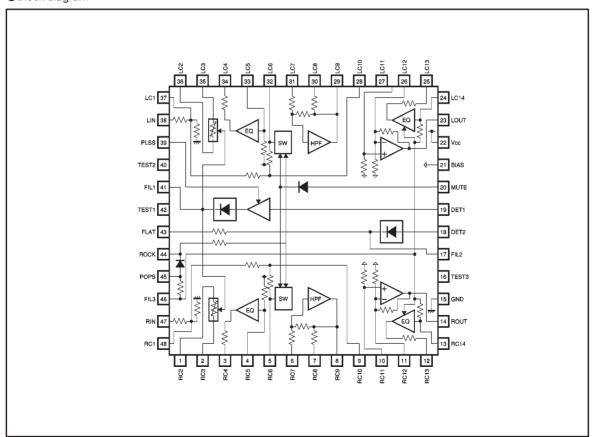
Preset graphic equalizer for headphone stereos BA3840KV

The BA3840KV is a preset graphic equalizer IC for headphone stereos. It combines two equalizer circuit channels on a single chip, and also includes a dynamic sound leak reduction circuit.

Applications


Headphone stereos

Portable CD players

Features

- Four sound quality settings are possible by DC control.
- High-frequency sounds can be cut off based on the volume.
- The sound leak reduction circuit can be turned on and off by DC control.

Block diagram

●Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Applied voltage	Vcc	4.5	V
Power dissipation	Pd	400 *	mW
Operating temperature	Topr	−10~ + 55	°C
Storage temperature	Tstg	−55∼ +125	°C

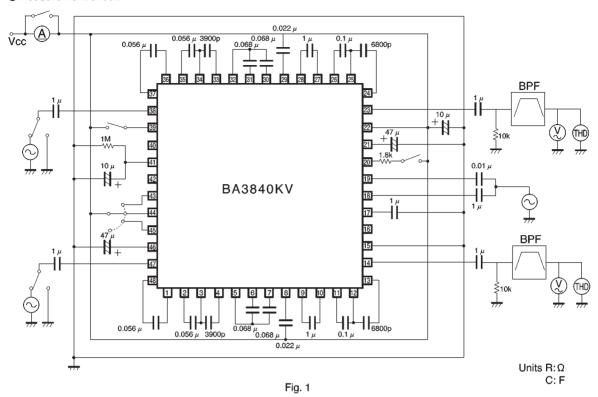
^{*} Reduced by 4mW for each increase in Ta of 1°C over 25°C.

●Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	1.7	_	3.6	٧

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 2V, f = 1kHz, ViN = 100mVrms, flat position on, sound leak reduction circuit off)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply current 1	lcc1	1.6	2.2	2.8	mA	Flat position off, jazz position on
Supply current 2	Icc2	1.75	2.5	3.25	mA	
Supply current 3	Icc3	1.9	2.7	3.5	mA	Sound leak reduction circuit on
Voltage gain	G∨	-17	-14	-11	dB	
Total harmonic distortion	THD	_	0.11	1	%	
Output noise voltage	V _{NO}	_	14	60	μ Vrms	R ₉ =0Ω DIN AUDIO
Low range boost level 1	Bst1	17.5	20	22	dB	f=70Hz Jazz position on
Low range boost level 2	Bst2	5.2	7.2	9.2	dB	f=70Hz Rock position on
Medium range boost level	Bst3	4.7	6.7	8.7	dB	f=1.5kHz Pop position on
High range cutoff level 1	Cut1	6	8	10	dB	f=5kHz Sound leak reduction circuit on V _{DET1} =100mV _{rms}
High range cutoff level 2	Cut2	5	7	9	dB	f=5kHz Sound leak reduction circuit on V _{DET1} =10mV _{rms}
High range cutoff level 3	Cut3	_	3	5	dB	f=5kHz Sound leak reduction circuit on V _{DET1} =1mV _{rms}


Pin descriptions

Pin No.	Pin name	Function	Input/output circuit schematic
38 (47)	LIN (RIN)	Audio signal input	38 47 Primary signal path —►
37 (48)	LC1 (RC1)	Primary signal path Connects to capacitor to set sound leak reduction frequency	37 \$ 48
36 (1)	LC2 (RC2)		36 1
35 (2)	LC3 (RC3)		35 34 33 \$ 2 3 4
34 (3)	LC4 (RC4)		
33 (4)	LC5 (RC5)		रीर रीर
32 (5)	LC6 (RC6)	Connects to capacitor to set low boost frequency	Primary → signal path Primary →
31 (6)	LC7 (RC7)	Primary signal path	30 \$
30 (7)	LC8 (RC8)		\$ 32 5 31 \$ 31
29 (8)	LC9 (RC9)	Connects to capacitor to set high boost frequency	31 6 mgND
28 (9)	LC10 (RC10)	Connects to coupling capacitor	Primary 28 27 \$ signal path → 9 10
27 (10)	LC11 (RC11)		signal path → 9 10
26 (11)	LC12 (RC12)	Connects to capacitor to set mid-range boost frequency	BIAS Vcc Vcc +
25 (12)	LC13 (RC13)		\$ 23 14 26 25 24 11 12 13
24 (13)	LC14 (RC14)		
23 (14)	LOUT (ROUT)	Audio signal output	GND 777

Pin No.	Pin name	Function	Input/output circuit schematic
20	MUTE	Mute signal input	
18	DET2	Detector 2 input	Vcc 20
17	FIL2	Connects to filter capacitor for detector 2	43
43	FLAT	Flat position on/off control	777 GND
19	DET1	Detector 1 input	
39	PLSS	On/off control for sound leak reduction circuit	39 40
40	TEST2	Test pin Leave open normally	41
41	FIL1	Connects to filter capacitor for sound leak reduction circuit	777 GND
42	TEST1	Test pin Leave open normally	42
44	ROCK	Rock position on/off control	\$ \$ \$ \$
45	POPS	Pop position on/off control	45
46	FIL3	Connects to filter capacitor for pop position	46

Pin No.	Pin name	Function	Input/output circuit schematic
16	TEST3	Test pin Leave open normally	Vcc Vcc T/// GND
22	Vcc	Voltage supply	+ Vcc <u>22</u>
21	BIAS	Connects to bypass capacitor for reference voltage	21
15	GND	Ground substrate	777 GND

Measurement circuit

Circuit operation

(1) Preset graphic equalizer

1) Flat position

By pulling up the FLAT pin to V_{CC} , frequency characteristics become flat.

2) Rock position

By pulling up the ROCK pin to $V_{\rm CC}$, low frequencies are boosted by about 7dB. High frequencies are also adjusted to balance the subjectively heard sound.

3) Pop position

By pulling up the POPS pin to $V_{\rm CC}$, mid-range frequencies are boosted by about 6dB and combined with the rock position characteristics.

4) Jazz position

By open-circuiting the above three pins, low frequencies are boosted by 14dB. High frequencies are also adjusted to balance the subjectively heard sound.

(2) Sound leak reduction circuit

If the stereo output signal from the power amplifier is mixed and input to the DET 1 pin and the PLSS pin pulled up to V_{CC} , the sound frequencies close to 5kHz that leak easily will be cut off in accordance with the volume.

(3) MUTE pin

If the MUTE pin is pulled up to V_{CC} , the effective graphic equalizer position will be FLAT regardless of the selected position. (However, if the pop position has been selected, the mid-range boost will be maintained.)

(4) DET 2 pin

If the stereo output signal from the power amplifier is mixed and input to the DET 2 pin, the effective graphic equalizer position will be FLAT during high level output regardless of the selected position. (However, if the pop position has been selected, the mid-range boost will be maintained.)

Application example

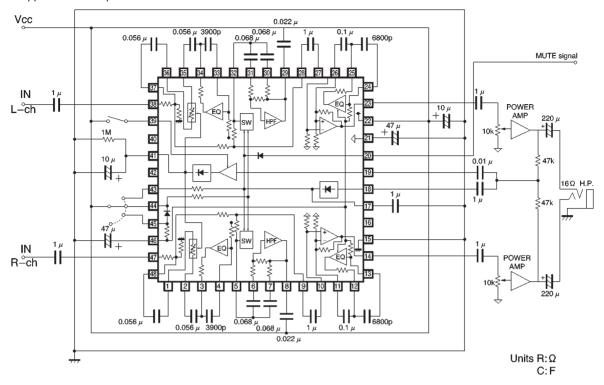


Fig. 2

Operation notes

(1) Graphic equalizer positions

When selecting a position, be sure to open-circuit the non-selected pins.

If any are pulled down to ground, over-current can result.

(2) Test pins

The test pins are all connected to internal circuits. They are not N.C. pins, therefore open-circuit them, do not ground them.

(3) Recommended operating conditions

Furthermore, if a condition for an electrical characteristic is not satisfied while within the ambient operating temperature range, the standard value for that electrical characteristic cannot be guaranteed. Despite this, however, no abrupt changes to the electrical characteristic will occur.

Electrical characteristic curves

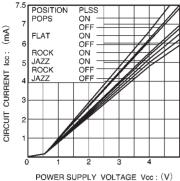
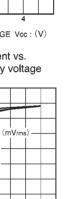


Fig. 3 Supply current vs. power supply voltage

CUT 1

CUT 2 15 - CUT 3 --7,5


Voet

60

f=5kHz V_{IN}=-20dBV

CUT (dB)

FILTERING VOLTAGE LEVEL

POWER SUPPLY VOLTAGE Vcc : (V)

Fig. 6 Sound leakage reduction vs. power supply voltage

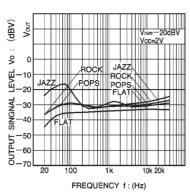


Fig. 4 Output voltage level vs. frequency (1)

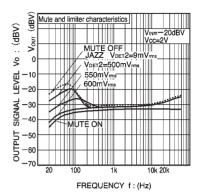
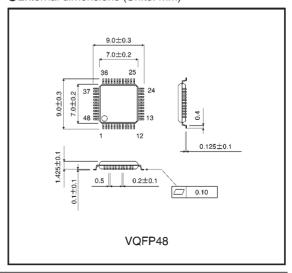



Fig. 5 Output signal level vs. frequency (2)

External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

