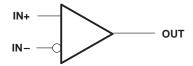

SLCS120A - AUGUST 1993 - REVISED DECEMBER 1993

- Low-Voltage and Single-Supply Operation
 V_{CC} = 2 V to 7 V
- Common-Mode Voltage Range That Includes Ground

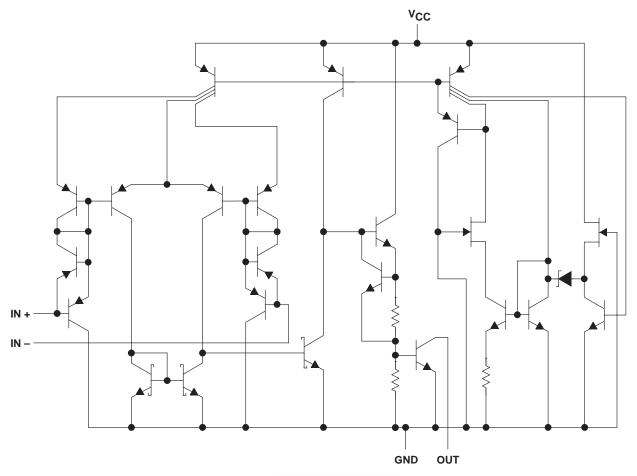
description

The TL393 is a dual differential comparator built using a new Texas Instruments-developed bipolar process. The TL393 is intended as an enhanced alternative to the industry-standard LM393 in circuits with supply-voltage limits of 7 V.

The new bipolar process allows the TL393 to perform with lower supply-current requirements than the LM393 (0.7 mA typical) while still providing a faster response time than the older device.

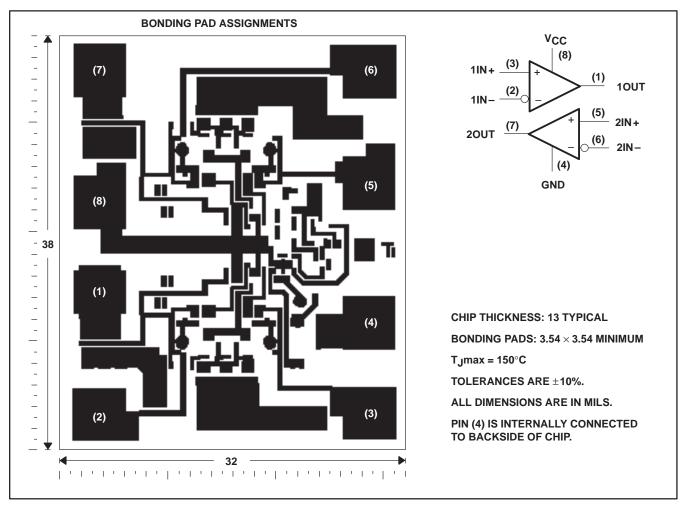

Package availability for this device includes the TSSOP (thin-shrink small-outline package). With a maximum thickness of 1.1 mm and a package area that is 25% smaller than the standard surface-mount package, the TSSOP is ideal for high-density circuits, particularly in hand-held and portable equipment.

AVAILABLE OPTIONS


		SUPPLY	RESPONSE TIME	PAC	CHIP FORM		
	TA	CURRENT (TYP)	(TYP)	SMALL OUTLINE (D)	PLASTIC DIP (P)	TSSOP (PW)†	(Y)
	-40°C to 105°C	0.7 mA	0.65 μs	TL393ID	TL393IP	TL393IPWLE	TL393Y

[†] The PW packages are only available left-ended taped and reeled (e.g., TL393IPWLE).

symbol (each comparator)


equivalent schematic (each comparator)

COMPONENT COUNT							
Transistors	48						
Resistors	5						
Diodes	7						
Epi-FETs	2						

TL393Y chip information

This chip, when properly assembled, displays characteristics similar to the TL393. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

TL393, TL393Y **DUAL DIFFERENTIAL COMPARATORS**

SLCS120A - AUGUST 1993 - REVISED DECEMBER 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Differential input voltage, V _{ID} (see Note 2)	7 V
Input voltage, V _I (any input)	7 V
Output voltage, V _O	7 V
Output current, IO (each output)	20 mA
Duration of short-circuit current to GND (see Note 3)	unlimited
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 105°C
Storage temperature range	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network GND.
 - 2. Differential voltages are at IN+ with respect to IN -.
 - 3. Short circuits from the outputs to V_{CC} can cause excessive heating and eventual destruction of the chip.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW
PW	525 mW	4.2 mW/°C	336 mW	273 mW

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, VCC	2	7	V
Operating free-air temperature, T _A	-40	105	°C

SLCS120A - AUGUST 1993 - REVISED DECEMBER 1993

electrical characteristics, $V_{CC} = 5 V$ (unless otherwise noted)

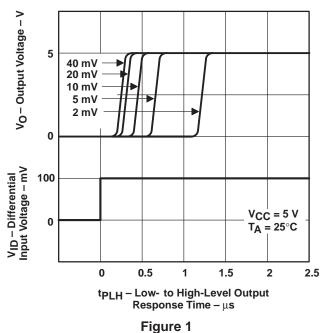
PARAMETER		TECT O	ONDITIONS	T .		UNIT		
	PARAMETER	1231 C	ONDITIONS	T _A †	MIN	TYP	MAX	UNIT
\/.0	Input offset voltage	\\o = 1.4.\\	Via – Vianmin	25°C		1.5	5	m\/
VIO	Input offset voltage	VO = 1.4 V,	VIC = VICRmin	Full range			9	mV
\/.o.=				25°C	0 to V _{CC} -1.5	0 to V _{CC} -1.2		
VICR	Common-mode input voltage range			Full range	0 to V _{CC} –2			V
\/a.	Low-level output voltage	$V_{ID} = -1 V$,	I _{OL} = 1 mA	25°C		70	300	m\/
VOL	Low-level output voltage	$V_{ID} = -1 V$,	I _{OL} = 4 mA	Full range		200	700	IIIV
1	Input offset current	V _O = 1.4 V		25°C		5	50	nA
lio	Input offset current			Full range			150	
	Input bing ourrent	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		25°C		-40	-250	
ΙΒ	Input bias current	V _O = 1.4 V		Full range			-400	IIA
lau	High lovel output outropt	$V_{ID} = 1 V$,	V _{OH} = 3 V	25°C		0.1		nA nA mA μA
ЮН	High-level output current	V _{ID} = 1 V,	V _{OH} = 5 V	Full range			100	IIA
lOL	low-level output current	$V_{ID} = -1 V$,	V _{OL} = 1.5 V	25°C	6			mA
	High lovel cumply current			25°C		140	200	^
ICCH	High-level supply current	VO = VOH		Full range			300	μА
la a .	Low level cumply current	$V_O = V_{OL}$		25°C		0.8	1	A
ICCL	Low-level supply current			Full range			1.2	mA

[†] Full range is –40°C to 105°C.

switching characteristics, V_{CC} = 5 V, C_L = 15 pF, T_A = 25°C

PARAMETER	TEST CON	DITIONS	TL393			LINUT	
PARAMETER	TEST CON	DITIONS	MIN	TYP	YP MAX	VINIT	
Response time	100-mV input step with 5-mV overdrive,	R_L connected to 5 V through 5.1 $k\Omega$		0.65			
iveshouse time	TTL-level input step,	R_L connected to 5 V through 5.1 $k\Omega$		0.2	·	μs	

electrical characteristics, V_{CC} = 5 V, T_A = 25°C (unless otherwise noted)


	PARAMETER	TEST CONDITIONS		UNIT		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$V_0 = 1.4 V,$		1.5	5	mV
VICR	Common-mode input voltage range		0 to V _{CC} –1.5	0 to V _{CC} -1.2		V
VOL	Low-level output voltage	$V_{ID} = -1 V$, $I_{OL} = 1 \text{ mA}$		70	300	mV
lio	Input offset current	V _O = 1.4 V		5	50	nA
I _{IB}	Input bias current	V _O = 1.4 V		-40	-250	nA
IOH	High-level output current	$V_{ID} = 1 \text{ V}, V_{OH} = 3 \text{ V}$		0.1		nA
lOL	low-level output current	$V_{ID} = -1 \text{ V}, V_{OL} = 1.5 \text{ V}$	6			mA
ICCH	High-level supply current	Vo = VoH	·	140	200	μΑ
ICCL	Low-level supply current	$V_O = V_{OL}$		0.8	1	mA

switching characteristics, V_{CC} = 5 V, C_L = 15 pF, T_A = 25°C

PARAMETER	TEST COM	TEST CONDITIONS TL393Y				UNIT
PARAMETER	TEST CONI	BITIONS	MIN	TYP	MAX	UNII
Response time	100-mV input step with 5-mV overdrive,	RL connected to 5 V through 5.1 k Ω		0.65		
Response time	TTL-level input step,	R_L connected to 5 V through 5.1 $k\Omega$		0.2		μS

TYPICAL CHARACTERISTICS

LOW- TO HIGH-LEVEL OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES

HIGH- TO LOW-LEVEL OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES

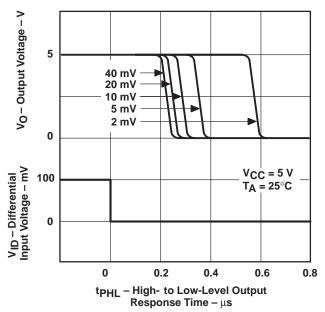


Figure 2

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated