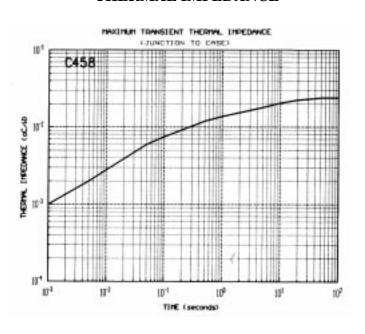

INVERTER THYRISTOR C458


53mm / 1400V / 2000Arms / 35us

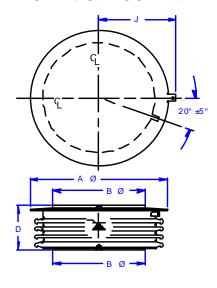
Type C458 reverse blocking thyristor is suitable for inverter applications. The silicon junction is manufactured by the all-diffused process and utilizes the field-proven, interdigitated amplifying gate structure. It is supplied in an industry accepted disc-type package, ready to mount using commercially available heat dissipators and mechanical clamping hardware.

ON-STATE CHARACTERISTICS

THERMAL IMPEDANCE

MODEL	$V_{\mathrm{DRM}} / V_{\mathrm{RRM}}$ $0 \text{ to } +125^{\circ}\mathrm{C}$	@ -40°C
	volts	
C458PD	1400	1300
C458PB	1200	1100
C458P	1000	900

Gate Drive Requirements:

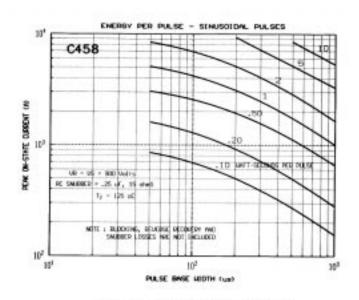

 $20\ V\ /\ 20\ ohms\ /\ 0.5us\ risetime$

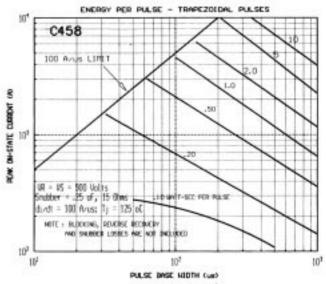
5 - 10 us minimum duration

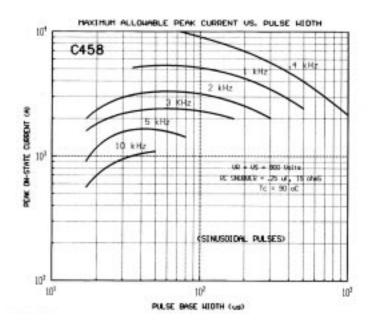
External Clamping Force

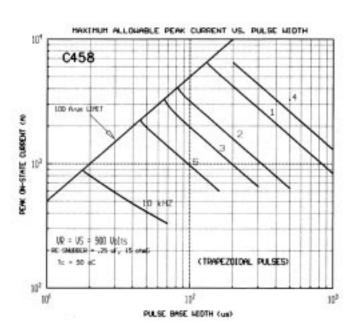
5000 - 6000 lbs. 24.5 - 26.7 kN

MECHANICAL OUTLINE




 $A\Phi = 2.96$ in (75.2 mm) $B\Phi = 1.90$ in (48.3 mm) D = 1.07 in (27.2 mm)


f Silicon m Power m C m Orporation 175 great valley pkwy. Malvern, pa 19355 USA


LIMITING CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	<u>LIMIT</u>	<u>UNITS</u>
Repetitive peak off- state & reverse voltage	V_{DRM}/V_{RRM}	$T_{J} = -40$ to +125°C	up to 1400V	volts
Off-state & reverse current	$I_{_{\mathrm{DRM}}}\!/I_{_{\mathrm{RRM}}}$	$T_{j} = 125^{\circ}C$	65	ma
Peak half cycle non-repetitive surge current	I_{TSM}	60Hz (8.3ms) 50Hz (10ms)	16 14.6	kA
Forfusing	I^2t	8.3ms	1.06	MA^2s
On-state voltage	$V_{_{TM}}$	$I_{T} = 4000A$ $t_{P} = 8.3 \text{ms}$ $T_{J} = 25^{\circ}\text{C}$	2.6	volts
Critical rate of rise of on-state current	di/dt_{rep}	$V_{D} = 60\% V_{DRM}$ $60Hz$ $Tj=125^{\circ}C$	400	A/us
Critical rate of rise of off-state voltage	dv/dt	$V_{\text{DCRIT}} = 80\% V_{\text{DRM}}$ $T_{j} = 125^{\circ}\text{C}$	500	v/us
Reverse recovery charge	Q_{RR}	$I_T = 1000A, T_J = 125$ $V_R > -50V$ @ 100A/us	°C 400	uC
Circuit commutated turn-off time	t _Q	$200 \text{V/us to } 80\% \text{ V}_{DRM}$ $Vr = -50 \text{ V}$	35	us

