.7	8	1.7
CB 1A686##D##	D	68	5.4	8	1.3
CB 1A107##E##	E	100	8.0	10	1.0
CB 1A157##E##	E	150	12.0	10	0.8
CB 1A227##F##	F	220	17.6	10	0.8
16 volt @ 85°C (1	200	5,000	17.0	10	0.0
CB 1C155##A##	A	1.5	0.5	4	10.0
CB 1C225##A##	A	2.2	0.5	6	8.0
CB 1C335##A##	A	3.3	0.5	6	6.0
CB 1C475##B##	B	4.7	0.6	6	5.0
CB 1C685##B##	В	6.8	0.8	8	4.0
CB 1C106##B##	В	10	1.2	8	3.2
CB 1C156##C##	C	15	1.9	8	2.5
CB 1C226##C##	c	22	2.8	8	2.0
CB 1C336##D##	D	33	4.2	8 -	1.6
CB 1C476##D##	D	47	6.0	8	1.3
CB 1C686##E##	E	68	8.7	8	1.0
CB 1C107##E##	E	100	12.8	10	0.8
CB 1C157##F##	F	150	19.2	10	0.6

Part No.	Case Size	Capacitance µF	DCL (μF) Max.	DF % Max.	ESR max. (Ω) @ 100kHz
25 volt @ 85°C (1	6 volt,	@125°C)			19
CB 1E105##A##	A	1.0	0.5	4	10.0
CB 1E155##A##	Α	1.5	0.5	4	8.0
CB 1E225##A##	Α	2.2	0.5	6	6.0
CB 1E335##B##	. B	3.3	0.6	6	5.0
CB 1E475##B##	В	4.7	0.9	6	4.0
CB 1E685##C##	C	6.8	1.3	6	3.1
CB 1E106##C##	C	10	2.0	8	2.5
CB 1E156##D##	D	15	3.0	8	2.0
CB 1E226##D##	D	22	4.4	8	1.5
CB 1E336##E##	E	33	6.6	8	1.2
CB 1E476##E##	E	47	9.4	8	1.0
CB 1E686##F##	F	68	13.6	8	0.8
CB 1E107##F##	F	100	20	10	0.8
35 volt @ 85°C (2	3 volt,	@125°C)			W
CB 1V104##A##	Α	0.1	0.5	4	26.0
CB 1V154##A##	Α	0.15	0.5	4	21.0
CB 1V224##A##	Α	0.22	0.5	4	17.0
CB 1V334##A##	Α	0.33	0.5	4	15.0
CB 1V474##A##	A	0.47	0.5	4	13.0
CB 1V684##A##	Α	0.68	0.5	4	10.0
CB 1V105##A##	Α	1.0	0.5	4	8.0
CB 1V155##A##	Α	1.5	0.5	4	6.0
CB 1V225##B##	В	2.2	0.6	6	5.0
CB 1V335##B##	В	3.3	0.9	6	4.0
CB 1V475##C##	С	4.7	1.3	6	3.0
CB 1V685##D##	D	6.8	1.9	6	2.5
CB 1V106##D##	D	10	2.8	8	2.0
CB 1V156##E##	E	15	4.2	8	1.6
CB 1V226##E##	E	22	6.1	8	1.3
CB 1V336##F##	F	33	9.2	8	1.0
CB 1V476##F##	F	47	10.0	8	0.8
50 volt @ 85°C (3	3 volt, (@125°C)			(40)
CB 1H104##A##	A	0.1	0.5	4	26.0
CB 1H154##A##	Α.	0.15	0.5	4	21.0
CB 1H224##A##	Α	0.22	0.5	4	17.0
CB 1H334##A##	Α	0.33	0.5	4	15.0
CB 1H474##A##	Α	0.47	0.5	4	13.0
CB 1H684##A##	Α	0.68	0.5	4	10.0
CB 1H105##B##	В	1.0	0.5	4	8.0
CB 1H155##C##	C	1.5	0.6	4	6.0
CB 1H225##C##	С	2.2	0.8	6	3.5
CB 1H335##D##	D	3.3	1.3	6	3.0
CB 1H475##D##	D	4.7	1.8	6	2.5
CB 1H685##E##	E	6.8	2.7	6	2.0
CB 1H106##E##	E	10	4.0	8	. 1.6
CB 1H156##F##	F	15	6.0	8	1.2
CB 1H226##F##	F	22	8.8	8	1.0

NOTE: All ## A ## to ambient temperature of + 20°C measured at 120Hz, 0.5V rms unless otherwise stated

insert capacitance tolerance; K for ±10% and M for ±20%

insert format 1. for pitch 2.54mm; format 2. for pitch 5.08mm

insert wire length see page 8

insert Bulk: Code B or Ammo pack: Code T

RECTANGULAR CHIP TANTALUM SOLID ELECTROLYTIC CAPACITOR	REVISION	DATE	SING	
		- 11	-	7/12

6.Quality

6.1 Failure Rate

Not more than 1.0% per 1,000 hours

6.2 Series Circuit Resistance

Obtain series circuit resistance from Figure 1 (Percentage of Failure Rate vs Circuit Resistance) and Figure 2 (Failure Rate Improvement Factors).

As Failure Rate is based on 1 Ω /V of series circuit resistance, if is 0.38% for 1,000 hours in case of 3 Ω /V, for example.

6.3 Quality Assurance Requirements.

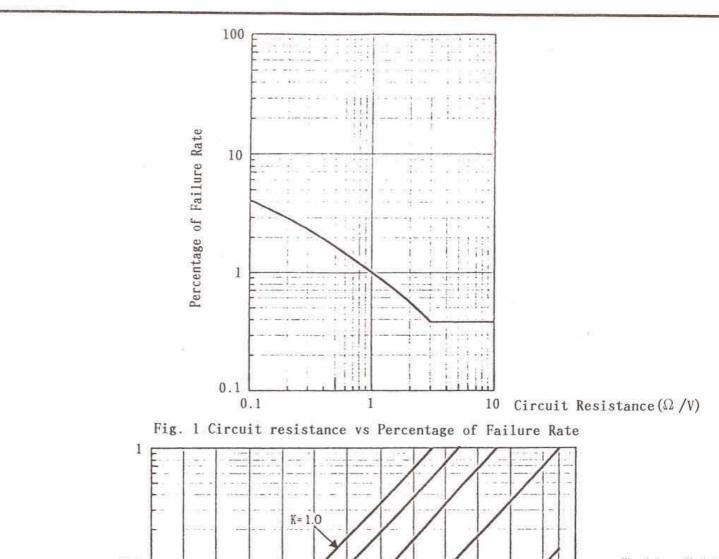
MIL-STD-105D Inspection level II, Nomal Inspection, Single Sampling.

Table 6

Items	AQL
Short, open	0.1%
Capacitance, Dissipation Factor, Leakage Current	0.4%
Appearance Dimensions, Constructions	0.65%

6.4 Endurance test

Table 7


Group	Items	Sample Quantity	Permissible Defect	
1	Vibration	6	0	
2	Solderability Terminal Strength, Humidity Resistance	6	0	
3	Stability at low and high temperature Surge Voltage	6	0	0
4	High Temperature Load	6	0	
5	Resistance to Soldering Heat	6	0	

7.Others

7.1 Based on JIS C 5143 (1991 Edition) Characteristic LB and EIAJ RC 3813 characteristic B

7.2	Methode o	f Testing	1	JIS	C	5102	(1994	Edition)	and	FTA.I	RC	3813	
	ne enous o	TOOPTING	100	010	1.00	OTOM	LIVUT	DOTOTOR		CLILL	DILL	110	UUIU.	

SIGN	DATE	REVISION	SIGN	DATE	REVISION	
	1 - 1					

0.1 Working Volt K=0.8 Rated Volt Magnification of Failure Rate K= 0.4 (Circuit Resistance $1\Omega/V$) K= 0.6 0.01 0.001 0.0001 120 20 60 80 100 40

Fig. 2 Failure Rate Improvement Factors DATE

SIGN

REVISION DATE SIGN

Ambient Temperature (°C)

RECTANGULAR CHIP TANTALUM SOLID ELECTROLYTIC CAPACITOR

REVISION

9/12

Carrier Tape Packaging Specifications

Packaging of bead tantalum capactiors Explantion of Part Numbers

CB Series Code

Rated Voltage Nominal Capacitance

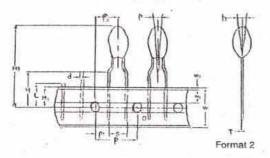
Capacitance Tolerance

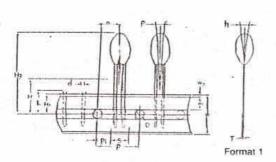
Format & lead space Code

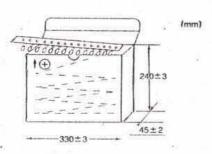
Length Ammo pack

Quantity per bag: Code B

The capacity of the plastic bags depends on


CASE SIZE	Oty per bag
FORMAT ①	(cut ≤ 7mm)
From A to B	1000
From C to D	1000
From E to F	500

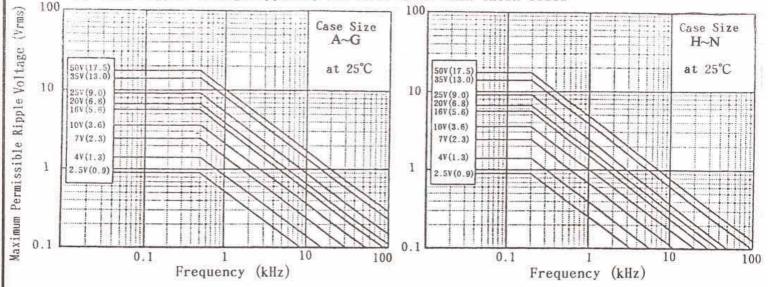

CASE SIZE FORMAT (1)	Qty per bag (cut ≥ 14mm)
From A to B	1000
From C to D	. 7 500
From E to F	500


CASE SIZE FORMAT ②	Qty per bag (cut ≤ 7mm)
From A to B	1000
From C to D	500
From E to F	500

TAPE & AMMO PACKING (conform to: IEC286-2) Code T.

Tape & Ammo Packing (conform to: IEC286 - 2)

Item	Code	Dimension (mm)			
Carrier tape width	W	18.0 -1.0			
Hold down tape width	W,	6.0 ± 0.5			
Hold down tape position	W,	1.0max			
Feed hole diameter .	D	4.0 ± 0.2			
Feed hole pitch	Р	12.7 ± 0.3			
Uala cantar to land	_	Format 1: 5.05 ± 0.7			
Hole center to lead	P,	Format 2: 3.85 ± 0.7			
Hole center to component center-	Р	. 6.35 ± 1.0			
Lead wire clench height	Н	16 ± 0.5			
Hole position	H1	9.0 ± 0.5			
Base of component height	H,	0.8min			
Component height	Н,	32.2max			
Component alignment &	ΔΡ	0 ± 1.3			
Component alignment *	Δh	0 ± 2.0			
		'S' wires: 2.5 40.6			
Lead spacing	S	'B' wires: 5.0 +0.6			
Lead diameter	d	0.5 ± 0.05			
length of snipped lead	L	11.0max			
Carrier tape thickness	Т	0.5 ± 0.1			


Case Code	A~B	C~D	E~F
QTY. (PCS/box)	2500	2000	1000

Δ	REVISION	DATE	SIGN		REVISION	DATE	SIGN
						A 42	
0 5 .				-			3

Handing cautions for use of CB Type Tantalum Solid Electrolytic Capacitors.

- 1. Ripple Voltage
 - (1) Keep the sum of peak DC voltage and ripple voltage within the rated voltage and never go over it.

(2) When ripple voltage applied, use less value than shown below

In case for high temperture use, calculate permissible ripple voltage by using the following formula. Vrms (at 50°C) =0.7 \times Vrms (at 25°C) Vrms (at 85°C) =0.5 \times Vrms (at 25°C)

- 2. Reverse Polarity Voltage
 - (1) CB Type Solid Tantalium Capacitors are polar and reverse polality voltage must not be applied.

 But , for short time application, the peak reverse polarity voltage applied to the capacitor must not exceed:

at 25°C 10% of rated voltage or 1V, whichever is smaller. at 85°C 5% of rated voltage or 0.5V, whichever is smaller.

- (2) Careless contact of the tester to the capacitor will cause reverse polarity voltage and excessive voltage.
- 3. Voltage Derating

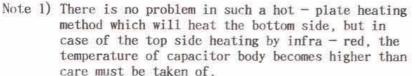
Have voltage derating ratio as large as possible. Expecially, in case of low impedance circuit use, not more than 1/3 of rated voltage is recommended. For moment heavy current run like switching or pulse voltage, The value of resistor is recommended to be more than 3 ohms per volt. (Limit to less than 300mA for rush current)

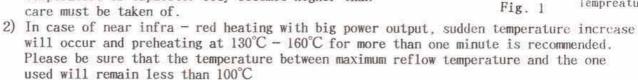
- Applications
 - (1) Limit of stress put on the capacitor by the mounting machine Stress given to the capacitor by sucking tools and centering tweezers must not exceed 4.9N (Stress time not more than 5 sec.) with the 1.5φ point. Especially, the setting position of sucking tools is too low will cause not only overloading to the capacitor, but also wire — snapping on PC boards and scattering of capacitors and other parts, when consolidated mounting with other chip components of less than 1mm in height.
 - (2) Flux

Use login - family flux and avoid the use of strong acid and high activiational materials.

(3) Solderability

Carry out soldering under following conditions. We recommend soldering at a lower temperature and at a shorter time.


A) Soldering Iron


Temperature at the point of soldering iron; Not higher than + 350°C Soldering Time; Less than 3 seconds.

Output; Less than 30W.

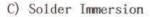
\triangle	REVISION	DATE	SIGN		REVISION	DATE	SIGN
			1				
			- SE	1 1		1 1	- 12

B) Reflow (Atomospheric and Hot-Plate) Capacitor Body Temperature : Not higher Time: Not more than 10 seconds A permissible range for peak temperature and time as per Fig. 1

3) If solder land is bigger than the capacitor terminal, slipping - off of the capacitor in its position will happen. Please care of this not happening.

50

30

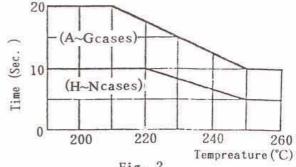

20 Time

10

0

200

~ 40



Solder Bath Temperature: Not higher than 260°C Time : A~G Cases : Not more than 10 seconds H~N Cases: Not more than 5 seconds

A permissible range for peak temperature and time as per Fig. 2

Note 1) Consideration must be taken to remove "gas"because solderability is sometimes bad for high density of components.

2) Give pre - Heating as much as possible and avoid a sudden heating to the capacitor. Recommended pre - heat temp. is $130 \sim 160^{\circ}\mathrm{C}$ for more than one minute and the temperature between peak temp. and pre - heat temp. remain less than 100°C

220

240

Tempreature (°C)

260

Fig. 2

(4) Cleaning

Board surface temperature drop to nomal temperature fully, after which cleaning shall be made. Usable solvent are as follows :

· Halogen system organic solvent (HCFC225, methylene chloride and the like.)

· Alcohol type solvent (IPA, ethylalcohol and the like.)

· Petroleum type solvent, alkaline saponification agent, water and the like. Cleaning must be made under following conditions.

Temperature : Not higher than + 50°C Immersion Time : Not more than 30 minutes.

In case of ultrasonic cleaning, it must be made with a frequency of less than 45kHz, an output of less than 0.02W/cm2 within 5 minutes at less than + 40°C

Note 1) Ultrasonic cleaning should be avoided as much as possible. but when above cleaning is carried out, please see to it that mounted capacitors do not bump against other parts and no hard brush will be used to rub circuit boards with. Bumping of capacitor against other parts will cause the capacitor termination to break.

2) Ulutrasonic cleanings mentioned above are based on thyrister - inveter method.

So, for cleanings with other methods, Please carry out much of pre -tests.

(5) Conductive Adhesive

The use of conductive Adhesive for capacitor mounting should be avoided. Please consult us for use if it is necessary.

4	REVISION	DATE	SIGN		REVISION	DATE	SIGN
			18				
			1	1 1			
		1 0	11				- 1