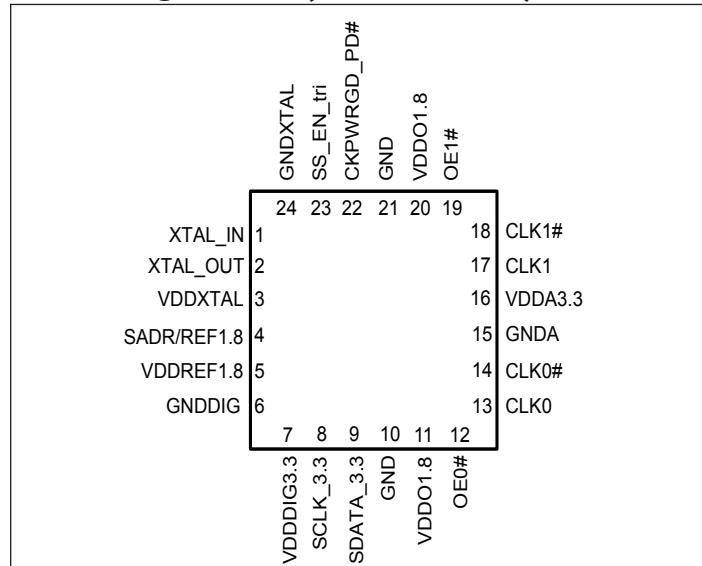


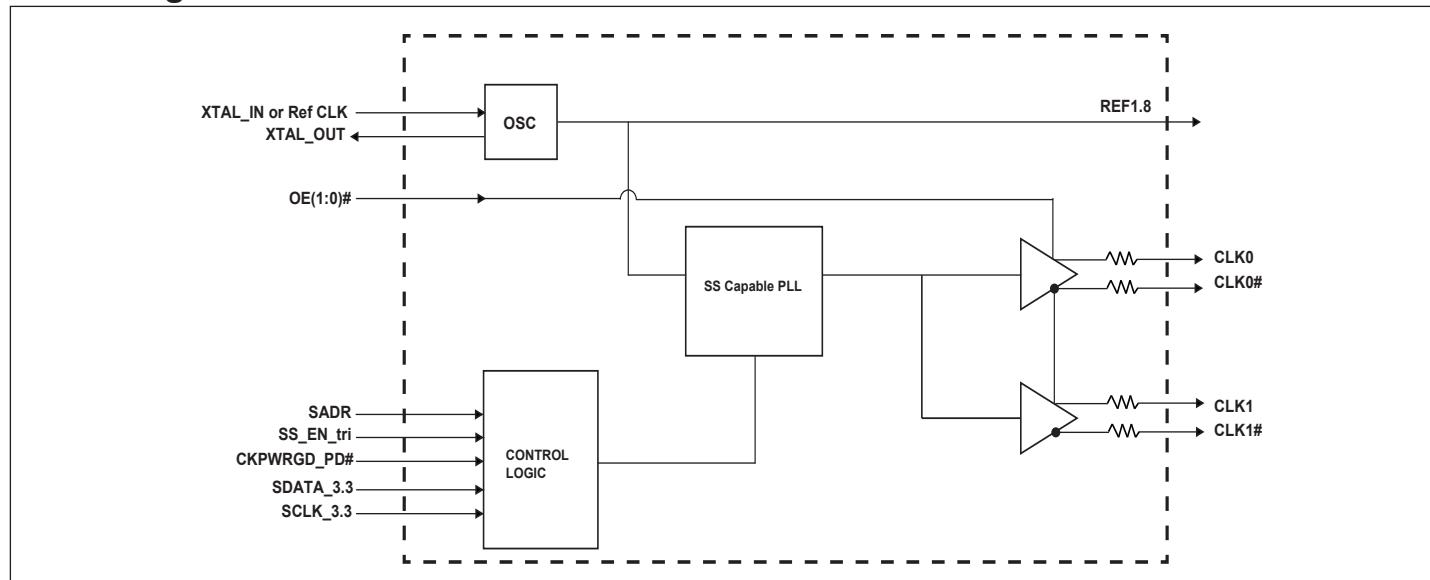
## 2-Output Low Power PCIE Gen 1-2-3 Clock Generator

### Features

- 25MHz crystal or reference clock input
- 100MHz low power HCSL or LVDS compatible outputs
- PCIe 3.0, 2.0 and 1.0 compliant
- Selectable spread spectrum of -0.25%, -0.5% and no spread
- Programmable output amplitude and slew rate
- Cycle-to-cycle jitter (typ.) ~ 30ps
- Supply voltage of 3.3V+/-10%
- Output supply voltage of 1.8V (1.05V to 3.6V supported)
- Industrial ambient operating temperature
- Available in lead-free package: 24-TQFN

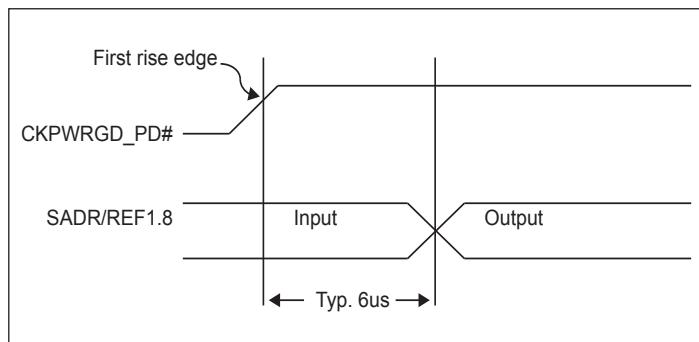

### Description

The PI6CFG201B is a 2-output very low power 100MHz frequency generator for PCIe Gen 1, 2 and 3 applications with integrated output terminations providing  $Z_o=100\Omega$ . The device has 2 output enables for clock management and supports 2 different spread spectrum levels in addition to spread off. The device also has one 1.8V LVCMS REF1.8 output.


### Applications

- PCIe 3.0/2.0/1.0 clock generation

### Pin Configuration (24-Pin TQFN)




### Block Diagram



**SMBus Address Selection Table**

|                                                   | SADR | Address | + Read/Write Bit |
|---------------------------------------------------|------|---------|------------------|
| State of SADR on first application of CKPWRGD_PD# | 0    | 1101000 | 1/0              |
|                                                   | 1    | 1101010 | 1/0              |


**Power Management Table**

| CKPWRGD_PD# | SMBus OE bit | CLKx     |           | REF1.8            |
|-------------|--------------|----------|-----------|-------------------|
|             |              | True O/P | Comp. O/P |                   |
| 0           | x            | Low      | Low       | Hi-Z <sup>1</sup> |
| 1           | 1            | Running  | Running   | Running           |
| 1           | 0            | Low      | Low       | Low               |

**Note:**

1. REF1.8 is Hi-Z until the 1st assertion of CKPWRGD\_PD# high. After this, when CKPWRGD\_PD# is low, REF1.8 is Low.

| CKPWRGD_PD# | OE (Pin) | OE (SMBus bit) | CLKx     |           |
|-------------|----------|----------------|----------|-----------|
|             |          |                | True O/P | Comp. O/P |
| 0           | X        | x              | Low      | Low       |
| 1           | 0        | 0              | Low      | Low       |
| 1           | 0        | 1              | Running  | Running   |
| 1           | 1        | 0              | Low      | Low       |
| 1           | 1        | 1              | Low      | Low       |

**Typical Crystal Requirement**

| Parameter                          | Test Conditions | Min. | Type        | Max. | Units |
|------------------------------------|-----------------|------|-------------|------|-------|
| Mode of Oscillation                |                 |      | Fundamental |      |       |
| Frequency                          |                 |      | 25          |      | MHz   |
| Equivalent Series Resistance (ESR) |                 |      |             |      | Ω     |
| Shunt Capacitance                  |                 |      |             |      | pF    |

**Recommended Crystal Specification**

- FL2500047, SMD 3.2X2.5(4P), 25MHz, CL=18pF, +/-20ppm, <http://www.pericom.com/pdf/datasheets/se/FL.pdf>
- FY2500091, SMD 5x3.2(4P), 25MHz, CL=18pF, +/-30ppm, [http://www.pericom.com/pdf/datasheets/se/FY\\_F9.pdf](http://www.pericom.com/pdf/datasheets/se/FY_F9.pdf)

**Pin Description**

| Pin# | Pin Name            | Type         | Description                                                                                                                                                                                               |
|------|---------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | XTAL_IN             | Input        | Crystal input or reference input clock, Nominally 25.00MHz.                                                                                                                                               |
| 2    | XTAL_OUT            | Output       | Crystal output.                                                                                                                                                                                           |
| 3    | VDDXTAL             | Power        | 3.3V Power supply for XTAL.                                                                                                                                                                               |
| 4    | SADR/REF1.8         | Input/Output | Latch to select SMBus Address/1.8V LVCMOS REF1.8 output. This pin has an internal pull-down.                                                                                                              |
| 5    | VDDREF1.8           | Power        | Power supply for the REF1.8 output                                                                                                                                                                        |
| 6    | GNDDIG              | Power        | Ground pin for digital circuitry                                                                                                                                                                          |
| 7    | VDDDIG3.3           | Power        | 3.3V digital power (dirty power)                                                                                                                                                                          |
| 8    | SCLK_3.3            | Input        | Clock pin of SMBus circuitry, 3.3V tolerant.                                                                                                                                                              |
| 9    | SDATA_3.3           | Input/Output | Data pin for SMBus circuitry, 3.3V tolerant.                                                                                                                                                              |
| 10   | GND                 | Power        | Ground pin.                                                                                                                                                                                               |
| 11   | VDDO1.8             | Power        | Power supply, nominal 1.8V, range 1.05V~3.6V.                                                                                                                                                             |
| 12   | OE0#                | Input        | Active low input for enabling CLK0 pair 0. This pin has an internal pull-down.<br>1 = disable outputs, 0 = enable outputs                                                                                 |
| 13   | CLK0                | Output       | Differential true clock output                                                                                                                                                                            |
| 14   | CLK0#               | Output       | Differential Complementary clock output                                                                                                                                                                   |
| 15   | GNDA                | Power        | Ground pin for the PLL core.                                                                                                                                                                              |
| 16   | VDDA3.3             | Power        | 3.3V power for the PLL core.                                                                                                                                                                              |
| 17   | CLK1                | Output       | Differential true clock output                                                                                                                                                                            |
| 18   | CLK1#               | Output       | Differential Complementary clock output                                                                                                                                                                   |
| 19   | OE1#                | Input        | Active low input for enabling CLK1 pair 1. This pin has an internal pull-down.<br>1 = disable outputs, 0 = enable outputs                                                                                 |
| 20   | VDDO1.8             | Power        | Power supply, nominal 1.8V, range 1.05V~3.6V.                                                                                                                                                             |
| 21   | GND                 | Power        | Ground pin.                                                                                                                                                                                               |
| 22   | CKPWRGD_PD#         | Input        | Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor. |
| 23   | SS_EN_tri           | Input        | Latched select input to select spread spectrum amount at initial power up :<br>1 = -0.5% spread, M = -0.25%, 0 = Spread Off<br>This pin has an internal pull-down.                                        |
| 24   | GNDXTAL             | Power        | GND for XTAL                                                                                                                                                                                              |
|      | Exposed Thermal Pad | -            | Connect to Ground                                                                                                                                                                                         |

## Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

|                                                                |                          |
|----------------------------------------------------------------|--------------------------|
| Supply Voltage to Ground Potential (All VDDx except VDDO)..... | 4.6V                     |
| Supply Voltage to Ground Potential (VDDO).....                 | 3.6V                     |
| All Inputs and Output.....                                     | -0.5V to $V_{DD} + 0.5V$ |
| Storage Temperature.....                                       | -65°C to +150°C          |
| ESD Protection (Input) .....                                   | 2000V(HBM)               |

**Note:** Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## Electrical Characteristics—Current Consumption

( $T_A = -40\text{--}85^\circ\text{C}$ ;  $VDD = 3.3\text{V} \pm 10\%$ ;  $VDDO = 1.8\text{V} \pm 10\%$ , See Test Loads for Loading Conditions)

| Symbol        | Parameters                            | Condition                                                 | Min. | Type | Max. | Units |
|---------------|---------------------------------------|-----------------------------------------------------------|------|------|------|-------|
| $I_{DDA}$     | Operating Supply Current <sup>1</sup> | VDDA3.3, PLL Mode, core current consumption               | 29   |      | 38   | mA    |
| $I_{DDOP}$    |                                       | VDDO, output only current consumption. All outputs active | 6    |      | 8    | mA    |
| $I_{DDTOTAL}$ |                                       | Total current consumption. All outputs active @100MHz     | 35   |      | 46   | mA    |
| $I_{DDSUSP}$  | Suspend Supply Current <sup>1</sup>   | VDDxxx, CKPWRGD_PD# = 0, Wake-On-LAN enabled              | 4.5  |      | 8    | mA    |
| $I_{DDPD}$    | Powerdown Current <sup>1,2</sup>      | CKPWRGD_PD#=0                                             | 1.3  |      | 1.8  | mA    |

### Notes:

1. Guaranteed by design and characterization, not 100% tested in production.
2. Assuming REF1.8 is not running in power down state.

## Electrical Characteristics—Differential Output Duty Cycle, Jitter, and Skew Characteristics

( $T_A = -40\text{--}85^\circ\text{C}$ ;  $VDD = 3.3\text{V} \pm 10\%$ ;  $VDDO = 1.8\text{V} \pm 10\%$ , See Test Loads for Loading Conditions)

| Symbol         | Parameters                          | Condition                         | Min. | Type | Max. | Units |
|----------------|-------------------------------------|-----------------------------------|------|------|------|-------|
| $t_{DC}$       | Duty Cycle <sup>1</sup>             | Measured differentially, PLL Mode | 45   |      | 55   | %     |
| $t_{sk}$       | Skew, Output to Output <sup>1</sup> | $V_T = 50\%$                      |      |      | 50   | ps    |
| $t_{jeyc-cyc}$ | Jitter, Cycle to cycle <sup>1</sup> | PLL mode                          |      |      | 50   | ps    |

### Notes:

1. Guaranteed by design and characterization, not 100% tested in production.

## Electrical Characteristics-Input/Supply/Common Parameters

(Based on  $T_A = -40\sim85^\circ\text{C}$ ;  $V_{DD} = 3.3\text{V} \pm 10\%$ ;  $V_{DDO} = 1.8\text{V} \pm 10\%$ , See Test Loads for Loading Conditions)

| Symbol       | Parameters                                                    | Condition                                                                                                                                            | Min.              | Type   | Max.           | Units  |
|--------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|----------------|--------|
| $V_{DDX}$    | Supply Voltage <sup>1</sup>                                   | Supply voltage for core, analog                                                                                                                      | 3.0               | 3.3    | 3.6            | V      |
| $V_{DDO}$    | Supply Voltage <sup>1</sup>                                   | Supply voltage outputs                                                                                                                               | 1.05              | 1.8    | 3.6            | V      |
| $T_A$        | Ambient Operating Temperature <sup>1</sup>                    |                                                                                                                                                      | -40               | 25     | 85             | °C     |
| $V_{IH}$     | Input High Voltage <sup>1</sup>                               | Single-ended inputs, except SMBus, SS_EN_tri                                                                                                         | 0.65 $V_{DD}$     |        | $V_{DD} + 0.3$ | V      |
| $V_{IM}$     | Input Mid Voltage <sup>1</sup>                                | SS_EN_tri                                                                                                                                            | 0.4 $V_{DD}$      |        | $0.6 V_{DD}$   | V      |
| $V_{IL}$     | Input Low Voltage <sup>1</sup>                                | Single-ended inputs, except SMBus, SS_EN_tri                                                                                                         | -0.3              |        | $0.35 V_{DD}$  | V      |
| $V_{T+}$     | Schmitt Trigger Positive Going Threshold Voltage <sup>1</sup> | Single-ended inputs, except SS_EN_tri                                                                                                                | 0.5 $V_{DD}$      |        | $0.6 V_{DD}$   | V      |
| $V_{T-}$     | Schmitt Trigger Negative Going Threshold Voltage <sup>1</sup> | Single-ended inputs, except SS_EN_tri                                                                                                                | 0.4 $V_{DD}$      |        | $0.5 V_{DD}$   | V      |
| $V_H$        | Hysteresis Voltage <sup>1</sup>                               | $V_{T+} - V_{T-}$                                                                                                                                    | 0.05 $V_{DD}$     |        | $0.2 V_{DD}$   | V      |
| $V_{OH}$     | Output High Voltage <sup>1</sup>                              | Single-ended outputs, except SMBus. $I_{OH} = -2\text{mA}$                                                                                           | $V_{DD}$<br>-0.45 |        |                | V      |
| $V_{OL}$     | Output Low Voltage <sup>1</sup>                               | Single-ended outputs, except SMBus. $I_{OL} = -2\text{mA}$                                                                                           |                   |        | 0.45           | V      |
| $I_{IN}$     | Input Current <sup>1</sup>                                    | Single-ended inputs, $V_{IN} = \text{GND}$ , $V_{IN} = V_{DD}$ (exclude XTAL_IN pin)                                                                 | -5                |        | 5              | uA     |
| $I_{INP}$    |                                                               | Single-ended inputs<br>$V_{IN} = 0\text{V}$ ; Inputs with internal pull-up resistors<br>$V_{IN} = V_{DD}$ ; Inputs with internal pull-down resistors | -200              |        | 200            | uA     |
| $f_{IN}$     | Input Frequency <sup>1</sup>                                  | XTAL, or XTAL_IN                                                                                                                                     | 23                | 25     | 26             | MHz    |
| Lpin         | Pin Inductance <sup>1</sup>                                   |                                                                                                                                                      |                   |        | 7              | nH     |
| $C_{IN}$     | Capacitance <sup>1</sup>                                      | Control Inputs                                                                                                                                       | 1.5               |        | 5              | pF     |
| Cout         |                                                               | Output pin capacitance                                                                                                                               |                   |        | 6              | pF     |
| $t_{STAB}$   | Clock output Stabilization <sup>1,2</sup>                     | From $V_{DD}$ Power-Up and after input clock stabilization or de-assertion of CKPWRGD_PD# to 1st clock                                               |                   | 0.6    | 1              | ms     |
| $f_{MODIN}$  | Input SS Modulation Frequency <sup>1</sup>                    | Allowable Frequency (Triangular Modulation)                                                                                                          | 30                | 31.500 | 33             | kHz    |
| $t_{LATOE#}$ | OE# Latency <sup>1,3</sup>                                    | CLK start after OE# assertion<br>CLK stop after OE# deassertion                                                                                      | 1                 |        | 3              | clocks |
| $t_{DRVPD}$  | Tdrive_PD# <sup>1,3</sup>                                     | CLK output enable after CKPWRGD_PD# de-assertion                                                                                                     |                   |        | 300            | us     |

## Electrical Characteristics–Input/Supply/Common Parameters

(Based on  $T_A = -40\text{--}85^\circ\text{C}$ ;  $VDD = 3.3\text{V} \pm 10\%$ ;  $VDDO = 1.8\text{V} \pm 10\%$ , See Test Loads for Loading Conditions)

| Symbol       | Parameters                                | Condition                            | Min. | Type | Max. | Units |
|--------------|-------------------------------------------|--------------------------------------|------|------|------|-------|
| $t_F$        | Fall time <sup>1, 2</sup>                 | Control inputs                       |      |      | 5    | ns    |
| $t_R$        | Rise time <sup>1, 2</sup>                 | Control inputs                       |      |      | 5    | ns    |
| $V_{ILSMB}$  | SMBus Input Low Voltage <sup>1</sup>      |                                      |      |      | 0.8  | V     |
| $V_{IHSM}$   | SMBus Input High Voltage <sup>1</sup>     |                                      | 2.1  |      | 3.6  | V     |
| $V_{OLSMB}$  | SMBus Output Low Voltage <sup>1</sup>     | @ $I_{PULLUP}$                       |      |      | 0.4  | V     |
| $I_{PULLUP}$ | SMBus Sink Current <sup>1</sup>           | @ $V_{OL}$                           | 4    |      |      | mA    |
| $V_{DDSM}$   | Nominal Bus Voltage <sup>1</sup>          | 3.3V bus voltage                     | 2.7  |      | 3.6  | V     |
| $t_{RSMB}$   | SCLK/SDATA Rise Time <sup>1</sup>         | (Max VIL - 0.15) to (Min VIH + 0.15) |      |      | 1000 | ns    |
| $t_{FSMB}$   | SCLK/SDATA Fall Time <sup>1</sup>         | (Min VIH + 0.15) to (Max VIL - 0.15) |      |      | 300  | ns    |
| $f_{MAXSMB}$ | SMBus Operating Frequency <sup>1, 5</sup> | Maximum SMBus operating frequency    |      |      | 400  | kHz   |

**Note:**

- Guaranteed by design and characterization, not 100% tested in production.
- Control input must be monotonic from 20% to 80% of input swing. Input Frequency Capacitance
- Time from deassertion until outputs are >200 mV
- The differential input clock must be running for the SMBus to be active

## Electrical Characteristics–CLK 0.7V Low Power HCSL Outputs

( $T_A = -40\text{--}85^\circ\text{C}$ ;  $VDD = 3.3\text{V} \pm 10\%$ ;  $VDDO = 1.8\text{V} \pm 10\%$ , See Test Loads for Loading Conditions)

| Symbol             | Parameters                             | Condition                                                                                             | Min. | Type | Max. | Units |
|--------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|------|------|------|-------|
| trf                | Slew rate <sup>1, 2, 3</sup>           | Scope averaging on 1.5V/ns setting                                                                    | 0.9  | 1.4  | 1.9  | V/ns  |
|                    |                                        | Scope averaging on 3.0V/ns setting                                                                    | 1.8  | 2.9  | 4    | V/ns  |
| $\Delta trf$       | Slew rate matching <sup>1, 2, 4</sup>  | Slew rate matching, Scope averaging on                                                                |      |      | 20   | %     |
| $V_{OH}$           | Voltage High <sup>1, 7</sup>           | Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on) | 660  |      | 850  | mV    |
| $V_{OL}$           | Voltage Low <sup>1, 7</sup>            |                                                                                                       | -150 |      | 150  | mV    |
| $V_{max}$          | Max Voltage <sup>1</sup>               | Measurement on single ended signal using                                                              |      |      | 1150 | mV    |
| $V_{min}$          | Min Voltage <sup>1</sup>               | absolute value. (Scope averaging off)                                                                 | -300 |      |      | mV    |
| $V_{swing}$        | $V_{swing}^{1, 2, 7}$                  | Scope averaging off                                                                                   | 300  |      |      | mV    |
| $V_{cross\_abs}$   | $V_{cross\_abs}^{1, 5, 7}$             | Scope averaging off                                                                                   | 250  |      | 550  | mV    |
| $\Delta V_{cross}$ | Crossing Voltage (var) <sup>1, 6</sup> | Scope averaging off                                                                                   |      |      | 140  | mV    |

**Note:**

- Guaranteed by design and characterization, not 100% tested in production.
- Measured from differential waveform
- Slew rate is measured through the  $V_{swing}$  voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.
- Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.
- $V_{cross}$  is defined as voltage where  $Clock = Clock\#$  measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).
- The total variation of all  $V_{cross}$  measurements in any particular system. Note that this is a subset of  $V_{cross\_min/max}$  ( $V_{cross}$  absolute) allowed. The intent is to limit  $V_{cross}$  induced modulation by setting  $\Delta V_{cross}$  to be smaller than  $V_{cross}$  absolute.
- At default SMBus settings.

## Electrical Characteristics—Phase Jitter Parameters

( $T_A = -40\text{--}85^\circ\text{C}$ ;  $VDD = 3.3\text{V} \pm 10\%$ ;  $VDDO = 1.8\text{V} \pm 10\%$ , See Test Loads for Loading Conditions)

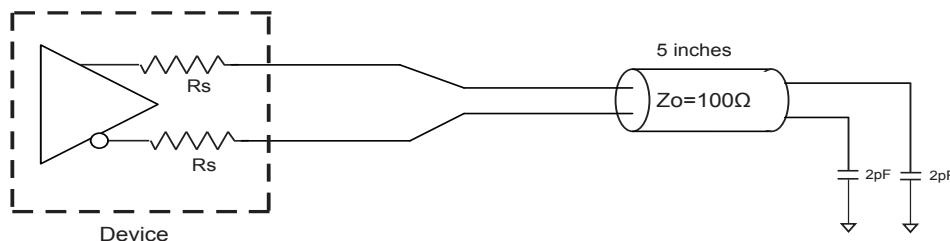
| Symbol                                | Parameters                | Condition                                                            | Min. | Type | INDUSTRY LIMIT | Units    |
|---------------------------------------|---------------------------|----------------------------------------------------------------------|------|------|----------------|----------|
| $t_{jphPClGe1}$ <sup>1, 2, 3, 5</sup> | Phase Jitter, PCI Express | PCIe Gen 1                                                           |      | 30   | 86             | ps (p-p) |
| $t_{jphPClGe2}$ <sup>1, 2, 5</sup>    |                           | PCIe Gen 2 Low Band<br>$10\text{kHz} < f < 1.5\text{MHz}$            |      | 0.5  | 3              | ps (rms) |
|                                       |                           | PCIe Gen 2 High Band<br>$1.5\text{MHz} < f < \text{Nyquist (50MHz)}$ |      | 2.2  | 3.1            | ps (rms) |
| $t_{jphPClGe3}$ <sup>1, 2, 4, 5</sup> |                           | PCIe Gen 3<br>(PLL BW of 2-4MHz, CDR = 10MHz)                        |      | 0.46 | 1              | ps (rms) |

### Notes:

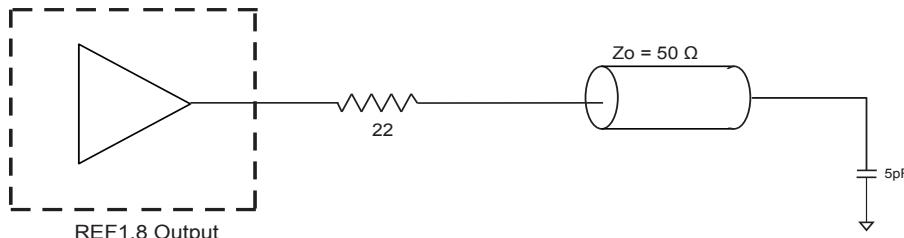
1. Guaranteed by design and characterization, not 100% tested in production.
2. See <http://www.pcisig.com> for complete specs.
3. Sample size of at least 100k cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.
4. Calculated from Intel-supplied Clock Jitter Tool.
5. Applies to all different outputs.

## Electrical Characteristics—REF1.8

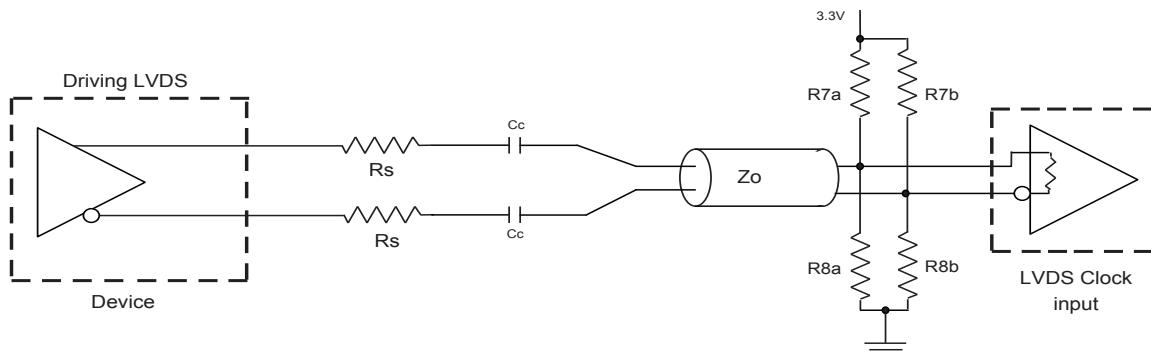
( $T_A = -40\text{--}85^\circ\text{C}$ ;  $VDD = 3.3\text{V} \pm 10\%$ ;  $VDDO = 1.8\text{V} \pm 10\%$ , See Test Loads for Loading Conditions)


| Symbol               | Parameters                             | Condition                                                             | Min. | Type | Max. | Units    |
|----------------------|----------------------------------------|-----------------------------------------------------------------------|------|------|------|----------|
| ppm                  | Long Accuracy <sup>1, 2</sup>          | see Tperiod min-max values                                            |      | 0    |      | ppm      |
| $T_{\text{period}}$  | Clock period <sup>1, 2</sup>           | 25 MHz output nominal                                                 |      | 40   |      | ns       |
| $t_{\text{rf}}$      | Rise/Fall Slew Rate <sup>1, 3</sup>    | $V_{\text{OH}} = VDD - 0.45\text{V}$ , $V_{\text{OL}} = 0.45\text{V}$ | 0.5  |      | 2.5  | V/ns     |
| $t_{\text{DC}}$      | Duty Cycle <sup>1, 4</sup>             | $V_T = VDDO/2\text{V}$                                                | 45   |      | 55   | %        |
| $t_{\text{DCD}}$     | Duty Cycle Distortion <sup>1, 5</sup>  | $V_T = VDDO/2\text{V}$                                                | 0    |      | 3    | %        |
| $t_{\text{ic-c}}$    | Jitter, cycle to cycle <sup>1, 4</sup> | $V_T = VDDO/2\text{V}$                                                |      |      | 250  | ps       |
| $t_{\text{idBc1k}}$  | Noise floor <sup>1, 4</sup>            | 1kHz offset                                                           |      | -141 | -120 | dBc      |
| $t_{\text{idBc10k}}$ | Noise floor <sup>1, 4</sup>            | 10kHz offset to Nyquist                                               |      | -150 | -130 | dBc      |
| $t_{\text{jphREF}}$  | Jitter, phase <sup>1, 4</sup>          | 12kHz to 5MHz                                                         |      | 0.46 | 1    | ps (rms) |

### Notes:


1. Guaranteed by design and characterization, not 100% tested in production.
2. All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF1.8 is trimmed to 25.00 MHz.
3. Typical value occurs when REF1.8 slew rate is set to default value.
4. When driven by a crystal.
5. When driven by an external oscillator via the XTAL\_IN pin. XTALK\_OUT should be floating in this case.

## Test Loads


### Low-Power HCSL Differential Output Test Load



### REF1.8 Output Test Load



## Alternate Terminations



## Driving LVDS inputs with the PI6CFGL201B

| Component | Value                    |                                    |
|-----------|--------------------------|------------------------------------|
|           | Receiver has termination | Receiver does not have termination |
| R7a, R7b  | 10K Ω                    | 140 Ω                              |
| R8a, R8b  | 5.6K Ω                   | 75 Ω                               |
| Cc        | 0.1 uF                   | 0.1 uF                             |
| Vcm       | 1.2 volts                | 1.2 volts                          |

## Serial Data Interface (SMBus)

This part is a slave only device that supports blocks read and block write protocol using a single 7-bit address and read/write bit as shown below.

Read and write block transfers can be stopped after any complete byte transfer by issuing STOP.

## Address Assignment

Refer to SMBus Address Selection Table.

## Data Protocol

(Write)

| 1 bit     | 8 bits         | 1   | 8 bits          | 1   | 8 bits       | 1   | 8 bits      | 1   |     | 8 bits        | 1   | 1 bit    |
|-----------|----------------|-----|-----------------|-----|--------------|-----|-------------|-----|-----|---------------|-----|----------|
| Start bit | Slave Addr: D4 | Ack | Register offset | Ack | Byte Count=N | Ack | Data Byte 0 | Ack | ... | Data Byte N-1 | Ack | Stop bit |

(Read)

| 1 bit     | 8 bits         | 1   | 8 bits          | 1   | 1            | 8 bits         | 1   | 8 bits       | 1   | 8 bits      | 1   | 1 bit |
|-----------|----------------|-----|-----------------|-----|--------------|----------------|-----|--------------|-----|-------------|-----|-------|
| Start bit | Slave Addr: D4 | Ack | Register offset | Ack | Repeat start | Slave Addr: D5 | Ack | Byte Count=N | Ack | Data Byte 0 | Ack | ...   |

**Note:**

1. Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

**SMBus Table: Output Enable Register**

| BYTE 0 |          |                  |      |         |         |         |
|--------|----------|------------------|------|---------|---------|---------|
| Bit    | Name     | Control Function | Type | 0       | 1       | Default |
| 7      | Reserved |                  |      |         |         | 1       |
| 6      | Reserved |                  |      |         |         | 1       |
| 5      | Reserved |                  |      |         |         | 1       |
| 4      | Reserved |                  |      |         |         | 1       |
| 3      | Reserved |                  |      |         |         | 1       |
| 2      | OE1      | Output Enable    | RW   | Low/Low | Enabled | 1       |
| 1      | OE0      | Output Enable    | RW   | Low/Low | Enabled | 1       |
| 0      | Reserved |                  |      |         |         | 1       |

**SMBus Table: SS Readback and Vhigh Control Register**

| BYTE 1 |              |                             |                 |                                                  |                                      |         |
|--------|--------------|-----------------------------|-----------------|--------------------------------------------------|--------------------------------------|---------|
| Bit    | Name         | Control Function            | Type            | 0                                                | 1                                    | Default |
| 7      | SSENRB1      | SS Enable Readback Bit1     | R               | 00' for SS_EN_tri = 0, '01' for SS_EN_tri = 'M', |                                      | Latch   |
| 6      | SSENRB0      | SS Enable Readback Bit0     | R               | '11 for SS_EN_tri = '1'                          |                                      | Latch   |
| 5      | SSEN_SWCNTRL | Enable SW control of SS     | RW              | SS control locked                                | Values in B1[4:3] control SS amount. | 0       |
| 4      | SSENSW1      | SS Enable Software Ctl Bit1 | RW <sup>1</sup> | 00' = SS Off, '01' = -0.25% SS,                  |                                      | 0       |
| 3      | SSENSW0      | SS Enable Software Ctl Bit0 | RW <sup>1</sup> | '10' = Reserved, '11' = -0.5% SS                 |                                      | 0       |
| 2      | Reserved     |                             |                 |                                                  |                                      | 1       |
| 1      | AMPLITUDE 1  | Controls Output Amplitude   | RW              | 00 = 0.6V                                        | 01 = 0.7V                            | 1       |
| 0      | AMPLITUDE 0  |                             | RW              | 10 = 0.8V                                        | 11 = 0.9V                            | 0       |

**SMBus Table: CLK Slew Rate Control Register**

| BYTE 2 |                  |                          |      |         |         |         |
|--------|------------------|--------------------------|------|---------|---------|---------|
| Bit    | Name             | Control Function         | Type | 0       | 1       | Default |
| 7      | Reserved         |                          |      |         |         | 1       |
| 6      | Reserved         |                          |      |         |         | 1       |
| 5      | Reserved         |                          |      |         |         | 1       |
| 4      | Reserved         |                          |      |         |         | 1       |
| 3      | Reserved         |                          |      |         |         | 1       |
| 2      | SLEWRATESEL CLK1 | Adjust Slew Rate of CLK1 | RW   | 1.5V/ns | 3.0V/ns | 1       |
| 1      | SLEWRATESEL CLK0 | Adjust Slew Rate of CLK0 | RW   | 1.5V/ns | 3.0V/ns | 1       |
| 0      | Reserved         |                          |      |         |         | 1       |

**SMBus Table: REF1.8 Control Register**

| BYTE 3 |                            |                               |      |                                   |                           |         |
|--------|----------------------------|-------------------------------|------|-----------------------------------|---------------------------|---------|
| Bit    | Name                       | Control Function              | Type | 0                                 | 1                         | Default |
| 7      | REF1.8                     | Slew Rate Control             | RW   | 00 = 0.9V/ns                      | 01 = 1.3V/ns              | 0       |
| 6      |                            |                               | RW   | 10 = 1.6V/ns                      | 11 = 1.8V/ns              | 1       |
| 5      | REF1.8 Power Down Function | Wake-ON-LAN Enable for REF1.8 | RW   | REF1.8 does not run in Power Down | REF1.8 runs in Power Down | 0       |
| 4      | REF1.8 OE                  | REF1.8 Output Enable          | RW   | Low                               | Enabled                   | 1       |
| 3      | Reserved                   |                               |      |                                   |                           | 1       |
| 2      | Reserved                   |                               |      |                                   |                           | 1       |
| 1      | Reserved                   |                               |      |                                   |                           | 1       |
| 0      | Reserved                   |                               |      |                                   |                           | 1       |

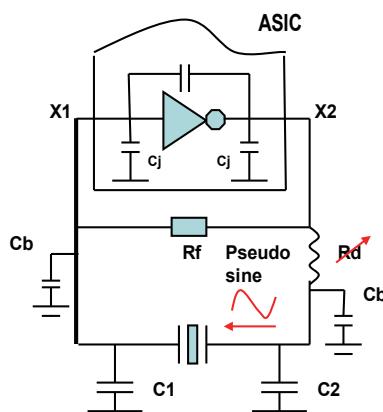
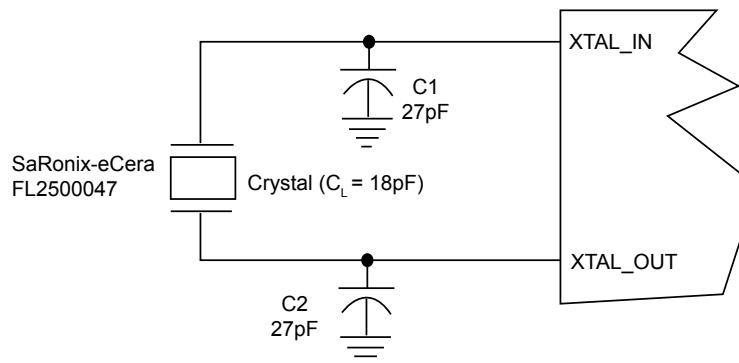
**Byte 4 is reserved and reads back 'hFF'.**
**SMBus Table: Revision and Vendor ID Register**

| BYTE 5 |      |                  |      |              |   |         |
|--------|------|------------------|------|--------------|---|---------|
| Bit    | Name | Control Function | Type | 0            | 1 | Default |
| 7      | RID3 | Revision ID      | R    | A rev = 0000 |   |         |
| 6      | RID2 |                  | R    | 0            |   |         |
| 5      | RID1 |                  | R    | 0            |   |         |
| 4      | RID0 |                  | R    | 0            |   |         |
| 3      | VID3 | VENDOR ID        | R    |              |   |         |
| 2      | VID2 |                  | R    | 0            |   |         |
| 1      | VID1 |                  | R    | 0            |   |         |
| 0      | VID0 |                  | R    | 0            |   |         |

**SMBus Table: Device Type/Device ID**

| BYTE 6 |              |                  |      |                        |   |         |
|--------|--------------|------------------|------|------------------------|---|---------|
| Bit    | Name         | Control Function | Type | 0                      | 1 | Default |
| 7      | Device Type1 | Device Type      | R    | 00 = FGV, 01 = DBV,    |   | 0       |
| 6      | Device Type0 |                  | R    | 10 = DMV, 11= Reserved |   | 0       |
| 5      | Device ID5   | Device ID        | R    | 00010 binary or 02 hex |   |         |
| 4      | Device ID4   |                  | R    | 0                      |   |         |
| 3      | Device ID3   |                  | R    | 0                      |   |         |
| 2      | Device ID2   |                  | R    | 0                      |   |         |
| 1      | Device ID1   |                  | R    | 1                      |   |         |
| 0      | Device ID0   |                  | R    | 0                      |   |         |

**SMBus Table: Byte Count Register**



| BYTE 7 |          |                  |      |   |   |         |
|--------|----------|------------------|------|---|---|---------|
| Bit    | Name     | Control Function | Type | 0 | 1 | Default |
| 7      | Reserved |                  |      |   |   | 0       |
| 6      | Reserved |                  |      |   |   | 0       |
| 5      | Reserved |                  |      |   |   | 0       |
| 4      | Reserved |                  |      |   |   | 0       |
| 3      | Reserved |                  |      |   |   | 0       |
| 2      | Reserved |                  |      |   |   | 0       |
| 1      | Reserved |                  |      |   |   | 0       |
| 0      | Reserved |                  |      |   |   | 0       |

## Application Notes

### Crystal circuit connection

The following diagram shows crystal circuit connection with a parallel crystal. For the  $CL=18\text{pF}$  crystal, it is suggested to use  $C1=27\text{pF}$ ,  $C2=27\text{pF}$ .  $C1$  and  $C2$  can be adjusted to fine tune to the target ppm of crystal oscillator according to different board layouts.

### Crystal Oscillator Circuit

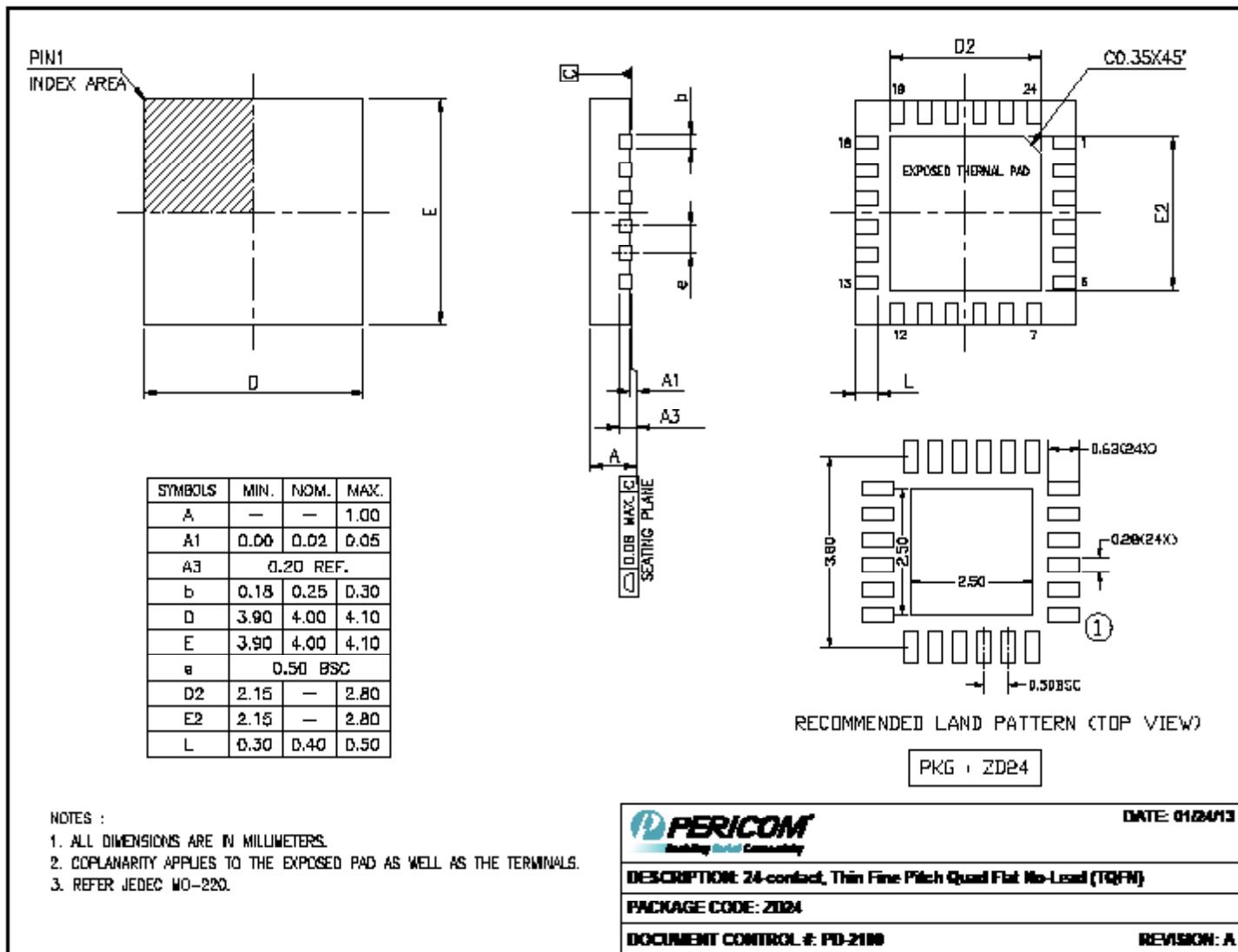


$CL$  = crystal spec. loading cap.

$C_j$  = chip in/output cap. ( $3\text{--}5\text{pF}$ )

$C_b$  = PCB trace/via cap. ( $2\text{--}4\text{pF}$ )

$C_{1,2}$  = load cap. components


$R_d$  = drive level res. ( $100\Omega$ )

Final choose/trim  $C_1=C_2=2 * CL - (C_b + C_j)$  for the target  $\pm\text{-ppm}$   
Example:  $C_1=C_2=2 * (18\text{pF}) - (4\text{pF} + 5\text{pF}) = 27\text{pF}$

### Thermal Characteristics

| Symbol        | Parameters                             | Min. | Type | Max. | Units                |
|---------------|----------------------------------------|------|------|------|----------------------|
| $\theta_{JA}$ | Thermal Resistance Junction to Ambient |      | 54.4 |      | $^{\circ}\text{C/W}$ |
| $\theta_{JC}$ | Thermal Resistance Junction to Case    |      | 40.8 |      | $^{\circ}\text{C/W}$ |

**Packaaina Mechanical: 24-Pin TQFN (ZD)**



13-0017

**Ordering Information<sup>(1-3)</sup>**

| Ordering Number  | Package Code | Package Description                                           | Operating Temperature |
|------------------|--------------|---------------------------------------------------------------|-----------------------|
| PI6CFGL201BZDIE  | ZD           | 24-pin, Thin Fine Pitch Quad Flat No-Lead (TQFN)              | Industrial            |
| PI6CFGL201BZDIEX | ZD           | 24-pin, Thin Fine Pitch Quad Flat No-Lead (TQFN), Tape & Reel | Industrial            |

**Notes:**

1. Thermal characteristics can be found on the company web site at [www.pericom.com/packaging/](http://www.pericom.com/packaging/)
2. E = Pb-free and Green
3. Adding an X suffix = Tape/Reel