__ S13482
SILICON LABS

POWER MANAGEMENT CONTROLLER

Features
Pin Assignments
m Enables use of smaller power m Supports classification-based and 24-Pin QFN
supplies for up to 48-port PoE LLDP power negotiation Z o . g -
systems with Si3452 PSE interface m Supports individual port priority and = z F & 2
ICs port configuration @ @ M R @ @
m Can operate with or without a host ® Supports Power supply status from MISO| 1 | [18 |spA
] C_onﬂguratmn save _ up to 3 power supplies sck[2] scL
® Pin-selectable SPI or UART interfacem 24 pin Quad flat pack package
m Pin-selectable UART data rate (4x4 mm) GNp| 3] ropvien BAUDO
m Fully-compliant with IEEE 802.3 e 4x4 mm PCB footprint; RoHS VDD | 4 | | (PadsonBotiomof Package) | 51 aypg
clause 33 for PoE including the complaint —_—
802.3at amendment for higher power m Extended operation range = L34 fonuoz
(30 W, category 2 ports) (40 to +85 °C) RSVD| 6 | ﬂ ﬂ ﬂ H H H [13 |psLeT
Applications S 2 ¢ 39 3
222 &= "
m Power over Ethernet Endpoint ® Industrial automation systems See "b. Pin Descriptions" on page 32.
switches and Midspans for IEEE Std m Networked audio
802.3af and 802.3at m [P Phone Systems and iPBXs
® Supports high-power PDs, such as: m Metropolitan area networked WAPS,
e Pan/Tilt/Zoom security cameras cameras, and sensors
e 802.11n WAPs m WiMAX, ASN/BTS, and CPE/ODU
e Multi-band, multi-radio WAPs systems

m Security and RFID systems

Description

The Si3452 is capable of delivering over 30 W per port, which means that, in a 24-
or 48-port system, a very large power supply would have to be used to avoid
overload. Typically, not all ports are used at full power; so, a smaller power supply
in the range of 5W per port can be used along with the Si3482 power
management controller.

The Si3482 is a power manager intended for use with the Si3452/3 Power over
Ethernet (PoE) controllers for power management of up to 48 ports with three
power sources.

Use of the Si3482 power manager greatly simplifies system implementation of
power management. The Si3482 power management controller is programmed
via a SPI or UART interface to set the power supply capacity, the port power
configuration (Category 1: 15.4 W, or high-power category 2: 30 W) ports, the port
priority, the detection timing (Alternative A or Alternative B), and the fault recovery
protocol. Once programmed, the configuration data can be saved, and the Si3482
can work without host intervention. If desired, port and overall status information is
available and continuously updated.

The Si3482 uses the real-time overload and current monitoring capability of the
Si3452 to manage provided power among up to 48 ports. Power management is
selectable between grant-based or consumption-based in order to supply power
to the greatest number of ports.

In high-reliability systems, multiple power supplies are often connected to provide
redundancy, which further increases the power supply requirements. The Si3482
can manage up to three power supplies automatically enabling or disabling ports
in priority order when required.

Rev. 1.1 1/15 Copyright © 2015 by Silicon Laboratories Si3482

Si3482

Functional Block Diagram

Si3482 Application Diagram

MCU or

Host Controller

3 UART or sPI

Si8431
Digital Isolator

Si3452
Port Controller

Si3452

Port Controller

__ Select
Power Supply Preseni S|3482 Power UART or SP'
Management [l

>
Power Supply 1 d contoller 1E UART

! ___ Baud Rate
Power Supply 2

12C

Power Supply 3 Power

Si3452

Port Controller

PD| PD|/PD| PD| [PD|[PD|[PD]/PD]| [PD

PD

PD

PD

2 Rev. 1.1

SILICON LARBS

Si3482

TABLE OF CONTENTS

Section Page
1. Electrical Specifications 4
2. Functional DescCription 6
2. 1. HostInterface 7
2.2. Hardware Only Mode 8
3. Serial Packet ProtoCol 9
3.1 Packet Format 10
3.2.SPP Error Handlingo 16
4, Power Manager APl ... e 17
4.1. EventsManagement e e 17
4.2. SYStEM StAtUS e e 18
4.3. POrt STatUS e 19
4.4. System CoNtrol e e 23
4.5, Port Control e 23
4.6. System Configuration i 24
4.7. Port Configuration e 27
4.8. Power Supply Status e 29
4.0, BVENTIS . . . e e e 30
4.10. Return COOBSot e 31
5. PiN DESCIIPLIONS . . .ot e i e e e e et e 32
6. Package Outline: 24-Pin QFN 0 i 34
7.PCB Land Pattern i e e 35
8. Solder/Paste Recommendation 36
9. Top Marking Diagram e e 37
10. Ordering GUITe . . . o i e i e e e e e e 38
Document Change LisSt 39
Contact INformation i e 40

L4

SILICON LABS

Si3482

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Description Symbol Test Conditions Min Typ Max Units
Operating Temperature Ta No airflow _40 . 85 °C
Range
Vpp Supply Voltage Vpp All operating modes 2.7 — 3.6 Vv
Table 2. Absolute Maximum Ratings
Parameter Conditions Min Typ Max Units
Amblent_ Temperature _55 a 125 o
under Bias
Storage Temperature —65 — 150 °C
Voltage on any 1/O with Vpp2.2 V _0.3 [@ 5.8 v
Respect to GND
Voltage on Vpp with 03 . 4.2 v
Respect to GND
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a
stress rating only and functional operation of the devices at those or any other conditions above those indicated in the
operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.

Table 3. Electrical Characteristics

Description Symbol Test Conditions Min Typ Max Units
Input High ViH Input pins: 2.0 — — \
RST, SCK, MOSI, NSS,

Input Low VL RX. PSn BAUDN — — 0.8 \%
Input Leakage Current Iy SLCTIN, SCL, SDA — — +1 uA
Output Low VoL loL = 8.5 mA — — 0.6 Y,
(MOSI, TX, SCL, and SDA)
Output High _

V loy =—-3 mA — — Vpp—0.7 V
(MOSI, TX) OH OH DD

VDD = 3.0 V* 8.6

Vpp Current lop VDD = 3.6 VV* - - 12.1 mA

*Note: Vpp = 2.7 to 3.6 V, —40 to 85 °C unless otherwise noted.

Rev. 1.1

-

SILICON LABS

Si3482

Table 4. Timing Requirements

Description Test Conditions Min Max Units
SPI Timing Requirements (See Figure 1)
Tse NSS Falling to First SCK Edge 84 — ns
Tsp Last SCK Edge to NSS Rising 84 — ns
Tsez NSS Falling to MISO Valid — 168 ns
Tspz NSS Rising to MISO High Z — 168 ns
TckH SCK High Time 210 — ns
TekL SCK Low Time 210 — ns
Tgis MOSI Valid to SCK Sample Edge 84 — ns
ToH SCK Sample Edge to MOSI Change 84 — ns
TscH SCK Shift Edge to MISO Change — 168 ns
Fumax Maximum SPI Clock Speed — 1 MHz
UART Requirements (See Figure 2)
AFTX Deviation of Tx Transmit Speed from Pin-programmed -3 +3 %
Value.
AFRX Deviation of Rx receive Speed from Pin-programmed 4 ‘a4 %
Value.
Tse Tekn TexL
I ! [. I I
I —> e To—d [
| I I | I
sek__ I | [| L [L L !
| K |
MOSI MSB Bit 6 iBit 5 X B|t4i X Bit3 X itz X Bit1 X Bito OGN
L) L) ' T
| Tsis _V: le— I I
I ! Il |
MIsO —{ MSB X Bit6 X Bit5 X Bit4] X Bit3 X Bit2 X Bit1 X Bito X [}—
I 1 [
Tsez —p| :<— Tsecn—» [4— Tsor — P [&—
NSS | (I /r—i
o '
Figure 1. SPI Timing Diagram
MARK START
STOP
sPAcE BIT DO D1 >< D2 >< D3 D4 >< D5 D6 D7 y i
BITTiMes | l l l l l l l l l |
I f T |‘ T f T f T |‘ T f T f T f T f T f 1
BIT SAMPLING | | | ! | ' | : | :

Figure 2. UART Timing Diagram

~>

SILITON

LABS

Rev. 1.1

Si3482

2. Functional Description

The Si3482 Power Management Controller is the central controller in a Silicon Labs Power over Ethernet (PoE)
system. In a PoE system, power is provided by one or more power supplies and is consumed by one or more
powered devices (PDs). The Si3482 decides which of the PDs can have power and monitors the amount of power
consumed by each.

A host microcontroller unit (MCU) can configure the Si3482 and can query the status of the PDs and the power
supplies. The Si3482 stores its configuration in internal flash memory. A host MCU uses a Universal Asynchronous
Receiver Transmitter (UART) or a Serial Peripheral Interface (SPI) to communicate with the Si3482. Pins on the
Si3482 select which host interface to use and which baud rate to use for the UART interface.

Power supplies may be inserted into bays. The Si3482 supports a system with up to three bays. Power supplies
may be inserted or removed from the bays at any time. Each bay provides a signal to the Si3482 that indicates if a
power supply is present in the bay. The outputs of the power supplies are ganged together to provide a single
power source for the system.

The Si3482 manages a collection of Si3452 Port Controllers. The Si3482 supports a system with up to 12 Si3452s.
Each Si3452 has four ports; so, a system may have up to 48 ports. The Si3452 performs low-level port functions,
such as detecting and classifying PDs. The Si3482 has a global view of the system and manages power across all
ports.

PDs are connected to ports on the Si3452s. PDs may be connected or disconnected from the ports at any time.
When a PD is connected to a port, then the PD requests power from the port. The Si3482 determines the amount
of power requested from the classification of the PD. If there is enough power remaining, the Si3482 grants the
request; otherwise, the Si3482 denies the request.

The host may configure an optional power limit for each port. A power limit restricts the amount of power that the
Si3482 grants to a port. If a power request is greater than the power limit, the Si3482 does not fully grant the
request, but only grants the amount of the power limit.

The Si3482 supports Link Layer Discovery Protocol (LLDP) agents in the host. An LLDP agent can call a routine in
the Si3482 to dynamically adjust the amount of power granted to a PD during the course of a connection.

Several PDs may be connected to a PoE system. The Si3482 may have granted different amounts of power to
each PD, and each PD may be consuming different amounts of power. If a PD consumes more power than it is
granted (port overload), the Si3482 turns off the PD.

There are two approaches that the Si3482 can take when granting requests for power. The granting policy can be
grant-based or it can be consumption-based.

PD 1 PD 2 PD 3 PD 4
Power Power Power Power
Consumed Consumed Consumed Consumed

— —
1 |
Power Power ! Power I Power
Granted Granted Granted Granted

Figure 3. Powered Devices Example

. L4
6 Rev. 1.1 @

SILICON LABS

Si3482

Total Power Granted Fower Remaining

Total Power Provided

Figure 4. Grant Based Power Management

Reserved Overload
L Total Power Consumed i Power Remaining | Power | Limit

/ 7 G
’ s

Total Power Provided

Figure 5. Consumption-Based Power Management

If the granting policy is grant based, then the power remaining for new grants is the total ungranted power. The
power remaining is the total power provided minus the total power granted.

The problem with this approach is that much of the provided power is unused because PDs often do not consume
all of their granted power.

If the granting policy is consumption-based, then the power remaining for new grants is the total unconsumed
power. The power remaining is the total power provided minus the total power consumed (excluding the reserved
power). This approach uses more of the provided power, but there is a possibility that the system may consume
more power than the power provided (system overload).

To avoid system overloads caused by momentary surges in power consumption, the host can specify that a certain
amount of power be held in reserve. The Si3482 does not use the reserved power when granting new requests.

Most power supplies can tolerate a limited amount of overload for a short duration. The host specifies the overload
limit of the power supplies to the Si3482. If a system overload is less than the overload limit, the Si3482 turns off
ports, one at atime in priority order, until the system is no longer overloaded. If a system overload is greater than
the overload limit (severe overload), the Si3482 immediately turns off all low-priority ports. If the system is still
overloaded, the Si3482 turns off additional ports, one at a time in priority order, until the system is no longer
overloaded. A severe overload is usually caused by removing a power supply.

2.1. Host Interface

The Si3482 has a UART interface and an SPI interface for communicating with the host MCU, but only one
interface is used at a time. The PSLCT (protocol select) pin selects which interface is used.

2.1.1. UART Interface

If the PSLCT pin is tied high, then the Si3482 uses the UART interface to communicate with the host MCU. The
Si3482 uses the TX and RX pins to send and receive serial data. The BAUDO, BAUD1, and BAUD2 pins select the
baud rate for the UART interface.

- L4

SILICON LABS

Si3482

Table 5. Baud Rates

BAUD2 | BAUD1 | BAUDO | Baud Rate (bps)
H L L 19200
H L H 38400
H H L 57600
H H H 115200

The UART interface uses eight data bits, no parity, and one stop bit.

2.1.2. SPI Interface

If the PSLCT pin is tied low, then the Si3482 uses the SPI interface to communicate with the host MCU. The
Si3482 is an SPI slave device. Therefore, it receives data on the MOSI pin and sends data on the MISO pin. The
host MCU drives the NSS and SCK pins.

The SPI interface uses an active-high clock (CKPOL = 0). The clock line is low in the idle state, and the leading

edge of the clock goes from low to high. The SPI interface samples the data on the leading edge of the clock
(CKPHA = 0). The SPI interface transfers the most-significant bit first, and the maximum bit rate is 1 Mbps

2.2. Hardware Only Mode

The host interface (SPI or UART) and the UART baud rate are pin-configured. The Si3482 reads the pin
configuration at power up, and it cannot be changed after power up. The hardware designer only needs to decide
which interface to use and, if UART is selected, which BAUD rate to use.

In general, the host interface must be electrically isolated from the host MCU using an appropriate electrical
isolator for either SPI or UART signals as well as power supply status signals as needed.

The Si3482 backs up its configuration to internal flash memory. Once the Si3482 is configured, it is possible to
disconnect the host interface and use the Si3482 without a host MCU.

To configure the Si3482 when a host MCU is not required or for initial system debug, the USB adapter and Power
Manager GUI supplied with the Si3482 evaluation system, “SMARTPSEZ24-KIT”, can be adapted to set the device
configuration as desired.

L4
8 Rev. 1.1 @

SILICON LABS

Si3482

3. Serial Packet Protocol

The Si3482 contains the Power Manager component and the interface to the Power Manager is a collection of
routines known as the Power Manager application programming interface (API).

The Power Manager API is described later in this manual. The host MCU contains a User Interface component,
which calls the routines in the Power Manager API to get status information and configure and control the Power
Manager.

The Serial packet protocol (SPP) is a remote procedure call (RPC) mechanism that allows a User Interface
component to call routines in the Power Manager, even though the User Interface component and the Power
Manager are on different MCUs. The Serial Packet Protocol is implemented by a Serial Packet Client in the host
MCU and the Serial Packet Server in the Si3482.

A Serial Packet Client is a collection of stub routines with the same names and parameters as the routines in the
Power Manager API. A User Interface component calls a stub routine, and the stub routine uses the host interface
to send a packet to the Serial Packet Server. The Serial Packet Client receives a packet back and then returns to
the User Interface component.

The Serial Packet Server receives a packet from a Serial Packet Client and then calls the specified routine in the
Power Manager. When the Power Manager routine returns, the Serial Packet Server sends a packet back to the
Serial Packet Client.

Silicon Labs provides a Serial Packet Client Software Development Kit (SDK) that implements SPP and is portable
to any MCU. The customer only needs to write some small support routines, which map SDK routines to RTOS
routines.

Host MCU

User Interface

Power Manager API

Serial Packet Client ~N
UART or SPI > Serial Packet Protocol
(Remote Procedure Call)
Si3483
v
Serial Packet Server J
Power Manager API
Power Manager
Si3483 Support
12C
A 4
[
[
Si3459

Figure 6. Serial Packet Protocol

L4

SILICON LABS

Si3482

3.1. Packet Format
A packet is a sequence of fields sent together as a unit. Figure 7 shows the SPP packet format.

Start | Routine | Data Length | Data | Checksum

Figure 7. Packet Format

Each field is a single byte except for the Data field. The Data field may be from zero to 255 bytes.

3.1.1. Start Field

The Start field marks the beginning of a packet and always contains the Start-of-Packet (SOP) character (OXAC). If
data is lost on the host interface, the Serial Packet Server and the Serial Packet Client use the Start field to
resynchronize. A “receive packet” routine starts by receiving and discarding bytes until the SOP character is found.
3.1.2. Checksum Field

The Checksum field is used to verify that the packet was not corrupted during transmission. The sender of a packet
calculates the checksum and writes it into the Checksum field. The receiver of a packet verifies that the checksum
is correct. The Checksum field should contain the value such that all the bytes in the packet, except for the Start
field, add up to zero.

Start | Routine | Data Length | Data | Checksum

I I
! Sum of Bytes is Zero

Figure 8. Packet Checksum

To calculate the checksum, the sender uses an 8-bit variable to sum up the bytes of the Routine field through the
end of the Data field. The sender adds one to the one's complement of this sum and stores the result in the
Checksum field.

Checksum = (~Sum)+1

To verify the checksum, the receiver uses an 8-bit variable to sum up the bytes of the Routine field through the
Checksum field. The sum should be zero.

3.1.3. Routine Field
The Routine field identifies a routine in the Power Manager API.

The client uses the Routine field to specify which routine to call. The client should verify that the Routine field in a
received packet matches the Routine field in the sent packet.

Table 6. Routine Field

Routine Symbol Value
GetSystemStatus() RTN_GETSYSTEMSTATUS 1
GetSysteminfo() RTN_GETSYSTEMINFO 2
GetTotalPowerConsumed() RTN_GETTOTALPOWERCONSUMED 3
GetTotalPowerGranted() RTN_GETTOTALPOWERGRANTED 4
GetTotalPowerProvided() RTN_GETTOTALPOWERPROVIDED 5
GetPortCount() RTN_GETPORTCOUNT 6
GetPortStatus() RTN_GETPORTSTATUS 7

L4
10 Rev. 1.1 @

SILICON LABS

Si3482

Table 6. Routine Field

GetPortinfo() RTN_GETPORTINFO 8
GetPortPriorityStatus() RTN_GETPORTPRIORITYSTATUS 9
GetPortPowerConsumed() RTN_GETPORTPOWERCONSUMED 10
GetPortPowerGranted() RTN_GETPORTPOWERGRANTED 11
GetPortPowerRequested() RTN_GETPORTPOWERREQUESTED 12
GetPortPowerAvailable() RTN_GETPORTPOWERAVAILABLE 13
ResetSystem() RTN_RESETSYSTEM 14
RestoreFactoryDefaults() RTN_RESTOREFACTORYDEFAULTS 15
SetPortControl() RTN_SETPORTCONTROL 16
AdjustPortPower() RTN_ADJUSTPORTPOWER 17
SetPowerProvided() RTN_SETPOWERPROVIDED 18
GetPowerProvided() RTN_GETPOWERPROV IDED 19
SetReservedPower() RTN_SETRESERVEDPOWER 20
GetReservedPower() RTN_GETRESERVEDPOWER 21
SetOverloadLimit() RTN_SETOVERLOADLIMIT 22
GetOverloadLimit() RTN_GETOVERLOADLIMIT 23
SetGrantingPolicy() RTN_SETGRANT INGPOLICY 24
GetGrantingPolicy() RTN. GETGRANT INGPOLICY 25
SetRetryPolicy() RTN_SETRETRYPOLICY 26
GetRetryPolicy() RTN_GETRETRYPOLICY 27
SetPortEnable() RTN_SETPORTENABLE 28
GetPortEnable() RTN_GETPORTENABLE 29
SetPortCapability() RTN_SETPORTCAPABILITY 30
GetPortCapability() RTN_GETPORTCAPABILITY 31
SetPortMidspan() RTN_SETPORTMIDSPAN 32
GetPortMidspan() RTN_GETPORTMIDSPAN 33
SetPortPriority() RTN_SETPORTPRIORITY 34
GetPortPriority() RTN_GETPORTPRIORITY 35
SetPortLegacySupport() RTN_SETPORTLEGACYSUPPORT 36
GetPortLegacySupport() RTN_GETPORTLEGACYSUPPORT 37

~>

SILICON LABS

Rev. 1.1

11

Si3482

Table 6. Routine Field

SetPortPowerLimit() RTN_SETPORTPOWERL IMIT 38
GetPortPowerLimit() RTN_GETPORTPOWERLIMIT 39
SetPowerSupplyStatus() RTN_SETPOWERSUPPLYSTATUS 40
GetPowerSupplyStatus() RTN_GETPOWERSUPPLYSTATUS 41
GetEvents() RTN_GETEVENTS 42

3.1.4. Data Length Field

The DatalLength field specifies the number of bytes in the Data field. The number of bytes may be from zero to 255.
3.1.5. Data Field

The Data field is used to pass data to and from the Si3483. The Data field may contain four different types of data:
m Parameters

m System Information

m Port Information

m Events

The Data field has a different format for each type of data. In almost all packets (sent and received), the Data field
has the Parameters format. The only exceptions are the packets that are received back after calling the
GetSysteminfo(), GetPortinfo(), and GetEvents() routines. The Data fields for these packets are in the System
Information format, Port Information format, and Events format.

3.1.5.1. Parameters Format

The Parameters format of the Data field is used to pass parameters to Power Manager routines. In most cases, the
Parameters format is also used to return data from the routines.

Start | Routine | Data Length | Data | Checksum

Parm8 Parm32

Figure 9. Parameters Format

The Parameters format has an 8-bit Parm8 field followed by a 32-bit Parm32 field (see Table 7). Depending on the
routine being called, Parm8, Parm32, or both fields are used. Sometimes, neither field is used. However, both
fields are always sent and received. The DatalLength field contains five.

Table 7. Use of Parameters

Parameters in Sent Packet Parameters in Received Packet
Routine
Parm8 Parm32* Parm8 Parm32*
GetSystemStatus() SystemStatus
GetSysteminfo() Uses System Information Format
GetTotalPowerConsumed() PowerConsumed
GetTotalPowerGranted() PowerGranted
*Note: The Parm32 field is big endian; therefore, the most significant byte is first.

- L4
12 Rev. 1.1 @

SILICON LABS

Si3482

Table 7. Use of Parameters (Continued)

Parameters in Sent Packet

Parameters in Received Packet

Routine
Parm8 Parm32* Parm8 Parm32*
GetTotalPowerProvided() PowerProvided
GetPortCount() PortCount
GetPortStatus() Port PortStatus
GetPortInfo() Port Uses Port Information Format
GetPortPriorityStatus() Port PortPriorityStatus
GetPortPowerConsumed() Port PowerConsumed
GetPortPowerGranted() Port PowerGranted
GetPortPowerRequested() Port PowerRequested
GetPortPowerAvailable() Port PowerAvailable
ResetSystem() Result
RestoreFactoryDefaults()
SetPortControl() Port Control Result
AdjustPortPower() Port PortPower Result
SetPowerProvided() PowerSupply PowerProvided Result
GetPowerProvided() PowerSupply PowerProvided
SetReservedPower() ReservedPower Result
GetReservedPower() ReservedPower
SetOverloadLimit() OverloadLimit Result

GetOverloadLimit()

OverloadLimit

SetGrantingPolicy()

GrantingPolicy

Result

GetGrantingPolicy()

GrantingPolicy

SetRetryPolicy() RetryPolicy Result
GetRetryPolicy() RetryPolicy
SetPortEnable() Port Enable Result
GetPortEnable() Port Enable
SetPortCapability() Port Capability Result
GetPortCapability() Port Capability

*Note: The Parm32 field is big endian; therefore, the most significant byte is first.

~>

SILICON LABS

Rev. 1.1

13

Si3482

Table 7. Use of Parameters (Continued)

_ Parameters in Sent Packet Parameters in Received Packet
Routine
Parm8 Parm32* Parm8 Parm32*
SetPortMidspan() Port Location
GetPortMidspan() Port Location
SetPortPriority() Port Priority Result
GetPortPriority() Port Priority
SetPortLegacySupport() Port Legacy
GetPortLegacySupport() Port Legacy
SetPortPowerLimit() Port PowerLimit Result
GetPortPowerLimit() Port PowerLimit
SetPowerSupplyStatus() PowerSupply Status Result
GetPowerSupplyStatus() PowerSupply Status
GetEvents() Uses Events Format
*Note: The Parm32 field is big endian; therefore, the most significant byte is first.

3.1.5.2. System Information Format

The System Information format of the Data field is used to return system information to the client. System
information is returned after calling the GetSysteminfo() routine.

| Start | Routinel Data Length | Data | Checksum |

| PowerManagerVersion | PlatformSupportVersion |

Figure 10. System Information Format

The System Information format has a PowerManagerVersion field followed by a PlatformSupportVersion field. Both
of these fields are eight bytes long and contain a version string that is a zero-terminated ASCII string. A version
string may be from one to seven characters long. The Routine field contains RTN_GETSYSTEMINFO, and the
DatalLength field contains 16.

3.1.5.3. Port Information Format

The Port Information format of the Data field is used to return port information to the client. Port information is
returned after calling the GetPortInfo() routine.

Start | Routine | Data Length | Data | Checksum

Power Supply | Silicon | Firmware
Voltage Version | Version

Figure 11. Port Information Format

. L4
14 Rev. 1.1 @

SILICON LABS

Result | Detection | Classification | Current

Si3482

In C, the Port Information format is:
typedef struct
{

INT8 Result;

UINT8 Detection;

UINT8 Classification;

UINT16 Current;

UINT16 PowerSupplyVoltage;

char SiliconVersion[2];

char FirmwareVersion[6];
} DATA_PORTINFO;
The Port Information format is a sequence of fields as shown above. For more information, read the description of
the GetPortInfo() routine in the Power Manager API Section. The Routine field contains RTN_GETPORTINFO, and
the Datalength field contains 17.
The Result field contains the return code from the GetPortinfo() routine, and, if Result is not SUCCESS (0), the
remaining fields should be ignored.
The Current and PowerSupplyVoltage fields are big endian. Therefore, the most significant byte comes first.
3.1.5.4. Events Format

The Events format of the Data field is used to return events to the client. Events are returned after calling the
GetEvents() routine.

Start | Routine | Data Length | Data | Checksum

Event | Event | Event Event

Type | Parml | Parm2

Figure 12. Events Format

In the Si3483, the Serial Packet Server internally receives events from the Power Manager and stores them in a
circular event queue. If the event queue becomes full, newer events overwrite older events.

If a client wishes to receive events, it should periodically get the events from the Serial Packet Server. The client
gets the events by sending a packet with the Routine field set to RTN_GETEVENTS. The Serial Packet Server
returns all the events from the event queue in a single packet with the Data field in the Events format.

The Data field does not have a fixed length. The length of the Data field depends on the number of events that are
returned. An event is three bytes long; so, the number of events in the Data field is DataLength divided by three. If
there are no events to return, then DataLength is zero, and the Data field is empty. The maximum number of events
that can be returned is 72.

. L4

SILICON LABS

Si3482

3.2. SPP Error Handling

There are many reasons why a client may not receive back a packet. Perhaps the Si3483 is not running or perhaps
the serial data was corrupted or lost during transmission (in either direction). In any case, it is not prudent for a
Serial Packet Client to call a serial receive routine that blocks forever until data is received. If the serial receive
routine does not have a timeout option, the client should not call the receive routine unless it knows that received
data is available. If a client does not receive a packet within one second of sending a packet, then the client should
assume that there has been a communications error. The client should resend the original packet or simply give up
(but do not wait forever to receive a packet).

When the Serial Packet Server receives a packet, it validates the packet. If the checksum is bad or the Routine
field is invalid, the Serial Packet Server ignores the packet and does not send back a packet in response. After one
second, the client should realize that a packet has not been received and should resend the original packet.

The Si3483 checks the configuration every 30 seconds to see if it has changed. If the configuration has changed,
the Si3483 backs up the configuration to internal flash memory. While the Si3483 is writing to flash memory, it
cannot send or receive packets on the host interface. If a host MCU sends a packet to the Si3483 while it is backing
up the configuration, the packet is lost. If a host MCU does not receive a packet back within one second, the host
MCU should resend the original packet.

L4
16 Rev. 1.1 @

SILICON LABS

Si3482

4. Power Manager API

User Interface components call the routines in the Power Manager API to get status information and configure and
control the Power Manager. The Power Manager API has routines for:

Management

System Status

Port Status

System Control

Port Control

System Configuration

Port Configuration

Power Supply Status

4.1. EventsManagement

The Management routines allow a User Interface component to:
m Initialize the Serial Packet Client

m Close the Serial Packet Client

4.1.1. InitPowerManager

Initialize the Serial Packet Client.

Prototype: INT8 InitPowerManager (EVENT_HANDLER EventHandler)
Parameters: EventHandler A pointer to an event handler routine.
Return Value: Zero (for success) or an error code.

This is the first call that a User Interface component makes to the Serial Packet Client. The Serial Packet Client
does everything that is required to bring itself to an operational state and is ready to execute all other Power
Manager API routines.

If a User Interface component would like to receive events, it should pass the address of an event handler to this
routine. If a User Interface component does not want to receive events, it should pass a null address to this routine.

An event handler is located in a User Interface component and has the following prototype:

Prototype: void EventHandler (EVENT *Event)
Parameters: Event A pointer to an EVENT structure, where event information is provided.
Return Value: None

An EVENT structure has the following layout:
typedef struct

{
UINT8 Type;
INT8 Parml;
UINT8 Parm2;
} EVENT;

L4

SILICON LABS

Si3482

Table 8 lists the event type values.

Table 8. Event Types

Event Type Value Symbol Parm1 Parm2
System 1 SYSTEM_EVENT System Status (not used)

Port 2 PORT_EVENT Port Status Port Number
Power Supply 4 POWER_SUPPLY_EVENT Power Supply Status | Power Supply Number
Error 8 ERROR_EVENT Error Code (error specific)

Information 16 INFO_EVENT Information Code (not used)

See the GetSystemStatus(), GetPortStatus(), and GetPowerSupplyStatus() routines for a listing of the status
values. See the end of this section for a listing of error codes and information codes.

The Serial Packet Client calls the event handler whenever there is a change in system status, port status, or power
supply status. The event handler is also called when an error occurs, such as port overload. If the first parameter
(Parml) is negative, this means there is an error.

4.1.2. ClosePowerManager
Shut down the Serial Packet Client.

Prototype: void ClosePowerManager (void)
Parameters: None
Return Value: None

This function shuts down the Serial Packet Client and frees all allocated resources.

4.2. System Status

The System Status routines allow a User Interface component to get the following information:
System Status

System Info

Total Power Consumed

Total Power Granted

m Total Power Provided

4.2.1. GetSystemStatus

Get the status of the system.

Prototype: INT8 GetSystemStatus(void)
Parameters: None
Return Value: System status value.

Table 9 lists the system status values. The system status is the overall status of the system. A negative system
status value is an error that is not specific to a particular port.

Table 9. System Status

Status Value Symbol
OK 0 STATUS_SYSTEM_OK
Initialization Failed -1 STATUS_SYSTEM_INIT_FAIL
Under Voltage -2 STATUS_SYSTEM_UNDER_VOLT
Over Temperature -3 STATUS_SYSTEM_OVER_TEMP
Communications Lost -4 STATUS_SYSTEM_COMM_LOST

. L4
18 Rev. 1.1 @

SILICON LABS

Si3482

4.2.2. GetSysteminfo
Get information about the system.

Prototype: void GetSystemlnfo (SYSINFO *SystemInfo)
Parameters: Systeminfo A pointer to a SYSINFO structure, where the system information is returned.
Return Value: None

A SYSINFO structure has the following layout:
typedef struct
{
char *PowerManagerVersion;
char *PlatformSupportVersion;
} SYSINFO;

The SYSINFO structure contains the version of the Power Manager and the version of the Platform Support
component as zero-terminated strings.

4.2.3. GetTotalPowerConsumed
Get the power consumed by all PDs.

Prototype: INT32 GetTotalPowerConsumed (void)
Parameters: None
Return Value: Total power consumed in milliwatts.

4.2.4. GetTotalPowerGranted
Get the power granted to all PDs.

Prototype: INT32 GetTotalPowerGranted (void)
Parameters: None
Return Value: Total power granted in milliwatts.

4.2.5. GetTotalPowerProvided
Get the power provided by all power supplies.

Prototype: INT32 GetTotalPowerProvided (void)
Parameters: None
Return Value: Total power provided in milliwatts.

4.3. Port Status

The Port Status routines allow a User Interface component to get the following:
Port Count

Port Status

Port Info

Port Priority Status

Port Power Consumed

Port Power Granted

Port Power Requested

m Port Power Available

4.3.1. GetPortCount

Get the number of ports in the system.

Prototype: UINT8 GetPortCount (void)
Parameters: None
Return Value: Number of ports in the system.

When the Power Manager starts up, it discovers the number of ports in the system by searching for port controllers.

L4

SILICON LABS

Si3482

4.3.2. GetPortStatus
Get the status of a port.

Prototype:
Parameters:
Return Value:

INT8 GetPortStatus (UINT8 Port)

Port The port number (1-64)
Port status value or an error code.

Table 10 lists the Port status values.

Table 10. Port Status Values

Status Value Symbol Description
Disabled 0 STATUS PORT DISABLED The port is off because it is not allowed to
- - turn on.
Powered On 1 STATUS_PORT_POWERED_ON A PD is connected and receiving power.
Powered Off 2 STATUS_PORT POWERED OFF | |heportis off because a PD is not con-
- - - nected.
Denied 3 STATUS PORT DENIED The port is qff_ because there is not enough
- - power remaining to grant the power request.
Blocked 4 STATUS_PORT_BLOCKED The port is off because of a port overload.
Forced On 5 STATUS_PORT_FORCED ON The user forced the port on.
Forced Off 6 STATUS_PORT_FORCED OFF The user forced the port off.

If a port is blocked, then the PD consumed more power than it was granted (port overload), and the retry policy is
“retry after reconnect”. To remove the block, the user must physically disconnect the PD from the port. Another way
to remove the block is to disable and then reenable the port.

4.3.3. GetPortInfo

Get low-level port information.
INT8 GetPortinfo (UINT8 Port, PORTINFO *Portinfo)

Prototype:
Parameters:

Return Value:

Port
Portinfo
Zero (for success) or an error code

The port number (1-64)

A PORTINFO structure has the following layout:

typedef struct

A pointer to.a PORTINFO structure, where the port information is returned.

{

UINT8 Detection;

UINT8 Classification;

UINT16 Current; /* in mA */

UINT16 PowerSupplyVoltage; /* inmv */

char *SiliconVersion;

char *FirmwarevVersion;
} PORTINFO;

. L4

20 Rev. 1.1 @

SILICON LABS

Si3482

Table 11 lists Detection values.

Table 11. Detection Values

Detection Value Symbol
Unknown 0 DETECT_UNKNOWN
Short 1 DETECT_SHORT
Low 3 DETECT_LOW
Good 4 DETECT_GOOD
High 5 DETECT_HIGH
Open 6 DETECT_OPEN

Table 12 lists Classification values.

Table 12. Classification Values

Classification Value Symbol
Unknown 0 CLASS_UNKNOWN
Class 1 1 CLASS 1
Class 2 2 CLASS_2
Class 3 3 CLASS 3
Class 4 4 CLASS_4

Fingers Not Equal 5 CLASS_UNEQ_FINGERS
Class 0 6 CLASS_O
Overload 7 CLASS_OVERLOAD
- L4
@ Rev. 1.1 21

SILITON

LABS

Si3482

4.3.4. GetPortPriorityStatus
Get the priority status of a port.

Prototype: INT8 GetPortPriorityStatus (UINT8 Port)
Parameters: Port The port number (1-64)
Return Value: Port priority status value or an error code.

Table 13 lists the Port Priority Status values.

Table 13. Port Priority Status Values

Port Priority Status Value Symbol
Low 0 PRIORITY_LOW
High 1 PRIORITY_HIGH
Forced 2 PRIORITY_FORCED
Critical 3 PRIORITY_CRITICAL

The priority status of a port is the currently-active priority and may be different than the configured priority of the
port. If a port is forced on or off and the configured priority is low.or high, the priority status is elevated to the forced
priority. If a forced port is returned to automatic control, the Power Manager returns the priority status to the
configured priority.

4.3.5. GetPortPowerConsumed

Get the power that a PD is currently using.

Prototype: INT32 GetPortPowerConsumed (UINT8 Port)
Parameters: Port The port number (1-64)
Return Value: Port power consumed in milliwatts or an error code.

4.3.6. GetPortPowerGranted
Get the power that is allocated to a PD.

Prototype: INT32 GetPortPowerGranted (UINT8 Port)
Parameters: Port The port number (1-64)
Return Value: Port power granted in milliwatts or an error code.

4.3.7. GetPortPowerRequested
Get the power that a PD says it needs.

Prototype: INT32 GetPortPowerRequested (UINT8 Port)
Parameters: Port The port number (1-64)
Return Value: Port power requested in milliwatts or an error code.

4.3.8. GetPortPowerAvailable
Get the maximum request that would be successfully granted.

Prototype: INT32 GetPortPowerAvailable (UINT8 Port)
Parameters: Port The port number (1-64)
Return Value: Port power available in milliwatts or an error code.

An LLDP agent calls this routine to ask the question, “What is the maximum power that you would give me if |
asked for it?”

If a port has a power limit, then the power limit is returned. If a port does not have a power limit and the port can
supply high power, then maximum power (40 W) is returned; otherwise, low power (15.4 W) is returned.

L4
22 Rev. 1.1 @

SILICON LABS

Si3482

4.4. System Control

The System Control routines allow a User Interface component to
m Reset the System

m Restore Factory Defaults

4.4.1. ResetSystem

Reset the system.

Prototype: INT8 ResetSystem (void)
Parameters: None
Return Value: Zero (for success) or an error code.

4.4.2. RestoreFactoryDefaults
Restore the configuration to factory default values.

Prototype: void RestoreFactoryDefaults (void)
Parameters: None
Return Value: None

The Power Manager also resets the system after setting the configuration to default values.

4.5. Port Control

The Port Control routines allow a User Interface component to
m Set Port Control

m Adjust Port Power

4.5.1. SetPortControl

Set how the port is turned on and off.

Prototype: INT8 SetPortControl (UINT8 Port, UINT8 Control)
Parameters: Port The port number (1-48)

Control How the port is turned on and off.
Return Value: Zero (for success) or an error code.

Table 14 lists Port Control values.

Table 14. Port Control Values

Control Value Symbol
Automatic 0 PORT_CTRL_AUTOMATIC
Force On 1 PORT_CTRL_FORCE_ON
Force Off 2 PORT_CTRL_FORCE_OFF

If the port control is automatic, the Power Manager automatically turns the port on and off when a PD is connected
and disconnected from the port.

If the port control is forced on, the port's priority is boosted to the forced priority level. This usually results in the port
turning on. However, a forced port cannot cause a critical priority port to turn off in order to turn on the forced port.
If a forced port is granted power, the Power Manager turns on a forced port even if no PD is detected.

If the port control is forced off, the port is unconditionally turned off and held off. A forced-off port is considered to
be temporarily off, while a disabled port is considered to be permanently off.

L4

SILICON LABS

Si3482

4.5.2. AdjustPortPower
Adjust the power granted to a PD.

Prototype: INT8 AdjustPortPower (UINT8 Port, INT32 Power)
Parameters: Port The port number (1-48)

Power Requested port power in milliwatts.
Return Value: Zero (for success) or an error code.

An LLDP agent calls this routine to reallocate the power granted to a PD. The agent can request more power than
is currently granted or it can request less power than is currently granted. This routine allows an LLDP agent to
dynamically change the amount of power granted to a PD during the course of a connection. A port must be on
before its power can be adjusted.

4.6. System Configuration

The System Configuration routines allow a User Interface component to set and get
Power Provided

Reserved Power

Overload Limit

Granting Policy

Retry Policy

m Power Location

4.6.1. SetPowerProvided

Set the amount of power that is output from a power supply.

Prototype: INT8 SetPowerProvided (UINT8 PowerSupply, INT32 Power)
Parameters: PowerSupply The power supply number (1-3)

Power Power provided by the power supply in milliwatts.
Return Value: Zero (for success) or an error code.

4.6.2. GetPowerProvided
Get the amount of power that is output from a power supply.

Prototype: INT32 GetPowerProvided (UINT8 PowerSupply)
Parameters: PowerSupply The power supply number (1-3)
Return Value: Power provided by the power supply in milliwatts or an error code.

4.6.3. SetReservedPower
Set the percentage of power that is reserved from granting.

Prototype: INT8 SetReservedPower (INT8 Reserved)
Parameters: Reserved Reserved power as a percentage of the total power provided.
Return Value: Zero (for success) or an error code.

If the granting policy is consumption-based, the Power Manager holds this amount of power in reserve. The Power
Manager does not use the reserved power to grant new requests. This creates a power buffer that reduces the
likelihood of system overloads caused by momentary surges in consumption.

4.6.4. GetReservedPower
Get the percentage of power that is reserved from granting.

Prototype: INT8 GetReservedPower (void)
Parameters: None
Return Value: Reserved power as a percentage of the total power provided or an error code.

L4
24 Rev. 1.1 @

SILICON LABS

Si3482

4.6.5. SetOverloadLimit
Set the maximum system overload that the power supplies can tolerate.

Prototype: INT8 SetOverloadLimit (INT8 Limit)
Parameters: Limit Overload limit as a percentage of the total power provided.
Return Value: Zero (for success) or an error code.

The overload limit is the maximum system overload that the power supplies can tolerate. It is expressed as a
percentage of the total power provided. If a system overload is less than the overload limit, the ports are turned off
one at a time. If a system overload is greater than the overload limit (severe overload), all of the low-priority ports
are immediately turned off.

4.6.6. GetOverloadLimit

Get the maximum system overload that the power supplies can tolerate.

Prototype: INT8 GetOverloadLimit (void)
Parameters: None
Return Value: Overload limit as a percentage of the total power provided or an-error code.

4.6.7. SetGrantingPolicy
Set the granting policy.

Prototype: INT8 SetGrantingPolicy (INT8 GrantingPolicy)
Parameters: GrantingPolicy How requests for power are granted.
Return Value: Zero (for success) or an error code.

Table 15 lists the Granting Policy values.

Table 15. Granting Policy Values

Granting Policy Value Symbol
Grant-based 0 GRANT_POLICY_GRANT_BASED
Consumption-based 1 GRANT_POLICY_CONSUMPTION_BASED

The granting policy is used by the Power Manager when deciding if a request for power should be granted. If the
granting policy is grant based, the remaining power is considered to be the total ungranted power. If the granting
policy is consumption-based, the remaining power is considered to be the total unconsumed power (excluding the
reserved power). If the remaining power is greater than or equal to the requested power, then the Power Manager
grants the request.

Grant based: PowerRemaining = TotalPowerProvided — TotalPowerGranted
Consumption based: PowerRemaining = TotalPowerProvided — TotalPowerConsumed —
ReservedPower

4.6.8. GetGrantingPolicy
Get the granting policy.

Prototype: INT8 GetGrantingPolicy (void)
Parameters: None
Return Value: The granting policy value.

L4

SILICON LABS

Si3482

4.6.9. SetRetryPolicy
Set the retry policy.

Prototype: INT8 SetRetryPolicy (INT8 RetryPolicy)
Parameters: RetryPolicy When to retry after a port overload.
Return Value: Zero (for success) or an error code.

Table 16 lists the Retry policy values.

Table 16. Retry Policy Values

Retry Policy Value Symbol
Immediate 0 RETRY_IMMEDIATELY
Reconnect 1 RETRY_AFTER_RECONNECT
Reenable 2 RETRY_AFTER_REENABLE

The retry policy specifies when the Power Manager tries again to power a port that is turned off because of a port
overload. A port overload is when the power consumed by a PD is greater than the power granted to that PD. If the
retry policy is “immediate”, the Power Manager tries to turn the port back on immediately.

If the retry policy is “reconnect”, the Power Manager waits until the PD is disconnected and then reconnected
before it tries again to power the port. The Power Manager must detect an open circuit on the port before retrying.

If the retry policy is “reenable”, the Power Manager disables the port when a port overload occurs. The user must
reenable the port before the Power Manager tries to power the port again.

4.6.10. GetRetryPolicy
Get the retry policy.

Prototype: INT8 GetRetryPolicy (void)
Parameters: None
Return Value: The retry policy value.

4.6.11. SetPowerLocation
Set the location of the power source.

Prototype: INT8 SetPowerLocation (INT8 Location)
Parameters: Location Where the power source is located.
Return Value: Zero (for success) or an error code.

Table 17 lists the Location values.

Table 17. Power Location Values

Location Value Symbol
Endpoint 0 LOCATION_ENDPOINT
Midspan 1 LOCATION_MIDSPAN

If the power source is within an Ethernet switch, the location is an “endpoint”. If the power source is inserted
between an Ethernet switch and a PD, the location is a “midspan”. The Power Manager uses different back-off
timings for different locations. The Power Manager assumes that an endpoint device uses the Alternative A pinout
and that a midspan device uses the Alternative B pinout.

. L4
26 Rev. 1.1 @

SILICON LABS

Si3482

4.6.12. GetPowerLocation
Get the location of the power source.

Prototype: INT8 GetPowerLocation (void)
Parameters: None
Return Value: The location value.

4.7. Port Configuration

The Port Configuration routines allow a User Interface component to set and get:
m Port Enable

m Port Capability

m Port Priority

m Port Power Limit

4.7.1. SetPortEnable

Set if a port is allowed to turn on.

Prototype: INT8 SetPortEnable (UINT8 Port, INT8 Enable)
Parameters: Port The port number (1-48)

Enable Specifies if the port is allowed to power on.
Return Value: Zero (for success) or an error code

If Enable is zero, the port is disabled and is not allowed to power on. If Enable is one, the port is enabled and is
allowed to power on.

4.7.2. GetPortEnable
Get if a port is allowed to turn on.

Prototype: INT8 GetPortEnable (UINT8 Port)
Parameters: Port The port number (1-48)
Return Value: Zero for disabled, one for enabled, or an error code

4.7.3. SetPortCapability
Set if a port can supply high power.

Prototype: INT8 SetPortCapability (UINT8 Port, INT8 Capability)
Parameters: Port The port number (1-48)

Capabi lity Specifies if the port can supply high power.
Return Value: Zero (for success) or an error code

Table 18 lists the Port Capability values.

Table 18. Port Capability Values

Capability Value Symbol
Low Power 0 CAPABILITY_LOW_POWER
High Power 1 CAPABILITY_HIGH_POWER

If the port hardware is designed to supply high power (PoE+), set Capability to one. Otherwise, set
Capability to zero.

A port's capability cannot be changed while the port is on. This is a limitation of the Si3452 port controller.

. L4

SILICON LABS

Si3482

4.7.4. GetPortCapability
Get if a port can supply high power.

Prototype: INT8 GetPortCapability (UINT8 Port)
Parameters: Port The port number (1-48)
Return Value: Capability value or an error code

4.7.5. SetPortPriority
Set the priority of a port.

Prototype: INT8 SetPortPriority (UINT8 Port, INT8 Priority)
Parameters: Port The port number (1-48)

Priority How importantitis for the port to be powered.
Return Value: Zero (for success) or an error code

Table 19 lists the Port priority values.

Table 19. Port Priority Values

Port Priority Value Symbol
Low 0 PRIORITY_LOW
High 1 PRIORITY_HIGH
Critical 3 PRIORITY_CRITICAL

The priority of a port indicates how important it is that the port receives power. If there is not enough power
provided for all ports that want power, then the low priority ports are the first ports to be denied. Critical priority ports
are the last ports to be denied.

If a port is forced on, then the port's priority is elevated to the forced priority level. Forced priority is between high
priority and critical priority and cannot be directly set by the user. When a port is forced on, it may cause a high
priority port to be turned off, but it can never cause a critical priority port to be turned off.

If a severe overload occurs, all of the low priority ports are immediately powered off.
4.7.6. GetPortPriority
Get the priority of a port.

Prototype: INT8 GetPortPriority (UINT8 Port)
Parameters: Port The port number (1-48)
Return Value: Priority value or an error code

4.7.7. SetPortPowerLimit
Set the power limit of a port.

Prototype: INT8 SetPortPowerLimit (UINT8 Port, INT32 Limit)
Parameters: Port The port number (1-48)

Limit Maximum power that may be granted in milliwatts.
Return Value: Zero (for success) or an error code.

A power limit restricts the amount of power that may be granted to a port. If a port's power limit is zero, the Power
Manager grants the power requested without restriction. If a port's power limit is greater than zero, the Power
Manager grants the lesser of the power limit or the power requested. If a power request is greater than the power
limit, the Power Manager grants less power than requested.

L4
28 Rev. 1.1 @

SILICON LABS

Si3482

4.7.8. GetPortPowerLimit
Get the power limit of a port.

Prototype: INT32 GetPortPowerLimit (UINT8 Port)
Parameters: Port The port number (1-48)
Return Value: Power limit in milliwatts or an error code

4.8. Power Supply Status

The Power Supply Status routines allow a User Interface component to get:
m Power Supply Status

4.8.1. SetPowerSupplyStatus

Set the status of a power supply.

Prototype: INT8 SetPowerSupplyStatus (UINT8 PowerSupply, INT8 Status)
Parameters: PowerSupply The power supply number (1-3)

Status Power supply status
Return Value: Zero (for success) or an error code.

In platforms that do not have signals to indicate the presence of power supplies, this routine allows a User Interface
component to simulate the insertion and removal of power supplies. However, the Si3482 does have power supply
signals (PS1, PS2, and PS3). If a User Interface component calls this routine, the Power Manager does nothing
and returns SUCCESS.

4.8.2. GetPowerSupplyStatus

Get the status of a power supply.

Prototype: INT8 GetPowerSupplyStatus (UINT8 PowerSupply)
Parameters: PowerSupply The power supply number (1-3)
Return Value: The status of the power supply.

Table 20 lists the Power supply status values.

Table 20. Power Supply Status

Power Supply Status Value Symbol
Removed 0 STATUS_POWER_SUPPLY_REMOVED
Inserted 1 STATUS_POWER_SUPPLY_INSERTED

A User Interface component calls this function to determine whether a power supply is present in a bay. If the
voltage on the specified ~power supply pin (PS1, PS2, or PS3) is high, this routine returns
STATUS_POWER_SUPPLY_INSERTED,; otherwise, this routine returns STATUS_POWER_SUPPLY_REMOVED.

. L4

SILICON LABS

Si3482

4.9. Events

An event is an unsolicited notification from the Power Manager that a status has changed. The Power Manager
calls the event handler in the Serial Packet Server whenever there is a change in system status, port status, or
power supply status. The Serial Packet Server stores the events in an event queue.

Host MCU

User Interface

EventHandler()
A

Serial Packet

Event
Client Task

Si3482

Serial Packet GetEvents()

Server

EventHandler()
A

Power Manager

Figure 13. Events Architecture

If a User Interface component wishes to receive events, it provides the address of an event handler when it calls
InitPowerManager(). The Serial Packet Client spawns an event task. The event task remotely calls the GetEvents()
routine in the Serial Packet Server every 200 ms to retrieve the events from the event queue. For each event that
is retrieved, the Serial Packet Client calls the event handler in the User Interface component.

4.9.1. GetEvents

Get the events from the event queue.

Prototype: void GetEvents (EVENT *Event)
Parameters: Event Pointer to returned events.
Return Value: None.

This routine exists in the Serial Packet Server and is called by a Serial Packet Client to get events from the event
gueue. This routine sends back a packet with the Data field in the Events format. This routine may return from zero
to 85 events.

- L4
30 Rev. 1.1 @

SILICON LABS

Si3482

4.10. Return Codes

The routines of the Power Manager API return codes to indicate the success or failure of an operation. These

codes are also used in Parm1 of error events and information events.
4.10.1. Success Code
A zero code indicates success.

Table 21. Success Code

Success Value Symbol

Success 0 SUCCESS

4.10.2. Error Codes
A negative code indicates an error.

Table 22. Error Codes

Error Value Symbol
Port number is invalid -1 ERROR_PORT_INVALID
Power supply number is invalid -2 ERROR_PWR_SUPLY_INVALID
Parameter is invalid -3 ERROR_PARAMETER__INVALID
Cannot create resource -4 ERROR_RESOURCE_CREATE
Resource is invalid -5 ERROR_RESOURCE__INVALID
Cannot configure resource -6 ERROR_RESOURCE_CONFIG
Cannot read from resource -7 ERROR_RESOURCE_READ
Cannot write to resource -8 ERROR_RESOURCE_WRITE
Cannot find the resource -9 ERROR_RESOURCE_NOT_FND
Cannot load the configuration -10 ERROR_CONFIG_LOAD
Cannot save the configuration -11 ERROR_CONFIG_SAVE
Configuration data is invalid =12 ERROR_CONFIG_INVALID
Configuration data is corrupt -13 ERROR_CONFIG_CORRUPT
System overload -14 ERROR_SYSTEM_OVERLOAD
Port overload -15 ERROR_PORT_OVERLOAD
Startup overload -16 ERROR_STARTUP_OVERLOAD

4.10.3. Information Codes
A positive code indicates useful information.

Table 23. Information Codes

Information Value Symbol
Restored to factory defaults 1 INFO_DEFAULTS_RESTORED
System reset 2 INFO_SYSTEM_RESET
Configuration saved 3 INFO_CONFI1G_SAVED

- L4

SILICON LABS

31

Si3482

5. Pin Descriptions

E MOSI
[ez |Nss

[zz | Tx
12

| 0z |RsvD

[6T |INT

MISO| 1 | [18 |spa
ScK Z E SCL
GND| 3 | rop vion [16 |BAUDO
VDD E (Pads on Bottom of Package) E BAUD1
RST| 5 | [14 |BAUD2
RSVD| 6 | [13 |psicT
RIEIREEIEIE
>3 2 88 ¢%
¥ o
Table 24. Si3482 Pin Descriptions
Pin # Name Type Description
1 MISO Output SPI output.
2 SCK Input SPI clock.
3 GND Power Ground.
4 VDD Power VDD.
5 RST Input Reset (a low will reset the Si3480).
6 RSVD Input Reserved—tie low.
7 RSVD Reserved Do not connect.
8 RSVD Reserved Do not connect.
9 RSVD Reserved Do not connect.
10 PS3 Input Logic high indicates the power supply is available.
11 PS2 Input Logic high indicates the power supply is available.
12 PS1 Input Logic high indicates the power supply is available.
13 PSLCT Input Tie high or low to select between SPI and UART interface.
14 BAUD2 Input Tie high or low to select UART baud rate.
15 BAUD1 Input Tie high or low to select UART baud rate.

32

- L4
Rev. 1.1 @

SILICON

LABS

Si3482

Table 24. Si3482 Pin Descriptions (Continued)

Pin # Name Type Description

16 BAUDO Input Tie high or low to select UART baud rate.
17 SCL Open Collector | Connect to Si3452 SCL and pull up resistor.
18 SDA Open Collector | Connect to Si3452 SDA and pull up resistor.
19 INT Input Connect to Si3452 INT and pull up resistor.
20 RSVD Reserved Do not connect.

21 RX Input UART receive.

22 TX Output UART transmit.

23 NSS Input SPI select.

24 MOSI Input SPI input.

- L4
@ Rev. 1.1 33

SILITON

LABS

Si3482

6. Package Outline: 24-Pin QFN

The Si3482 is packaged in an industry-standard, RoHS-compliant 6 x 6 mm?, 24-pin QFN package.

Bottom View

E/ 22—
EERIEEE
SR T @y
e @\
o [| @
[E a @S [a]
l«——E2/ 2—>
A I M @J
R .
i A EARAE |
N Xe i
Side View
4 !
L;I:I_I:I_I:I_Ifl_lj_l:l:i 1(
QT f—e—>] L

<
)

Figure 14. 24-Pin QFN Mechanical Diagram
Table 6.1. QFN-24 Package Dimensions

MM

Min Typ Max
A 0.70 0.75 0.80
Al 0.00 0.02 0.05
A2 — 0.50 —
A3 — 0.25 —
b 0.18 0.25 0.30
D — 4.00 —
D2 2.50 2.60 2.70
E — 4.00 —
E2 2.50 2.60 2.70
e — 0.50 —
L 0.35 0.40 0.45
N — 24 —
ND — 6 —
NE — 6 —
R 0.09 — —

- L4

34 Rev. 1.1 @

SILICON

LABS

Si3482

7. PCB Land Pattern

Top View
o |
o L)L) LE]
lllll - N/ P N 5;
C
aaaaaaaa B yml
°°°°°°°°° C
1 [ED (
|) (
LD (
o fan

mm
)) ‘ ‘ ‘ ‘ ‘ ‘ ‘ u

Figure 15. Typical QFN-24 PCB Land Pattern

- L4

SILICON LABS

35

Si3482

8. Solder/Paste Recommendation

Top View

]
||

i

d

45 mm
N N

N

0.35mm| 0.
m —>» ([«—0.10 mm

]

]

Figure 16. QFN-24 Solder Paste Recommendation

36 Rev. 1.1

~>

SILICON

LABS

Si3482

9. Top Marking Diagram

o
3482A

01
TTTTT
YYWW+

Figure 17. Top Marking Diagram

Table 25. Top Marking Explanation

Pin 1 Identifier Circle, 0.25 mm diameter
Line 1 Marking:
Product ID 3482A
Line 2 Marking: Firmware revision 01 = Firmware revision 01

Line 3 Marking:

Manufacturing code characters from the
TTTTT = Trace Code Markings section of the Assembly Purchase
Order form

Line 4 Marking:

YY = Last two digits of current year

Y YWW+ 2D gde WW = Current Work Week

Lead Free Designator +

~>

SILICON LABS

Rev. 1.1

37

Si3482

10. Ordering Guide

Table 26. Si3482 Ordering Guide

Ordering Part Number Description Package Information

24-pin 4x4 mm QFN

Si3482-A01-GM Power management controller RoHS compliant

An evaluation kit with the Si3482, six Si3452 con-
SMARTPSE24-KIT trollers, and the Si3500 for generating the 3.3 V Evaluation Board
supply from the PoE supply.

Notes:
1. Add “R” to the part number to denote tape and reel option (Si3482-A01-GMR).
2. The ordering part number is not the same as the device mark. See "6. Package Outline: 24-Pin QFN" on page 34 for
device marking information

- L4
38 Rev. 1.1 @

SILICON LABS

Si3482

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 1.1

m Added “Not Recommended for New Designs”
watermark.

~>

SILICON LABS

Rev. 1.1

39

Si3482

CONTACT INFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez
Austin, TX 78701

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page:
https://www.siliconlabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

. L4
40 Rev. 1.1 @

SILICON LABS

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

	1. Electrical Specifications
	2. Functional Description
	2.1. Host Interface
	2.1.1. UART Interface
	2.1.2. SPI Interface

	2.2. Hardware Only Mode

	3. Serial Packet Protocol
	3.1. Packet Format
	3.1.1. Start Field
	3.1.2. Checksum Field
	3.1.3. Routine Field
	3.1.4. Data Length Field
	3.1.5. Data Field

	3.2. SPP Error Handling

	4. Power Manager API
	4.1. EventsManagement
	4.1.1. InitPowerManager
	4.1.2. ClosePowerManager

	4.2. System Status
	4.2.1. GetSystemStatus
	4.2.2. GetSystemInfo
	4.2.3. GetTotalPowerConsumed
	4.2.4. GetTotalPowerGranted
	4.2.5. GetTotalPowerProvided

	4.3. Port Status
	4.3.1. GetPortCount
	4.3.2. GetPortStatus
	4.3.3. GetPortInfo
	4.3.4. GetPortPriorityStatus
	4.3.5. GetPortPowerConsumed
	4.3.6. GetPortPowerGranted
	4.3.7. GetPortPowerRequested
	4.3.8. GetPortPowerAvailable

	4.4. System Control
	4.4.1. ResetSystem
	4.4.2. RestoreFactoryDefaults

	4.5. Port Control
	4.5.1. SetPortControl
	4.5.2. AdjustPortPower

	4.6. System Configuration
	4.6.1. SetPowerProvided
	4.6.2. GetPowerProvided
	4.6.3. SetReservedPower
	4.6.4. GetReservedPower
	4.6.5. SetOverloadLimit
	4.6.6. GetOverloadLimit
	4.6.7. SetGrantingPolicy
	4.6.8. GetGrantingPolicy
	4.6.9. SetRetryPolicy
	4.6.10. GetRetryPolicy
	4.6.11. SetPowerLocation
	4.6.12. GetPowerLocation

	4.7. Port Configuration
	4.7.1. SetPortEnable
	4.7.2. GetPortEnable
	4.7.3. SetPortCapability
	4.7.4. GetPortCapability
	4.7.5. SetPortPriority
	4.7.6. GetPortPriority
	4.7.7. SetPortPowerLimit
	4.7.8. GetPortPowerLimit

	4.8. Power Supply Status
	4.8.1. SetPowerSupplyStatus
	4.8.2. GetPowerSupplyStatus

	4.9. Events
	4.9.1. GetEvents

	4.10. Return Codes
	4.10.1. Success Code
	4.10.2. Error Codes
	4.10.3. Information Codes

	5. Pin Descriptions
	6. Package Outline: 24-Pin QFN
	7. PCB Land Pattern
	8. Solder/Paste Recommendation
	9. Top Marking Diagram
	10. Ordering Guide
	Document Change List
	Contact Information

