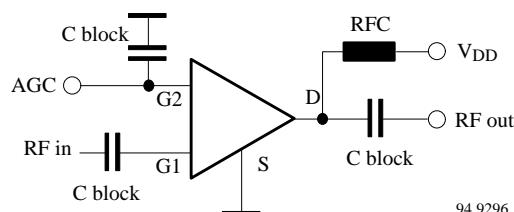


Dual - MOSMIC® – two AGC Amplifiers for TV-Tuner Prestage with 5 V Supply Voltage

MOSMIC - MOS Monolithic Integrated Circuit

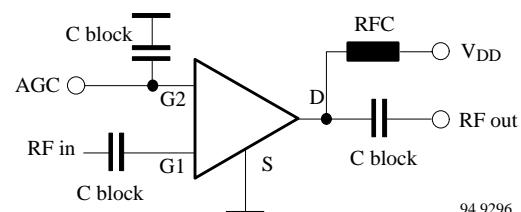
Electrostatic sensitive device.

Observe precautions for handling.



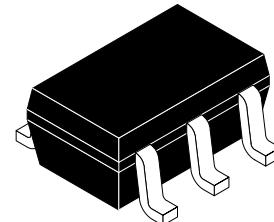
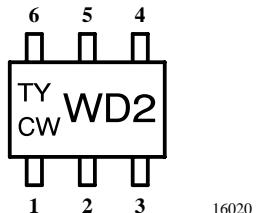
Applications

Low noise gain controlled input stages in UHF-and VHF- tuner with 5 V supply voltage.


Typical Application

Amplifier 1

94 9296



Amplifier 2

94 9296

Features

- Two AGC amplifiers in a single package
- Integrated gate protection diodes
- Low noise figure
- High gain, high forward transadmittance (24 mS typ.)
- Biasing network on chip
- Improved cross modulation at gain reduction
- High AGC-range
- SMD package

16 015-2

TSDF52424 Marking: WD2

Plastic case (SOT 363)

1 = Gate 1 (amplifier 1), 2 = Gate 2, 3 = Drain (amplifier 1),
4 = Drain (amplifier 2), 5 = Source, 6 = Gate1 (amplifier 2)

T = Telefunken

Y = Year, is variable for digit from 0 to 9 (e.g. 9 = 1999, 0 = 2000)

CW = Calendar Week, is variable for number from 01 to 52

Number of Calendar Week is always indicating place of pin 1

All of following data and characteristics are valid for operating either amplifier 1 (pin 1, 3, 2, 5) or amplifier 2 (pin 6, 4, 2, 5)

Absolute Maximum Ratings

$T_{amb} = 25^\circ\text{C}$, unless otherwise specified

Parameter	Test Conditions	Symbol	Value	Unit
Drain - source voltage		V_{DS}	8	V
Drain current		I_D	20	mA
Gate 1/Gate 2 - source peak current		$\pm I_{G1/G2SM}$	10	mA
Gate 1/Gate 2 - source voltage		$\pm V_{G1/G2SM}$	6	V
Total power dissipation	$T_{amb} \leq 78^\circ\text{C}$	P_{tot}	160	mW
Channel temperature		T_{Ch}	150	$^\circ\text{C}$
Storage temperature range		T_{stg}	-55 to +150	$^\circ\text{C}$

Maximum Thermal Resistance

$T_{amb} = 25^\circ\text{C}$, unless otherwise specified

Parameter	Test Conditions	Symbol	Value	Unit
Channel ambient	on glass fibre printed board (25 x 20 x 1.5) mm ³ plated with 35 μm Cu	R_{thChA}	450	K/W

Electrical DC Characteristics

$T_{amb} = 25^\circ\text{C}$, unless otherwise specified

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
Gate 1 - source breakdown voltage	$\pm I_{G1S} = 10 \text{ mA}$, $V_{G2S} = V_{DS} = 0$	$\pm V_{(BR)G1SS}$	7		10	V
Gate 2 - source breakdown voltage	$\pm I_{G2S} = 10 \text{ mA}$, $V_{G1S} = V_{DS} = 0$	$\pm V_{(BR)G2SS}$	7		10	V
Gate 1 - source leakage current	$+V_{G1S} = 5 \text{ V}$, $V_{G2S} = V_{DS} = 0$ $-V_{G1S} = 5 \text{ V}$, $V_{G2S} = V_{DS} = 0$	$\pm I_{G1SS}$			50	μA
Gate 2 - source leakage current	$\pm V_{G2S} = 5 \text{ V}$, $V_{G1S} = V_{DS} = 0$	$\pm I_{G2SS}$			20	nA
Drain current	$V_{DS} = 5 \text{ V}$, $V_{G1S} = 0$, $V_{G2S} = 4 \text{ V}$	I_{DSS}	50		500	μA
Self-biased operating current	$V_{DS} = 5 \text{ V}$, $V_{G1S} = nc$, $V_{G2S} = 4 \text{ V}$	I_{DSP}	7	10	14	mA
Gate 2 - source cut-off voltage	$V_{DS} = 5 \text{ V}$, $V_{G1S} = nc$, $I_D = 20 \mu\text{A}$	$V_{G2S(OFF)}$		1.0		V

Electrical AC Characteristics

$V_{DS} = 5$ V, $V_{G2S} = 4$ V, $f = 1$ MHz, $T_{amb} = 25^\circ\text{C}$, unless otherwise specified

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
Forward transadmittance		$ y_{21s} $	20	24	28	mS
Gate 1 input capacitance		C_{issg1}		2.1	2.5	pF
Feedback capacitance		C_{rss}	20			fF
Output capacitance		C_{oss}	0.9			pF
Power gain	$G_S = 2$ mS, $G_L = 0.5$ mS, $f = 200$ MHz	G_{ps}	26			dB
	$G_S = 3.3$ mS, $G_L = 1$ mS, $f = 800$ MHz	G_{ps}	16.5	20		dB
AGC range	$V_{DS} = 5$ V, $V_{G2S} = 1$ to 4 V, $f = 800$ MHz	ΔG_{ps}	45			dB
Noise figure	$G_S = 2$ mS, $G_L = 0.5$ mS, $f = 200$ MHz	F	1			dB
	$G_S = 3.3$ mS, $G_L = 1$ mS, $f = 800$ MHz	F	1.3			dB
Cross modulation	Input level for $k = 1\%$ @ 0 dB AGC $f_w = 50$ MHz, $f_{unw} = 60$ MHz	X_{mod}	85			$\text{dB}\mu\text{V}$
	Input level for $k = 1\%$ @ 40 dB AGC $f_w = 50$ MHz, $f_{unw} = 60$ MHz	X_{mod}	100			$\text{dB}\mu\text{V}$

Caution for Gate 1 switch-off mode:

No external DC-voltage on Gate 1 in active mode!

Switch-off at Gate 1 with $V_{G1S} < 0.7$ V is feasible.

Using open collector switching transistor (inside of PLL), insert 10 k Ω collector resistor.

TSDF52424

Vishay Telefunken

Dimensions of TSDF52424 in mm

specificati.

Ozone Depleting Substances Policy Statement

It is the policy of **Vishay Semiconductor GmbH** to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.