

SOP-8

Pin Definition:

1. IN 8. OUT
2. N/C 7. WI
3. RO 6. RADJ
4. GND 5. RD

General Description

TS4268 is a 5V low-drop fixed-voltage regulator. The maximum input voltage is 45 V. It can deliver an output current of at least 180mA. TS4268 is short-circuit proof and features temperature protection that disables the circuit in the event of impermissibly high temperatures. The watchdog function is disabled as a function of the load, so that a controller is not interrupted during sleep mode by a watchdog reset.

Application Description

TS4268 regulates an input voltage in the range 5.5V ~ 45V. In the event of an output voltage $V_{out} < V_{RT}$, a reset signal is generated. The wiring of the reset switching threshold input enables the value of V_{RT} to be reduced. The reset delay time can be adjusted using an external capacitor. The integrated watchdog monitors the connected active controller. If there is no positive-going edge at the watchdog input, the reset output is set to low. The reset delay capacitor provides a wide adjustment range for the pulse repetition time. The watchdog function is only activated if the load exceeds 8mA. This ensures that a microcontroller is not activated during power-down and the current drain is not increased. The IC is protected against overload and over temperature.

Features

- Output voltage tolerance $<\pm 2\%$
- Very low current consumption
- Low-drop voltage
- Watchdog
- Settable reset threshold
- Over temperature protection
- Reverse polarity protection
- Short-circuit proof
- Suitable for use in automotive electronics
- Wide temperature range

Pin Description

Pin No.	Symbol	Pin Description
1	IN	Input Voltage. block to ground directly with ceramic capacitor
2	N/C	Not Connected
3	RO	Reset Output. the open collector output is connected to the 5V output via an integrated resistor of $30\text{k}\Omega$
4	GND	Ground
5	RD	Reset Delay. connect a capacitor to ground for delay time adjustment.
6	RADJ	Reset Switching Threshold. for setting the switching threshold, output to ground with voltage divider. If this input is connected to ground, the reset is triggered at an output voltage of 4.5V.
7	WI	Watchdog Input. positive-edge-triggered input for monitoring a microcontroller.
8	OUT	Output Voltage. block to ground with 22uF capacitor, $\text{ESR} < 3\Omega$

Ordering Information

Part No.	Package	Packing
TS4268CS50 RL	SOP-8	2.5Kpcs / 13" Reel

Absolute Maximum Ratings

Parameter	Symbol	min.	max.	Unit	Notes	
Input						
Input voltage	V_{IN}	-30	45	V		
Input current	I_{IN}	Internally limited				
Reset Output						
Voltage	V_{RES}	-0.3	7	V		
Current	I_{RES}	Internally limited				
Reset Delay						
Voltage	V_{RD}	-0.3	7	V		
Current	I_{RD}	Internally limited				
Watchdog						
Watchdog input	V_{WI}	-0.3	7	V		
Reset Input						
Reset threshold	V_{RT}	-0.3	7	V		
Output						
Output voltage	V_{OUT}	-0.3	7	V		
Output current	I_{OUT}	Internally limited				
Ground						
Current	I_Q	-100	50	mA		
Temperatures						
Junction temperature	T_J	-40	150	°C		
Storage temperature	T_{STG}	-50	150			

Operation Range

Parameter	Symbol	min.	max.	Unit	Notes
Input voltage	V_{IN}	--	45	°C	
Junction temperature	T_J	-40	150		

Thermal Resistance

Parameter	Symbol	min.	max.	Unit	Notes
Junction to ambient (soldered)	$R_{\theta JA}$	--	185	°C/W	(note 1)
Junction pin	$R_{\theta JP}$	--	72		

1. Package mounted on PCB 80 x 80 x 1.5mm3, footprint only, zero airflow.
2. Measure to pin 2

Operation at up to the maximum junction temperature of 150°C is possible in principle. Note, however, operation at the maximum permitted rating could be affected the reliability of the device.

Electrical Characteristics

($V_{IN}=13.5V$, $-40 \leq T_J \leq 125^{\circ}C$, unless otherwise specified.)

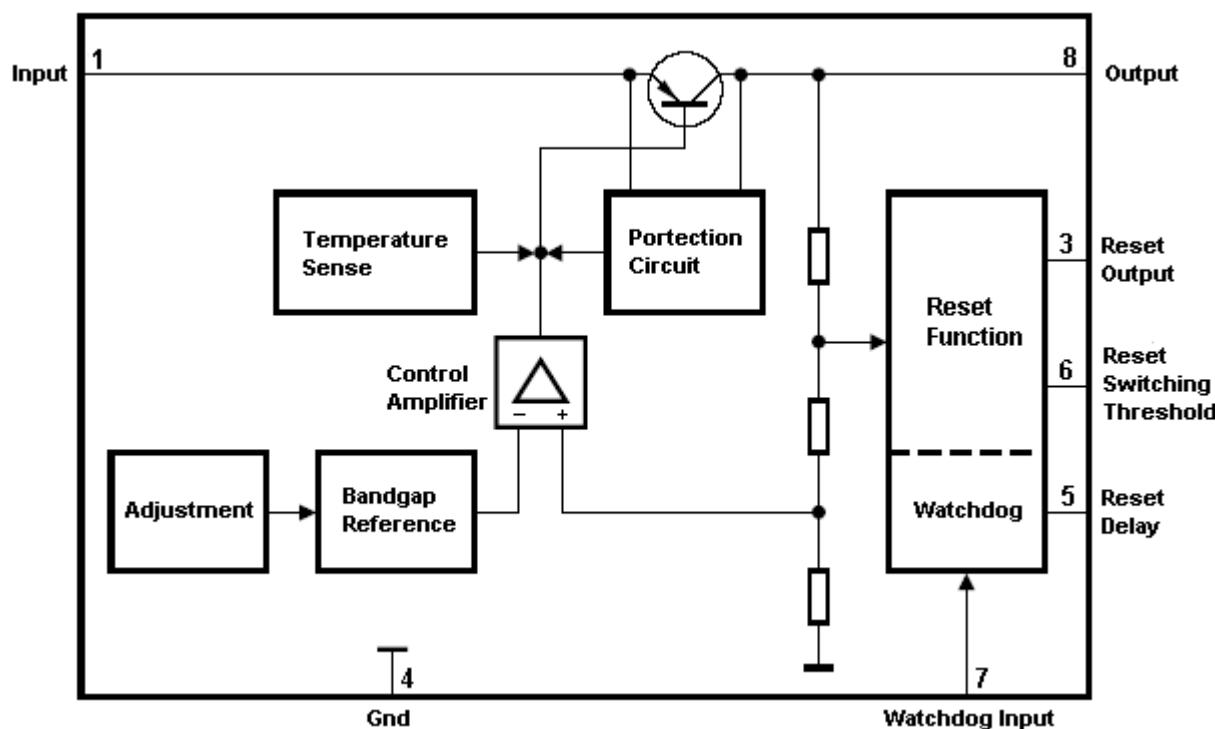
Parameter	Test Conditions	Min	Typ	Max	Unit
Output Voltage	$5mA \leq I_L \leq 150mA$, $6V \leq V_{IN} \leq 28V$	4.90	5.00	5.10	V
Current Limit	$V_{OUT} = 0$	180	250	--	mA
Quiescent Current	$I_Q = 0mA$ $I_Q = 100mA$	-- --	300 13	400 20	uA mA
Dropout Voltage (note 1)	$I_L=150mA$	--	250	500	mV
Line Regulation	$6V \leq V_{IN} \leq 28V$, $I_L=150mA$	--	10	30	mV
Load Regulation	$5mA \leq I_L \leq 150mA$	--	10	30	mV

Reset Function

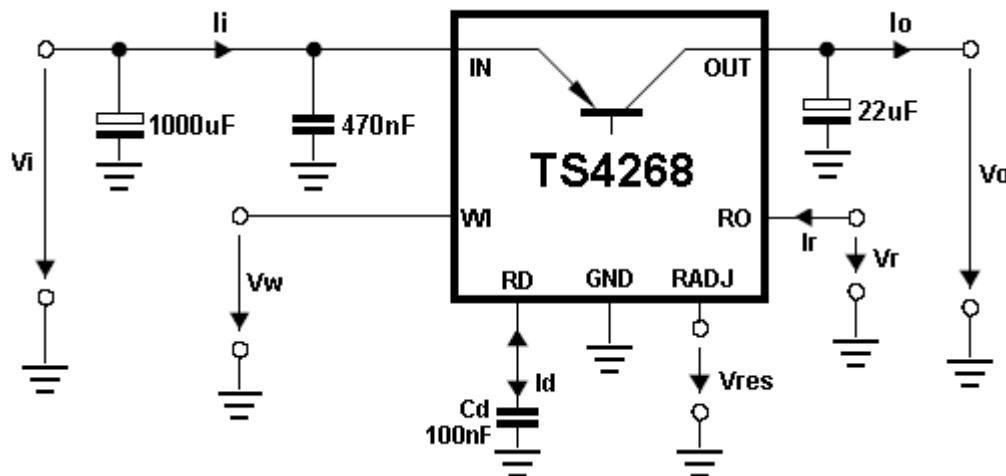
Reset threshold		4.20	4.50	4.80	V
Reset adjust threshold		1.28	1.35	1.45	V
Reset low voltage	1mA external	--	0.20	0.50	V
Saturation voltage	$V_{OUT} < V_{RT}$	--	0.03	0.10	V
Charging current	$VRD < 1.0V$	5	12	18	uA
Upper reset timing threshold		1.4	1.8	2.2	V
Reset delay time	$CRD = 100nF$	10	15	25	mS
Reset reaction time	$CRD = 100nF$	--	2	--	uS
Pull-up	With resp. to V_{OUT}	18	30	46	$K\Omega$
Lower reset timing threshold		0.20	0.40	0.55	V

Watchdog Input

Discharge current	$VRD < 1.0V$	1.5	3.5	5.2	uA
Charging current	$VRD < 1.0V$	5	12	18	uA
Upper timing threshold		1.4	1.8	2.2	V
Lower timing threshold		0.20	0.40	0.55	V
Watchdog period	$CRD = 100nF$	30	55	75	mS
Watchdog trigger time	$CRD = 100nF$	25	40	60	mS
Activating current	Activates watchdog	2	8	15	mA
Slew rate	from 20% up to 80% V_{OUT}	5	--	--	V/us


Note 1: Drop voltage = $V_{IN}-V_{OUT}$ (measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input)

Note 2: The reset output is low in range from $V_{OUT} = 1V$ to $V_{OUT,RT}$


Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element. If the externally scaled down output voltage at the reset threshold input drops below 1.35 V, the external reset delay capacitor is discharged by the reset generator. If the voltage on the capacitor reaches the lower threshold V_{ST} , a reset signal is generated on the reset output and not cancelled again until the upper threshold voltage is exceeded. If the reset threshold input is connected to GND, reset is triggered at an output voltage of 4.5 V. A connected microcontroller is monitored by the watchdog logic. If pulses are missing, the rest output is set to low. The pulse sequence time can be set within a wide range with the reset delay capacitor. TS4268 is also incorporates a member of internal circuits for protection against:

- Over load
- Over temperature
- Reverse polarity

Block Diagram

Test Circuit

Reset Timing

The power-on reset delay time is defined by charging time of an external capacitor C_D which can be calculated as follow:

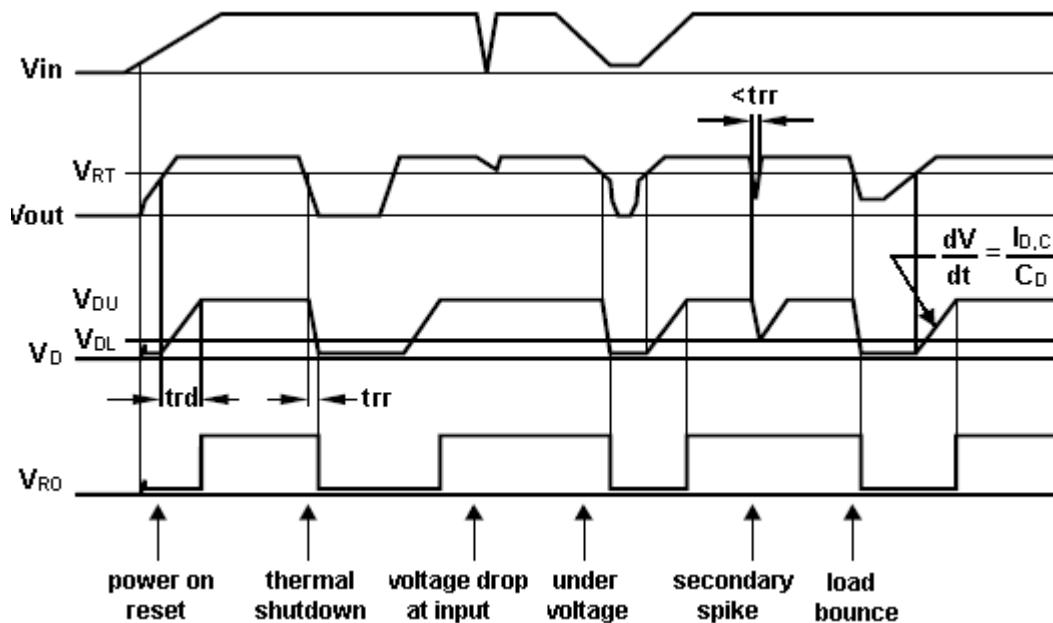
$$C_D = (\Delta t_{rd} \times I_{D,C}) / \Delta V$$

Definitions:

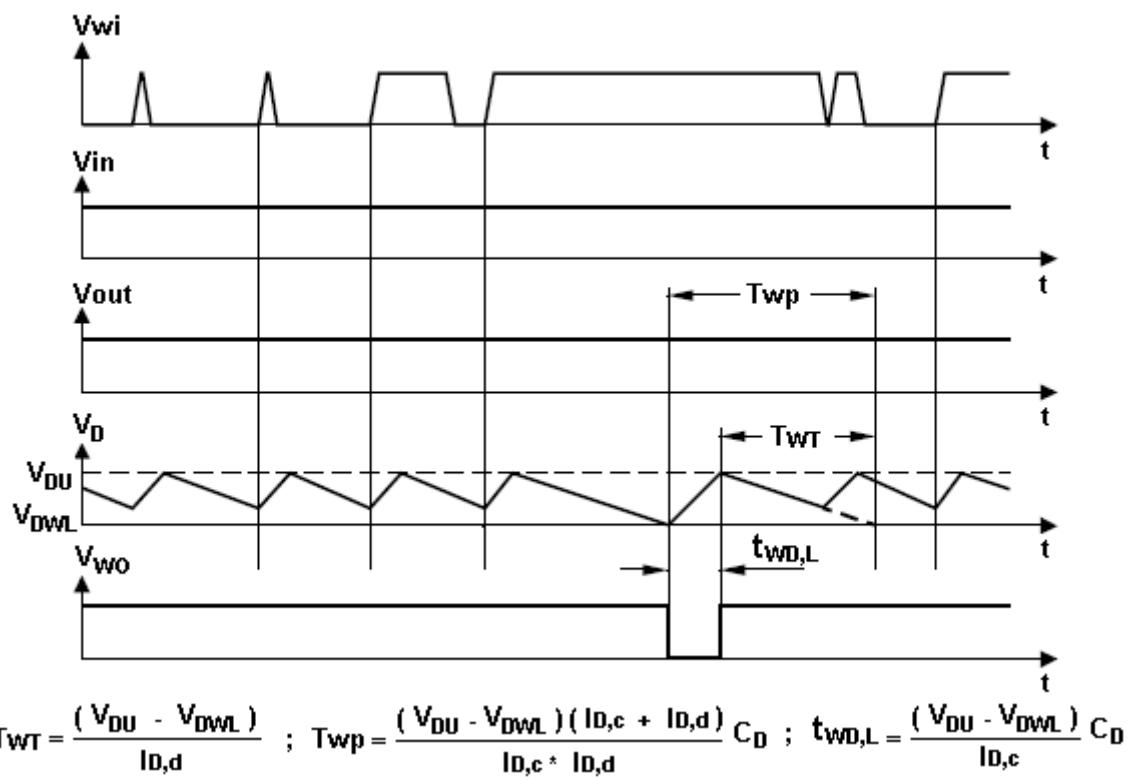
C_D = delay capacitor

Δt_{rd} = delay time

$I_{D,C}$ = charge current, typical 12uA


ΔV = V_{DU} , typical 1.8 V

V_{DU} = upper delay switching threshold at C_D for reset delay time


The reset reaction time t_{rr} is the time it takes the voltage regulator to set the reset out LOW after the output voltage has dropped below the reset threshold. It is typically 1uS for delay capacitor of 47nF. For other values for C_D the reaction time can be estimated using the following equation:

$$t_{rr} \approx 20 \text{ s/F} \times C_D$$

Timing (Watchdog Disabled)

Timing (Watchdog Function)

$$T_{WT} = \frac{(V_{DU} - V_{DWL})}{I_{D,d}} ; T_{WP} = \frac{(V_{DU} - V_{DWL})(I_{D,c} + I_{D,d})}{I_{D,c} * I_{D,d}} C_D ; t_{WD,L} = \frac{(V_{DU} - V_{DWL})}{I_{D,c}} C_D$$

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Taiwan Semiconductor:](#)

[TS4268CS50](#)