MOS FET Relays G3VM-202J1

Slim, 2.1-mm High MOS FET Relay with Miniature, Flat, 8-pin SOP Package

- 2 channels and an 8-pin SOP package in the 200-V load voltage series.
- Continuous load current of 200 mA.
- Dielectric strength of 1,500 Vrms between I/O.
- · RoHS Compliant.

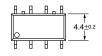
■ Application Examples

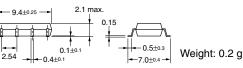
- · Broadband systems
- Measurement devices and Data loggers
- Amusement machines

R

Note: The actual product is marked differently from the image shown here

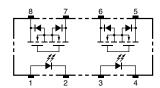
■ List of Models


Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
DPST-NO	Surface-mounting	200 VAC	G3VM-202J1	50	
	terminals		G3VM-202J1(TR)		2,500

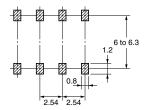

■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-202J1



Note: The actual product is marked differently from the image shown here.


■ Terminal Arrangement/Internal Connections (Top View)

G3VM-202J1

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-202J1

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Unit	Measurement conditions	
Input	out LED forward current		50	mA		
	Repetitive peak LED forward current	I _{FP}	1	Α	100 μs pulses, 100 pps	
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$	
	LED reverse voltage	V_R	5	V		
	Connection temperature	T_j	125	°C		
Output	Load voltage (AC peak/DC)	V_{OFF}	200	V		
	Continuous load current	Io	200	mA		
	ON current reduction rate	∆ I _{ON} /°C	-2.0	mA/°C	$T_a \ge 25^{\circ}C$	
	ic strength between input and See note 1.)	V _{I-O}	1,500	V _{rms}	AC for 1 min	
Operating temperature		T _a	-40 to +85	°C	With no icing or condensation	
Storage temperature		T _{stg}	-55 to +125	°C	With no icing or condensation	
Soldering temperature (10 s)			260	°C	10 s	

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Note:

■ Electrical Characteristics (Ta = 25°C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	
	Reverse current	I _R			10	μΑ	V _R = 5 V	
	Capacity between terminals	C _T		30		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}		1	3	mA	I _O = 200 mA	
	Maximum resistance with output ON	R _{ON}		5	8	Ω	I _F = 5 mA, I _O = 200 mA	
	Current leakage when the relay is open	I _{LEAK}		0.0031	1.0	μΑ	V _{OFF} = 200 V	
	Capacity between terminals	C _{OFF}		100		pF	V = 0, f = 1MHz	
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V	
Insulation resistance		R _{I-O}	1,000			ΜΩ	$V_{I-O} = 500 \text{ VDC},$ $R_{oH} \le 60\%$	
Turn-ON time		t _{ON}		0.6	1.5	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega$ $V_{DD} = 20 \text{ V (See note 2)}$	
Turn-OFF time		t _{OFF}		0.1	1	ms		

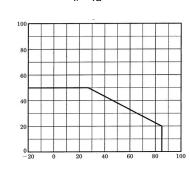
te: 2. Turn-ON and Turn-OFF Times 8(6) RL VDD 7(5) VOUT

■ Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}		150	200	V
Operating LED forward current	I _F	5	7.5	25	mA
Continuous load current (AC peak/DC)	Io			130	mA
Operating temperature	T _a	- 20		65	°C

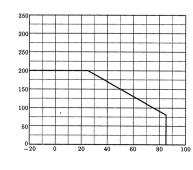
■ Engineering Data


LED forward current IF (mA)

Continuous load current IO (mA)

Turn ON, Turn OFF time ton, toff (µS)

LED forward current vs. Ambient temperature

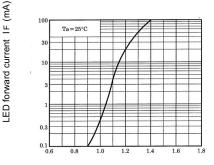

IF - Ta

Ambient temperature Ta (°C)

Continuous load current vs. Ambient temperature

lo - Ta

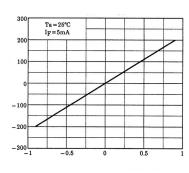
Continuous load current 10 (mA)


On-state resistance RON (Ω)

Turn ON, Turn OFF time ton, torr (µS)

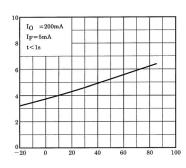
Ambient temperature Ta (°C)

LED forward current vs. LED forward voltage


IF - VF

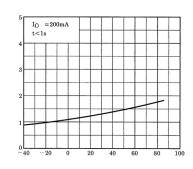
LED forward voltage VF (V)

Continuous load current vs. On-state voltage


Io - Von

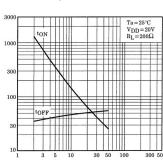
On-state voltage VON (V)

On-state resistance vs. Ambient temperature


Ron - Ta

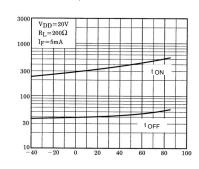
Ambient temperature Ta (°C)

Trigger LED forward current vs. Ambient temperature


IFT - Ta

Ambient temperature Ta (°C)

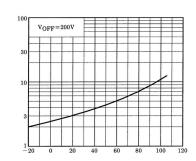
Turn ON, Turn OFF time vs. LED forward current


ton, toff - If

LED forward current IF (mA)

Turn ON, Turn OFF time vs. Ambient temperature

ton, toff - Ta


Ambient temperature Ta (°C)

Current leakage vs. Ambient temperature

Trigger LED forward current IFT (mA)

Current leakage ILEAK (nA)

temperati I _{LEAK} - Ta

Ambient temperature Ta (°C)

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

OMRON ELECTRONIC COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Specifications subject to change without notice Printed in USA

MOS FET Relays **G3VM-202J1**

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron: G3VM-202J1