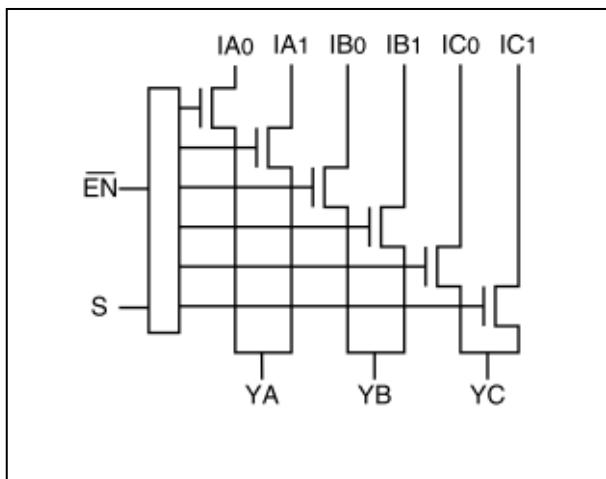


3-Channel 2:1 Mux/DeMux, Enable Low 1.8V/2.5V/3.3V, High-Bandwidth, Hot Plug


Features

- Near-Zero propagation delay
- 5-ohm switches connect inputs to outputs
- High signal passing bandwidth (500 MHz)
- Beyond Rail-to-Rail switching
 - 0 to 5V switching with 3.3V power supply
 - 0 to 3.3V switching with 2.5V power supply
- 5V I/O tolerant with supply in OFF and ON state
- 1.8V, 2.5V and 3.3V supply voltage operation
- Hot Insertion Capable
- Industrial Operating Temperature: -40 °C to +85 °C
- 8kV ESD Protection (human body model)
- Latch-up Performance: >200mA per JESD17
- Packaging (Pb-free & Green available):
 - 16-pin 173-mil wide plastic TSSOP (L)

Pin Configuration

Block Diagram

Description

The PI3CH360 is a 3-channel, 2:1 Multiplexer/Demultiplexer with 3-state outputs. The switch introduces no additional ground bounce noise or propagation delay.

The PI3CH360 device is very useful in switching signals that have high bandwidth (500 MHz).

Pin Description

Pin No	Pin Name	Description
1	S	Select Inputs
2, 3, 7	NC	Not connected
4, 5, 6	YA, YB, YC	Data Outputs
8	GND	Ground
9, 10, 11, 12, 13, 14	IC1, IB1, IA1, IC0, IB0, IA0	Data Inputs
15	\overline{EN}	Enable
16	VCC	Power

Truth Table⁽¹⁾

\overline{EN}	S	YA	YB	YC	Function
H	X	Hi-Z	Hi-Z	Hi-Z	Disable
L	L	IA0	IB0	IC0	$S=0$
L	H	IA1	IB1	IC1	$S=1$

Note:

1. H=High Voltage Level
L=Low Voltage Level

Maximum Ratings

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied.....	-40 °C to +85 °C
Supply Voltage to Ground Potential.....	-0.5V to +4.6V
DC Input Voltage	-0.5V to +6.0V
DC Output Current.....	120mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics

3.3V supply (Over operating range, $T_A = -40 \sim +85^\circ\text{C}$, $V_{CC}=3.3\text{V} \pm 10\%$, unless otherwise noted)

Symbol	Description	Test Conditions ⁽¹⁾	Min	Typ ⁽²⁾	Max	Unit
V_{IH}	Control Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0	-	-	V
V_{IL}	Control Input LOW Voltage	Guaranteed Logic LOW Level	-0.5	-	0.8	V
V_{IK}	Clamp Diode Voltage	$V_{CC} = \text{Min.}$, $I_{IN} = -18\text{mA}$	-	-1.3	-1.8	V
I_{IH}	Input HIGH Current	$V_{CC} = \text{Max.}$, $V_{IN} = V_{CC}$	-	-	± 1	μA
I_{IL}	Input Low Current	$V_{CC} = \text{Max.}$, $V_{IN} = \text{GND}$	-	-	± 1	μA
I_{OZH}	High-Impedance Current ⁽³⁾	$0 \leq Y, In \leq V_{CC}$	-	-	± 1	μA
R_{ON}	Switch On-Resistance ⁽⁴⁾	$V_{CC} = \text{Min.}$, $V_{IN} = 0.0\text{V}$ $I_{ON} = -48\text{mA}$ or -64mA	-	4	6	Ω
		$V_{CC} = \text{Min.}$, $V_{IN} = 3.6\text{V}$ $I_{ON} = -15\text{mA}$	-	5	8	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $V_{CC} = 3.3\text{V}$, $TA = 25^\circ\text{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Measured by the voltage drop between Y and In pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (Y, In) pins.

2.5V supply (Over operating range, $T_A = -40 \sim +85^\circ\text{C}$, $V_{CC}=2.5\text{V} \pm 10\%$, unless otherwise noted)

Symbol	Description	Test Conditions ⁽¹⁾	Min	Typ ⁽²⁾	Max	Unit
V_{IH}	Control Input HIGH Voltage	Guaranteed Logic HIGH Level	1.8	-	$V_{CC}+0.3$	V
V_{IL}	Control Input LOW Voltage	Guaranteed Logic LOW Level	-0.3	-	0.8	V
V_{IK}	Clamp Diode Voltage	$V_{CC} = \text{Max.}$, $I_{IN} = -6\text{mA}$	-	-0.7	-1.8	V
I_{IH}	Input HIGH Current	$V_{CC} = \text{Max.}$, $V_{IN} = V_{CC}$	-	-	± 1	μA
I_{IL}	Input Low Current	$V_{CC} = \text{Max.}$, $V_{IN} = \text{GND}$	-	-	± 1	μA
I_{OZH}	High-Impedance Current ⁽³⁾	$0 \leq Y, In \leq V_{CC}$	-	-	± 1	μA
R_{ON}	Switch On-Resistance ⁽⁴⁾	$V_{CC} = \text{Min.}$, $V_{IN} = 0.0\text{V}$ $I_{ON} = -48\text{mA}$	-	4	8	Ω
		$V_{CC} = \text{Min.}$, $V_{IN} = 2.25\text{V}$ $I_{ON} = -15\text{mA}$	-	7	14	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $V_{CC} = 2.5\text{V}$, $TA = 25^\circ\text{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Measured by the voltage drop between Y and In pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (Y, In) pins.

1.8V supply (Over operating range, $T_A = -40 \sim +85^\circ\text{C}$, $V_{CC} = 1.8\text{V} \pm 10\%$, unless otherwise noted)

Symbol	Description	Test Conditions ⁽¹⁾	Min	Typ ⁽²⁾	Max	Unit
V_{IH}	Control Input HIGH Voltage	Guaranteed Logic HIGH Level	1.2	-	$V_{CC} + 0.3$	V
V_{IL}	Control Input LOW Voltage	Guaranteed Logic LOW Level	-0.3	-	0.6	V
V_{IK}	Clamp Diode Voltage	$V_{CC} = \text{Min.}$, $I_{IN} = -18\text{mA}$	-	-0.7	-1.8	V
I_{IH}	Input HIGH Current	$V_{CC} = \text{Max.}$, $V_{IN} = V_{CC}$	-	-	± 1	μA
I_{IL}	Input Low Current	$V_{CC} = \text{Max.}$, $V_{IN} = \text{GND}$	-	-	± 1	μA
I_{OZH}	High-Impedance Current ⁽³⁾	$0 \leq Y, In \leq V_{CC}$	-	-	± 1	μA
R_{ON}	Switch On-Resistance ⁽⁴⁾	$V_{CC} = \text{Min.}$, $V_{IN} = 0.0\text{V}$ $I_{ON} = -48\text{mA}$	-	4	8	Ω
		$V_{CC} = \text{Min.}$, $V_{IN} = 1.6\text{V}$ $I_{ON} = -15\text{mA}$	-	10	25	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $V_{CC} = 1.8\text{V}$, $TA = 25^\circ\text{C}$ ambient and maximum loading.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Measured by the voltage drop between Y and In pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (Y, In) pins.

Capacitance ($T_A = 25^\circ\text{C}$, $f=1\text{MHz}$)

Symbol ⁽¹⁾	Description	Test Conditions	Typ ⁽²⁾	Unit
C_{IN}	Input Capacitance	$V_{IN} = 0\text{V}$	3.0	pF
$C_{OFF(IN)}$	In Capacitance, Switch Off		3.5	
$C_{OFF(Y)}$	Y Capacitance, Switch Off		7.0	
C_{ON}	Y/In Capacitance, Switch On		10.0	

Note:

1. These parameters are determined by device characterization but are not production tested

Power Supply Characteristics

Symbol	Description	Test Conditions ⁽¹⁾	Min	Typ ⁽²⁾	Max	Unit
I_{CC}	Quiescent Power Supply Current	$V_{CC} = 3.6\text{V}$, $V_{IN} = \text{GND}$ or V_{CC}	-	0.2	0.5	mA

Note:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $+25^\circ\text{C}$ ambient.

Dynamic Electrical Characteristics

(Over Operating Range, $T_A = -40 \sim +85^\circ\text{C}$, $V_{CC} = 3.3\text{V} \pm 10\%$)

Symbol	Description	Test Conditions	Min	Typ	Max	Unit
X_{TALK}	Crosstalk	See test Diagram	-	-60	-	dB
O_{IRR}	Off-Isolation	See test Diagram	-	-60	-	
BW	-3dB Bandwidth	See test Diagram	-	500	-	

Switch Characteristics

Over 3.3V Operating Range

Symbol	Description	Test Conditions	Min	Typ	Max	Unit
t_{PLH}, t_{PHL}	Propagation Delay ^(2, 3) Y to In, In to Y	See test Diagram	-	-	0.3	ns
t_{PZH}, t_{PZL}	Enable Time S or \overline{EN} to Y or In	See test Diagram	1.5	-	9.0	
t_{PHZ}, t_{PLZ}	Disable Time S or \overline{EN} to Y or In	See test Diagram	1.5	-	9.0	

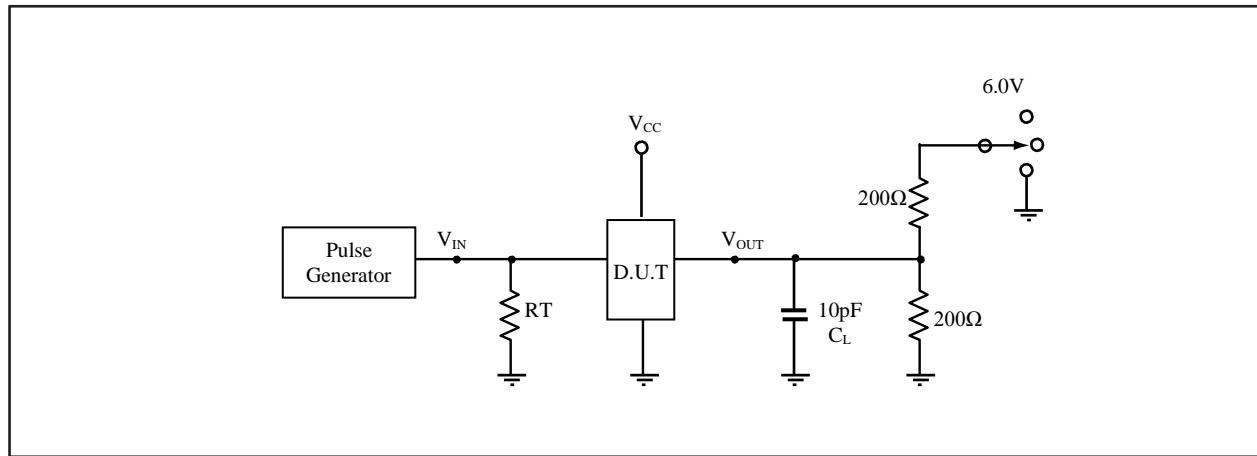
Note:

1. See test circuit and waveforms.
2. This parameter is guaranteed but not tested on Propagation Delays.
3. The switch contributes no propagation delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.30ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Over 2.5V Operating Range

Symbol	Description	Test Conditions ⁽¹⁾	Min	Typ	Max	Unit
t_{PLH}, t_{PHL}	Propagation Delay ^(2, 3) Y to In, In to Y	See test Diagram	-	-	0.3	ns
t_{PZH}, t_{PZL}	Enable Time S or \overline{EN} to Y or In	See test Diagram	1.5	-	15.0	
t_{PHZ}, t_{PLZ}	Disable Time S or \overline{EN} to Y or In	See test Diagram	1.5	-	12.0	

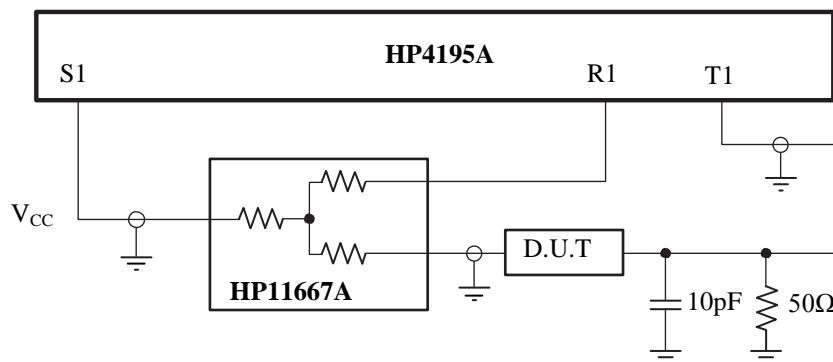
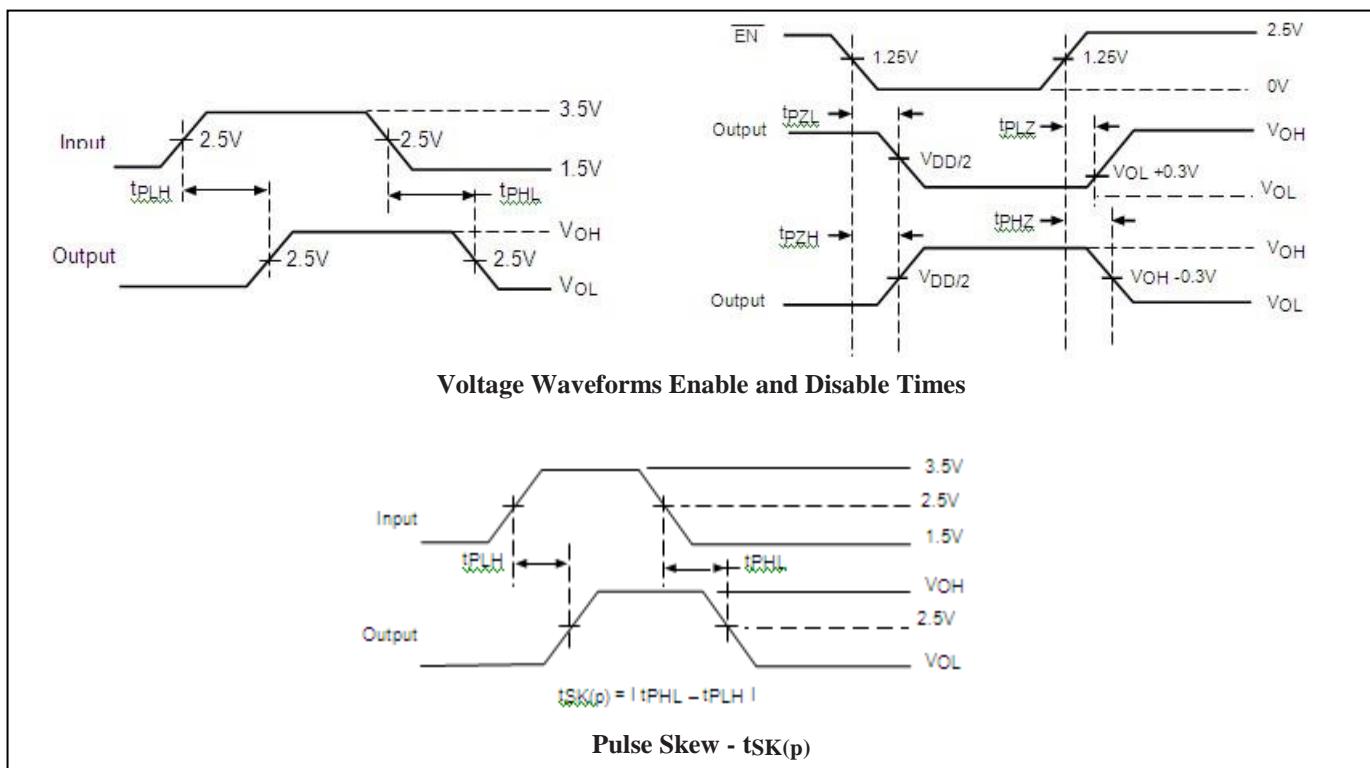
Note:


1. See test circuit and waveforms.
2. This parameter is guaranteed but not tested on Propagation Delays.
3. The switch contributes no propagation delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.30ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Over 1.8V Operating Range

Symbol	Description	Test Conditions ⁽¹⁾	Min	Typ	Max	Unit
t_{PLH}, t_{PHL}	Propagation Delay ^(2, 3) Y to In, In to Y	See test Diagram	-	-	0.3	ns
t_{PZH}, t_{PZL}	Enable Time S or \overline{EN} to Y or In	See test Diagram	1.5	-	25.0	
t_{PHZ}, t_{PLZ}	Disable Time S or \overline{EN} to Y or In	See test Diagram	1.5	-	12.0	

Note:



1. See test circuit and waveforms.
2. This parameter is guaranteed but not tested on Propagation Delays.
3. The switch contributes no propagation delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.30ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Test Circuit for Electrical Characteristics

Notes:

1. C_L = Load capacitance: includes jig and probe capacitance.
2. R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
3. All input impulses are supplied by generators having the following characteristics: $PRR \leq 10$ MHz, $Z_0 = 50\text{-ohm}$, $t_R \leq 2.5\text{ns}$, $t_F \leq 2.5\text{ns}$.
4. The outputs are measured one at a time with one transition per measurement.

Switch Positions

Test	Switch
tPLZ, tPZL	6.0V
tPHZ, tPZH	GND
Prop Delay	Open

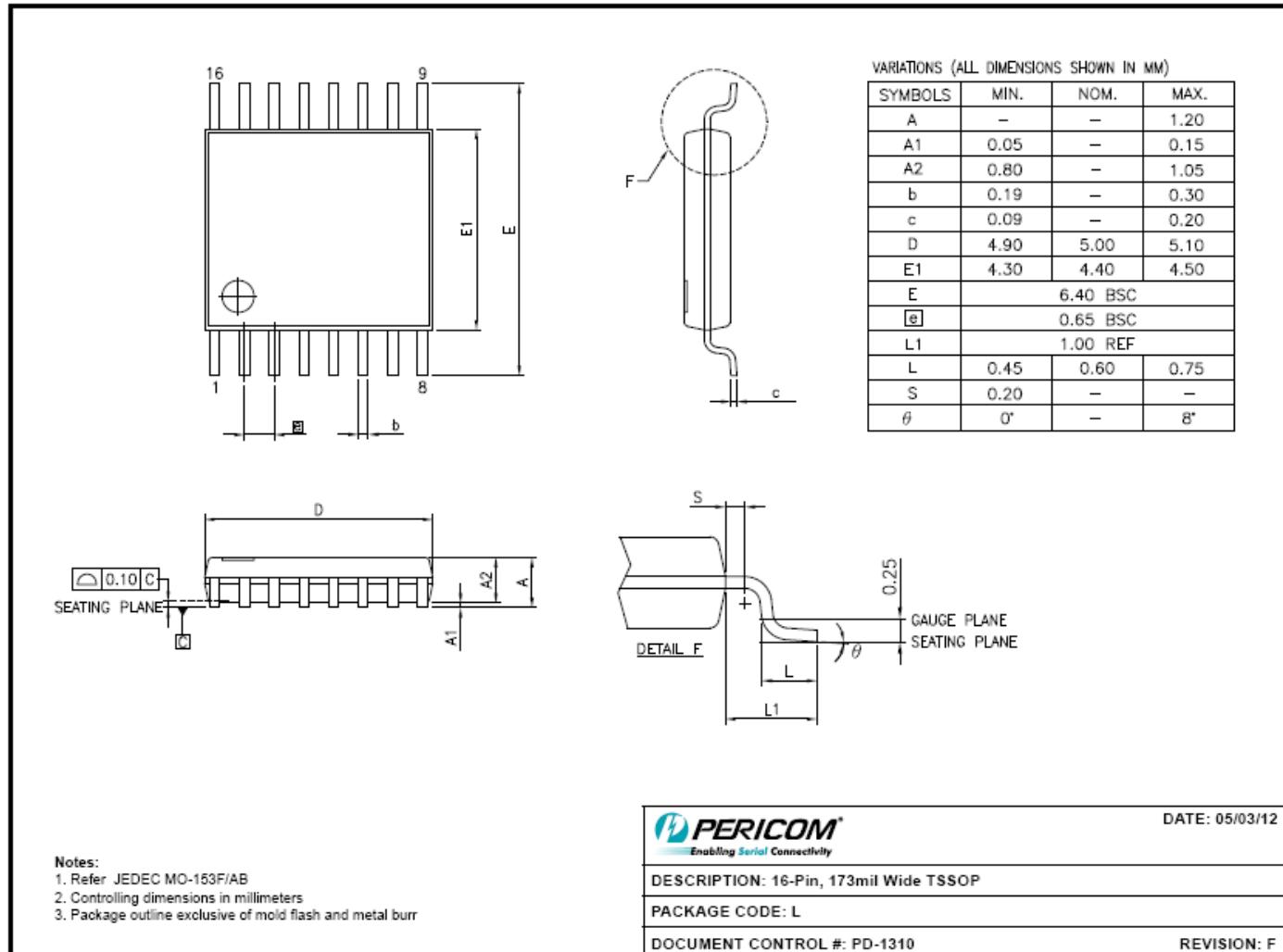
Test Circuit for Dynamic Electrical Characteristics

Switching Waveforms

Applications Information

Logic Inputs

The logic control inputs can be driven up to 3.6V regardless of the supply voltage. For example, given a +3.3V supply, \overline{EN} may be driven LOW to 0V and HIGH to 3.6V. Driving \overline{EN} Rail-to-Rail® minimizes power consumption.


Hot Insertion

For Datacom and Telecom applications that have ten or more volts passing through the backplane, a high voltage from the power supply may be seen at the device input pins during hot insertion. The PI3CH360 devices have maximum limits of 6V and 120mA for 20ns. If the power is higher or applied for a longer time or repeatedly reaches the maximum limits, the devices can be damaged.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Mechanical Information

16-Pin TSSOP(L)

Ordering Information

Part No.	Package Code	Package
PI3CH360LE	L	Lead free and Green 16-Pin TSSOP
PI3CH360LEX	L	Lead free and Green 16-Pin TSSOP, Tape & Reel

Note:

- E = Pb-free & Green
- Adding X Suffix= Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

Pericom reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. Pericom does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom product. The company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom.